TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Ultralow-Power NTSC/PAL/SECAM Video Decoder
Check for Samples: TVP5150AM1
1 Introduction
1.1
Features
1
• Accepts NTSC (J, M, 4.43), PAL (B, D, G, H, I,
M, N, Nc), and SECAM (B, D, G, K, K1, L) Video
• Supports ITU-R BT.601 Standard Sampling
• High-Speed 9-Bit Analog-to-Digital Converter
(ADC)
• Two Composite Inputs or One S-Video Input
• Fully Differential CMOS Analog Preprocessing
Channels With Clamping and Automatic Gain
Control (AGC) for Best Signal-to-Noise (S/N)
Performance
• Ultralow Power Consumption
• 48-Terminal PBGA Package (ZQC) or
32-Terminal TQFP Package (PBS)
• Power-Down Mode: 1 kΩ) to program the terminal to the desired address.
1 = Address is BAh
0 = Address is B8h
YOUT7: Most significant bit (MSB) of ITU-R BT.656 output/YCbCr 4:2:2 output
Device Details
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
9
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3 Functional Description
3.1
Analog Front End
The TVP5150AM1 decoder has an analog input channel that accepts two video inputs that are
ac-coupled. The decoder supports a maximum input voltage range of 0.75 V; therefore, an attenuation of
one-half is needed for most input signals with a peak-to-peak variation of 1.5 V. The nominal parallel
termination before the input to the device is recommended to be 75 Ω. See the application diagram in
Figure 6-1 for the recommended configuration. The two analog input ports can be connected as either of
the following:
• Two selectable composite video inputs
• One S-video input
An internal clamping circuit restores the sync-tip of the ac-coupled video signal to a fixed dc level.
The programmable gain amplifier (PGA) and the automatic gain control (AGC) algorithm work together to
make sure that the input signal is amplified sufficiently to ensure the proper input range for the ADC.
The ADC has nine bits of resolution and runs at a nominal speed of 27 MHz. The clock input for the ADC
comes from the horizontal PLL.
3.2
Composite Processing Block Diagram
The composite processing block processes NTSC/PAL/SECAM signals into the YCbCr color space.
Figure 3-1 shows the basic architecture of this processing block.
Figure 3-1 shows the luminance/chrominance (Y/C) separation process in the TVP5150AM1 decoder. The
composite video is multiplied by subcarrier signals in the quadrature modulator to generate the color
difference signals Cb and Cr. Cb and Cr are then low pass (LP) filtered to achieve the desired bandwidth
and to reduce crosstalk.
An adaptive four-line comb filter separates CbCr from Y. Chrominance is remodulated through another
quadrature modulator and subtracted from the line-delayed composite video to generate luminance.
Brightness, hue, saturation, and sharpness (using the peaking filter) are programmable via I2C.
The Y/C separation is bypassed for S-video input. For S-video, the remodulation path is disabled.
10
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Gain Factor
Peak
Detector
Bandpass
X
Peaking
Composite
Delay
Line
Delay
+
Delay
Y
Y
Quadrature
Modulation
Brightness
Saturation
Adjust
SECAM Luminance
Cr
Notch
Filter
Cb
Composite
SECAM Color
Demodulation
Cb
Composite
Quadrature
Modulation
Cr
Cr
Notch
Filter
Color
LPF ↓ 2
Burst
Accumulator
(Cb)
Cb
4-Line
Adaptive
Comb
Filter
Color
LPF ↓ 2
LP
Filter
LP
Filter
Delay
Delay
Burst
Accumulator
(Cr)
Figure 3-1. Composite Processing Block Diagram (Comb/Trap Filter Bypassed for SECAM)
3.3
Adaptive Comb Filtering
The four-line comb filter can be selectively bypassed in the luminance or chrominance path. If the comb
filter is bypassed in the luminance path, then chrominance trap filters are used which are shown in
Figure 3-2 and Figure 3-3. TI's patented adaptive four-line comb filter algorithm reduces artifacts such as
hanging dots at color boundaries and detects and properly handles false colors in high-frequency
luminance images such as a multiburst pattern or circle pattern.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
11
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Figure 3-2. Chrominance Trap Filter Frequency
Response, NTSC ITU-R BT.601 Sampling
3.4
Figure 3-3. Chrominance Trap Filter Frequency
Response, PAL ITU-R BT.601 Sampling
Color Low-Pass Filter
In some applications, it is desirable to limit the Cb/Cr bandwidth to avoid crosstalk. This is especially true
in case of video signals that have asymmetrical Cb/Cr sidebands. The color LP filters provided limit the
bandwidth of the Cb/Cr signals. Color LP filters are needed when the comb filtering turns off, due to
extreme color transitions in the input image. See Section 3.21.25, Chrominance Control #2 Register, for
the response of these filters. The filters have three options that allow three different frequency responses
based on the color frequency characteristics of the input video as shown in Figure 3-4.
Figure 3-4. Color Low-Pass Filter with Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling
12
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.5
Luminance Processing
The luminance component is derived from the composite signal by subtracting the remodulated
chrominance information. A line delay exists in this path to compensate for the line delay in the adaptive
comb filter in the color processing chain. The luminance information is then fed into the peaking circuit,
which enhances the high frequency components of the signal, thus improving sharpness.
3.6
Chrominance Processing
For NTSC/PAL formats, the color processing begins with a quadrature demodulator. The Cb/Cr signals
then pass through the gain control stage for chrominance saturation adjustment. An adaptive comb filter is
applied to the demodulated signals to separate chrominance and eliminate cross-chrominance artifacts.
An automatic color killer circuit is also included in this block. The color killer suppresses the chrominance
processing when the burst amplitude falls below a programmable threshold (see I2C subaddress 06h). The
SECAM standard is similar to PAL except for the modulation of color which is FM instead of QAM.
3.7
Timing Processor
The timing processor is a combination of hardware and software running in the internal microprocessor
that serves to control horizontal lock to the input sync pulse edge, AGC and offset adjustment in the
analog front end, vertical sync detection, and Macrovision detection.
3.8
VBI Data Processor (VDP)
The TVP5150AM1 VDP slices various data services such as teletext (WST, NABTS), closed captioning
(CC), wide screen signaling (WSS), etc. These services are acquired by programming the VDP to enable
standards in the VBI. The results are stored in a FIFO and/or registers. The teletext results are stored only
in a FIFO. Table 3-1 lists a summary of the types of VBI data supported according to the video standard. It
supports ITU-R BT. 601 sampling for each.
Table 3-1. Data Types Supported by VDP
LINE MODE REGISTER
(D0h–FCh) BITS [3:0]
NAME
DESCRIPTION
0000b
WST SECAM
Teletext, SECAM
0001b
WST PAL B
Teletext, PAL, System B
0010b
WST PAL C
Teletext, PAL, System C
0011b
WST, NTSC B
Teletext, NTSC, System B
0100b
NABTS, NTSC C
Teletext, NTSC, System C
0101b
NABTS, NTSC D
Teletext, NTSC, System D (Japan)
0110b
CC, PAL
Closed caption PAL
0111b
CC, NTSC
Closed caption NTSC
1000b
WSS/CGMS-A
Wide-screen signaling/Copy Generation Management System-Analog, PAL
1001b
WSS/CGMS-A
Wide-screen signaling/Copy Generation Management System-Analog, NTSC
1010b
VITC, PAL
Vertical interval timecode, PAL
1011b
VITC, NTSC
Vertical interval timecode, NTSC
1100b
VPS, PAL
Video program system, PAL
1101b
Gemstar 2x Custom 1
Electronic program guide
1110b
Reserved
Reserved
1111b
Active Video
Active video/full field
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
13
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
At power-up the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents
with the lookup table (see Section 3.21.65). This is done through port address C3h. Each read from or
write to this address auto increments an internal counter to the next RAM location. To access the
VDP-CRAM, the line mode registers (D0h to FCh) must be programmed with FFh to avoid a conflict with
the internal microprocessor and the VDP in both writing and reading. Full field mode must also be
disabled.
Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Each line can be any VBI mode.
Output data is available either through the VBI-FIFO (B0h) or through dedicated registers at 90h to AFh,
both of which are available through the I2C port.
3.9
VBI FIFO and Ancillary Data in Video Stream
Sliced VBI data can be output as ancillary data in the video stream in the ITU-R BT.656 mode. VBI data is
output during the horizontal blanking period following the line from which the data was retrieved. Table 3-2
shows the header format and sequence of the ancillary data inserted into the video stream. This format is
also used to store any VBI data into the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can
store up to 11 lines of teletext data with the NTSC NABTS standard.
Table 3-2. Ancillary Data Format and Sequence
BYTE NO.
D7
(MSB)
D6
D5
D4
D3
D2
D1
D0
(LSB)
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
NEP
EP
0
1
0
DID2
DID1
DID0
4
NEP
EP
F5
F4
F3
F2
F1
F0
Secondary data ID (SDID)
5
NEP
EP
N5
N4
N3
N2
N1
N0
Number of 32-bit data (NN)
6
Video line [7:0]
7
Data
error
0
0
0
DESCRIPTION
Ancillary data preamble
Data ID (DID)
Internal data ID0 (IDID0)
Match 1 Match 2
Video line [9:8]
Internal data ID1 (IDID1)
8
1. Data
Data byte
9
2. Data
Data byte
10
3. Data
Data byte
11
4. Data
Data byte
...
...
...
m–1. Data
Data byte
m. Data
Data byte
RSVD
4(N+2)–1
1
CS[5:0]
0
0
0
First word
0
Check sum
0
EP:
Even parity for D0–D5
NEP:
Negated even parity
DID:
91h: Sliced data of VBI lines of first field
0
0
Nth word
Fill byte
53h: Sliced data of line 24 to end of first field
55h: Sliced data of VBI lines of second field
97h: Sliced data of line 24 to end of second field
14
SDID:
This field holds the data format taken from the line mode register of the corresponding line.
NN:
Number of Dwords beginning with byte 8 through 4(N+2). This value is the number of
Dwords where each Dword is 4 bytes.
IDID0:
Transaction video line number [7:0]
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
IDID1:
Bit 0/1 = Transaction video line number [9:8]
Bit 2 = Match 2 flag
Bit 3 = Match 1 flag
Bit 4 = 1 if an error was detected in the EDC block; 0 if not
CS:
Sum of D0–D7 of DID through last data byte.
Fill byte:
Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte.
3.10 Raw Video Data Output
The TVP5150AM1 decoder can output raw ADC video data at 2x sampling rate for external VBI slicing.
This is transmitted as an ancillary data block during the active horizontal portion of the line and during
vertical blanking.
3.11 Output Formatter
The YCbCr digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU-R BT.656 parallel interface
standard.
Table 3-3. Summary of Line Frequencies, Data Rates, and Pixel Counts
STANDARDS
(ITU-R BT.601)
PIXELS PER
LINE
ACTIVE
PIXELS PER
LINE
LINES PER
FRAME
PIXEL
FREQUENCY
(MHz)
COLOR
SUB-CARRIER
FREQUENCY
(MHz)
HORIZONTAL
LINE RATE
(kHz)
NTSC-J, M
858
720
525
13.5
3.579545
15.73426
NTSC-4.43
858
720
525
13.5
4.43361875
15.73426
PAL-M
858
720
525
13.5
3.57561149
15.73426
PAL-B, D, G, H, I
864
720
625
13.5
4.43361875
15.625
PAL-N
864
720
625
13.5
4.43361875
15.625
PAL-Nc
864
720
625
13.5
3.58205625
15.625
SECAM
864
720
625
13.5
4.40625/4.25
15.625
3.12 Synchronization Signals
External (discrete) syncs are provided via the following signals (see Figure 3-5 and Figure 3-6):
• VSYNC (vertical sync)
• FID/VLK (field indicator or vertical lock indicator)
• INTREQ/GPCL/VBLK (general-purpose output or vertical blanking indicator)
• PALI/HLK (PAL switch indicator or horizontal lock indicator)
• HSYNC (horizontal sync)
• AVID (active video indicator) (if set as output)
The position and duration of the HSYNC, VSYNC, VBLK, and AVID outputs are I2C programmable,
providing control of synchronization timing relative to the video output.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
15
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
525 Line
525
1
2
3
4
5
6
7
8
9
10
11
20
21
22
Composite
Video
VSYNC
FID
INTREQ/GPCL/VBLK
↔
VBLK Start
262
263
↔
VBLK Stop
264
265
266
267
268
269
270
271
272
273
282
283
284
Composite
Video
VSYNC
FID
INTREQ/GPCL/VBLK
↔
VBLK Start
↔
VBLK Stop
625 Line
310
311
312
313
314
315
316
317
318
319
320
333
334
335
336
Composite
Video
VSYNC
FID
INTREQ/GPCL/VBLK
↔
VBLK Start
622
623
624
↔
VBLK Stop
625
1
2
3
4
5
6
7
20
21
22
23
Composite
Video
VSYNC
FID
INTREQ/GPCL/VBLK
↔
VBLK Start
A.
↔
VBLK Stop
Line numbering conforms to ITU-R BT.470 and ITU-R BT.1700.
