0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS5V330CDBQR

TS5V330CDBQR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SSOP16

  • 描述:

    Video Switch IC 4 Channel 16-SSOP

  • 数据手册
  • 价格&库存
TS5V330CDBQR 数据手册
TS5V330C www.ti.com SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 QUAD SPDT WIDE BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE Check for Samples: TS5V330C FEATURES 1 • • • • • 1 16 VCC 2 15 S2A 3 14 EN S1D DA 4 13 S2D S1B 5 12 DD S2B 6 11 S1C DB 7 10 S2C GND 8 9 DC RGY PACKAGE (TOP VIEW) VCC • • • IN S1A 1 16 S1A 2 15 S2A 3 14 EN S1D DA 4 13 S2D S1B 5 12 DD S2B 6 11 S1C DB 7 10 S2C 8 9 DC • D, DB, DBQ, OR PW PACKAGE (TOP VIEW) IN • • • Low Differential Gain and Phase (Typical DG = 0.24%, Typical DP = 0.039°) Wide Bandwidth (Typical BW > 288 MHz) Low Cross-Talk (Typical XTALK = –87 dB) Low Power Consumption (Maximum ICC = 3 μA) Bidirectional Data Flow, With Near-Zero Propagation Delay Low ON-State Resistance (Typical rON = 3 Ω) VCC Operating Range From 4.5 V to 5.5 V Ioff Supports Partial-Power-Down Mode Operation Data and Control Inputs Provide Undershoot Clamp Diode Control Inputs Can be Driven by TTL or 5-V/3.3-V CMOS Outputs Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Performance Tested Per JESD 22 – 2000-V Human-Body Model (A114-B, Class II) – 1000-V Charged-Device Model (C101) Suitable for Both RGB and Composite Video Switching GND • DESCRIPTION/ORDERING INFORMATION The TS5V330C is a 4-bit 1-of-2 multiplexer/demultiplexer video switch with a single switch-enable (EN) input. The select (IN) input controls the data path of the multiplexer/demultiplexer. When EN is low, the switch is enabled and the D port is connected to the S port. When EN is high, the switch is disabled and a high impedance state exists between the D and S ports. Low differential gain and phase makes this switch ideal for video applications. The device has a wide bandwidth and low cross talk which makes it suitable for high frequency video applications. The device can be used for RGB and composite video switching applications. This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off. To ensure the high-impedance state during power up or power down, EN should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009, Texas Instruments Incorporated TS5V330C SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 www.ti.com ORDERING INFORMATION TA PACKAGE QFN – RGY TOP-SIDE MARKING TS5V330CRGYR Tube TS5V330CD Tape and reel TS5V330CDR SSOP – DB Tape and reel TS5V330CDBR TE330C SSOP (QSOP) – DBQ Tape and reel TS5V330CDBQR TE330C Tube TS5V330CPW Tape and reel TS5V330CPWR TSSOP – PW (1) (2) ORDERABLE PART NUMBER Tape and reel SOIC – D –40°C to 85°C (1) (2) TE330C TS5V330C TE330C Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Table 1. FUNCTION TABLE INPUTS EN IN INPUT/OUTPUT A FUNCTION L L S1 D port = S1 port L H S2 D port = S2 port H X Z Disconnect Table 2. PIN DESCRIPTIONS PIN NAME 2 DESCRIPTION S1, S2 Analog video I/Os D Analog video I/Os IN Select input EN Switch-enable input Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C TS5V330C www.ti.com SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 PARAMETER DEFINITIONS PARAMETER DESCRIPTION rON Resistance between the D and S ports with the switch in the ON-state IOZ Output leakage current measured at the D and S ports with the switch in the OFF-state IOS Short circuit current measured at the I/O pins. VIN Voltage at the IN pin VEN Voltage at the EN pin CIN Capacitance at the control inputs (EN, IN) COFF Capacitance at the analog I/O port when the switch is OFF CON Capacitance at the analog I/O port when the switch is ON VIH Minimum input voltage for logic high for the control inputs (EN, IN) VIL Minimum input voltage for logic low for the control inputs (EN, IN) VH Hysteresis voltage at the control inputs (EN, IN) VIK I/O and control inputs diode clamp voltage (EN, IN) VI Voltage applied to the D or S pins when D or S is the switch input. VO Voltage applied to the D or S pins when D or S is the switch output. IIH Input high leakage current of the control inputs (EN, IN) IIL Input low leakage current of the control inputs (EN, IN) II Current into the D or S pins when D or S is the switch input. IO Current into the D or S pins when D or S is the switch output. Ioff Output leakage current measured at the D and S ports with VCC = 0 