0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS3DDR3812RUAR

TS3DDR3812RUAR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WQFN42_EP

  • 描述:

    IC MUX/DEMUX DDR3 1:2 42WQFN

  • 数据手册
  • 价格&库存
TS3DDR3812RUAR 数据手册
TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 12-Channel, 1:2 MUX/DEMUX Switch for DDR3 Applications Check for Samples: TS3DDR3812 FEATURES APPLICATIONS • • • • • • • • • • B0 C1 B1 41 40 39 38 B2 A0 2 37 C2 A1 3 36 B3 A2 4 35 C3 A3 5 34 B4 A4 6 33 C4 A5 7 32 B5 31 C5 30 VCC EN 8 SEL1 9 SEL2 10 29 B6 A6 11 28 C6 A7 12 27 B7 A8 13 26 C7 A9 14 25 B8 A10 15 24 C8 A11 16 23 B9 VCC 17 22 C9 GND 18 19 20 21 B10 • • 42 1 VCC C10 • Figure 1. RUA PACKAGE (TOP VIEW) B11 • DDR3 Signal Switching DIMM Modules Notebook/Desktop PCs Servers C0 • • • • Compatible with DDR3 SDRAM Standard (JESD79-3D) Wide Bandwidth of 1.675 GHz Low Propagation Delay (tpd = 40 ps Typ) Low Bit-to-Bit Skew (tsk(o) = 6 ps Typ) Low and Flat ON-State Resistance (rON = 8 Ω Typ) Low Input/Output Capacitance (CON = 5.6 pF Typ) Low Crosstalk (XTALK = –43 dB, Typ at 250 MHz) VCC Operating Range from 3 V to 3.6 V Rail-to-Rail Switching on Data I/O Ports (0 to VCC) Separate Switch Control Logic for Upper and Lower 6-Channels Dedicated Enable Logic Supports Hi-Z Mode IOFF Protection Prevents Current Leakage in Powered Down State (VCC = 0 V) ESD Performance Tested Per JESD22 – 2000 V Human Body Model (A114B, Class II) – 1000 V Charged Device Model (C101) 42-pin RUA Package (9 × 3.5 mm, 0.5 mm Pitch) C11 1 DESCRIPTION The TS3DDR3812 is a 12-channel, 1:2 multiplexer/demultiplexer switch designed for DDR3 applications. It operates from a 3 to 3.6 V supply and offers low and flat ON-state resistance as well as low I/O capacitance which allow it to achieve a typical bandwidth of 1.675 GHz. Channels A0 through A11 are divided into two banks of six bits and are independently controlled via two digital inputs called SEL1 and SEL2. These select inputs control the switch position of each 6-bit DDR3 source and allow them to be routed to one of two end-points. Alternatively, the switch can be used to connect a single endpoint to one of two 6-bit DDR3 sources. For switching 12-bit DDR3 sources, simply connect SEL1 and SEL2 together externally and control all 12 channels with a single GPIO input. An EN input allows the entire chip to be placed into a high-impedance (Hi-Z) state while not in use. These characteristics make the TS3DDR3812 an excellent choice for use in memory, analog/digital video, LAN, and other high-speed signal switching applications. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011–2013, Texas Instruments Incorporated TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ORDERING INFORMATION For package and ordering information, see the Package Option Addendum at the end of this document. Figure 2. LOGIC DIAGRAM A0 B0 A1 B1 A2 B2 A3 A4 B3 B4 A5 B5 C0 C1 C2 C3 C4 C5 A6 A7 B6 B7 A8 B8 A9 A 10 B9 B10 A 11 B11 C6 C7 C8 C9 C10 C11 EN SEL1 SEL2 Control Logic FUNCTION TABLE EN SEL1 SEL2 FUNCTION L X X A0 to A11, B0 to B11, and C0 to C11 are Hi-Z H L L A0 to A5 = B0 to B5 and A6 to A11 = B6 to B11 H L H A0 to A5 = B0 to B5 and A6 to A11 = C6 to C11 H H L A0 to A5 = C0 to C5 and A6 to A11 = B6 to B11 H