Figure 3-5. 8-Bit 4:2:2, Timing With 2× Pixel Clock (SCLK) Reference
16
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
ITU-R BT.656 Timing
NTSC 601
1436
1437
1438 1439 1440 1441 …
1455 1456
PAL 601
1436
1437
1438 1439 1440 1441
1459 1460
SECAM
1436
1437
1438 1439 1440 1441 …
1479 1480
ITU 656
Cb
Datastream 359
Y
718
Cr
359
Y
719
FF
00
10
80
…
…
1583 1584 … 1711 1712 1713 1714 1715
0
1
2
3
1587 1588
1723 1724 1725 1726 1727
0
1
2
3
1607 1608
… 1719 1720 1721 1722 1723
17 17
24 25
17
26
17
27
Cb
0
Cr
0
Y
1
10
80
10
FF
00
00
XX
Y
0
HSYNC
↔
HSYNC Start
AVID
↔
AVID Stop
A.
↔
AVID Start
AVID rising edge occurs four SCLK cycles early when in the ITU-R BT.656 output mode.
Figure 3-6. Horizontal Synchronization Signals
3.13 Active Video (AVID) Cropping
The AVID output signal provides a means to qualify and crop active video both horizontally and vertically.
The horizontal start and stop position of the AVID signal is controlled using registers 11h-12h and
13h-14h, respectively. These registers also control the horizontal position of the embedded sync SAV/EAV
codes.
AVID vertical timing is controlled by the VBLK start and stop registers at addresses 18h and 19h. These
VBLK registers have no effect on the embedded vertical sync code timing. Figure 3-7 shows an AVID
application.
NOTE
The above settings alter AVID output timing, but the video output data is not forced to black
level outside of the AVID interval.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
17
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
VBLK Stop
www.ti.com
Active Video Area
VBLK Start
AVID Cropped
Area
AVID Stop
VSYNC
AVID Start
HSYNC
Figure 3-7. AVID Application
3.14 Embedded Syncs
Standards with embedded syncs insert SAV and EAV codes into the datastream at the beginning and end
of horizontal blanking. These codes contain the V and F bits that also define vertical timing. F and V
change on EAV. Table 3-4 gives the format of the SAV and EAV codes.
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line
and field counter varies depending on the standard. See ITU-R BT.656 for more information on embedded
syncs.
The P bits are protection bits:
P3 = V xor H
P2 = F xor H
P1 = F xor V
P0 = F xor V xor H
Table 3-4. EAV and SAV Sequence
8-BIT DATA
D7 (MSB)
D6
D5
D4
D3
D2
D1
D0
Preamble
1
1
1
1
1
1
1
1
Preamble
0
0
0
0
0
0
0
0
Preamble
0
0
0
0
0
0
0
0
Status word
1
F
V
H
P3
P2
P1
P0
18
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.15 I2C Host Interface
The I2C standard consists of two signals, serial input/output data line (SDA) and input/output clock line
(SCL), which carry information between the devices connected to the bus. A third signal (I2CSEL) is used
for slave address selection. Although the I2C system can be multimastered, the TVP5150AM1 decoder
functions only as a slave device.
Both SDA and SCL must be connected to a positive supply voltage via a pullup resistor. When the bus is
free, both lines are high. The slave address select terminal (I2CSEL) enables the use of two
TVP5150AM1 decoders tied to the same I2C bus. At power up, the status of the I2CSEL is polled.
Depending on the write and read addresses to be used for the TVP5150AM1 decoder, it can either be
pulled low or high through a resistor. This terminal is multiplexed with YOUT7 and hence must not be tied
directly to ground or IO_DVDD. Table 3-6 summarizes the terminal functions of the I2C-mode host
interface.
Table 3-5. Write Address
Selection
I2CSEL
WRITE ADDRESS
0
B8h
1
BAh
Table 3-6. I2C Terminal Description
SIGNAL
TYPE
DESCRIPTION
I2CSEL (YOUT7)
I
SCL
I/O (open drain)
Slave address selection
Input/output clock line
SDA
I/O (open drain)
Input/output data line
Data transfer rate on the bus is up to 400 kbit/s. The number of interfaces connected to the bus is
dependent on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the
high period of the SCL except for start and stop conditions. The high or low state of the data line can only
change with the clock signal on the SCL line being low. A high-to-low transition on the SDA line while the
SCL is high indicates an I2C start condition. A low-to-high transition on the SDA line while the SCL is high
indicates an I2C stop condition.
Every byte placed on the SDA must be eight bits long. The number of bytes which can be transferred is
unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is
generated by the I2C master.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
19
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.15.1 I2C Write Operation
Data transfers occur utilizing the following illustrated formats.
An I2C master initiates a write operation to the TVP5150AM1 decoder by generating a start condition (S)
followed by the TVP5150AM1 I2C slave address (see the following illustration), in MSB first bit order,
followed by a 0 to indicate a write cycle. After receiving an acknowledge from the TVP5150AM1 decoder,
the master presents the subaddress of the register, or the first of a block of registers it wants to write,
followed by one or more bytes of data, MSB first. The TVP5150AM1 decoder acknowledges each byte
after completion of each transfer. The I2C master terminates the write operation by generating a stop
condition (P).
Step 1
0
2
I C Start (master)
S
Step 2
7
6
5
4
3
2
1
0
I2C slave address (master)
1
0
1
1
1
0
X
0
Step 3
9
I2C Acknowledge (slave)
A
Step 4
I2C Write register address (master)
6
5
4
3
2
1
0
Addr
Addr
Addr
Addr
Addr
Addr
Addr
Step 5
9
I2C Acknowledge (slave)
A
Step 6
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
2
I C Write data (master)
Step 7 (1)
9
2
I C Acknowledge (slave)
(1)
7
Addr
A
Step 8
0
I2C Stop (master)
P
Repeat steps 6 and 7 until all data have been written.
3.15.2 I2C Read Operation
The read operation consists of two phases. The first phase is the address phase. In this phase, an I2C
master initiates a write operation to the TVP5150AM1 decoder by generating a start condition (S) followed
by the TVP5150AM1 I2C slave address, in MSB first bit order, followed by a 0 to indicate a write cycle.
After receiving an acknowledge from the TVP5150AM1 decoder, the master presents the subaddress of
the register or the first of a block of registers it wants to read. After the cycle is acknowledged, the master
terminates the cycle immediately by generating a stop condition (P).
Table 3-7. Read Address
Selection
I2CSEL
20
READ ADDRESS
0
B9h
1
BBh
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
The second phase is the data phase. In this phase, an I2C master initiates a read operation to the
TVP5150AM1 decoder by generating a start condition followed by the TVP5150AM1 I2C slave address
(see the following illustration of a read operation), in MSB first bit order, followed by a 1 to indicate a read
cycle. After an acknowledge from the TVP5150AM1 decoder, the I2C master receives one or more bytes
of data from the TVP5150AM1 decoder. The I2C master acknowledges the transfer at the end of each
byte. After the last data byte desired has been transferred from the TVP5150AM1 decoder to the master,
the master generates a not acknowledge followed by a stop.
3.15.2.1 Read Phase 1
Step 1
0
I2C Start (master)
S
Step 2
7
6
5
4
3
2
1
0
I2C slave address (master)
1
0
1
1
1
0
X
0
Step 3
9
2
I C Acknowledge (slave)
Step 4
I2C Write register address (master)
A
7
6
5
4
3
2
1
0
Addr
Addr
Addr
Addr
Addr
Addr
Addr
Addr
Step 5
9
I2C Acknowledge (slave)
A
Step 6
0
2
I C Stop (master)
P
3.15.2.2 Read Phase 2
Step 7
0
I2C Start (master)
S
Step 8
7
6
5
4
3
2
1
0
I2C slave address (master)
1
0
1
1
1
0
X
1
Step 9
9
2
I C Acknowledge (slave)
Step 10
I2C Read data (slave)
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
Step 11 (1)
9
I2C Not Acknowledge (master)
A
Step 12
0
2
I C Stop (master)
(1)
A
P
Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
21
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.15.2.3 I2C Timing Requirements
The TVP5150AM1 decoder requires delays in the I2C accesses to accommodate its internal processor's
timing. In accordance with I2C specifications, the TVP5150AM1 decoder holds the I2C clock line (SCL) low
to indicate the wait period to the I2C master. If the I2C master is not designed to check for the I2C clock
line held-low condition, then the maximum delays must always be inserted where required. These delays
are of variable length; maximum delays are indicated in the following diagram:
Normal register writing addresses 00h to 8Fh (addresses 90h to FFh do not require delays).
Start
Slave
address
(B8h)
Ack
Subaddress
Ack
Data (XXh)
Ack
Wait 64 µs
Stop
The 64-µs delay is for all registers that do not require a reinitialization. Delays may be more for some
registers.
3.16 Clock Circuits
An internal line-locked PLL generates the system clock (SCLK). A 14.31818-MHz clock is required to drive
the PLL. This may be input to the TVP5150AM1 decoder on terminal 5 (XTAL1), or a crystal of
14.31818-MHz fundamental resonant frequency may be connected across terminals 5 and 6 (XTAL2).
Figure 3-8 shows the reference clock configurations. For the example crystal circuit shown (a
parallel-resonant crystal with 14.31818-MHz fundamental frequency), the external capacitors must have
the following relationship:
CL1 = CL2 = 2CL – CSTRAY
where CSTRAY is the terminal capacitance with respect to ground, and CL is the crystal load capacitance
specified by the crystal manufacturer.
Figure 3-8 shows the reference clock configurations.
TVP5150AM1
XTAL1
TVP5150AM1
5
14.31818-MHz
TTL Clock
XTAL1
5
14.31818-MHz
CL1
Crystal
R
XTAL2
6
XTAL2
6
CL2
NOTE: The resistor (R) in parallel with the crystal is recommended to support a wide range of crystal types. A 100-kΩ resistor
may be used for most crystal types.
Figure 3-8. Reference Clock Configurations
Clock source frequency should have an accuracy of ±50 ppm (max).
22
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.17 Genlock Control (GLCO) and RTC
A Genlock control function is provided to support a standard video encoder to synchronize its internal
color oscillator for properly reproduced color with unstable timebase sources such as VCRs.
The frequency control word of the internal color subcarrier digitally tuned oscillator (DTO) and the
subcarrier phase reset bit are transmitted via terminal 23 (GLCO). The frequency control word is a 23-bit
binary number. The frequency of the DTO can be calculated from the following equation:
fdto = (fctrl/223) × fsclk
where fdto is the frequency of the DTO, fctrl is the 23-bit DTO frequency control, and fsclk is the frequency of
the SCLK.
3.17.1 GLCO Interface
A write of 1 to bit 4 of the chrominance control register at I2C subaddress 1Ah causes the subcarrier DTO
phase reset bit to be sent on the next scan line on GLCO. The active-low reset bit occurs seven SCLKs
after the transmission of the last bit of DTO frequency control. Upon the transmission of the reset bit, the
phase of the TVP5150AM1 internal subcarrier DTO is reset to zero.
A Genlock slave device can be connected to the GLCO terminal and uses the information on GLCO to
synchronize its internal color phase DTO to achieve clean line and color lock.
Figure 3-9 shows the timing diagram of the GLCO mode.
SCLK
GLCO
22
MSB
LSB
21
0
>128 SCLK
23 SCLK
23-Bit Frequency Control
1 SCLK
7 SCLK
1 SCLK
Start Bit
DCO Reset Bit
Figure 3-9. GLCO Timing
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
23
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.17.2 RTC Mode
Figure 3-10 shows the timing diagram of the RTC mode. Clock rate for the RTC mode is four times slower
than the GLCO clock rate. For Color PLL frequency control, the upper 22 bits are used. Each frequency
control bit is two clock cycles long. The active-low reset bit occurs six CLKs after the transmission of the
last bit of PLL frequency control.
RTC
128 CLK
16 CLK
M
S
B
L
S
B
21
0
44 CLK
22-Bit Fsc Frequency Control
2 CLK
1 CLK
PAL
Switch
2 CLK
Start
Bit
3 CLK
1 CLK
Reset
Bit
Figure 3-10. RTC Timing
3.18 Reset and Power Down
The RESETB and PDN terminals work together to put the TVP5150AM1 decoder into one of the two
modes. Table 3-8 shows the configuration.
After power-up, the device is in an unknown state with its outputs undefined, until it receives a RESETB
signal as depicted in Figure 3-11. After RESETB is released, the data (YOUT0 to YOUT7) and sync
(HSYNC, VSYNC/PALI) outputs are in high-impedance state until the TVP5150AM1 is initialized and the
outputs are activated.
NOTE
I2C SCL and SDA signals must not change state until the TVP5150AM1 reset sequence has
been completed.
Table 3-8. Reset and Power-Down Modes
24
PDN
RESETB
0
0
Reserved (unknown state)
CONFIGURATION
0
1
Powers down the decoder
1
0
Resets the decoder
1
1
Normal operation
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
After RESETB is released, outputs SCLK and YOUT0 to YOUT7 are high-impedance until the chip is
initialized and the outputs are activated.
PLL_AVDD
DVDD
IO_DVDD
t1
Normal Operation
RESETB
Reset
t2
PDN
t3
SDA
Data
SCL
Figure 3-11. Power-On Reset Timing
Table 3-9. Power-On Reset Timing
NO.