tON Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. tOFF Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. BW Frequency response of the switch in the ON-state measured at –3 dB XTALK Unwanted signal coupled from channel to channel. Measured in –dB. XTALK = 20 LOG VOUT/VIN. This is a non-adjacent crosstalk. OIRR Off-isolation is the resistance (measured in –dB) between the input and output with the switch OFF. DG Magnitude variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard the frequency of the video signal is 3.58 MHz and DC offset is from 0 to 0.714 V. DP Phase variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard the frequency of the video signal is 3.58 MHz and DC offset is from 0 to 0.714 V. ICC Static power supply current ICCD Variation of ICC for a change in frequency in the control inputs (EN, IN) ΔICC This is the increase in supply current for each control input that is at the specified voltage level, rather than VCC or GND. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C 3 TS5V330C SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 www.ti.com LOGIC DIAGRAM (POSITIVE LOGIC) 4 2 DA S1A 3 S2A 7 5 DB S1B 6 S2B 9 11 DC S1C 10 S2C DD 12 14 13 S1D S2D 1 IN 15 EN ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT –0.5 7 V –0.5 7 V –0.5 7 V VCC Supply voltage range VIN Control input voltage range (2) VI/O Output voltage range (2) IIK Control input clamp current VIN < 0 –50 mA II/OK I/O port clamp current VI/O < 0 –50 mA II/O ON-state switch current (5) ±128 mA ±100 mA 150 °C (3) (3) (4) Continuous current through VCCor GND Tstg (1) (2) (3) (4) (5) 4 Storage temperature range –65 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to ground unless otherwise specified. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. VI and VO are used to denote specific conditions for VI/O. II and IO are used to denote specific conditions for II/O. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C TS5V330C www.ti.com SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 PACKAGE THERMAL IMPEDANCE over operating free-air temperature range (unless otherwise noted) UNIT θJA Package thermal impedance D package (1) 73 DB package (1) 82 DBQ package (1) 90 PW package (1) 108 RGY package (2) (1) (2) °C/W 39 The package thermal impedance is calculated in accordance with JESD 51-7. The package thermal impedance is calculated in accordance with JESD 51-5. RECOMMENDED OPERATING CONDITIONS (1) MIN MAX UNIT VCC Supply voltage 4 5.5 V VIH High-level control input voltage (EN, IN) 2 5.5 V VIL Low-level control input voltage (EN, IN) 0 0.8 V VANALOG Analog input/output voltage 0 Vcc V TA Operating free-air temperature –40 85 °C (1) All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C 5 TS5V330C SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 www.ti.com ELECTRICAL CHARACTERISTICS (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER MIN TYP (2) TEST CONDITIONS VIK EN, IN VH EN, IN IIH EN, IN VCC = 5.5 V, EN, IN UNIT V 400 mV VIN and VEN = VCC ±1 μA VCC = 5.5 V, VIN and VEN = GND ±1 μA VCC = 5.5 V, VO = 0 to 5.5 V, VI = 0, Switch OFF ±10 μA IOS VCC = 5.5 V, VO = 0 to 5.5 V, VI = 0, Switch ON ±110 mA Ioff VCC = 0, VO = 0 to 5.5 V, VI = 0 ±1 μA ICC VCC = 5.5 V, II/O = 0, Switch ON or OFF 3 μA VCC = 5.5 V, One input at 3.4 V, Other inputs at VCC or GND IOZ (3) ΔICC EN, IN ICCD Cin EN, IN D port COFF S port CON rON (1) (2) (3) (4) VCC = 5.5 V, VEN = GND, D and S ports are open, VIN or VEN = 0 f = 1 MHz 3.5 Switch OFF, 8.5 VI/O = 3 V or 0, VI = 0, (4) IIN = –18 mA MAX –1.8 IIL VCC = 4.5 V, VIN switching 50% duty cycle VIN = VCC or GND Switch ON, mA 0.25 mA/ MHz pF pF 5.5 f = 1 MHz, outputs open, Switch ON VCC = 4.5 V 2.5 16.5 pF VI = 1 V, IO = 13 mA, RL = 75 Ω 3 7 VI = 2 V, IO = 26 mA, RL = 75 Ω 3 10 Ω VI , VO, II, and IO refer to the I/O pins. All typical values are at VCC = 5 V (unless otherwise noted), TA = 25°C. For I/O ports, the parameter IOZ includes the input leakage current. Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (S or D) terminals. SWITCHING CHARACTERISTICS over recommended operating free-air temperature range, VCC = 5 V ±10%, RL = 75 Ω, CL = 20 pF (unless otherwise noted) (see Figure 5) PARAMETER FROM (INPUT) TO (OUTPUT) MIN tON S D 1.5 6.0 ns tOFF S D 1.5 5.9 ns TYP MAX UNIT DYNAMIC CHARACTERISTICS over recommended operating free-air temperature range, VCC = 5 V ±10% (unless otherwise noted) PARAMETER (1) 6 TEST CONDITIONS MIN TYP (1) MAX UNIT DG RL = 150 Ω, f = 3.58 MHz, see Figure 6 0.24 % DP RL = 150 Ω, f = 3.58 MHz, see Figure 6 0.039 ° BW RL = 150 Ω, see Figure 7 250 MHz XTALK RIN = 10 Ω, RL = 150 Ω, f = 10 MHz, see Figure 7 –87 dB OIRR RL = 150 Ω, f = 10 MHz, see Figure 7 –54 dB All typical values are at VCC = 5 V (unless otherwise noted), TA = 25°C. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C TS5V330C www.ti.com SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 TYPICAL PERFORMANCE 0 0 -1 0.00 -0.405 -0.410 -0.05 -10 -0.415 -0.10 -2 -4 -40 -5 Differential Gain (%) -30 Phase (°) Gain (dB) -3 -0.15 -0.425 -0.430 -0.20 -0.435 -0.25 Differential Phase (°) -0.420 -20 -0.440 -0.30 -50 -6 -0.445 Phase at = –3 dB, –35° Gain at -3 dB , 288 MHz -7 -60 -8 1 -0.35 10 -0.40 0.0 -70 1000 100 Differential phase at 0.714 V, 0.427° Differential gain at 0.714 V, 0.24% 0.1 0.2 0.3 0.4 0.5 0.6 VBIAS (V) 0.7 0.8 -0.450 0.9 -0.455 1.0 Frequency (MHz) Figure 1. Frequency Response Figure 2. Differential Gain/Phase vs VBIAS 0 160 -10 0 -10 140 -20 200 -20 120 -30 -30 80 -50 60 -60 150 Phase (°) -40 Crosstalk (dB) 100 Phase (°) Off Isolation (dB) 250 Phase at 10 MHz, –92.25° Crosstalk at -10 MHz, –46.99 dB -40 -50 100 -60 40 -70 Off Isolation at 10 MHz, –54.66 dB Phase at 10 MHz, 94.7° -80 -90 1 10 20 0 1000 100 -70 50 -80 -90 1 10 100 Frequency (MHz) Frequency (MHz) Figure 3. OFF-Isolation vs Frequency Figure 4. Crosstalk vs Frequency 0 1000 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C 7 TS5V330C SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 www.ti.com PARAMETER MEASUREMENT INFORMATION VCC Input Generator VIN IN 50 Ω 50 Ω VG1 S1 DUT TEST CIRCUIT VS1 S2 D VO EN VS2 CL (see Note A) RL TEST VCC RL CL VS1 V S2 tON 5 V ± 0.5 V 5 V ± 0.5 V 75 Ω 75 Ω 20 pF 20 pF GND 3V 3V GND tOFF 5 V ± 0.5 V 5 V ± 0.5 V 75 Ω 75 Ω 20 pF 20 pF GND 3V 3V GND Output Control (VIN) 3V 50% 50% 0V tON tOFF 3V Analog Output Waveform (VO) 90% 90% 0V VOLTAGE WAVEFORMS tON and tOFF TIMES A. CL includes probe and jig capacitance. B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤2.5 ns. C. The outputs are measured one at a time with one transition per measurement. Figure 5. Test Circuit and Voltage Waveforms 8 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C TS5V330C www.ti.com SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 PARAMETER MEASUREMENT INFORMATION (continued) Ω For additional information, refer to the TI application report, Measuring Differential Gain and Phase, literature number SLOA040. Figure 6. Test Circuit for Differential Gain/Phase Measurement The differential gain and phase is measured at the output of the ON channel. For example, when VIN = 0, VEN = 0, and DA is the input, the output is measured at S1A. HP8753ES Setup Average = 20 RBW = 300 Hz Smoothing = 2% VBIAS = 0 to 1 V ST = 1.381 s. P1 = –7 dBM CW frequency = 3.58 MHz Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C 9 TS5V330C SCDS276B – APRIL 2009 – REVISED DECEMBER 2009 www.ti.com PARAMETER MEASUREMENT INFORMATION (continued) Ω Figure 7. Test Circuit for Frequency Response, Crosstalk, and OFF-Isolation The frequency response is measured at the output of the ON channel. For example, when VIN = 0, VEN = 0, and DA is the input, the output is measured at S1A. All unused analog I/O ports are held at VCC or GND. The crosstalk is measured at the output of the non-adjacent ON channel. For example, when VIN = 0, VEN = 0, and DA is the input, the output is measured at S1B. All unused analog I/O ports are held at VCC or GND. The off-isolation is measured at the output of the OFF channel. For example, when VIN = 0, VEN = VCC, and DA is the input, the output is measured at S1A. All unused analog I/O ports are held at VCC or GND. HP8753ES Setup Average = 4 RBW = 3 kHz Smoothing = 0% VBIAS = 0.35 V ST = 2 s P1 = 0 dBM 10 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TS5V330C PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TS5V330CDBQR ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 TE330C TS5V330CDR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TS5V330C TS5V330CPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TE330C (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TS5V330CDBQR 价格&库存

很抱歉,暂时无法提供与“TS5V330CDBQR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS5V330CDBQR
  •  国内价格 香港价格
  • 2500+2.112482500+0.25504
  • 5000+1.966775000+0.23744
  • 12500+1.8939312500+0.22865
  • 25000+1.8211025000+0.21986

库存:4987