H H A0 to A5 = C0 to C5 and A6 to A11 = C6 to C11 TERMINAL FUNCTIONS PIN NAME 2 NUMBER DESCRIPTION VCC 1,17, 30 Supply Voltage GND ThermalPad Ground Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 TERMINAL FUNCTIONS (continued) PIN NAME NUMBER DESCRIPTION EN 8 Enable Input SEL1 9 Select Input SEL2 10 Select Input A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16 Data I/Os B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11 41, 39, 38, 36, 34, 32, 29, 27, 25, 23, 21, 19 Data I/Os C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11 42, 40, 37, 35, 33, 31, 28, 26, 24, 22, 20, 18 Data I/Os ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) VCC Supply voltage range VI/O Analog voltage range (2) (3) (4) (2) (3) MIN MAX –0.5 4.6 V A, B, C –0.5 7 V SEL1, SEL2 –0.5 VIN Digital input voltage range II/OK Analog port diode current VI/O < 0 –50 mA IIK Digital input clamp current VIN < 0 –50 mA –128 128 mA –100 100 mA 31.8 °C/W 150 °C (5) II/O On-state switch current IDD, IGND Continuous current through VDD or GND θJA Package thermal impedance (6) Tstg Storage temperature range (1) (2) (3) (4) (5) (6) A, B, C RUA package –65 7 UNIT V Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to ground, unless otherwise specified. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. VI and VO are used to denote specific conditions for VI/O. II and IO are used to denote specific conditions for II/O The package thermal impedance is calculated in accordance with JESD 51-7. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 3 TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com RECOMMENDED OPERATING CONDITIONS (1) MIN MAX VCC Supply voltage 3 3.6 V VIH High-level control input voltage SEL1, SEL2 2 5.5 V VIL Low-level control input voltage SEL1, SEL2 0 0.8 V VIN Input voltage 0 5.5 V VI/O Input/Output voltage 0 VCC V TA Operating free-air temperature –40 85 °C (1) SEL1, SEL2 UNIT All unused control inputs of the device must be held at VDD or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004 ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX VIK Digital input clamp voltage SEL1, SEL2 VCC = 3.6 V, IIN = –18 mA RON ON-state resistance A, B, C VCC = 3 V, 1.5 V ≤ VI/O ≤ VCC, II/O = -40 mA –1.2 –0.8 RON(flat) (3) ON-state resistance flatness A, B, C VCC = 3 V, VI/O = 1.5 V and VCC, II/O = –40 mA 1.5 ΔRON (4) On-state resistance match between channels A, B, C VCC = 3 V, 1.5 V ≤ VI/O ≤ VCC, II/O = –40 mA 0.4 IIH Digital input high leakage current IIL 8 UNIT V 12 Ω Ω 1 Ω SEL1, SEL2 VCC = 3.6 V , VIN = VDD ±1 µA Digital input low leakage current SEL1, SEL2 VCC = 3.6 V, VIN = GND ±1 µA IOFF Leakage under power off conditions All outputs ±1 µA CIN Digital input capacitance SEL1, SEL2 f = 1 MHz, VIN = 0 V 3.2 pF COFF Switch OFF capacitance A, B, C f = 1 MHz, VI/O = 0 V, Output is open, Switch is OFF 2 pF CON Switch ON capacitance A, B, C f = 1 MHz, VI/O = 0 V, Output is open, Switch is ON 5.6 pF ICC VCC supply current VCC = 3.6 V, II/O = 0, VIN = VDD or GND 300 (1) (2) (3) (4) 4 VCC = 0 V, VI/O = 0 to 3.6 V, VIN = 0 to 5.5 V 2.6 400 µA VI, VO, II, and IO refer to I/O pins, VIN refers to the control inputs All typical values are at VCC = 3.3V (unless otherwise noted), TA = 25°C RON(FLAT) is the difference of RON in a given channel at specified voltages. ΔRON is the difference of RON from center port (A5, A6) to any other ports. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 SWITCHING CHARACTERISTICS Over recommended operation free-air temperature range, VCC = 3.3 V ± 0.3 V, RL = 200 Ω, CL = 4 pF (unless otherwise noted) (see Figure 7 and Figure 9) PARAMETER tpd (2) FROM (INPUT) TO (OUTPUT) MIN TYP (1) MAX A or B,C B,C or A SEL1 A0-5 or B0-5, C0-5 2 7 ns SEL2 A6-11 or B6-11, C6-11 2 7 ns SEL1 A0-5 or B0-5, C0-5 2 5 ns SEL2 A6-11 or B6-11, C6-11 2 5 ns tsk(o) (3) A or B,C B, C or A 6 30 ps (4) A or B, C B, C or A 6 30 ps tPZH, tPZL tPHZ, tPLZ tsk(p) (1) (2) (3) (4) 40 UNIT ps All typical values are at VCC = 3.3V (unless otherwise noted), TA = 25°C. The propagation delay is the calculated RC time constant of the typical ON-State resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance). Output skew between center port (A5, A6) and any other channel. Skew between opposite transitions of the same output |tPHL – tPLH| DYNAMIC CHARACTERISTICS over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V (unless otherwise noted) PARAMETER TEST CONDITIONS XTALK RL = 50 Ω, f = 250 MHz (see Figure 11) OIRR RL = 50 Ω, f = 250 MHz (see Figure 12) BW RL = 50 Ω, Switch ON (see Figure 10) (1) TYP (1) UNIT –43 dB –42 dB 1.675 GHz All Typical Values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C. Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 5 TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com OPERATING CHARACTERISTICS 0 0 -20 -2 Attenuation - dB Attenuation - dB -40 -4 -6 -60 -80 -8 -100 -10 -120 -12 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10 f - Frequency - Hz -140 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10 f - Frequency - Hz Figure 3. Gain vs Frequency Figure 4. Off Isolation vs Frequency 9.0 0 8.8 -20 8.6 8.4 RON - W Attenuation - dB -40 -60 8.2 -80 8.0 -100 7.8 -120 7.6 -140 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10 f - Frequency - Hz 7.4 1.4 Figure 5. Crosstalk vs Frequency 6 Submit Documentation Feedback 1.9 2.9 2.4 VI - Input Voltage - V 3.4 Figure 6. RON vs VIN Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 PARAMETER MEASUREMENT INFORMATION Enable and Disable Times VDD Input Generator VIN 50 Ω 50 Ω VG1 TEST CIRCUIT DUT 2 × VDD Input Generator S1 RL VO VI GND 50 Ω CL (see Note A) 50 Ω VG2 RL TEST VDD S1 RL Vin CL V∆ t PLZ/t PZL 3.3 V ± 0.3 V 2 × VDD 200 Ω GND 4 pF 0.3 V t PHZ/t PZH 3.3 V ± 0.3 V GND 200 Ω VDD 4 pF 0.3 V VSEL VO 3.33 V Output Control (VIN) 1.65 V 1.65 V 0V Output Waveform 1 S1 at 2 x VCC (see Note B) t PZL t PLZ VOH VDC/2 t PZH VO Open Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL t PHZ VCC/2 VOH - 0.3 V VOH VOL VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics:PRR ≤10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. Figure 7. Test Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 7 TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION (continued) Figure 8. Skew VDD Input Generator VSEL 50 Ω 50 Ω VG1 TEST CIRCUIT DUT 2 × VDD Input Generator 50 Ω t sk(o) t sk(p) RL S1 RL Vin CL 3.3 V ± 0.3 V Open 200 Ω VCC or GND 4 pF 3.3 V ± 0.3V Open 200 Ω VCC or GND 4 pF VCC 3.5 