PARAMETER
MIN
MAX
20
UNIT
t1
Delay time between power supplies active and reset
t2
RESETB pulse duration
500
ns
t3
Delay time between end of reset to I2C active
200
µs
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
ms
25
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.19 Reset Sequence
Table 3-10 shows the reset sequence of the TVP5150AM1 pins status during reset time and immediately
after reset time.
Table 3-10. Reset Sequence
PIN DESCRIPTION
AVID, HSYNC, INTREQ/GPCL/VBLK, VSYNC/PALI, YOUT[0:6]
AIP1A, AIP1B, RESETB, PDN, SDA, SCL, XTAL1/OSC
FID/GLCO, SCLK, XTAL2
YOUT7/I2CSEL
26
Functional Description
DURING RESETB
IMMEDIATELY AFTER
RESETB
High-impedance
High-impedance
Input
Input
Output
Output
Input
High-impedance
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.20 Internal Control Registers
The TVP5150AM1 decoder is initialized and controlled by a set of internal registers that set all device
operating parameters. Communication between the external controller and the TVP5150AM1 decoder is
through I2C. Table 3-11 shows the summary of these registers. The reserved registers must not be
written. Reserved bits in the defined registers must be written with zeros, unless otherwise noted. The
detailed programming information of each register is described in the following sections.
Table 3-11. Register Summary
ADDRESS
DEFAULT
R/W (1)
Video input source selection #1
00h
00h
R/W
Analog channel controls
01h
15h
R/W
Operation mode controls
02h
00h
R/W
Miscellaneous controls
03h
01h
R/W
Autoswitch mask
04h
DCh
R/W
Reserved
05h
00h
R/W
Color killer threshold control
06h
10h
R/W
Luminance processing control #1
07h
60h
R/W
Luminance processing control #2
08h
00h
R/W
Brightness control
09h
80h
R/W
Color saturation control
0Ah
80h
R/W
Hue control
0Bh
00h
R/W
Contrast Control
0Ch
80h
R/W
Outputs and data rates select
0Dh
47h
R/W
Luminance processing control #3
0Eh
00h
R/W
Configuration shared pins
0Fh
08h
R/W
Reserved
10h
Active video cropping start pixel MSB
11h
00h
R/W
Active video cropping start pixel LSB
12h
00h
R/W
Active video cropping stop pixel MSB
13h
00h
R/W
Active video cropping stop pixel LSB
14h
00h
R/W
Genlock and RTC
15h
01h
R/W
Horizontal sync start
16h
80h
R/W
Reserved
17h
Vertical blanking start
18h
00h
R/W
REGISTER
Vertical blanking stop
19h
00h
R/W
Chrominance control #1
1Ah
0Ch
R/W
Chrominance control #2
1Bh
14h
R/W
Interrupt reset register B
1Ch
00h
R/W
Interrupt enable register B
1Dh
00h
R/W
Interrupt configuration register B
1Eh
00h
R/W
Reserved
1Fh-20h
Indirect Register Data
21h-22h
00h
R/W
Indirect Register Address
23h
00h
R/W
Indirect Register Read/Write Strobe
24h
00h
R/W
00h
R/W
Reserved
25h-27h
Video standard
Reserved
28h
29h–2Bh
Cb gain factor
(1)
2Ch
R
R = Read only, W = Write only, R/W = Read and write
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
27
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Table 3-11. Register Summary (continued)
REGISTER
ADDRESS
R/W (1)
Cr gain factor
2Dh
Macrovision on counter
2Eh
0Fh
R/W
Macrovision off counter
2Fh
01h
R/W
656 revision select
30h
00h
R/W
00h
R
Reserved
R
31h–32h
RAM Version LSB
33h
Reserved
34h-7Dh
Patch Write Address
7Eh
00h
R/W (2)
Patch Code Execute
7Fh
00h
R/W(2)
Device ID MSB
80h
51h
R
Device ID LSB
81h
50h
R
ROM version
82h
04h
R
RAM version MSB
83h
00h
R
Vertical line count MSB
84h
R
Vertical line count LSB
85h
R
Interrupt status register B
86h
R
Interrupt active register B
87h
R
Status register #1
88h
R
Status register #2
89h
R
Status register #3
8Ah
R
Status register #4
8Bh
R
Status register #5
8Ch
R
Reserved
8Dh
Patch Read Address
8Eh
Reserved
00h
R/W(2)
8Fh
Closed caption data
90h–93h
R
WSS/CGMS-A data
94h–99h
R
VPS/Gemstar 2x data
9Ah–A6h
R
VITC data
A7h–AFh
R
VBI FIFO read data
B0h
R
Teletext filter and mask 1
B1h–B5h
00h
R/W
Teletext filter and mask 2
B6h–BAh
00h
R/W
BBh
00h
R/W
Teletext filter control
Reserved
BCh–BFh
Interrupt status register A
C0h
00h
R/W
Interrupt enable register A
C1h
00h
R/W
Interrupt configuration register A
C2h
04h
R/W
VDP configuration RAM data
C3h
DCh
R/W
VDP configuration RAM address low byte
C4h
0Fh
R/W
VDP configuration RAM address high byte
C5h
00h
R/W
VDP status
C6h
FIFO word count
C7h
FIFO interrupt threshold
C8h
80h
R/W
FIFO reset
C9h
00h
W
Line number interrupt
CAh
00h
R/W
Pixel alignment LSB
CBh
4Eh
R/W
(2)
28
DEFAULT
R
R
These registers are used for firmware patch code and should not be written to or read from during
normal operation.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Table 3-11. Register Summary (continued)
ADDRESS
DEFAULT
R/W (1)
Pixel alignment HSB
CCh
00h
R/W
FIFO output control
CDh
01h
R/W
Reserved
CEh
Full field enable
CFh
00h
R/W
D0h
D1h–FBh
00h
FFh
R/W
FCh
7Fh
R/W
REGISTER
Line mode
Full field mode
Reserved
FDh–FFh
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
29
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21 Register Definitions
3.21.1 Video Input Source Selection #1 Register
Address
Default
00h
00h
7
6
5
4
3
Black output
Reserved
2
Reserved
1
Channel 1
source
selection
0
S-video
selection
Channel 1 source selection
0 = AIP1A selected (default)
1 = AIP1B selected
Table 3-12. Analog Channel and Video Mode Selection
ADDRESS 00
INPUT(S) SELECTED
Composite
S-Video
BIT 1
BIT 0
AIP1A (default)
0
0
AIP1B
1
0
AIP1A (luminance),
AIP1B (chrominance)
x
1
Black output
0 = Normal operation (default)
1 = Force black screen output (outputs synchronized)
a. Forced to 10h in normal mode
b. Forced to 01h in extended mode
3.21.2 Analog Channel Controls Register
Address
Default
7
01h
15h
6
Reserved
5
4
1
3
0
2
1
1
0
Automatic gain control
Automatic gain control (AGC)
00 = AGC disabled (fixed gain value)
01 = AGC enabled (default)
10 = Reserved
11 = AGC frozen to the previously set value
30
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.3 Operation Mode Controls Register
Address
Default
7
Reserved
02h
00h
6
Color burst
reference
enable
5
4
TV/VCR mode
3
Composite
peak disable
2
Color
subcarrier PLL
frozen
1
Luminance
peak disable
0
Power-down
mode
Color burst reference enable
0 = Color burst reference for AGC disabled (default)
1 = Color burst reference for AGC enabled (not recommended)
TV/VCR mode
00 = Automatic mode determined by the internal detection circuit (default)
01 = Reserved
10 = VCR (nonstandard video) mode
11 = TV (standard video) mode
With automatic detection enabled, unstable or nonstandard syncs on the input video forces the
detector into the VCR mode. This turns off the comb filters and turns on the chrominance trap filter.
Composite peak disable
0 = Composite peak protection enabled (default)
1 = Composite peak protection disabled
Color subcarrier PLL frozen
0 = Color subcarrier PLL increments by the internally generated phase increment (default). GLCO pin
outputs the frequency increment.
1 = Color subcarrier PLL stops operating. GLCO pin outputs the frozen frequency increment.
Luminance peak disable
0 = Luminance peak processing enabled (default)
1 = Luminance peak processing disabled
Power-down mode
0 = Normal operation (default)
1 = Power-down mode. ADCs are turned off and internal clocks are reduced to minimum.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
31
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.4 Miscellaneous Controls Register
Address
Default
7
VBLK/GPCL
select
03h
01h
6
GPCL logic
level
5
INTREQ/GPCL/
VBLK output
enable
4
Lock status
(HVLK)
3
YCbCr output
enable
(TVPOE)
2
HSYNC,
VSYNC/PALI,
AVID,
FID/GLCO
output enable
1
Vertical
blanking on/off
0
Clock output
enable
VBLK/GPCL function select (affects INTREQ/GPCL/VBLK output only if bit 1 of I2C register 0Fh is set to
1)
0 = GPCL (default)
1 = VBLK
GPCL logic level (affects INTREQ/GPCL/VBLK output only if bit 7 is set to 0 and bit 5 is set to 1)
0 = GPCL is set to logic 0 (default)
1 = GPCL is set to logic 1
INTREQ/GPCL/VBLK output enable
0 = Output disabled (default)
1 = Output enabled (recommended)
Note: The INTREQ/GPCL/VBLK output (pin 27) must never be left floating. An external 10-kΩ pulldown
resistor is required when the INTREQ/GPCL/VBLK output is disabled (bit 5 of I2C register 03h is set to 0).
Lock status (HVLK) (configured along with register 0Fh, see Figure 3-12 for the relationship between the
configuration shared pins)
0 = Terminal VSYNC/PALI outputs the PAL indicator (PALI) signal and terminal FID/GLCO outputs the
field ID (FID) signal (default) (if terminals are configured to output PALI and FID in register 0Fh).
1 = Terminal VSYNC/PALI outputs the horizontal lock indicator (HLK) and terminal FID outputs the
vertical lock indicator (VLK) (if terminals are configured to output PALI and FID in register 0Fh).
These are additional functions that are provided for ease of use.
YCbCr output enable
0 = YOUT[7:0] high impedance (default)
1 = YOUT[7:0] active
Note: YOUT7 must be pulled high or low for device I2C address select.
HSYNC, VSYNC/PALI, active video indicator (AVID), and FID/GLCO output enables
0 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high-impedance (default).
1 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are active.
Note: This control bit has no effect on the FID/GLCO output when it is programmed to output the
GLCO signal (see bit 3 of address 0Fh). When the GLCO signal is selected, the FID/GLCO output is
always active.
32
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Vertical blanking on/off
0 = Vertical blanking (VBLK) off (default)
1 = Vertical blanking (VBLK) on
Clock output enable
0 = SCLK output is high impedance
1 = SCLK output is enabled (default)
Note: To achieve lowest power consumption, outputs placed in the high-impedance state should not be
left floating. A 10-kΩ pulldown resistor is recommended if not driven externally.
Note: When enabling the outputs, ensure the clock output is not accidently disabled.
Table 3-13. Digital Output Control (1)
REGISTER 03h, BIT 3
(TVPOE)
REGISTER C2h, BIT 2
(VDPOE)
YCbCr OUTPUT
(1)
NOTES
0
X
High impedance
After both YCbCr output enable bits are programmed
X
0
High impedance
After both YCbCr output enable bits are programmed
1
1
Active
After both YCbCr output enable bits are programmed
VDPOE default is 1, and TVPOE default is 0.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
33
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
0F(Bit 2)
VSYNC/PALI
0F(Bit 4)
LOCK24B
VSYNC
PALI
HLK
0
HVLK
1
HVLK
1
VLK
0
0
M
U
X
HLK/HVLK
1
M
U
X
VLK/HVLK
1
FID
0
0
M
U
X
PALI/HLK/HVLK
1
M
U
X
FID/VLK/HVLK
0
GLCO
1
M
U
X
VSYNC/PALI/HLK/HVLK
M
U
X
FID/GLCO/VLK/HVLK
Pin 24
Pin 23
0F(Bit 6)
LOCK23
0F(Bit 3)
FID/GLCO
03(Bit 4)
HVLK
VBLK
1
GPCL
0
M
U
X
VBLK/GPCL
INTREQ
03(Bit 7)
VBLK/GPCL select
1
0
M
U
X
INTREQ/GPCL/VBLK
Pin 27
0F(Bit 1)
INTREQ/GPCL/VBLK
Figure 3-12. Configuration Shared Pins
NOTE
Also see the configuration shared pins register at subaddress 0Fh.
34
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.5 Autoswitch Mask Register
Address
Default
04h
DCh
7
6
Reserved
5
SEC_OFF
4
N4.43_OFF
3
PALN_OFF
2
PALM_OFF
1
0
Reserved
N4.43_OFF
0 = NTSC4.43 is unmasked from the autoswitch process. Autoswitch does switch to NTSC4.43.
1 = NTSC4.43 is masked from the autoswitch process. Autoswitch does not switch to NTSC4.43
(default).
PALN_OFF
0 = PAL-N is unmasked from the autoswitch process. Autoswitch does switch to PAL-N.
1 = PAL-N is masked from the autoswitch process. Autoswitch does not switch to PAL-N (default).
PALM_OFF
0 = PAL-M is unmasked from the autoswitch process. Autoswitch does switch to PAL-M.
1 = PAL-M is masked from the autoswitch process. Autoswitch does not switch to PAL-M (default).
SEC_OFF
0 = SECAM is unmasked from the autoswitch process. Autoswitch does switch to SECAM (default).
1 = SECAM is masked from the autoswitch process. Autoswitch does not switch to SECAM.
3.21.6 Color Killer Threshold Control Register
Address
Default
7
Reserved
06h
10h
6
5
Automatic color killer
4
3
2
Color killer threshold
1
0
Automatic color killer
00 = Automatic mode (default)
01 = Reserved
10 = Color killer enabled, CbCr terminals forced to a zero color state
11 = Color killer disabled
Color killer threshold
11111 = –30 dB (minimum)
10000 = –24 dB (default)
00000 = –18 dB (maximum)
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
35
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.7 Luminance Processing Control #1 Register
Address
Default
7
2× luminance
output enable
07h
60h
6
Pedestal not
present
5
Disable raw
header
4
Luminance bypass
enabled during
vertical blanking
3
2
1
0
Luminance signal delay with respect to chrominance signal
2× luminance output enable
0 = Output depends on bit 4, luminance bypass enabled during vertical blanking (default).
1 = Outputs 2x luminance samples during the entire frame. This bit takes precedence over bit 4.
Pedestal not present
0 = 7.5 IRE pedestal is present on the analog video input signal.
1 = Pedestal is not present on the analog video input signal (default).
Disable raw header
0 = Insert 656 ancillary headers for raw data
1 = Disable 656 ancillary headers and instead force dummy ones (40h) (default)
Luminance bypass enabled during vertical blanking
0 = Disabled. If bit 7, 2× luminance output enable, is 0, normal luminance processing occurs and
YCbCr samples are output during the entire frame (default).
1 = Enabled. If bit 7, 2× luminance output enable, is 0, normal luminance processing occurs and
YCbCr samples are output during VACTIVE and 2× luminance samples are output during VBLK.
Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h.
Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h.
Luminance signal delay with respect to chrominance signal in pixel clock increments (range –8 to +7 pixel
clocks)
1111 = –8 pixel clocks delay
1011 = –4 pixel clocks delay
1000 = –1 pixel clocks delay
0000 = 0 pixel clocks delay (default)
0011 = +3 pixel clocks delay
0111 = +7 pixel clocks delay
36
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.8 Luminance Processing Control #2 Register
Address
Default
7
Reserved
08h
00h
6
Luminance filter
select
5
4
3
Reserved
2
1
0
Mac AGC control
2
1
Peaking gain
Luminance filter select
0 = Luminance comb filter enabled (default)
1 = Luminance chrominance trap filter enabled
Peaking gain (sharpness)
00 = 0 (default)
01 = 0.5
10 = 1
11 = 2
Information on peaking frequency:
ITU-R BT.601 sampling rate: all standards
Peaking center frequency is 2.6 MHz.
Mac AGC control
00 = Auto mode
01 = Auto mode
10 = Force Macrovision AGC pulse detection off
11 = Force Macrovision AGC pulse detection on
3.21.9 Brightness Control Register
Address
Default
7
09h
80h
6
5
4
3
0
Brightness[7:0]
Brightness[7:0]: This register works for CVBS and S-Video luminance.
1111 1111 = 255 (bright)
1000 0000 = 128 (default)
0000 0000 = 0 (dark)
The output black level relative to the nominal black level (16 out of 256) as a function of the
Brightness[7:0] setting and the Contrast[7:0] setting is as follows:
Black Level = nominal_black_level + (Brightness[7:0] – 128) + (438 / 4) × (1 - Contrast[7:0] / 128)
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
37
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.10 Color Saturation Control Register
Address
Default
0Ah
80h
7
6
5
4
3
2
1
0
Saturation[7:0]
Saturation[7:0]: This register works for CVBS and S-Video chrominance.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (no color)
The total chrominance gain relative to the nominal chrominance gain as a function of the Saturation[7:0]
setting is as follows:
Chrominance Gain = nominal_chrominance_gain × (Saturation[7:0] / 128)
3.21.11 Hue Control Register
Address
Default
0Bh
00h
7
6
5
4
3
2
1
0
3
2
1
0
Hue control
Hue control (does not apply to SECAM)
0111 1111 = +180 degrees
0000 0000 = 0 degrees (default)
1000 0000 = –180 degrees
3.21.12 Contrast Control Register
Address
Default
7
0Ch
80h
6
5
4
Contrast [7:0]
Contrast [7:0]: This register works for CVBS and S-Video luminance.
1111 1111 – 1101 0000 = Reserved
1100 1111 = 207 (maximum contrast)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum contrast)
The total luminance gain relative to the nominal luminance gain as a function of the Contrast [7:0] setting
is as follows:
Luminance Gain = nominal_luminance_gain × (Contrast[7:0] / 128)
NOTE
Luminance peak processing (see bit 1 of subaddress: 02h) may limit the upper end of the
contrast control range.
38
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.13 Outputs and Data Rates Select Register
Address
Default
7
Reserved
0Dh
47h
6
YCbCr output
code range
5
CbCr code
format
4
3
YCbCr data path bypass
2
1
YCbCr output format
0
YCbCr output code range
0 = ITU-R BT.601 coding range (Y ranges from 16 to 235. U and V range from 16 to 240)
1 = Extended coding range (Y, U, and V range from 1 to 254) (default)
CbCr code format
0 = Offset binary code (2s complement + 128) (default)
1 = Straight binary code (2s complement)
YCbCr data path bypass
00 = Normal operation (default)
01 = Decimation filter output connects directly to the YCbCr output pins. This data is similar to the
digitized composite data, but the HBLANK area is replaced with ITU-R BT.656 digital blanking.
10 = Digitized composite (or digitized S-video luminance). ADC output connects directly to YCbCr
output pins.
11 = Reserved
YCbCr output format
000 = 8-bit 4:2:2 YCbCr with discrete sync output
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = Reserved
110 = Reserved
111 = 8-bit ITU-R BT.656 interface with embedded sync output (default)
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
39
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.14 Luminance Processing Control #3 Register
Address
Default
7
0Eh
00h
6
5
4
3
2
Reserved
1
0
Luminance trap filter select
Luminance filter stop band bandwidth (MHz)
00 = No notch (default)
01 = Notch 1
10 = Notch 2
11 = Notch 3
Luminance filter select [1:0] selects one of the four chrominance trap (notch) filters to produce luminance
signal by removing the chrominance signal from the composite video signal. The stopband of the
chrominance trap filter is centered at the chrominance subcarrier frequency with stopband bandwidth
controlled by the two control bits. See the following table for the stopband bandwidths. The WCF bit is
controlled in the chrominance control #2 register, see Section 3.21.25.
WCF
0
1
40
FILTER SELECT
NTSC/PAL/SECAM
ITU-R BT.601
00
1.2244
01
0.8782
10
0.7297
11
0.4986
00
1.4170
01
1.0303
10
0.8438
11
0.5537
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.15 Configuration Shared Pins Register
Address
Default
7
Reserved
0Fh
08h
6
LOCK23
5
Reserved
4
LOCK24B
3
FID/GLCO
2
VSYNC/PALI
1
0
INTREQ/GPCL/ Reserved, must
VBLK
be set to 0
LOCK23 (pin 23) function select
0 = FID (default, if bit 3 is selected to output FID)
1 = Lock indicator (indicates whether the device is locked vertically)
LOCK24B (pin 24) function select
0 = PALI (default, if bit 2 is selected to output PALI)
1 = Lock indicator (indicates whether the device is locked horizontally)
FID/GLCO (pin 23) function select (also see register 03h for enhanced functionality)
0 = FID
1 = GLCO (default)
VSYNC/PALI (pin 24) function select (also see register 03h for enhanced functionality)
0 = VSYNC (default)
1 = PALI
INTREQ/GPCL/VBLK (pin 27) function select
0 = INTREQ (default)
1 = GPCL or VBLK depending on bit 7 of register 03h
See Figure 3-12 for the relationship between the configuration shared pins.
3.21.16 Active Video Cropping Start Pixel MSB Register
Address
Default
7
11h
00h
6
5
4
3
AVID start pixel MSB [9:2]
2
1
0
Active video cropping start pixel MSB [9:2], set this register first before setting register 12h. The
TVP5150AM1 decoder updates the AVID start values only when register 12h is written to. This start pixel
value is relative to the default values of the AVID start pixel.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
41
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.17 Active Video Cropping Start Pixel LSB Register
Address
Default
12h
00h
7
6
5
Reserved
4
3
2
AVID active
1
0
AVID start pixel LSB [1:0]
AVID active
0 = AVID out active in VBLK (default)
1 = AVID out inactive in VBLK
Active video cropping start pixel LSB [1:0]: The TVP5150AM1 decoder updates the AVID start values
only when this register is written to.
AVID start [9:0] (combined registers 11h and 12h)
01 1111 1111 = 511
00 0000 0001 = 1
00 0000 0000 = 0 (default)
11 1111 1111 = –1
10 0000 0000 = –512
NOTE
Adjusting AVID start also adjusts the horizontal position of the embedded sync SAV code.
3.21.18 Active Video Cropping Stop Pixel MSB Register
Address
Default
7
13h
00h
6
5
4
3
AVID stop pixel MSB [9:2]
2
1
0
Active video cropping stop pixel MSB [9:2], set this register first before setting the register 14h. The
TVP5150AM1 decoder updates the AVID stop values only when register 14h is written to. This stop pixel
value is relative to the default values of the AVID stop pixel.
42
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.19 Active Video Cropping Stop Pixel LSB Register
Address
Default
7
14h
00h
6
5
4
3
Reserved
2
1
0
AVID stop pixel LSB
Active video cropping stop pixel LSB [1:0]: The number of pixels of active video must be an even number.
The TVP5150AM1 decoder updates the AVID stop values only when this register is written to.
AVID stop [9:0] (combined registers 13h and 14h)
01 1111 1111 = 511
00 0000 0001 = 1
00 0000 0000 = 0 (default) (see Figure 3-6 and Figure 3-7)
11 1111 1111 = –1
10 0000 0000 = –512
NOTE
Adjusting AVID stop also adjusts the horizontal position of the embedded sync EAV code.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
43
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.20 Genlock and RTC Register
Address
Default
15h
01h
7
6
5
Reserved
4
3
Reserved
F/V bit control
2
1
GLCO/RTC
0
F/V bit control
BIT 5
0
0
BIT 4
0
1
1
0
1
1
NUMBER OF LINES
F BIT
V BIT
Standard
ITU-R BT.656
ITU-R BT.656
Nonstandard even
Force to 1
Switch at field boundary
Nonstandard odd
Toggles
Switch at field boundary
Standard
ITU-R BT.656
ITU-R BT.656
Nonstandard
Toggles
Switch at field boundary
Standard
ITU-R BT.656
ITU-R BT.656
Nonstandard
Pulse mode
Switch at field boundary
Illegal
GLCO/RTC. The following table shows the different modes.
BIT 2
BIT 1
BIT 0
GENLOCK/RTC MODE
0
X
0
GLCO
0
X
1
RTC output mode 0
(default)
1
X
0
GLCO
1
X
1
RTC output mode 1
All other values are reserved.
Figure 3-9 shows the timing of GLCO, and Figure 3-10 shows the timing of RTC.
44
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.21 Horizontal Sync Start Register
Address
Default
16h
80h
7
6
5
4
3
2
1
0
HSYNC start
Horizontal sync (HSYNC) start
1111 1111 = –127 × 4 pixel clocks
1111 1110 = –126 × 4 pixel clocks
1000 0001 = –1 × 4 pixel clocks
1000 0000 = 0 pixel clocks (default)
0111 1111 = 1 × 4 pixel clocks
0111 1110 = 2 × 4 pixel clocks
0000 0000 = 128 × 4 pixel clocks
BT.656 EAV Code
U
Y
V
Y
YOUT[7:0]
F
F
0
0
0
0
X
Y
8
0
BT.656 SAV Code
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
U
Y
HSYNC
AVID
128 SCLK
Start of
Digital Line
Start of Digital
Active Line
Nhbhs
Nhb
Figure 3-13. Horizontal Sync
Table 3-14. Clock Delays
(SCLKs)
STANDARD
Nhbhs
Nhb
NTSC
28
272
PAL
32
284
SECAM
32
284
Detailed timing information is also available in Section 3.12.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
45
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.22 Vertical Blanking Start Register
Address
Default
18h
00h
7
6
5
4
3
Vertical blanking start
2
1
0
Vertical blanking (VBLK) start
0111 1111 = 127 lines after start of vertical blanking interval
0000 0001 = 1 line after start of vertical blanking interval
0000 0000 = Same time as start of vertical blanking interval (default) (see Figure 3-5)
1111 1111 = 1 line before start of vertical blanking interval
1000 0000 = 128 lines before start of vertical blanking interval
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this
register determines the timing of the INTREQ/GPCL/VBLK signal when it is configured to output vertical
blank (see register 03h). The setting in this register also determines the duration of the luminance bypass
function (see register 07h).
3.21.23 Vertical Blanking Stop Register
Address
Default
7
19h
00h
6
5
4
3
Vertical blanking stop
2
1
0
Vertical blanking (VBLK) stop
0111 1111 = 127 lines after stop of vertical blanking interval
0000 0001 = 1 line after stop of vertical blanking interval
0000 0000 = Same time as stop of vertical blanking interval (default) (see Figure 3-5)
1111 1111 = 1 line before stop of vertical blanking interval
1000 0000 = 128 lines before stop of vertical blanking interval
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this
register determines the timing of the INTREQ/GPCL/VBLK signal when it is configured to output vertical
blank (see register 03h). The setting in this register also determines the duration of the luminance bypass
function (see register 07h).