V 2.5 V 1.5 V Data In at Ax or Ay t PLHx t PHLx VOH (VOH + VOL)/2 VOL Data Out at XB 1 or XB 2 t sk(o) VO CL (see Note A) 50 Ω TEST VO Open GND VG2 VI S1 RL VO VI Input t sk(o) VOH (VOH + VOL)/2 VOL Data Out at YB 1 or YB 2 t PLHy 3.5 V 2.5 V 1.5 V t PHLy t PLH VOH (VOH + VOL)/2 VOL Output t sk(o) = t PLHy − tPLHx or t PHLy − tPHLx VOLTAGE WAVEFORMS OUTPUT SKEW (t sk(o)) t PHL t sk(p) = t PHL − tPLH VOLTAGE WAVEFORMS PULSE SKEW [t sk(p)] NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. Figure 9. Test Circuit andf Voltage Waveforms 8 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 PARAMETER MEASUREMENT INFORMATION (continued) EXT TRIGGER BIAS VBIAS Network Analyzer (HP8753ES) P1 P2 VCC AX BX DUT SEL VSEL Figure 10. Test Circuit for Frequency Response (BW) Frequency response is measured at the output of the ON channel. For example, when VSEL = 0 and A0 is the input, the output is measured at B0. All unused analog I/O ports are left open. HP8753ES Setup Average = 4 RBW = 3 kHz VBIAS = 0.35 V ST = 2 s P1 = 0 dBM Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 9 TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION (continued) EXT TRIGGER BIAS VBIAS Network Analyzer (HP8753ES) P1 P2 VCC A0 BX RL = 50 W A1 BX BX BX A2 BX RL = 50 W A3 BX BX SEL BX VSEL A. CL includes probe and jig capacitance. B. A 50 W termination resistor is needed to match the loading of the network analyzer. Figure 11. Test Circuit for Crosstalk (XTALK) Crosstalk is measured at the output of the nonadjacent ON channel. For example, when VSEL = 0 and A1 is the input, the output is measured at A3. All unused analog input (A) ports are connected to GND, and output (B) ports are left open. HP8753ES Setup Average = 4 RBW = 3 kHz VBIAS = 0.35 V ST = 2 s P1 = 0 dBM 10 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 TS3DDR3812 www.ti.com SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 PARAMETER MEASUREMENT INFORMATION (continued) EXT TRIGGER BIAS VBIAS Network Analyzer (HP8753ES) P1 P2 VDD A0 0B1 RL = 50 W A1 1B1 DUT 0B2 1BX2 SEL VSEL A. CL includes probe and jig capacitance. B. A 50 W termination resistor is needed to match the loading of the network analyzer. Figure 12. Test Circuit for OFF Isolation (OIRR) OFF isolation is measured at the output of the OFF channel. For example, when VSEL = GND and A1 is the input, the output is measured at 1B2. All unused analog input (A) ports are connected to ground, and output (B) ports are left open. HP8753ES Setup Average = 4 RBW = 3 kHz VBIAS = 0.35 V ST = 2 s P1 = 0 dBM Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 11 TS3DDR3812 SCDS314B – FEBRUARY 2011 – REVISED MAY 2013 www.ti.com REVISION HISTORY Changes from Revision A (March 2012) to Revision B • 12 Page Changed Low B Low Bit-to-Bit Skew in the FEATURES list from (tsk(o) = 6 ps Max) to (tsk(o) = 6 ps Typ) ........................... 1 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated Product Folder Links :TS3DDR3812 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TS3DDR3812RUAR ACTIVE WQFN RUA 42 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 SL812 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TS3DDR3812RUAR 价格&库存

很抱歉,暂时无法提供与“TS3DDR3812RUAR”相匹配的价格&库存,您可以联系我们找货

免费人工找货