46
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.24 Chrominance Control #1 Register
Address
Default
7
1Ah
0Ch
6
Reserved
5
4
Color PLL reset
3
Chrominance
adaptive comb
filter enable
(ACE)
2
Chrominance
comb filter
enable (CE)
1
0
Automatic color gain control
Color PLL reset
0 = Color PLL not reset (default)
1 = Color PLL reset
When a 1 is written to this bit, the color PLL phase is reset to zero and the subcarrier PLL phase reset
bit is transmitted on terminal 23 (GLCO) on the next line (NTSC or PAL).
Chrominance adaptive comb filter enable (ACE)
0 = Disable
1 = Enable (default)
Chrominance comb filter enable (CE)
0 = Disable
1 = Enable (default)
Automatic color gain control (ACGC)
00 = ACGC enabled (default)
01 = Reserved
10 = ACGC disabled
11 = ACGC frozen to the previously set value
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
47
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.25 Chrominance Control #2 Register
Address
Default
7
1Bh
14h
6
5
Reserved
4
3
2
WCF
1
0
Chrominance filter select
Wideband chrominance filter (WCF)
0 = Disable
1 = Enable (default)
Chrominance low pass filter select
00 = No notch (default)
01 = Notch 1
10 = Notch 2
11 = Notch 3
Chrominance output bandwidth (MHz)
WCF
0
1
48
FILTER SELECT
NTSC/PAL/SECAM
ITU-R BT.601
00
1.2214
01
0.8782
10
0.7297
11
0.4986
00
1.4170
01
1.0303
10
0.8438
11
0.5537
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.26 Interrupt Reset Register B
Address
Default
7
Software
initialization
reset
1Ch
00h
6
Macrovision
detect changed
reset
5
Reserved
4
Field rate
changed reset
3
Line alternation
changed reset
2
Color lock
changed reset
1
H/V lock
changed reset
0
TV/VCR
changed reset
Interrupt reset register B is used by the external processor to reset the interrupt status bits in interrupt
status register B. Bits loaded with a 1 allow the corresponding interrupt status bit to reset to 0. Bits loaded
with a 0 have no effect on the interrupt status bits.
Software initialization reset
0 = No effect (default)
1 = Reset software initialization bit
Macrovision detect changed reset
0 = No effect (default)
1 = Reset Macrovision detect changed bit
Field rate changed reset
0 = No effect (default)
1 = Reset field rate changed bit
Line alternation changed reset
0 = No effect (default)
1 = Reset line alternation changed bit
Color lock changed reset
0 = No effect (default)
1 = Reset color lock changed bit
H/V lock changed reset
0 = No effect (default)
1 = Reset H/V lock changed bit
TV/VCR changed reset [TV/VCR mode is determined by counting the total number of lines/frame. The
mode switches to VCR for nonstandard number of lines]
0 = No effect (default)
1 = Reset TV/VCR changed bit
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
49
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.27 Interrupt Enable Register B
Address
Default
7
Software
initialization
occurred
1Dh
00h
6
Macrovision
detect changed
5
Reserved
4
Field rate
changed
3
Line alternation
changed
2
Color lock
changed
1
H/V lock
changed
0
TV/VCR
changed
Interrupt enable register B is used by the external processor to mask unnecessary interrupt sources for
interrupt B. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the
external pin. Conversely, bits loaded with zeros mask the corresponding interrupt condition from
generating an interrupt on the external pin. This register only affects the external pin, it does not affect the
bits in the interrupt status register. A given condition can set the appropriate bit in the status register and
not cause an interrupt on the external pin. To determine if this device is driving the interrupt pin either
AND interrupt status register B with interrupt enable register B or check the state of interrupt B in the
interrupt B active register.
Software initialization occurred
0 = Disabled (default)
1 = Enabled
Macrovision detect changed
0 = Disabled (default)
1 = Enabled
Field rate changed
0 = Disabled (default)
1 = Enabled
Line alternation changed
0 = Disabled (default)
1 = Enabled
Color lock changed
0 = Disabled (default)
1 = Enabled
H/V lock changed
0 = Disabled (default)
1 = Enabled
TV/VCR changed
0 = Disabled (default)
1 = Enabled
50
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.28 Interrupt Configuration Register B
Address
Default
1Eh
00h
7
6
5
4
Reserved
3
2
1
0
Interrupt
polarity B
Interrupt polarity B
0 = Interrupt B is active low (default).
1 = Interrupt B is active high.
Interrupt polarity B must be the same as interrupt polarity A of Interrupt Configuration Register A at
Address C2h.
Interrupt Configuration Register B is used to configure the polarity of interrupt B on the external interrupt
pin. When the interrupt B is configured for active low, the pin is driven low when active and high
impedance when inactive (open-drain). Conversely, when the interrupt B is configured for active high, it is
driven high for active and driven low for inactive.
Note: An external pullup resistor (4.7kΩ to 10kΩ) is required when the polarity of the external interrupt
terminal (pin 27) is configured as active low.
3.21.29 Indirect Register Data
Address
Default
21h-22h
00h
Address
22h
21h
7
6
5
4
3
2
1
0
Data[15:8]
Data[7:0]
I2C registers 21h and 22h can be used to write data to or read data from indirect registers. See I2C
registers 23h and 24h.
3.21.30 Indirect Register Address
Address
Default
7
23h
00h
6
5
4
3
2
1
0
ADDR[7:0]
ADDR[7:0] = LSB of indirect address
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
51
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.31 Indirect Register Read/Write Strobe
Address
Default
24h
00h
7
6
5
4
3
2
1
0
R/W[7:0]
This register selects the most significant bits of the indirect register address and performs either an
indirect read or write operation. Data will be written from are read to Indirect Register Data registers
21h-22h.
R/W[7:0]:
01h = read from 00h-1FFh address bank
02h = write to 00h-1FFh address bank
03h = read from 200h-3FFh address bank
04h = write to 200h-3FFh address bank
05h = read from 300h-3FFh address bank
06h = write to 300h-3FFh address bank
3.21.32 Video Standard Register
Address
Default
7
28h
00h
6
5
4
3
Reserved
2
1
0
Video standard
Video standard
0000 = Autoswitch mode (default)
0001 = Reserved
0010 = (M, J) NTSC ITU-R BT.601
0011 = Reserved
0100 = (B, G, H, I, N) PAL ITU-R BT.601
0101 = Reserved
0110 = (M) PAL ITU-R BT.601
0111 = Reserved
1000 = (Combination-N) PAL ITU-R BT.601
1001 = Reserved
1010 = NTSC 4.43 ITU-R BT.601
1011 = Reserved
1100 = SECAM ITU-R BT.601
With the autoswitch code running, the application can force the device to operate in a particular video
standard mode by writing the appropriate value into this register.
52
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.33 Cb Gain Factor Register
Address
2Ch
7
6
5
4
3
2
1
0
Cb gain factor
This is a read-only register that provides the gain applied to the Cb in the YCbCr data stream.
3.21.34 Cr Gain Factor Register
Address
2Dh
7
6
5
4
3
2
1
0
Cr gain factor
This is a read-only register that provides the gain applied to the Cr in the YCbCr data stream.
3.21.35 Macrovision On Counter Register
Address
Default
2Eh
0Fh
7
6
5
4
3
Macrovision on counter
2
1
0
This register allows the user to determine how many consecutive frames in which the Macrovision AGC
pulses are detected before the decoder decides that the Macrovision AGC pulses are present.
3.21.36 Macrovision Off Counter Register
Address
Default
2Fh
01h
7
6
5
4
3
Macrovision off counter
2
1
0
This register allows the user to determine how many consecutive frames in which the Macrovision AGC
pulses are not detected before the decoder decides that the Macrovision AGC pulses are not present.
3.21.37 656 Revision Select Register
Address
Default
7
30h
00h
6
5
4
Reserved
3
2
1
0
656 revision
select
656 revision select
0 = Adheres to ITU-R BT.656.4 and BT.656.5 timing (default)
1 = Adheres to ITU-R BT.656.3 timing
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
53
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.38 RAM Version LSB Register
Address
Default
33h
00h
7
6
5
4
3
RAM version LSB [7:0]
2
1
0
RAM Version LSB [7:0]: This register identifies the LSB of the RAM code revision number.
3.21.39 Patch Write Address
Address
Default
7Eh
00h
7
6
5
4
3
2
1
0
R/W[7:0]
This register is used for downloading firmware patch code. Please refer to the patch load application note
for more detail. This register must not be written to or read from during normal operation.
3.21.40 Patch Code Execute
Address
Default
7Fh
00h
7
6
5
4
3
2
1
0
R/W[7:0]
Writing to this register following a firmware patch load restarts the CPU and initiates execution of the patch
code. This register must not be written to or read from during normal operation.
3.21.41 MSB of Device ID Register
Address
Default
80h
51h
7
6
5
4
3
MSB of device ID
2
1
0
2
1
0
This register identifies the MSB of the device ID. Value = 51h.
3.21.42 LSB of Device ID Register
Address
Default
7
81h
50h
6
5
4
3
LSB of device ID
This register identifies the LSB of the device ID. Value = 51h.
54
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.43 ROM Version Register
Address
Default
82h
04h
7
6
5
4
3
ROM version [7:0]
2
1
0
1
0
ROM Version [7:0]: This register identifies the ROM code revision number.
3.21.44 RAM Version MSB Register
Address
Default
83h
00h
7
6
5
4
3
RAM version MSB [7:0]
2
RAM Version MSB [7:0]: This register identifies the MSB of the RAM code revision number.
Example:
Patch Release = v04.8C.AA
ROM Version = 04h
RAM Version MSB = 8Ch
RAM Version LSB = AAh
Note: Use of the latest patch release is highly recommended.
3.21.45 Vertical Line Count MSB Register
Address
84h
7
6
5
4
3
2
Reserved
1
0
Vertical line count MSB
Vertical line count bits [9:8]
3.21.46 Vertical Line Count LSB Register
Address
7
85h
6
5
4
3
Vertical line count LSB
2
1
0
Vertical line count bits [7:0]
Registers 84h and 85h can be read and combined to extract the detected number of lines per frame. This
can be used with nonstandard video signals such as a VCR in fast-forward or rewind modes to
synchronize the downstream video circuitry.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
55
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.47 Interrupt Status Register B
Address
7
Software
initialization
86h
6
Macrovision
detect changed
5
Reserved
4
Field rate
changed
3
Line alternation
changed
2
Color lock
changed
1
H/V lock
changed
0
TV/VCR
changed
Software initialization
0 = Software initialization is not ready.
1 = Software initialization is ready.
Macrovision detect changed
0 = Macrovision detect status has not changed.
1 = Macrovision detect status has changed.
Field rate changed
0 = Field rate has not changed.
1 = Field rate has changed.
Line alternation changed
0 = Line alteration has not changed.
1 = Line alternation has changed.
Color lock changed
0 = Color lock status has not changed.
1 = Color lock status has changed.
H/V lock changed
0 = H/V lock status has not changed.
1 = H/V lock status has changed.
TV/VCR changed
0 = TV/VCR status has not changed.
1 = TV/VCR status has changed.
Interrupt status register B is polled by the external processor to determine the interrupt source for interrupt
B. After an interrupt condition is set, it can be reset by writing to the interrupt reset register B at
subaddress 1Ch with a 1 in the appropriate bit.
56
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.48 Interrupt Active Register B
Address
87h
7
6
5
4
Reserved
3
2
1
0
Interrupt B
Interrupt B
0 = Interrupt B is not active on the external terminal (default).
1 = Interrupt B is active on the external terminal.
The interrupt active register B is polled by the external processor to determine if interrupt B is active.
3.21.49 Status Register #1
Address
7
Peak white
detect status
88h
6
Line-alternating
status
5
Field rate
status
4
Lost lock detect
3
Color
subcarrier lock
status
2
Vertical sync
lock status
1
Horizontal sync
lock status
0
TV/VCR status
Peak white detect status
0 = Peak white is not detected.
1 = Peak white is detected.
Line-alternating status
0 = Nonline alternating
1 = Line alternating
Field rate status
0 = 60 Hz
1 = 50 Hz
Lost lock detect
0 = No lost lock since status register #1 was last read.
1 = Lost lock since status register #1 was last read.
Color subcarrier lock status
0 = Color subcarrier is not locked.
1 = Color subcarrier is locked.
Vertical sync lock status
0 = Vertical sync is not locked.
1 = Vertical sync is locked.
Horizontal sync lock status
0 = Horizontal sync is not locked.
1 = Horizontal sync is locked.
TV/VCR status. TV mode is determined by detecting standard line-to-line variations and specific
chrominance SCH phases based on the standard input video format. VCR mode is determined by
detecting variations in the chrominance SCH phases compared to the chrominance SCH phases of the
standard input video format.
0 = TV
1 = VCR
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
57
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.50 Status Register #2
Address
7
Reserved
89h
6
Weak signal
detection
5
PAL switch
polarity
4
Field sequence
status
3
AGC and offset
frozen status
2
1
Macrovision detection
0
Weak signal detection
0 = No weak signal
1 = Weak signal mode
PAL switch polarity of first line of odd field
0 = PAL switch is 0.
1 = PAL switch is 1.
Field sequence status
0 = Even field
1 = Odd field
AGC and offset frozen status
0 = AGC and offset are not frozen.
1 = AGC and offset are frozen.
Macrovision detection
000 = No copy protection
001 = AGC process present (Macrovision Type 1 present)
010 = Colorstripe process Type 2 present
011 = AGC process and colorstripe process Type 2 present
100 = Reserved
101 = Reserved
110 = Colorstripe process Type 3 present
111 = AGC process and color stripe process Type 3 present
58
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.51 Status Register #3
Address
8Ah
7
6
5
4
3
2
Analog gain
1
0
Digital gain
Analog gain: 4-bit front-end AGC analog gain setting
Digital gain: 4 MSBs of 6-bit front-end AGC digital gain setting
The product of the analog and digital gain is as follows:
Gain Product = (1 + 3 × analog_gain / 15) × (1 + gain_step × digital_gain / 4096)
Where,
0 ≤ analog_gain ≤ 15
0 ≤ digital_gain ≤ 63
The gain_step setting as a function of the analog_gain setting is shown in Table 3-15.
Table 3-15. gain_step Setting
analog_gain
gain_step
0
61
1
55
2
48
3
44
4
38
5
33
6
29
7
26
8
24
9
22
10
20
11
19
12
18
13
17
14
16
15
15
3.21.52 Status Register #4
Address
7
8Bh
6
5
4
3
Subcarrier to horizontal (SCH) phase
2
1
0
SCH (color PLL subcarrier phase at 50% of the falling edge of horizontal sync of line one of odd field; step
size 360°/256)
0000 0000 = 0.00°
0000 0001 = 1.41°
0000 0010 = 2.81°
1111 1110 = 357.2°
1111 1111 = 358.6°
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
59
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.53 Status Register #5
Address
8Ch
7
Autoswitch
mode
6
5
Reserved
4
3
2
Video standard
1
0
Sampling rate
(SR)
This register contains information about the detected video standard at which the device is currently
operating. When autoswitch code is running, this register must be tested to determine which video
standard has been detected.
Autoswitch mode
0 = Forced video standard
1 = Autoswitch mode
Video standard
VIDEO STANDARD [3:1]
SR
VIDEO STANDARD
BIT 3
BIT 2
BIT 1
BIT 0
0
0
0
0
Reserved
0
0
0
1
(M, J) NTSC ITU-R BT.601
0
0
1
0
Reserved
0
0
1
1
(B, D, G, H, I, N) PAL ITU-R BT.601
0
1
0
0
Reserved
0
1
0
1
(M) PAL ITU-R BT.601
0
1
1
0
Reserved
0
1
1
1
PAL-Nc ITU-R BT.601
1
0
0
0
Reserved
1
0
0
1
NTSC 4.43 ITU-R BT.601
1
0
1
0
Reserved
1
0
1
1
SECAM ITU-R BT.601
3.21.54 Patch Read Address
Address
Default
7
8Eh
00h
6
5
4
3
2
1
0
R/W[7:0]
This register can be used for patch code read-back. This register must not be written to or read from
during normal operation.
60
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.55 Closed Caption Data Registers
Address
90h–93h
Address
90h
91h
92h
93h
7
6
5
4
Closed
Closed
Closed
Closed
3
caption field 1 byte
caption field 1 byte
caption field 2 byte
caption field 2 byte
2
1
0
1
2
1
2
These registers contain the closed caption data arranged in bytes per field.
3.21.56 WSS/CGMS-A Data Registers
Address
94h–99h
NTSC
Address
94h
95h
96h
97h
98h
99h
7
6
b13
b12
b13
b12
5
b5
b11
b19
b5
b11
b19
4
b4
b10
b18
b4
b10
b18
3
b3
b9
b17
b3
b9
b17
2
b2
b8
b16
b2
b8
b16
1
b1
b7
b15
b1
b7
b15
0
b0
b6
b14
b0
b6
b14
BYTE
WSS field 1 byte
WSS field 1 byte
WSS field 1 byte
WSS field 2 byte
WSS field 2 byte
WSS field 2 byte
1
2
3
1
2
3
These registers contain the wide screen signaling (WSS/CGMS-A) data for NTSC.
For NTSC, the bits are:
Bits 0–1 represent word 0, aspect ratio.
Bits 2–5 represent word 1, header code for word 2.
Bits 6–13 represent word 2, copy control.
Bits 14–19 represent word 3, CRC.
PAL/SECAM
Address
94h
95h
96h
97h
98h
99h
7
b7
6
b6
5
b5
b13
b7
b6
b5
b13
4
3
b4
b3
b12
b11
Reserved
b4
b3
b12
b11
Reserved
2
b2
b10
1
b1
b9
0
b0
b8
BYTE
WSS field 1 byte 1
WSS field 1 byte 2
b2
b10
b1
b9
b0
b8
WSS field 2 byte 1
WSS field 2 byte 2
For PAL/SECAM, the bits are:
Bits 0–3 represent group 1, aspect ratio.
Bits 4–7 represent group 2, enhanced services.
Bits 8–10 represent group 3, subtitles.
Bits 11–13 represent group 4, others.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
61
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.57 VPS/Gemstar 2x Data Registers
Address
9Ah–A6h
Address
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
A0h
A1h
A2h
A3h
A4h
A5h
A6h
7
6
5
4
3
VPS/Gemstar 2x byte 1
VPS/Gemstar 2x byte 2
VPS/Gemstar 2x byte 3
VPS/Gemstar 2x byte 4
VPS/Gemstar 2x byte 5
VPS/Gemstar 2x byte 6
VPS/Gemstar 2x byte 7
VPS/Gemstar 2x byte 8
VPS/Gemstar 2x byte 9
VPS/Gemstar 2x byte 10
VPS/Gemstar 2x byte 11
VPS/Gemstar 2x byte 12
VPS/Gemstar 2x byte 13
2
1
0
When PAL VPS is used, these registers contain the entire VPS data line except the clock run-in code and
the start code. When NTSC Gemstar 2x is used, these registers contain the Gemstar 2x data.
3.21.58 VITC Data Registers
Address
A7h–AFh
Address
A7h
A8h
A9h
AAh
ABh
ACh
ADh
AEh
AFh
7
6
5
4
3
VITC byte 1, frame byte 1
VITC byte 2, frame byte 2
VITC byte 3, seconds byte 1
VITC byte 4, seconds byte 2
VITC byte 5, minutes byte 1
VITC byte 6, minutes byte 2
VITC byte 7, hour byte 1
VITC byte 8, hour byte 2
VITC byte 9, CRC
2
1
0
These registers contain the VITC data.
3.21.59 VBI FIFO Read Data Register
Address
7
B0h
6
5
4
3
2
1
0
FIFO read data
This address is provided to access VBI data in the FIFO through the host port. All forms of teletext data
come directly from the FIFO, while all other forms of VBI data can be programmed to come from the
registers or from the FIFO. Current status of the FIFO can be found at address C6h and the number of
bytes in the FIFO is located at address C7h. If the host port is to be used to read data from the FIFO, then
the host access enable bit at address CDh must be set to 1. The format used for the VBI FIFO is shown in
Section 3.9.
62
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.60 Teletext Filter and Mask Registers
Address
Default
Address
B1h
B2h
B3h
B4h
B5h
B6h
B7h
B8h
B9h
BAh
B1h–BAh
00h
7
6
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
1
1
1
1
1
2
2
2
2
2
5
mask 1
mask 2
mask 3
mask 4
mask 5
mask 1
mask 2
mask 3
mask 4
mask 5
4
3
2
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
Filter
1
1
1
1
1
2
2
2
2
2
1
pattern 1
pattern 2
pattern 3
pattern 4
pattern 5
pattern 1
pattern 2
pattern 3
pattern 4
pattern 5
0
For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0])
interlaced with four Hamming protection bits (H[3:0]):
7
D[3]
6
H[3]
5
D[2]
4
H[2]
3
D[1]
2
H[1]
1
D[0]
0
H[0]
Only the data portion D[3:0] from each byte is applied to a teletext filter function with the corresponding
pattern bits P[3:0] and mask bits M[3:0]. Hamming protection bits are ignored by the filter.
For a WST system (PAL or NTSC), the packet prefix consists of two bytes so that two patterns are used.
Patterns 3, 4, and 5 are ignored.
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the
LSB of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to
the first data bit on the transaction. If these match, a true result is returned. A 0 in a bit of mask 1 means
that the filter module must ignore that data bit of the transaction. If all zeros are programmed in the mask
bits, the filter matches all patterns returning a true result (default 00h).
Pattern and mask for each byte and filter are referred as , where:
identifies the filter 1 or 2
identifies the pattern or mask
identifies the byte number
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
63
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.61 Teletext Filter Control Register
Address
Default
7
BBh
00h
6
Reserved
5
4
3
Filter logic
2
Mode
1
TTX filter 2
enable
0
TTX filter 1
enable
Filter logic allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:
00 = NOR (Default)
01 = NAND
10 = OR
11 = AND
Mode
0 = Teletext WST PAL mode B (2 header bytes) (default)
1 = Teletext NABTS NTSC mode C (5 header bytes)
TTX filter 2 enable
0 = Disabled (default)
1 = Enabled
TTX filter 1 enable
0 = Disabled (default)
1 = Enabled
If the filter matches or if the filter mask is all zeros, a true result is returned.
64
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.62 Interrupt Status Register A
Address
Default
7
Lock state
interrupt
C0h
00h
6
Lock interrupt
5
4
Reserved
3
2
FIFO threshold
interrupt
1
Line interrupt
0
Data interrupt
The interrupt status register A can be polled by the host processor to determine the source of an interrupt.
After an interrupt condition is set it can be reset by writing to this register with a 1 in the appropriate bit(s).
Lock state interrupt
0 = TVP5150AM1 is not locked to the video signal (default).
1 = TVP5150AM1 is locked to the video signal.
Lock interrupt
0 = A transition has not occurred on the lock signal (default).
1 = A transition has occurred on the lock signal.
FIFO threshold interrupt
0 = The amount of data in the FIFO has not yet crossed the threshold programmed at address C8h
(default).
1 = The amount of data in the FIFO has crossed the threshold programmed at address C8h.
Line interrupt
0 = The video line number has not yet been reached (default).
1 = The video line number programmed in address CAh has occurred.
Data interrupt
0 = No data is available (default).
1 = VBI data is available either in the FIFO or in the VBI data registers.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
65
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.63 Interrupt Enable Register A
Address
Default
7
Reserved
C1h
00h
6
Lock interrupt
enable
5
4
Reserved
3
2
FIFO threshold
interrupt enable
1
Line interrupt
enable
0
Data interrupt
enable
The interrupt enable register A is used by the host processor to mask unnecessary interrupt sources. Bits
loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin.
Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an interrupt
on the external pin. This register only affects the interrupt on the external terminal, it does not affect the
bits in interrupt status register A. A given condition can set the appropriate bit in the status register and not
cause an interrupt on the external terminal. To determine if this device is driving the interrupt terminal,
either perform a logical AND of interrupt status register A with interrupt enable register A, or check the
state of the interrupt A bit in the interrupt configuration register at address C2h.
Lock interrupt enable
0 = Disabled (default)
1 = Enabled
FIFO threshold interrupt enable
0 = Disabled (default)
1 = Enabled
Line interrupt enable
0 = Disabled (default)
1 = Enabled
Data interrupt enable
0 = Disabled (default)
1 = Enabled
66
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.64 Interrupt Configuration Register A
Address
Default
C2h
04h
7
6
5
Reserved
4
3
2
YCbCr enable
(VDPOE)
1
Interrupt A
0
Interrupt
polarity A
YCbCr enable (VDPOE)
0 = YCbCr pins are high impedance.
1 = YCbCr pins are active if other conditions are met (default) (see Table 3-13).
Interrupt A (read only)
0 = Interrupt A is not active on the external pin (default).
1 = Interrupt A is active on the external pin.
Interrupt polarity A must be the same as interrupt polarity B of Interrupt Configuration Register B at
Address 1Eh.
Interrupt polarity A
0 = Interrupt A is active low (default).
1 = Interrupt A is active high.
Interrupt configuration register A is used to configure the polarity of the external interrupt terminal. When
interrupt A is configured as active low, the terminal is driven low when active and high impedance when
inactive (open drain). Conversely, when the terminal is configured as active high, it is driven high when
active and driven low when inactive.
Note: An external pullup resistor (4.7kΩ to 10kΩ) is required when the polarity of the external interrupt
terminal (pin 27) is configured as active low.
3.21.65 VDP Configuration RAM Register
Address
Default
Address
C3h
C4h
C5h
C3h
DCh
C4h
0Fh
7
C5h
00h
6
5
4
3
Configuration data
RAM address (7:0)
Reserved
2
1
0
RAM
address 8
The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM
is 512 bytes organized as 32 different configurations of 16 bytes each. The first 12 configurations are
defined for the current VBI standards. An additional two configurations can be used as a custom
programmed mode for unique standards such as Gemstar.
Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically
incremented with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal
address counter with a specific start address. This can be used to write a subset of the RAM for only
those standards of interest.
NOTE
Registers D0h–FBh must all be programmed with FFh before writing or reading the
configuration RAM. Full field mode (CFh) must be disabled as well.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
67
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
The suggested RAM contents are shown in Table 3-16. All values are hexadecimal.
Table 3-16. VBI Configuration RAM for Signals With Pedestal
ADDRESS
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
WST SECAM
INDEX
000
AA
AA
FF
FF
E7
2E
20
A6
E4
B4
0E
0
7
0
10
0
WST SECAM
010
AA
AA
FF
FF
E7
2E
20
A6
E4
B4
0E
0
7
0
10
0
WST PAL B
020
AA
AA
FF
FF
27
2E
20
AB
A4
72
10
0
7
0
10
0
WST PAL B
030
AA
AA
FF
FF
27
2E
20
AB
A4
72
10
0
7
0
10
0
WST PAL C
040
AA
AA
FF
FF
E7
2E
20
22
A4
98
0D
0
0
0
10
0
WST PAL C
050
AA
AA
FF
FF
E7
2E
20
22
A4
98
0D
0
0
0
10
0
WST NTSC
060
AA
AA
FF
FF
27
2E
20
23
63
93
0D
0
0
0
10
0
WST NTSC
070
AA
AA
FF
FF
27
2E
20
23
63
93
0D
0
0
0
10
0
NABTS, NTSC
080
AA
AA
FF
FF
E7
2E
20
A2
63
93
0D
0
7
0
15
0
NABTS, NTSC
090
AA
AA
FF
FF
E7
2E
20
A2
63
93
0D
0
7
0
15
0
NABTS, NTSC-J
0A0
AA
AA
FF
FF
A7
2E
20
A3
63
93
0D
0
7
0
10
0
NABTS, NTSC-J
0B0
AA
AA
FF
FF
A7
2E
20
A3
63
93
0D
0
7
0
10
0
CC, PAL/SECAM
0C0
AA
2A
FF
3F
04
51
6E
02
A4
7B
09
0
0
0
27
0
CC, PAL/SECAM
0D0
AA
2A
FF
3F
04
51
6E
02
A4
7B
09
0
0
0
27
0
CC, NTSC
0E0
AA
2A
FF
3F
04
51
6E
02
63
8C
09
0
0
0
27
0
CC, NTSC
0F0
AA
2A
FF
3F
04
51
6E
02
63
8C
09
0
0
0
27
0
WSS/CGMS-A,
PAL/SECAM
100
5B
55
C5
FF
0
71
6E
42
A4
CD
0F
0
0
0
3A
0
WSS/CGMS-A,
PAL/SECAM
110
5B
55
C5
FF
0
71
6E
42
A4
CD
0F
0
0
0
3A
0
WSS/CGMS-A,
NTSC C
120
38
00
3F
00
0
71
6E
43
63
7C
08
0
0
0
39
0
WSS/CGMS-A,
NTSC C
130
38
00
3F
00
0
71
6E
43
63
7C
08
0
0
0
39
0
VITC, PAL/SECAM
140
0
0
0
0
0
8F
6D
49
A4
85
08
0
0
0
4C
0
VITC, PAL/SECAM
150
0
0
0
0
0
8F
6D
49
A4
85
08
0
0
0
4C
0
VITC, NTSC
160
0
0
0
0
0
8F
6D
49
63
94
08
0
0
0
4C
0
VITC, NTSC
170
0
0
0
0
0
8F
6D
49
63
94
08
0
0
0
4C
0
VPS, PAL
180
AA
AA
FF
FF
BA
CE
2B
8D
A4
DA
0B
0
7
0
60
0
VPS, PAL
190
AA
AA
FF
FF
BA
CE
2B
8D
A4
DA
0B
0
7
0
60
0
Gemstar 2x
Custom 1
1A0
99
99
FF
FF
05
51
6E
05
63
18
13
80
00
00
60
00
Gemstar 2x
Custom 1
1B0
99
99
FF
FF
05
51
6E
05
63
18
13
80
00
00
60
00
Custom 2
1C0
Programmable
Custom 2
1D0
Programmable
68
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.66 VDP Status Register
Address
7
FIFO full error
C6h
6
FIFO empty
5
TTX available
4
CC field 1
available
3
CC field 2
available
2
WSS/CGMS-A
available
1
VPS/Gemstar
2x available
0
VITC available
The VDP status register indicates whether data is available in either the FIFO or data registers, and status
information about the FIFO. Reading data from the corresponding register does not clear the status flags
automatically. These flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated
automatically.
FIFO full error
0 = No FIFO full error
1 = FIFO was full during a write to FIFO.
The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if
the FIFO has only ten bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no
data is written because the entire teletext line does not fit. However, if the next VBI line is closed
caption requiring only two bytes of data plus the header, this goes into the FIFO, even if the full error
flag is set.
FIFO empty
0 = FIFO is not empty.
1 = FIFO is empty.
TTX available
0 = Teletext data is not available.
1 = Teletext data is available.
CC field 1 available
0 = Closed caption data from field 1 is not available.
1 = Closed caption data from field 1 is available.
CC field 2 available
0 = Closed caption data from field 2 is not available.
1 = Closed caption data from field 2 is available.
WSS/CGMS-A available
0 = WSS/CGMS-A data is not available.
1 = WSS/CGMS-A data is available.
VPS/Gemstar 2x available
0 = VPS/Gemstar 2x data is not available.
1 = VPS/Gemstar 2x data is available.
VITC available
0 = VITC data is not available.
1 = VITC data is available.
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
69
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.67 FIFO Word Count Register
Address
C7h
7
6
5
4
3
Number of words
2
1
0
1
0
This register provides the number of words in the FIFO. One word equals two bytes.
3.21.68 FIFO Interrupt Threshold Register
Address
Default
C8h
80h
7
6
5
4
3
Number of words
2
This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this
value (default 80h). This interrupt must be enabled at address C1h. One word equals two bytes.
3.21.69 FIFO Reset Register
Address
Default
C9h
00h
7
6
5
4
3
2
1
0
Any data
Writing any data to this register resets the FIFO and clears any data present in all VBI read registers.
3.21.70 Line Number Interrupt Register
Address
Default
7
Field 1 enable
CAh
00h
6
Field 2 enable
5
4
3
2
1
0
Line number
This register is programmed to trigger an interrupt when the video line number matches this value in bits
5:0. This interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.
Field 1 enable
0 = Disabled (default)
1 = Enabled
Field 2 enable
0 = Disabled (default)
1 = Enabled
Line number default is 00h.
70
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.71 Pixel Alignment Registers
Address
Default
CBh
4Eh
Address
CBh
CCh
CCh
00h
7
6
5
4
3
Switch pixel [7:0]
2
1
Reserved
0
Switch pixel [9:8]
These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP
controller initiates the program from one line standard to the next line standard; for example, the previous
line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the
previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be
programmed before the current settings are required.
3.21.72 FIFO Output Control Register
Address
Default
CDh
01h
7
6
5
4
Reserved
3
2
1
0
Host access
enable
This register is programmed to allow I2C access to the FIFO or to allow all VDP data to go out the video
port as ancillary data.
Host access enable
0 = Output FIFO data to the video output Y[7:0] as ancillary data
1 = Read FIFO data via I2C register B0h (default)
3.21.73 Full Field Enable Register
Address
Default
7
CFh
00h
6
5
4
Reserved
3
2
1
0
Full field enable
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines
in the line mode registers programmed with FFh are sliced with the definition of register FCh. Values other
than FFh in the line mode registers allow a different slice mode for that particular line.
Full field enable
0 = Disable full field mode (default)
1 = Enable full field mode
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
71
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
3.21.74 Line Mode Registers
Address
Default
Address
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
D0h
00h
D1h–FBh
FFh
7
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
6
5
4
3
Line 6 Field 1
Line 6 Field 2
Line 7 Field 1
Line 7 Field 2
Line 8 Field 1
Line 8 Field 2
Line 9 Field 1
Line 9 Field 2
Line 10 Field 1
Line 10 Field 2
Line 11 Field 1
Line 11 Field 2
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
2
1
0
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
These registers program the specific VBI standard at a specific line in the video field.
72
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
Bit 7
0 = Disable filtering of null bytes in closed caption modes
1 = Enable filtering of null bytes in closed caption modes (default)
In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, the data
filter passes all data on that line.
Bit 6
0 = Send VBI data to registers only
1 = Send VBI data to FIFO and the registers. Teletext data only goes to FIFO (default).
Bit 5
0 = Allow VBI data with errors in the FIFO
1 = Do not allow VBI data with errors in the FIFO (default)
Bit 4
0 = Do not enable error detection and correction
1 = Enable error detection and correction (default)
Bits [3:0]
0000 =
0001 =
0010 =
0011 =
0100 =
0101 =
0110 =
0111 =
1000 =
1001 =
1010 =
1011 =
1100 =
1101 =
1110 =
1111 =
WST SECAM
WST PAL B
WST PAL C
WST NTSC
NABTS NTSC
TTX NTSC-J
CC PAL
CC NTSC
WSS/CGMS-A PAL
WSS/CGMS-A NTSC
VITC PAL
VITC NTSC
VPS PAL
Gemstar 2x Custom 1
Custom 2
Active video (VDP off) (default)
A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.
3.21.75 Full Field Mode Register
Address
Default
7
FCh
7Fh
6
5
4
3
2
1
0
Full field mode
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual
line settings take priority over the full field register. This allows each VBI line to be programmed
independently but have the remaining lines in full field mode. The full field mode register has the same
definitions as the line mode registers (default 7Fh).
Functional Description
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
73
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
4 Electrical Specifications
Absolute Maximum Ratings (1)
4.1
over operating free-air temperature range (unless otherwise noted)
Supply voltage range
IO_DVDD to DGND
–0.5 V to 4.5 V
DVDD to DGND
–0.5 V to 2.3 V
PLL_AVDD to PLL_AGND
–0.5 V to 2.3 V
CH_AVDD to CH_AGND
–0.5 V to 2.3 V
Digital input voltage range, VI to DGND
–0.5 V to 4.5 V
Input voltage range, XTAL1 to PLL_GND
–0.5 V to 2.3 V
Analog input voltage range AI to CH_AGND
–0.2 V to 2.0 V
–0.5 V to 4.5 V
Digital output voltage range, VO to DGND
Operating free-air temperature, TA
Commercial
0°C to 70°C
–40°C to 85°C
Industrial
–65°C to 150°C
Storage temperature range, Tstg
(1)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
4.2
Recommended Operating Conditions
MIN
NOM
MAX
3.0
3.3
3.6
V
Digital supply voltage
1.65
1.8
1.95
V
PLL_AVDD
Analog PLL supply voltage
1.65
1.8
1.95
V
CH_AVDD
Analog core supply voltage
1.65
1.8
1.95
V
VI(P-P)
Analog input voltage (ac-coupling necessary)
0.75
V
VIH
Digital input voltage high
VIL
Digital input voltage low
VIH_XTAL
XTAL input voltage high
VIL_XTAL
XTAL input voltage low
IOH
High-level output current
2
mA
IOL
Low-level output current
–2
mA
IOH_SCLK
SCLK high-level output current
4
mA
IOL_SCLK
SCLK low-level output current
–4
mA
IO_DVDD
Digital I/O supply voltage
DVDD
TA
4.3
0
0.7 IO_DVDD
V
0.3 IO_DVDD
0.7 PLL_AVDD
Operating free-air temperature
Industrial
0
70
–40
85
f
Frequency
Δf
Frequency tolerance (1)
74
V
°C
Reference Clock Specifications
MIN
(1)
V
V
0.3 PLL_AVDD
Commercial
UNIT
NOM
MAX
14.31818
–50
UNIT
MHz
+50
ppm
Specified by design
Electrical Specifications
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
4.4
Electrical Characteristics
DVDD = 1.8 V, PLL_AVDD = 1.8 V, CH_AVDD = 1.8 V, IO_DVDD = 3.3 V
For minimum/maximum values TA = 0°C to 70°C for commercial or TA = –40°C to 85°C for industrial, for typical
values TA = 25°C (unless otherwise noted)
4.5
DC Electrical Characteristics
TEST
CONDITIONS (1)
PARAMETER
MIN
TYP
MAX
UNIT
(2)
4.8
6.2
mA
25.3
32.9
mA
mA
IDD(IO_D)
3.3-V I/O digital supply current
Color bar input
IDD(D)
1.8-V digital supply current
Color bar input (2)
(2)
IDD(PLL_A)
1.8-V analog PLL supply current
Color bar input
5.4
7.1
IDD(CH_A)
1.8-V analog core supply current
Color bar input (2)
24.4
31.7
mA
PTOT
Total power dissipation, normal mode
Color bar input (2)
115
150
mW
PDOWN
Total power dissipation, power-down mode (3)
Color bar input
1
mW
Ci
Input capacitance
By design
VOH
Output voltage high
IOH = 2 mA
VOL
Output voltage low
IOL = –2 mA
VOH_SCLK
SCLK output voltage high
IOH = 4 mA
VOL_SCLK
SCLK output voltage low
IOL = –4 mA
IIH
High-level input current (4)
IIL
Low-level input current (4)
(1)
(2)
(3)
(4)
8
pF
0.8 IO_DVDD
V
0.22 IO_DVDD
V
0.8 IO_DVDD
V
0.22 IO_DVDD
V
VI = VIH
±20
µA
VI = VIL
±20
µA
Measured with a load of 15 pF
For typical measurements only
Assured by device characterization
YOUT7 is a bidirectional terminal with an internal pulldown resistor. This terminal may sink more than the specified current when in
RESET mode.
4.6
Analog Electrical Characteristics
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Zi
Input impedance, analog video inputs
By design
500
Ci
Input capacitance, analog video inputs
By design
10
Vi(pp)
Input voltage range (1)
Ccoupling = 0.1 µF
ΔG
Gain control maximum
12
ΔG
Gain control minimum
0
DNL
DC differential nonlinearity
ADC only
±0.5
±1
LSB
INL
DC integral nonlinearity
ADC only
±1
±2.5
LSB
Fr
Frequency response
6 MHz, Specified by design
–0.9
–3
SNR
Signal-to-noise ratio
6 MHz, 1.0 VP-P
50
dB
NS
Noise spectrum
50% flat field
50
dB
DP
Differential phase
1.5
°
DG
Differential gain
0.5
%
(1)
0
kΩ
pF
0.75
V
dB
dB
dB
The 0.75-V maximum applies to the sync-chroma amplitude, not sync-white. The recommended termination resistors are 37.4 Ω, as
seen in Section 6.
Electrical Specifications
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
75
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
4.7
www.ti.com
Clocks, Video Data, Sync Timing
TEST CONDITIONS (1)
PARAMETER
MIN
Duty cycle, SCLK
TYP
MAX
50
UNIT
%
t1
SCLK high time
≥90%
13.4
14.5
16.4
ns
t2
SCLK low time
≤10%
13.4
14.5
16.4
ns
t3
SCLK fall time
90% to 10%
2
4
5
ns
t4
SCLK rise time
10% to 90%
2
4
5
ns
t5
Output hold time
t6
Output delay time
3
8
(1)
2
ns
ns
Measured with a load of 15 pF. Specified by design.
t1
t2
SCLK
t3
Y, C, AVID,
VS, HS, FID
t4
VOH
Valid Data
Valid Data
VOL
t5
t6
Figure 4-1. Clocks, Video Data, and Sync Timing
76
Electrical Specifications
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
I2C Host Port Timing (1)
4.8
PARAMETER
MIN
TYP
MAX
UNIT
t1
Bus free time between Stop and Start
1.3
µs
t2
Setup time for a (repeated) Start condition
0.6
µs
t3
Hold time (repeated) Start condition
0.6
µs
t4
Setup time for a Stop condition
0.6
ns
t5
Data setup time
100
t6
Data hold time
t7
Rise time, VC1(SDA) and VC0(SCL) signal
t8
Fall time, VC1(SDA) and VC0(SCL) signal
Cb
Capacitive load for each bus line
400
pF
fI2C
I2C clock frequency
400
kHz
(1)
ns
0
0.9
250
µs
ns
250
ns
Specified by design
Stop Start
Stop
VC1 (SDA)
Data
t1
t3
t7
t3
t5
t6
t4
t2
t8
VC0 (SCL)
Figure 4-2. I2C Host Port Timing
4.9
Thermal Specifications
PARAMETER
PACKAGE
θJA
Junction-to-ambient thermal resistance, still air
TQFP-32 (PBS)
θJC
Junction-to-case thermal resistance, still air
TQFP-32 (PBS)
TJ(MAX)
Maximum junction temperature for reliable operation
TQFP-32 (PBS)
BOARD
MIN
TYP
MAX
125.3
ºC/W
JEDEC High-K
91.1
ºC/W
ºC/W
39.3
105
Electrical Specifications
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
UNIT
JEDEC Low-K
ºC
77
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
5 Example Register Settings
The following example register settings are provided only as a reference. These settings, given the
assumed input connector, video format, and output format, set up the TVP5150AM1 decoder and provide
video output. Example register settings for other features and the VBI data processor are not provided
here.
5.1
5.1.1
Example 1
Assumptions
Device: TVP5150AM1
Input connector: Composite (AIP1A)
Video format: NTSC-M, PAL (B, G, H, I), or SECAM
NOTE
NTSC-4.43, PAL-N, and PAL-M are masked from the autoswitch process by default. See the
autoswitch mask register at address 04h.
Output format: 8-bit ITU-R BT.656 with embedded syncs
5.1.2
Recommended Settings
Recommended I2C writes: For this setup, only one write is required. All other registers are set up by
default.
I2C register address 03h = Miscellaneous controls register address
I2C data 09h = Enables YCbCr output and the clock output
NOTE
HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high impedance by default. See the
miscellaneous control register at address 03h.
78
Example Register Settings
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
5.2
5.2.1
Example 2
Assumptions
Device: TVP5150AM1
Input connector: S-video (AIP1A (luminance), AIP1B (chrominance))
Video Format: NTSC (M, 4.43), PAL (B, G, H, I, M, N, Nc) or SECAM (B, D, G, K1, L)
Output format: 8-bit 4:2:2 YCbCr with discrete sync outputs
5.2.2
Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 4:2:2 data
outputs, the HSYNC, and the VSYNC, and to autoswitch between all video formats mentioned above.
I2C register address 00h = Video input source selection #1 register
I2C data 01h = Selects the S-Video input, AIP1A (luminance), and AIP1B (chrominance)
I2C register address 03h = Miscellaneous controls register address
I2C data 0Dh = Enables the YCbCr output data, HSYNC, VSYNC/PALI, AVID, and FID/GLCO
I2C register address 04h = Autoswitch mask register
I2C data C0h = Unmask NTSC-4.43, PAL-N, and PAL-M from the autoswitch process
I2C register address 0Dh = Outputs and data rates select register
I2C data 40h = Enables 8-bit 4:2:2 YCbCr with discrete sync output
Example Register Settings
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
79
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
6 Application Information
6.1
Application Example
IO_DVDD
C2
1 µF
C1
1 µF
10 kW
See Note I
C3
1 µF
C4
0.1 µF
R1
0.1 µF
CH1_IN AAF
PDN
INTREQ/GPCL/VBLK
AVID
HSYNC
AVDD
10 kW
See Note H
PDN
INTREQ/GPCL/VBLK
AVID
HSYNC
IO_DVDD
AVDD
R6
37.4 W
VSYNC/PALI
FID/GLCO
SDA
SCL
DVDD
DGND
YOUT0
YOUT1
S1
2
R3
2.2 kW
R4
2.2 kW
24
23
22
21
20
19
18
17
VSYNC/PALI
FID/GLCO
SDA
SCL
VSYNC/PALI
FID/GLCO
DVDD
C7
0.1 µF
9
10
11
12
13
14
15
16
OSC_IN
1
C6
0.1 µF
AIP1A
AIP1B
PLL_AGND
PLL_AVDD
TVP5150AM1
XTAL1/OSC_IN
XTAL2
AGND
RESETB
SCLK
IO_DVDD
YOUT7/I2CSEL
YOUT6
YOUT5
YOUT4
YOUT3
YOUT2
C5
37.4 W
OSC_IN
1
2
3
4
5
6
7
8
0.1 µF
R5
CH_AVDD
CH_AGND
REFM
REFP
PDN
INTREQ/GPCL/VBLK
AVID
HSYNC
C11
R2
37.4 W
CH2_IN AAF
32
31
30
29
28
27
26
25
37.4 W
Y1
SCLK
14.31818 MHz ± 50 ppm
SCLK
RESETB
IO_DVDD
C8
CL1
R
CL2
C9
YOUT[7:0]
IO_DVDD
C10
0.1 µF
2
Implies I C address is BAh. If B8h is to be used,
connect pulldown resistor to digital ground.
R7
10 kW
A.
B.
C.
D.
E.
F.
G.
H.
I.
The use of INTREQ/GPCL/VBLK, AVID, HSYNC, and VSYNC/PALI is optional.
When OSC_IN is connected through S1, remove the capacitors for the crystal.
PDN needs to be high, if device has to be always operational.
RESETB is operational only when PDN is high. This allows an active-low reset to the device.
100-kΩ resistor (R) in parallel with the crystal is recommended for most crystal types.
Anti-aliasing filter (AAF) highly recommended for best video quality.
System level ESD protection is not included in this application circuit, but it is highly recommended on the analog
video inputs.
An external 10-kΩ pulldown resistor is required when the INTREQ/GPCL/VBLK output (pin 27) is disabled (bit 5 of I2C
register 03h is set to 0).
An external 10-kΩ pullup resistor is required when the INTREQ/GPCL/VBLK output (pin 27) is enabled and
configured as an active-low interrupt (bit 5 of I2C register 03h is set to 1, bit 1 of I2C register 0Fh is set to 0, and bit 0
of I2C register 1Eh is set to 0).
Figure 6-1. Application Example
80
Application Information
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
TVP5150AM1
SLES209E – NOVEMBER 2007 – REVISED OCTOBER 2011
www.ti.com
7 Revision History
Table 7-1. Revision History
REVISION
SLES209
SLES209A
COMMENTS
Initial release
AEC-Q100 qualification added
Section 2.3, Related Products added.
Section 2.4, Trademarks modified.
Section 3.16, Figure 3.5, Changed crystal parallel resistor recommendation.
Section 3.21.9, Luminance Brightness description modified.
Section 3.21.10, Chrominance Saturation description modified.
Section 3.21.12, Luminance Contrast description modified.
SLES209B
Section 3.21.45, Status Register #3 description modified.
Section 3.21.49, CGMS-A added to register description.
Section 3.21.50, Gemstar 2x added to register description.
Section 3.21.58, Table 3-16, Recommended VBI Configuration RAM settings modifications.
Section 3.21.59, VDP Status Register modifications.
Section 6.1, Changed recommendation for resistor in parallel with the crystal.
Minor editorial changes throughout
Section 3.3, Figure 3-2, Chroma trap filter characteristics for NTSC added.
Section 3.3, Figure 3-3, Chroma trap filter characteristics for PAL added.
SLES209C
Section 3.4, Figure 3-4, Color low-pass filter characteristics added.
Section 3.8, Table 3-1, Modified name for register 1100b.
Section 3.20, Table 3-11, Added I2C indirect registers at address 21h-24h.
Section 4.9, Added Power Dissipation Ratings.
Section 3.6, Modified when color killer suppresses chrominance processing.
Section 3.21.29, Added Indirect Register Data
Section 3.21.30, Added Indirect Register Address
SLES209D
Section 3.21.31, Added Indirect Register Read/Write Strobe
Section 3.21.38, Added Patch Write Address
Section 3.21.39, Added Patch Code Execute
Section 3.21.53, Added Patch Read Address
Section 2.3, Table 2-1, Modified description for terminal 27
Section 3.20, Table 3-11, Added register 33h, modified registers 82h and 83h.
Section 3.21.4, Modified description for bits 7:5 of I2C register 03h
SLES209E
Section 3.21.15, Removed support for 1x output clock frequency (bit 0 of register 0Fh)
Section 3.21.43, Modified the register description for register 82h.
Section 3.21.44, Modified the register description for register 83h.
Figure 6-1, Added note concerning ESD protection. Added pulldown and pullup resistors to pin 27 output.
Revision History
Copyright © 2007–2011, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com: TVP5150AM1
81
PACKAGE OPTION ADDENDUM
www.ti.com
19-Aug-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TVP5150AM1IPBS
ACTIVE
TQFP
PBS
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
5150I
TVP5150AM1IPBSQ1
ACTIVE
TQFP
PBS
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
5150Q
TVP5150AM1IPBSR
ACTIVE
TQFP
PBS
32
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
5150I
TVP5150AM1IPBSRG4
ACTIVE
TQFP
PBS
32
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
5150I
TVP5150AM1IPBSRQ
OBSOLETE
TQFP
PBS
32
TBD
Call TI
Call TI
-40 to 85
TVP5150AM1IZQC
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQC
48
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
5150I
TVP5150AM1IZQCR
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQC
48
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
5150I
TVP5150AM1PBS
ACTIVE
TQFP
PBS
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
5150AM1
TVP5150AM1PBSR
ACTIVE
TQFP
PBS
32
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
5150AM1
TVP5150AM1PBSRHIK
ACTIVE
TQFP
PBS
32
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
5150AM1
TVP5150AM1ZQC
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQC
48
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
0 to 70
5150AM1
TVP5150AM1ZQCR
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQC
48
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
0 to 70
5150AM1
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
19-Aug-2014
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TVP5150AM1 :
• Enhanced Product: TVP5150AM1-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jan-2014
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TVP5150AM1IZQCR
BGA MI
CROSTA
R JUNI
OR
ZQC
48
2500
330.0
12.4
4.3
4.3
1.5
8.0
12.0
Q1
TVP5150AM1ZQCR
BGA MI
CROSTA
R JUNI
OR
ZQC
48
2500
330.0
12.4
4.3
4.3
1.5
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jan-2014
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TVP5150AM1IZQCR
BGA MICROSTAR
JUNIOR
ZQC
48
2500
338.1
338.1
20.6
TVP5150AM1ZQCR
BGA MICROSTAR
JUNIOR
ZQC
48
2500
338.1
338.1
20.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated