0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UCC28C45QDRQ1

UCC28C45QDRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    AUTOMOTIVE BICMOS LOW-POWER CURR

  • 数据手册
  • 价格&库存
UCC28C45QDRQ1 数据手册
UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 UCC28C4x-Q1 Automotive BiCMOS Low-Power Current-Mode PWM Controllers 1 Features 3 Description • The UCC28C4x-Q1 family devices are performance current-mode PWM controllers. • • • • • • • • • • • AEC-Q100 qualified with the following results: – Device temperature grade 1:-40⁰C to 125⁰C – Device HBM classification level 2: ±2 kV – Device CDM classification level C4B: 750 V Functional Safety-Capable – Documentation available to aid functional safety system design 1-MHz operation 50-μA standby current, 100-μA maximum Low operating current of 2.3 mA at 52 kHz Fast 35-ns cycle-by-cycle over-current limiting ±1-A peak output current Rail-to-rail output swings with 25-ns rise and 20-ns fall times ±1% initial trimmed 2.5-V error amplifier reference Trimmed oscillator discharge current New undervoltage lockout versions Create a custom design using the UCC28C4x-Q1 with the WEBENCH® Power Designer The UCC28C4x-Q1 family supports a fixed-frequency, peak current-mode flyback implementation with UVLO and maximum duty-cycle limit options. UCC28C4XQ1 can be configured with either primary-side regulation using an auxiliary winding or secondaryside regulation with the use of an opto-coupler. This family of devices features high frequency operation up to 1 MHz with low start up and operating currents, thus minimizing start up loss and operating power consumption for improved efficiency. The devices also feature a fast current sense to output delay time of 35 ns, and a ±1-A peak output current capability for driving large external MOSFETs directly. The UCC28C4x-Q1 family is offered in the 8-pin SOIC (D) package. Device Information (1) PART NUMBER • • • PACKAGE BODY SIZE (NOM) UCC28C40-Q1 2 Applications • high UCC28C41-Q1 OBC and DC/DC converter isolated bias power supply Traction inverter HV to LV backup supply HVAC compressor HV isolated power supply AC and DC EV charging equipment isolated power supply UCC28C42-Q1 SOIC (8) UCC28C43-Q1 4.90 mm × 3.91 mm UCC28C44-Q1 UCC28C45-Q1 1. For all available packages, see the orderable addendum at the end of the datasheet. D CLAMP CSNUB RSNUB DOUT VIN CIN CSS NP RSTART DBIAS NS VOUT COUT RVDD NA RSS CVDD UCC28C42-Q1 R COMPp C COMPp RRT 1 COMP VREF 8 2 FB VDD 7 3 CS OUT 6 4 RT/CT GND 5 RG QSW DZ CVDDbp CVREF R BLEEDER RCS CCT CRAMP RCSF R DIS RRAMP RFBU CCSF RFBB Copyright © 2016, Texas Instruments Incorporated Typical Automotive Application Example An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2020 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................3 6 Pin Configuration and Functions...................................3 7 Specifications.................................................................. 4 7.1 Absolute Maximum Ratings........................................ 4 7.2 ESD Ratings............................................................... 4 7.3 Recommended Operating Conditions.........................4 7.4 Thermal Information....................................................5 7.5 Electrical Characteristics.............................................5 7.6 Typical Characteristics................................................ 7 8 Detailed Description...................................................... 11 8.1 Overview................................................................... 11 8.2 Functional Block Diagram......................................... 12 8.3 Feature Description...................................................12 8.4 Device Functional Modes..........................................21 9 Application and Implementation.................................. 22 9.1 Application Information............................................. 22 9.2 Typical Application.................................................... 22 10 Power Supply Recommendations..............................36 11 Layout........................................................................... 37 11.1 Layout Guidelines................................................... 37 11.2 Layout Example...................................................... 39 12 Device and Documentation Support..........................40 12.1 Device Support....................................................... 40 12.2 Documentation Support.......................................... 40 12.3 Related Links.......................................................... 40 12.4 Support Resources................................................. 40 12.5 Trademarks............................................................. 40 12.6 Electrostatic Discharge Caution..............................41 12.7 Glossary..................................................................41 13 Mechanical, Packaging, and Orderable Information.................................................................... 41 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision E (June, 2020) to Revision F (October, 2020) Page • Added Functional Safety-Capable information................................................................................................... 1 • Added Thermal Information table....................................................................................................................... 5 Changes from Revision D (October 2019) to Revision E (June 2020) Page • Updated Available Options Table heading from TA to TA = TJ ........................................................................... 3 • Updated Operating Junction Temperature in the Recommended Operating Conditions Table, from –55 to 150 to –40 to 105.......................................................................................................................................................4 Changes from Revision C (August 2019) to Revision D (October 2019) Page • Changed 3 V to 2.5 V....................................................................................................................................... 16 Changes from Revision B (October 2017) to Revision C (August 2019) Page • Changed Updated Applications section..............................................................................................................1 • Changed Updated description............................................................................................................................ 1 • Changed the marketing status Advance Information to Initial Release for the UCC28C41-Q1 , UCC28C42Q1, UCC28C44-Q1 and UCC28C45-Q1 devices............................................................................................... 1 • Changed AGain TA = 25°C MIN from 2.75 V to 2.85 V........................................................................................ 5 • Changed AGain TA = Full Range, MIN from 2.85 V to 2.75 V.............................................................................. 5 • Added Link to Technical Support ..................................................................................................................... 40 2 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 5 Device Comparison Table UVLO TURN ON AT 14.5 V TURN OFF AT 9 V SUITABLE FOR OFF-LINE APPLICATIONS TURN ON AT 8.4 V TURN OFF AT 7.6 V SUITABLE FOR DC/DC APPLICATIONS TURN ON AT 7 V TURN OFF AT 6.6 V SUITABLE FOR BATTERY APPLICATIONS MAXIMUM DUTY CYCLE UCC28C42QDRQ1 UCC28C43QDRQ1 UCC28C40QDRQ1 100% UCC28C44QDRQ1 UCC28C45QDRQ1 UCC28C41QDRQ1 50% TEMPERATURE (TA) –40°C to 125°C 6 Pin Configuration and Functions COMP 1 8 VREF FB 2 7 VDD CS 3 6 OUT RT/CT 4 5 GND Not to scale Figure 6-1. D Package 8-Pin SOIC Top View Table 6-1. Pin Functions PIN NAME NO. COMP 1 I/O DESCRIPTION O This pin provides the output of the error amplifier for compensation. In addition, the COMP pin is frequently used as a control port, by utilizing a secondary-side error amplifier to send an error signal across the secondary-primary isolation boundary through an opto-isolator. The error amplifier is internally current limited so the user can command zero duty cycle by externally forcing COMP to GND. CS 3 I Primary-side current sense pin. The current sense pin is the noninverting input to the PWM comparator. Connect to current sensing resistor. This signal is compared to a signal proportional to the error amplifier output voltage. The PWM uses this to terminate the OUT switch conduction. A voltage ramp can be applied to this pin to run the device with a voltage mode control configuration. FB 2 I This pin is the inverting input to the error amplifier. FB is used to control the power converter voltage-feedback loop for stability. The noninverting input to the error amplifier is internally trimmed to 2.5 V ±1%. GND 5 — Ground return pin for the output driver stage and the logic level controller section. O The output of the on-chip drive stage. OUT is intended to directly drive a MOSFET. The OUT pin in the UCC28C40-Q1, UCC28C42-Q1, and UCC28C43-Q1 is the same frequency as the oscillator, and can operate near 100% duty cycle. In the UCC28C41-Q1, UCC28C44-Q1, and UCC28C45-Q1, the frequency of OUT is one-half that of the oscillator due to an internal T flipflop. This limits the maximum duty cycle to < 50%. Peak currents of up to 1 A are sourced and sunk by this pin. OUT is actively held low when VDD is below the turnon threshold. I/O Fixed frequency oscillator set point. Connect timing resistor (RRT) to VREF and timing capacitor (CCT) to GND from this pin to set the switching frequency. For best performance, keep the timing capacitor lead to the device GND as short and direct as possible. If possible, use separate ground traces for the timing capacitor and all other functions. The switching frequency (fSW) of the UCC28C40-Q1, UCC28C42-Q1, and UCC28C43-Q1 gate drive is equal to fOSC; the switching frequency of the UCC28C41-Q1, UCC28C44-Q1, and UCC28C45Q1 is equal to half of the fOSC. I Analog controller bias input that provides power to the device. Total VDD current is the sum of the quiescent VDD current and the average OUT current. A bypass capacitor, typically 0.1 µF, connected directly to GND with minimal trace length, is required on this pin. Additional capacitance at least 10 times greater than the gate capacitance of the main switching FET used in the design is also required on VDD. O 5-V reference voltage. VREF is used to provide charging current to the oscillator timing capacitor through the timing resistor. It is important for reference stability that VREF is bypassed to GND with a ceramic capacitor connected as close to the pin as possible. A minimum value of 0.1 µF ceramic is required. Additional VREF bypassing is required for external loads on VREF. OUT RT/CT VDD VREF 6 4 7 8 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 3 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) MAX UNIT Input voltage VDD MIN 20 V Input current IVDD 30 mA ±1 A 5 µJ Output drive current (peak) Output energy (capacitive load), EOUT Analog input voltage COMP, CS, FB, RT/CT –0.3 6.3 Output driver voltage OUT –0.3 20 Reference voltage VREF 7 Error amplifier output sink current COMP 10 mA Total power dissipation at TA = 25°C D package 50 °C/W 300 °C Lead temperature (soldering, 10 s), TLEAD V Operating junction temperature, TJ –40 150 °C Storage temperature, Tstg –65 150 °C (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Section 7.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to GND pin. Currents are positive into and negative out of the specified terminals. 7.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) UNIT ±2000 Charged-device model (CDM), per AEC Q100-011 Section 7.2 V ±750 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VVDD VOUT Output driver voltage IOUT Average output driver current(1) IOUT(VREF) Reference output current(1) TJ Operating junction temperature(1) (1) 4 Input voltage MAX UNIT 18 UCC28C4x-Q1 –40 V 18 V 200 mA –20 mA 125 °C TI recommends against operating the device under conditions beyond those specified in this table for extended periods of time. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 7.4 Thermal Information UCC28C4x-Q1 THERMAL METRIC(1) UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 115.0 °C/W RθJC(top) Junction-to-case (top) thermal resistance 57.1 °C/W RθJB Junction-to-board thermal resistance 58.5 °C/W ψJT Junction-to-top characterization parameter 13.0 °C/W ψJB Junction-to-board characterization parameter 57.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor anddevicePackage Thermal Metrics application report. 7.5 Electrical Characteristics VVDD = 15 V(1), RRT = 10 kΩ, CCT = 3.3 nF, CVDD = 0.1 µF and no load on the outputs, TA = –40°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 5 5.1 V 0.2 20 mV 25 mV REFERENCE VVREF IVREF VREF voltage, initial accuracy IOUT = 1 mA Line regulation VVDD = 12 V to 18 V Load regulation 1 mA to 20 mA Temperature stability See (2) Total output variation See (2) VREF noise voltage 10 Hz to 10 kHz, TA = 25°C, see (2) Long term stability 1000 hours, TA = 125°C, see (2) 4.9 3 0.2 4.82 0.4 mV/°C 5.18 50 V µV 5 25 mV –30 –45 –55 mA TA = 25°C, see (3) 50.5 53 55 kHz TA = Full Range, see (3) 50.5 57 kHz Output short circuit OSCILLATOR fOSC Initial accuracy Voltage stability 12 V ≤ VVDD ≤ 18 V Temperature stability TA(MIN) to TA(MAX), see (2) Amplitude RT/CT pin peak-to-peak voltage Discharge current 0.2% 1% 1% 2.5% 1.9 V TA = 25°C, VRT/CT = 2 V, see (4) 7.7 8.4 9 TA = Full Range, VRT/CT = 2 V, see (4) 7.2 8.4 9.5 2.475 2.5 2.525 V 2.45 2.5 2.55 V –0.1 –2 µA mA ERROR AMPLIFIER VFB Feedback input voltage, initial accuracy TA = 25°C, VCOMP = 2.5 V Feedback input voltage, total variation TA = Full Range, VCOMP = 2.5 V IFB Input bias current VFB = 5 V AVOL Open-loop voltage gain 2 V ≤ VOUT ≤ 4 V (2) Unity gain bandwidth See Power supply rejection ratio 12 V ≤ VVDD ≤ 18 V Output sink current VFB = 2.7 V, VCOMP = 1.1 V Output source current VFB = 2.3 V, VCOMP = 5 V VOH High-level COMP voltage VFB = 2.7 V, RCOMP = 15 kΩ COMP to GND VOL Low-level COMP voltage VFB = 2.7 V, RCOMP = 15 kΩ COMP to VREF PSRR Copyright © 2020 Texas Instruments Incorporated 65 90 dB 1 1.5 MHz 60 dB 2 14 mA –0.5 –1 mA 5 6.8 0.1 V 1.1 V Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 5 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 VVDD = 15 V(1), RRT = 10 kΩ, CCT = 3.3 nF, CVDD = 0.1 µF and no load on the outputs, TA = –40°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 2.85 3 3.15 V/V 2.75 3 3.15 V/V 0.9 1 1.1 V –0.1 –2 µA 35 70 ns CURRENT SENSE TA = 25°C, See (5) (6) ACS Gain VCS Maximum input signal TA = Full Range, See PSRR Power supply rejection ratio ICS Input bias current tD CS to output delay (5) (6) VFB < 2.4 V VVDD = 12 V to 18 V(2) (5) 70 dB COMP to CS offset VCS = 0 V 1.15 V RDS(on) pulldown ISINK = 200 mA 5.5 VOUT(high) RDS(on) pullup ISOURCE = 200 mA 10 25 Ω tRISE Rise tIme COUT = 1 nF 25 50 ns tFALL Fall tIme COUT = 1 nF 20 40 ns OUTPUT VOUT(low) 15 Ω UNDERVOLTAGE LOCKOUT VDDON VDDOFF Start threshold Minimum operating voltage UCC28C42-Q1, UCC28C44-Q1 13.5 14.5 15.5 UCC28C43-Q1, UCC28C45-Q1 7.8 8.4 9 UCC28C40-Q1, UCC28C41-Q1 6.5 7 7.5 UCC28C42-Q1, UCC28C44-Q1 8 9 10 UCC28C43-Q1, UCC28C45-Q1 7 7.6 8.2 UCC28C40-Q1, UCC28C41-Q1 6.1 6.6 7.1 UCC28C42-Q1, UCC28C43-Q1, UCC28C40-Q1, V FB < 2.4 V 94% 96% UCC28C44-Q1, UCC28C45-Q1, UCC28C41-Q1, V FB < 2.4 V 47% 48% V V PWM DMAX Maximum duty cycle DMIN Minimum duty cycle VFB > 2.6 V 0% CURRENT SUPPLY ISTART-UP Start-up current VVDD = VDDON – 0.5 V 50 100 µA IVDD Operating supply current VFB = VCS = 0 V 2.3 3 mA (1) (2) (3) (4) (5) (6) 6 Adjust VVDD above the start threshold before setting at 15.5 V. Ensured by design. Not production tested. Output frequencies of the UCC28C41-Q1, UCC28C44-Q1, and the UCC28C45-Q1 are half the oscillator frequency. Oscillator discharge current is measured with RRT = 10 kΩ to VREF. Parameter measured at trip point of latch with VFB = 0 V. Gain is defined as ACS = ΔVCOMP / ΔVCS , 0 V ≤ VCS ≤ 900 mV Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 7.6 Typical Characteristics 9.5 IDISCH -- Oscillator Discharge Current -- mA fOSC Oscillator Frequency (kHz) 1000 100 10 220 pF 470 pF 1 nF 2.2 nF 4.7 nF 1 9.0 8.5 8.0 7.5 7.0 1 10 RRT Timing Resistance (k:) 100 --50 --25 0 D001 Figure 7-1. Oscillator Frequency vs Timing Resistance and Capacitance 50 75 100 125 Figure 7-2. Oscillator Discharge Current vs Temperature 100 200 1.8 90 180 1.6 160 1.4 80 25 TJ -- Temperature -- °C 60 120 50 100 40 80 1.2 COMP to CS 140 Phase Margin -- (°) Gain -- (dB) GAIN 70 1.0 0.8 0.6 30 60 PHASE MARGIN 20 0.4 40 10 0.2 20 0 1 10 100 1k 10 k 100 k 1M 0.0 0 10 M --50 --25 0 25 50 75 100 125 TJ -- Temperature -- °C f -- Frequency -- Hz Figure 7-3. Error Amplifier Frequency Response VCS = 0 V Figure 7-4. COMP to CS Offset Voltage vs Temperature 5.05 VEAREF -- Error Amplifier Reference Voltage -- V 2.55 VREF -- Reference Voltage -- V 5.04 5.03 5.02 5.01 5.00 4.99 4.98 4.97 4.96 4.95 --50 2.54 2.53 2.52 2.51 2.50 2.49 2.48 2.47 2.46 2.45 --25 0 25 50 75 100 125 TJ -- Temperature -- °C Figure 7-5. Reference Voltage vs Temperature Copyright © 2020 Texas Instruments Incorporated --50 --25 0 25 50 75 100 125 TJ -- Temperature -- °C Figure 7-6. Error Amplifier Reference Voltage vs Temperature Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 7 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 200 --37 IBIAS -- Error Amplifier Input Bias Current -- nA ISC -- Reference Short Circuit Current -- mA --35 --39 --41 --43 --45 --47 --49 --51 --53 --55 --50 100 50 0 --50 --100 --150 --200 --25 0 25 50 75 TJ -- Temperature -- °C 100 125 Figure 7-7. Reference Short-Circuit Current vs Temperature --50 15 8.8 VUVLO -- UVLO Voltage -- V 9.0 13 UVLO ON 12 UVLO OFF 11 10 7.2 6 75 100 UVLO ON 7.8 7.4 50 UVLO OFF 7.0 --50 125 --25 0 TJ -- Temperature -- °C UCC28C42-Q1 and UCC28C44-Q1 25 50 75 TJ -- Temperature -- °C 100 125 UCC28C43-Q1 and UCC28C45-Q1 Figure 7-9. Undervoltage Lockout vs Temperature Figure 7-10. Undervoltage Lockout vs Temperature 7.3 25 7.2 IDD -- Supply Current -- mA UVLO ON 7.1 VUVLO -- UVLO Voltage -- V 125 8.0 7 25 100 8.2 7.6 0 25 50 75 TJ -- Temperature -- °C 8.4 8 --25 0 8.6 9 --50 --25 Figure 7-8. Error Amplifier Input Bias Current vs Temperature 16 14 VUVLO -- UVLO Voltage -- V 150 7.0 6.9 6.8 6.7 6.6 6.5 1-nF LOAD 20 15 10 NO LOAD 5 UVLO OFF 6.4 6.3 --50 --25 0 25 50 75 100 125 TJ -- Temperature -- °C UCC28C40-Q1 and UCC28C41-Q1 0 0k 200 k 400 k 600 k f -- Frequency -- Hz 800 k 1M Figure 7-12. Supply Current vs Oscillator Frequency Figure 7-11. Undervoltage Lockout vs Temperature 8 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 3.0 40 10% to 90% VDD = 12 V 2.9 35 Output Rise and Fall TIme -- ns IDD -- Supply Current -- mA 2.8 2.7 2.6 2.5 2.4 NO LOAD 2.3 2.2 tr (1 nF) 30 tf (1 nF) 25 20 15 2.1 2.0 10 --50 --25 0 25 50 75 100 125 --50 --25 TJ -- Temperature -- °C 0 25 50 75 100 125 TJ -- Temperature -- °C Figure 7-13. Supply Current vs Temperature Figure 7-14. Output Rise Time and Fall Time vs Temperature 100 CT = 220 pF Duty Cycle -- % 90 80 70 CT = 1 nF 60 50 0 500 1000 1500 2000 2500 f -- Frequency -- kHz Figure 7-15. Maximum Duty Cycle vs Oscillator Frequency Figure 7-16. Maximum Duty Cycle vs Temperature VCS_th -- Current Sense Threshold -- V 1.10 1.05 1.00 0.95 0.90 --50 --25 0 25 50 75 100 125 TJ -- Temperature -- °C Figure 7-17. Maximum Duty Cycle vs Temperature Copyright © 2020 Texas Instruments Incorporated Figure 7-18. Current Sense Threshold Voltage vs Temperature Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 9 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com 70 tD -- CS to OUT Delay Time -- ns 65 60 55 50 45 40 35 30 --50 --25 0 25 50 75 100 125 TJ -- Temperature -- °C Figure 7-19. Current Sense to Output Delay Time vs Temperature 10 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 www.ti.com UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 8 Detailed Description 8.1 Overview The UCC28C4x-Q1 series of control integrated circuits provide the features necessary to implement AC-DC or DC‑to-DC fixed-frequency current-mode control schemes with a minimum number of external components. Protection circuitry includes undervoltage lockout (UVLO) and current limiting. Internally implemented circuits include a start-up current of less than 100 µA, a precision reference trimmed for accuracy at the error amplifier input, logic to ensure latched operation, a pulse-width modulation (PWM) comparator that also provides currentlimit control, and an output stage designed to source or sink high-peak current. The output stage, suitable for driving N-channel MOSFETs, is low when it is in the OFF state. The oscillator contains a trimmed discharge current that enables accurate programming of the maximum duty cycle and dead time limit, making this device suitable for high-speed applications. Major differences between members of this series are the UVLO thresholds, acceptable ambient temperature range, and maximum duty cycle. Typical UVLO thresholds of 14.5 V (ON) and 9 V (OFF) on the UCC28C42-Q1 and UCC28C44-Q1 devices make them ideally suited to off-line AC-DC applications. The corresponding typical thresholds for the UCC28C43-Q1 and UCC28C45-Q1 devices are 8.4 V (ON) and 7.6 V (OFF), making them ideal for use with regulated input voltages used in DC-DC applications. The UCC28C40-Q1 and UCC28C41-Q1 feature a start-up threshold of 7 V and a turnoff threshold of 6.6 V (OFF), which makes them suitable for batterypowered applications. The UCC28C40-Q1, UCC28C42-Q1, and UCC28C43-Q1 devices operate to duty cycles approaching 100%. The UCC28C41-Q1, UCC28C44-Q1, and UCC28C45-Q1 obtain a duty cycle from 0% to 50% by the addition of an internal toggle flip-flop, which blanks the output off every other clock cycle. The UCC28C4x-Q1 series is specified for operation ambient temperature from –40°C to 125°C. The UCC28C4x-Q1 series are an enhanced replacement with pin-to-pin compatibility to the bipolar UC284x, UC384x, UC284xA, and UC384xA families. The new series offers improved performance when compared to older bipolar devices and other competitive BiCMOS devices with similar functionality. These improvements generally consist of tighter specification limits that are a subset of the older product ratings, maintaining drop-in capability. In new designs, these improvements can reduce the component count or enhance circuit performance when compared to the previously available devices. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 11 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 8.2 Functional Block Diagram VDD UVLO EN 5V VREF VREF VREF Good Logic RT/CT Osc ( NOTE) 2. 5 V S 2R + E/A FB OUT T PWM Latch R R 1V GND PWM Comparator COMP CS Copyright © 2016, Texas Instruments Incorporated Toggle flip-flop used only in UCC28C41-Q1, UCC28C44-Q1, and UCCx8C45-Q1 8.3 Feature Description The BiCMOS design allows operation at high frequencies that were not feasible in the predecessor bipolar devices. First, the output stage has been redesigned to drive the external power switch in approximately half the time of the earlier devices. Second, the internal oscillator is more robust, with less variation as frequency increases. This faster oscillator makes this device suitable for high speed applications and the trimmed discharge current enables precise programming of the maximum duty cycle and dead-time limit. In addition, the current sense to output delay has been reduced by a factor of three, to 45 ns (typical). The reduced delay times in the current sense results in superior overload protection at the power switch. The reduced start-up current of this device minimizes steady state power dissipation in the startup resistor, and the low operating current maximizes efficiency while running, increasing the total circuit efficiency, whether operating off-line, DC input, or battery operated circuits. These features combine to provide a device capable of reliable, high-frequency operation. Table 8-1. Key Parameters PARAMETER UCC28C4x-Q1 UCC28C4x Supply current at 50 kHz 2.3 mA 2.3 mA Start-up current 50 µA 50 µA Overcurrent propagation delay 50 ns 50 ns Reference voltage accuracy ± 1% ± 1% Error amplifier reference voltage accuracy ± 25 mV ± 25mV Maximum oscillator frequency > 1 MHz 1 MHz Output rise/fall times 25 ns 25 ns UVLO turnon accuracy ±1V ±1V Ambient Temperature -40°C TO 125°C -40°C TO 105°C 12 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 www.ti.com UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 8.3.1 Detailed Pin Description 8.3.1.1 COMP The error amplifier in the UCC28C4x-Q1 family has a unity-gain bandwidth of 1.5 MHz. The COMP terminal can both source and sink current. The error amplifier is internally current-limited, so that one can command zero duty cycle by externally forcing COMP to GND. 8.3.1.2 FB FB is the inverting input of the error amplifier. The noninverting input to the error amplifier is internally trimmed to 2.5 V ± 1%. FB is used to control the power converter voltage-feedback loop for stability. For best stability, keep FB lead length as short as possible and FB stray capacitance as small as possible. 8.3.1.3 CS The UCC28C4x-Q1 current sense input connects directly to the PWM comparator. Connect CS to the MOSFET source current sense resistor. The PWM uses this signal to terminate the OUT switch conduction. A voltage ramp can be applied to this pin to run the device with a voltage mode control configuration or to add slope compensation. To prevent false triggering due to leading edge noises, an RC current sense filter may be required. The gain of the current sense amplifier is typically 3 V/V. 8.3.1.4 RT/CT RT/CT is the oscillator timing pin. For fixed frequency operation, set the timing capacitor charging current by connecting a resistor from VREF to RT/CT. Set the frequency by connecting timing capacitor from RT/CT to GND. For the best performance, keep the timing capacitor lead to GND as short and direct as possible. If possible, use separate ground traces for the timing capacitor and all other functions. The UCC28C4x-Q1’s oscillator allows for operation to 1 MHz. The device uses an external resistor to set the charging current for the external capacitor, which determines the oscillator frequency. TI recommends timing resistor values from 1 kΩ to 100 kΩ and timing capacitor values from 220 pF to 4.7 nF. The UCC28C4x-Q1 oscillator is true to the curves of the original bipolar devices at lower frequencies, yet extends the frequency programmability range to at least 1 MHz. This allows the device to offer pin-to-pin capability where required, yet capable of extending the operational range to the higher frequencies. See Figure 7-1 for component values for setting the oscillator frequency. 8.3.1.5 GND GND is the signal and power returning ground. TI recommends separating the signal return path and the high current gate driver path so that the signal is not affected by the switching current. 8.3.1.6 OUT The high-current output stage of the UCC28C4x-Q1 has been redesigned to drive the external power switch in approximately half the time of the earlier devices. To drive a power MOSFET directly, the totem-pole OUT driver sinks or source up to 1 A peak of current. The OUT of the UCC28C40-Q1, UCC28C42-Q1, and UCC28C43-Q1 devices switch at the same frequency as the oscillator and can operate near 100% duty cycle. In the UCC28C41-Q1, UCC28C44-Q1, and UCC28C45-Q1, the switching frequency of OUT is one-half that of the oscillator due to an internal T flip-flop. This limits the maximum duty cycle in the UCC28C41-Q1, UCC28C44-Q1, and UCC28C45-Q1 to < 50%. The UCC28C4x-Q1 family houses unique totem pole drivers exhibiting a 10-Ω impedance to the upper rail and a 5.5‑Ω impedance to ground, typically. This reduced impedance on the low-side switch helps minimize turnoff losses at the power MOSFET, whereas the higher turnon impedance of the high-side is intended to better match the reverse recovery characteristics of many high-speed output rectifiers. Transition times, rising and falling edges, are typically 25 nanoseconds and 20 nanoseconds, respectively, for a 10% to 90% change in voltage. A low impedance MOS structure in parallel with a bipolar transistor, or BiCMOS construction, comprises the totem-pole output structure. This more efficient utilization of silicon delivers the high peak current required along with sharp transitions and full rail-to-rail voltage swings. Furthermore, the output stage is self-biasing, active low during under-voltage lockout type. With no VDD supply voltage present, the output actively pulls low if an Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 13 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 attempt is made to pull the output high. This condition frequently occurs at initial power-up with a power MOSFET as the driver load. 8.3.1.7 VDD VDD is the power input connection for this device. In normal operation, power VDD through a current limiting resistor. The absolute maximum supply voltage is 20 V, including any transients that may be present. If this voltage is exceeded, device damage is likely. This is in contrast to the predecessor bipolar devices, which could survive up to 30 V on the input bias pin. Also, because no internal clamp is included in the device, the VDD pin must be protected from external sources which could exceed the 20 V level. If containing the start-up and bootstrap supply voltage from the auxiliary winding N A below 20 V under all line and load conditions can not be achieved, use a zener protection diode from VDD to GND. Depending on the impedance and arrangement of the bootstrap supply, this may require adding a resistor, R VDD, in series with the auxiliary winding to limit the current into the zener as shown in Figure 8-1. Insure that over all tolerances and temperatures, the minimum zener voltage is higher than the highest UVLO upper turnon threshold. To ensure against noise related problems, filter VDD with a ceramic bypass capacitor to GND. The VDD pin must be decoupled as close to the GND pin as possible. NP NS RSTART To Input NA DBIAS RVDD VDD OUT CVCC DZCLAMP CVDDbp 0.1 PF GND RCS Figure 8-1. VDD Protection Although quiescent VDD current is only 100 µA, the total supply current is higher, depending on the OUT current. Total VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating frequency and the MOSFET gate charge (Q g), average OUT current can be calculated from Equation 1. IOUT = Q g × fSW (1) 8.3.1.8 VREF VREF is the voltage reference for the error amplifier and also for many other internal circuits in the device. The 5-V reference tolerance is ±1% for the UCC28C4x-Q1 family. The high-speed switching logic uses VREF as the logic power supply. The reference voltage is divided down internally to 2.5 V ±1% and connected to the error amplifier's noninverting input for accurate output voltage regulation. The reference voltage sets the internal bias currents and thresholds for functions such as the oscillator upper and lower thresholds along with the overcurrent limiting threshold. The output short-circuit current is 55 mA (maximum). To avoid device over-heating and damage, do not pull VREF to ground as a means to terminate switching. For reference stability and to prevent noise problems with high-speed switching transients, bypass VREF to GND with a ceramic capacitor close to thedevicepackage. A minimum of 0.1-µF ceramic capacitor is required. Additional VREF bypassing is required for external loads on the reference. An electrolytic capacitor may also be used in addition to the ceramic capacitor. 14 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 8.3.2 Undervoltage Lockout Three sets of UVLO thresholds are available with turnon and turnoff thresholds of: (14.5 V and 9 V), (8.4 V and 7.6 V), and (7 V and 6.6 V) respectively. The first set is primarily intended for off-line and 48-V distributed power applications, where the wider hysteresis allows for lower frequency operation and longer soft-starting time of the converter. The second group of UVLO options is ideal for high frequency DC-DC converters typically running from a 12-VDC input. The third, and newest, set has been added to address battery powered and portable applications. Table 8-2 shows the maximum duty cycle and UVLO thresholds by device. Table 8-2. UVLO Options MAXIMUM DUTY CYCLE UVLO ON UVLO OFF PART NUMBER 100% 14.5 V 9V UCC28C42-Q1 100% 8.4 V 7.6 V UCC28C43-Q1 100% 7V 6.6 V UCC28C40-Q1 50% 14.5 V 9V UCC28C44-Q1 50% 8.4 V 7.6 V UCC28C45-Q1 50% 7V 6.6 V UCC28C41-Q1 During UVLO thedevicedraws less than 100 µA of supply current. Once crossing the turnon threshold thedevicesupply current increases to a maximum of 3 mA, typically 2.3 mA. This low start-up current allows the power supply designer to optimize the selection of the startup resistor value to provide a more efficient design. In applications where low component cost overrides maximum efficiency, the low run current of 2.3 mA (typical) allows the control device to run directly through the single resistor to (+) rail, rather than requiring a bootstrap winding on the power transformer, along with a rectifier. The start and run resistor for this case must also pass enough current to allow driving the primary switching MOSFET, which may be a few milliamps in small devices. < 3 mA IVDD < 100 µA VOFF VON VVDD Figure 8-2. UVLO ON and OFF Profile 8.3.3 ±1% Internal Reference Voltage The BiCMOS internal reference of 2.5 V has an enhanced design, and uses production trim to allow initial accuracy of ±1% at room temperature and ±2% over the full temperature range. This can be used to eliminate an external reference in applications that do not require the extreme accuracy afforded by the additional device. This is useful for nonisolated DC-DC applications, where the control device is referenced to the same common as the output. It is also applicable in off-line designs that regulate on the primary side of the isolation boundary by looking at a primary bias winding, or from a winding on the output inductor of a buck-derived circuit. 8.3.4 Current Sense and Overcurrent Limit An external series resistor (R CS) senses the current and converts this current into a voltage that becomes the input to the CS pin. The CS pin is the noninverting input to the PWM comparator. The CS input is compared to a Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 15 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 signal proportional to the error amplifier output voltage; the gain of the current sense amplifier is typically 3 V/V. The peak ISENSE current is determined using Equation 2 ISENSE = VCS R CS (2) The typical value for VCS is 1 V. A small RC filter (RCSF and CCSF) may be required to suppress switch transients caused by the reverse recovery of a secondary side diode or equivalent capacitive loading in addition to parasitic circuit impedances. The time constant of this filter should be considerably less than the switching period of the converter. Error Amplifier COMP 2R R 1V ISENSE RCSF RCS PWM Comparator CS CCSF GND Copyright © 2016, Texas Instruments Incorporated Figure 8-3. Current-Sense Circuit Schematic Cycle-by-cycle pulse width modulation performed at the PWM comparator essentially compares the error amplifier output to the current sense input. This is not a direct volt-to-volt comparison, as the error amplifier output network incorporates two diodes in series with a resistive divider network before connecting to the PWM comparator. The two-diode drop adds an offset voltage that enables zero duty cycle to be achieved with a low amplifier output. The 2R/R resistive divider facilitates the use of a wider error amplifier output swing that can be more symmetrically centered on the 2.5-V noninverting input voltage. The 1-V zener diode associated with the PWM comparator’s input from the error amplifier is not an actual diode in the device’s design, but an indication that the maximum current sense input amplitude is 1 V (typical). When this threshold is reached, regardless of the error amplifier output voltage, cycle-by-cycle current limiting occurs, and the output pulse width is terminated within 35 ns (typical). The minimum value for this current limit threshold is 0.9 V with a 1.1-V maximum. In addition to the tolerance of this parameter, the accuracy of the current sense resistor, or current sense circuitry, must be taken into account. It is advised to factor in the worst case of primary and secondary currents when sizing the ratings and worst-case conditions in all power semiconductors and magnetic components. 8.3.5 Reduced-Discharge Current Variation The UCC28C4x-Q1 oscillator design incorporates a trimmed discharge current to accurately program maximum duty cycle and operating frequency. In its basic operation, a timing capacitor (C CT) is charged by a current source, formed by the timing resistor (R RT) connected to the device’s reference voltage (VREF). The oscillator design incorporates comparators to monitor the amplitude of the timing capacitor’s voltage. The exponentially shaped waveform charges up to a specific amplitude representing the oscillator’s upper threshold of 2.5 V. Once reached, an internal current sink to ground is turned on and the capacitor begins discharging. This discharge continues until the oscillator’s lower threshold has reached 0.7 V at which point the current sink is turned off. Next, the timing capacitor starts charging again and a new switching cycle begins. 16 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 VREF VDDON VDDOFF RRT CCT CCT RT/CT tON GND 8.4 mA tOFF tPERIOD Copyright © 2016, Texas Instruments Incorporated Figure 8-4. Oscillator Circuit While the device is discharging the timing capacitor, resistor R RT is also still trying to charge C CT. It is the exact ratio of these two currents, the discharging versus the charging current, which specifies the maximum duty cycle. During the discharge time of CCT, the device’s output is always off. This represents an ensured minimum off time of the switch, commonly referred to as dead-time. To program an accurate maximum duty cycle, use the information provided in Figure 7-15 for maximum duty cycle versus oscillator frequency. Any number of maximum duty cycles can be programmed for a given frequency by adjusting the values of RRT and CCT. Once R RT is selected, the oscillator timing capacitor can be found using the curves in Figure 7-1. However, because resistors are available in more precise increments, typically 1%, and capacitors are only available in 5% accuracy, it might be more practical to select the closest capacitor value first and then calculate the timing resistor value next. 8.3.6 Oscillator Synchronization Synchronization is best achieved by forcing the timing capacitor voltage above the oscillator's internal upper threshold. A small resistor is placed in series with C CT to GND. This resistor serves as the input for the sync pulse which raises the CCT voltage above the oscillator’s internal upper threshold. The PWM is allowed to run at the frequency set by RRT and CCT until the sync pulse appears. This scheme offers several advantages including having the local ramp available for slope compensation. The UCC28C4x-Q1 oscillator must be set to a lower frequency than the sync pulse stream, typically 20 percent with a 0.5-V pulse applied across the resistor. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 17 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com VREF RRT CCT + SYNC CCT RT/CT SYNC SYNC 50 GND CCT Copyright © 2016, Texas Instruments Incorporated Figure 8-5. Oscillator Synchronization Circuit 8.3.7 Soft Start Soft start is the technique to gradually power up the converter in a well-controlled fashion by slowly increasing the effective duty cycle starting at zero and gradually rising. Following start-up of the PWM, the error amplifier inverting input is low, commanding the error amplifier’s output to go high. The output stage of the amplifier can source 1 mA typically, which is enough to drive most high impedance compensation networks, but not enough for driving large loads quickly. Soft start is achieved by charging a fairly large value, >1-µF, capacitor (C SS) connected to the error amplifier output through a PNP transistor as shown in Figure 8-6 VREF RSS COMP ZF + 2N2907 CSS FB ZI To VOUT Figure 8-6. Soft-Start Implementation The limited charging current of the amplifier into the capacitor translates into a dv/dt limitation on the error amplifier output. This directly corresponds to some maximum rate of change of primary current in a current mode controlled system as one of the PWM comparator’s inputs gradually rises. The values of R SS and C SS must be selected to bring the COMP pin up at a controlled rate, limiting the peak current supplied by the power stage. After the soft-start interval is complete, the capacitor continues to charge to VREF, effectively removing the PNP transistor from the circuit consideration. Soft start performs a different, frequently preferred function in current mode controlled systems than it does in voltage mode control. In current mode, soft start controls the rising of the peak switch current. In voltage mode control, soft start gradually widens the duty cycle, regardless of the primary current or rate of ramp-up. 18 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 www.ti.com UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 The purpose of the resistor R SS and diode is to take the soft-start capacitor out of the error amplifier’s path during normal operation, once soft start is complete and the capacitor is fully charged. The optional diode in parallel with the resistor forces a soft start each time the PWM goes through UVLO condition that forces VREF to go low. Without the diode, the capacitor remains charged during a brief loss of supply or brown-out, and no soft start is enabled upon re-application of VDD. 8.3.8 Enable and Disable There are a few ways to enable or disable the UCC28C4x-Q1 devices, depending on which type of restart is required. The two basic techniques use external transistors to either pull the error amplifier output low (< 2 V BE) or pull the current sense input high (> 1.1 V). Application of the disable signal causes the output of the PWM comparator to be high. The PWM latch is reset dominant so that the output remains low until the next clock cycle after the shutdown condition at the COMP or CS pin is removed. Another choice for restart without a soft start is to pull the current sense input above the cycle-by-cycle current limiting threshold. A logic level P-channel FET from the reference voltage to the current sense input can be used. COMP DISABLE Figure 8-7. Disable Circuit 8.3.9 Slope Compensation With current mode control, slope compensation is required to stabilize the overall loop with duty cycles exceeding 50%. Although not required, slope compensation also improves stability in applications using below a 50% maximum duty cycle. Slope compensation is introduced by injecting a portion of the oscillator waveform to the actual sensed primary current. The two signals are summed together at the current sense input (CS) connection at the filter capacitor. To minimize loading on the oscillator, it is best to buffer the timing capacitor waveform with a small transistor whose collector is connected to the reference voltage. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 19 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com VREF 0.1 µF RRT RT/CT CCT RRAMP RCSF ISENSE CS RCS CCSF Copyright © 2016, Texas Instruments Incorporated Figure 8-8. Slope Compensation Circuit 8.3.10 Voltage Mode In certain applications, voltage mode control may be a preferred control strategy for a variety of reasons. Voltage mode control is easily executable with any current mode controller, especially the UCC28C4x-Q1 family members. Implementation requires generating a 0-V to 0.9-V sawtooth shaped signal to input to the current sense pin (CS) which is also one input to the PWM comparator. This is compared to the divided down error amplifier output voltage at the other input of the PWM comparator. As the error amplifier output is varied, it intersects the sawtooth waveform at different points in time, thereby generating different pulse widths. This is a straightforward method of linearly generating a pulse whose width is proportional to the error voltage. Implementation of voltage mode control is possible by using a fraction of the oscillator timing capacitor (C CT) waveform. This can be divided down and fed to the current sense pin as shown in Figure 8-9. The oscillator timing components must be selected to approximate as close to a linear sawtooth waveform as possible. Although exponentially charged, large values of timing resistance and small values of timing capacitance help approximate a more linear shaped waveform. A small transistor is used to buffer the oscillator timing components from the loading of the resistive divider network. 20 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 VREF RRT 2N2222 RT/CT CS CCT Figure 8-9. Current Mode PWM Used as a Voltage Mode PWM 8.4 Device Functional Modes 8.4.1 Normal Operation During normal operating mode, the controller can be used in peak current mode or voltage mode control. When the converter is operating in peak current mode, the controller regulates the converter's peak current and duty cycle. When used in voltage mode control, the controller regulates the power converter's duty cycle. The regulation of the system's peak current and duty cycle can be achieved with the use of the integrated error amplifier and external feedback circuitry. 8.4.2 UVLO Mode During the system start-up, VDD voltage starts to rise from 0 V. Before the VDD voltage reaches its corresponding turnon threshold, thedeviceis operating in UVLO mode. In this mode, the VREF pin voltage is not generated. When VDD is above 1 V and below the turnon threshold, the VREF pin is actively pulled low. This way, VREF can be used as a logic signal to indicate UVLO mode. If the bias voltage to VDD drops below the UVLO-OFF threshold, the PWM switching stops and VREF returns to 0 V. The device can be restarted by applying a voltage greater than the UVLO-ON threshold to the VDD pin. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 21 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The UCC28C4x-Q1 controllers are peak current mode pulse width modulators. These controllers have an onboard amplifier and can be used in isolated and nonisolated power supply designs. There is an onboard totem pole gate driver capable of delivering 1 A of peak current. This is a high-speed PWM capable of operating at switching frequencies up to 1 MHz. Figure 9-1 shows a typical off-line application. Figure 9-1. Typical Off-Line Application 9.2 Typical Application A typical application for the UCC28C42-Q1 in an off-line flyback converter is shown in Figure 9-2. The UCC28C42-Q1 uses an inner current control loop that contains a small current sense resistor which senses the primary inductor current ramp. This current sense resistor transforms the inductor current waveform to a voltage signal that is input directly into the primary side PWM comparator. This inner loop determines the response to input voltage changes. An outer voltage control loop involves comparing a portion of the output voltage to a reference voltage at the input of an error amplifier. When used in an off-line isolated application, the voltage feedback of the isolated output is accomplished using a secondary-side error amplifier and adjustable voltage reference, such as the TL431A-Q1 or TL431B-Q1. The error signal crosses the primary to secondary isolation boundary using an opto-isolator whose collector is connected to the VREF pin and the emitter is connected to FB. The outer voltage control loop determines the response to load changes. 22 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 D CLAMP ~ VIN = 85 VAC to 265 VAC ± D BRIDGE CSS CSNUB 10 nF RSNUB 50 k DOUT + CIN 180µF ~ RSTART 420k NP DBIAS NS COUT 2200µF RVDD 22 VOUT 12 V, 4A NA CVDD 120µF RSS LP =1. 5 mH NP:NS = 10 NP:NA = 10 UCC28C42-Q1 R COMPp 10 k C COMPp 10 nF RRT 15. 4 k COMP VREF 8 2 FB VDD 7 3 CS OUT 6 4 RT/CT GND 5 RG 10 QSW DZ CVDDbp 18 V 0. 1 µF CCT 1000pF CRAMP 10 nF RRAMP 24.9 k 1 CVREF 1 µF R BLEEDER 10 k RCS 0. 75 RLED 1.3 k RCSF 3. 8 k RTLbias 1k R DIS 2.49 k CCSF 100 pF RP Not Populated OPTOCOUPLER 10 V RFBG 4. 99 k RFBU 9. 53 k R COMPz C COMPz 88. 7 k 0. 01 µF ROPTO 1k TL431A-Q1 (TL431B-Q1) RFBB 2. 49 k Copyright © 2016, Texas Instruments Incorporated Figure 9-2. Typical Application Design Schematic Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 23 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 9.2.1 Design Requirements Table 9-1 shows a typical set of performance requirements for an off-line flyback converter capable of providing 48 W at 12-V output voltage from a universal AC input. The design uses peak primary current control in a continuous current mode PWM converter. Table 9-1. Design Parameters PARAMETER VIN Input Voltage TEST CONDITIONS fLINE Line Frequency VOUT Output Voltage IVOUT(min) ≤ IVOUT ≤ IVOUT(max) IVOUT(min) ≤ IVOUT ≤ IVOUT(max) VRIPPLE Output Ripple Voltage IVOUT Output Current fSW Switching Frequency η Efficiency MIN NOM MAX UNIT 85 115/230 265 VRMS 47 50/60 63 Hz 11.75 12 12.25 V 0 4 100 110 mVpp A kHz 85% 9.2.2 Detailed Design Procedure This procedure outlines the steps to design an off-line universal input continuous current mode (CCM) flyback converter using the UCC28C42-Q1. See Figure 9-2 for component names referred to in the design procedure. 9.2.2.1 Custom Design With WEBENCH® Tools Click here to create a custom design using the UCC28C4x-Q1 device with the WEBENCH® Power Designer. 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. In most cases, these actions are available: • Run electrical simulations to see important waveforms and circuit performance • Run thermal simulations to understand board thermal performance • Export customized schematic and layout into popular CAD formats • Print PDF reports for the design, and share the design with colleagues Get more information about WEBENCH tools at www.ti.com/WEBENCH. 9.2.2.2 Input Bulk Capacitor and Minimum Bulk Voltage Bulk capacitance may consist of one or more capacitors connected in parallel, often with some inductance between them to suppress differential-mode conducted noise. The value of the input capacitor sets the minimum bulk voltage; setting the bulk voltage lower by using minimal input capacitance results in higher peak primary currents leading to more stress on the MOSFET switch, the transformer, and the output capacitors. Setting the bulk voltage higher by using a larger input capacitor results in higher peak current from the input source and the capacitor itself is physically larger. Compromising between size and component stresses determines the acceptable minimum input voltage. The total required value for the primary-side bulk capacitance (C IN) is selected based upon the power level of the converter (POUT), the efficiency target (η), the minimum input voltage (VIN(min)), and is chosen to maintain an acceptable minimum bulk voltage level (VBULK(min)), using Equation 3. CIN = 2 × PIN × F0.25 + VBULK (min ) 1 × arcsin F GG N ¾2 × VIN (min ) 2 2 k2 × VIN (min ) F VBULK (min ) o × fLINE (min ) (3) where 24 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com • SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 VIN(min) is the RMS value of the minimum AC input voltage (85 VRMS) whose minimum line frequency is denoted as fLINE(min), equal to 47 Hz Based on Equation 3, to achieve a minimum bulk voltage of 75 V, assuming 85% converter efficiency, the bulk capacitor must be larger than 126 µF; 180 µF was chosen for the design, taking into consideration component tolerances and efficiency estimation. 9.2.2.3 Transformer Turns Ratio and Maximum Duty Cycle The transformer design starts with selecting a suitable switching frequency for the given application. The UCC28C42 is capable of switching up to 1 MHz but considerations such as overall converter size, switching losses, core loss, system compatibility, and interference with communication frequency bands generally determine an optimum frequency that should be used. For this off-line converter, the switching frequency (fSW) is selected to be 110 kHz as a compromise to minimize the transformer size and the EMI filter size, and still have acceptable losses. The transformer primary to secondary turns ratio (N PS) can be selected based on the desired MOSFET voltage rating and the secondary diode voltage rating. Because the maximum input voltage is 265 VRMS, the peak bulk input voltage can be calculated as shown in Equation 4. VBULK (max ) = ¾2 × VIN (max ) N 375 V (4) To minimize the cost of the system, a readily available 650V MOSFET is selected. Derating the maximum voltage stress on the drain to 80% of its rated value and allowing for a leakage inductance voltage spike of up to 30% of the maximum bulk input voltage, the reflected output voltage must be less than 130 V as shown in Equation 5. VREFLECTED 0.8 u VDS(rated) 1.3 u VBULK(max) 130.2 V (5) The maximum primary to secondary transformer turns ratio (NPS) for a 12 V output can be selected as NPS = VREFLECTED = 10.85 VOUT (6) A turns ratio of NPS = 10 is used in the design example. The auxiliary winding is used to supply bias voltage to the UCC28C42-Q1. Maintaining the bias voltage above the VDD minimum operating voltage after turnon is required for stable operation. The minimum VDD operating voltage for the UCC28C42-Q1 version of the controller is 10 V. The auxiliary winding is selected to support a 12 V bias voltage so that it is above the minimum operating level but still keeps the losses low in the IC. The primary to auxiliary turns ratio (NPA) can be calculated from Equation 7: NPA = NPS × VOUT = 10 VBIAS (7) The output diode experiences a voltage stress that is equal to the output voltage plus the reflected input voltage: VDIODE = VBULK :max ; + VOUT = 49.5 V NPS (8) TI recommends a Schottky diode with a rated blocking voltage greater than 60 V to allow for voltage spikes due to ringing. The forward voltage drop (VF) of this diode is estimated to be equal to 0.6 V To avoid high peak currents, the flyback converter in this design operates in continuous conduction mode. Once N PS is determined, the maximum duty cycle (D MAX) can be calculated using the transfer function for a CCM flyback converter: Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 25 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 DMAX 1 VOUT + VF p×l p =l NPS 1 F DMAX VBULK :min ; DMAX NPS u VOUT VF VBULK(min) NPS u VOUT VF www.ti.com (9) 0.627 (10) Because the maximum duty cycle exceeds 50%, and the design is an off-line (AC-input) application, the UCC28C42-Q1 is best suited for this application. 9.2.2.4 Transformer Inductance and Peak Currents For this design example, the transformer magnetizing inductance is selected based upon the CCM condition. An inductance value that allows the converter to stay in CCM over a wider operating range before transitioning into discontinuous current mode is used to minimize losses due to otherwise high currents and also to decrease the output ripple. The design of the transformer in this example sizes the inductance so the converter enters CCM operation at approximately 10% load and minimum bulk voltage to minimize output ripple. The inductor (LP) for a CCM flyback can be calculated using Equation 11. 2 LP = 1 × 2 2 NPS × VOUT p VBULK :min ; + NPS × VOUT 0.1 × PIN × fSW kVBULK :min ; o × l (11) where • • PIN is estimated by dividing the maximum output power (POUT) by the target efficiency (η) fSW is the switching frequency of the converter For the UCC28C42-Q1 the switching frequency is equal to the oscillator frequency and is set to 110 kHz. Selecting f SW to be 110 kHz provides a good compromise between size of magnetics, switching losses, and places the first harmonic below the 150-kHz lower limit of EN55022. Therefore, the transformer inductance must be approximately 1.8 mH. A 1.5 mH inductance is chosen as the magnetizing inductance, L P, value for this design. Based on calculated inductor value and the switching frequency, the current stress of the MOSFET and output diode can be calculated. The peak current in the primary-side MOSFET of a CCM flyback can be calculated as shown in Equation 12. IPK MOSFET NPS × VOUT VBULK (min ) VBULK :min ; + :NPS × VOUT ; PIN = +n × r NPS × VOUT 2 × Lm fSW VBULK :min ; × VBULK :min ; + :NPS × VOUT ; (12) The MOSFET peak current is 1.36 A. The RMS current of the MOSFET is calculated to be 0.97 A as shown in Equation 13. Therefore, IRFB9N65A is selected to be used as the primary-side switch. DMAX 2 × IPK MOSFET × VBULK (min ) VBULK (min ) 2 DMAX 3 p FF IRM S MOSFET = ¨ ×l G + kDMAX × IPK MOSFET 2 o LP × fSW LP × fSW 3 (13) The output diode peak current is equal to the MOSFET peak current reflected to the secondary side. IPK DIODE = NPS × IPK MOSFET = 13.634 A 26 Submit Document Feedback (14) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 The diode average current is equal to the total output current (4 A) combined with a required 60-V rating and 13.6-A peak current requirement, a 48CTQ060-1 is selected for the output diode. 9.2.2.5 Output Capacitor The total output capacitance is selected based upon the output voltage ripple requirement. In this design, 0.1% voltage ripple is assumed. Based on the 0.1% ripple requirement, the capacitor value can be selected using Equation 15. NPS × VOUT VBULK :min ; + NPS × VOUT = 1865 JF 0.001 × VOUT × fSW IOUT × COUT R (15) To design for device tolerances, a 2200-µF capacitor was selected. 9.2.2.6 Current Sensing Network The current sensing network consists of the primary-side current sensing resistor (R CS), filtering components R and CCSF, and optional RP. Typically, the direct current sense signal contains a large amplitude leading edge spike associated with the turnon of the main power MOSFET, reverse recovery of the output rectifier, and other factors including charging and discharging of parasitic capacitances. Therefore, C CSF and R CSF form a low-pass filter that provides immunity to suppress the leading edge spike. For this converter, CCSF is chosen to be 100 pF. CSF Without R P, R CS sets the maximum peak current in the transformer primary based on the maximum amplitude of the CS pin, which is specified to be 1 V. To achieve 1.36-A primary side peak current, a 0.75-Ω resistor is chosen for RCS. The high current sense threshold of CS helps to provide better noise immunity to the system but also results in higher losses in the current sense resistor. These current sense losses can be minimized by injecting an offset voltage into the current sense signal using R P. R P and R CSF form a resistor divider network from the current sense signal to the device’s reference voltage (V VREF) which adds an offset to the current sense voltage. This technique still achieves current mode control with cycle-by-cycle over-current protection. To calculate required offset value (VOFFSET), use Equation 16. VOFFSET = R CSF × VREF R CSF + R P (16) Once RP is added, adjust the RCS accordingly. 9.2.2.7 Gate Drive Resistor R G is the gate driver resistor for the power switch (Q SW). The selection of this resistor value must be done in conjunction with EMI compliance testing and efficiency testing. Using a larger resistor value for R G slows down the turnon and turnoff of the MOSFET. A slower switching speed reduces EMI but also increases the switching loss. A tradeoff between switching loss and EMI performance must be carefully performed. For this design, a 10‑Ω resistor was chosen for the gate drive resistor. 9.2.2.8 VREF Capacitor A precision 5-V reference voltage performs several important functions. The reference voltage is divided down internally to 2.5 V and connected to the error amplifier’s noninverting input for accurate output voltage regulation. Other duties of the reference voltage are to set internal bias currents and thresholds for functions such as the oscillator upper and lower thresholds. Therefore, the reference voltage must be bypassed with a ceramic capacitor. A 1-µF, 16-V ceramic capacitor was selected for this converter. Placement of this capacitor on the physical printed-circuit board layout must be as close as possible to the respective VREF and GND pins. 9.2.2.9 RT/CT The internal oscillator uses a timing capacitor (C CT) and a timing resistor (R RT) to program the oscillator frequency and maximum duty cycle. The operating frequency can be programmed based the curves in Figure Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 27 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com 7-1, where the timing resistor can be found once the timing capacitor is selected. It is best for the timing capacitor to have a flat temperature coefficient, typical of most COG or NPO type capacitors. For this converter, 15.4 kΩ and 1000 pF were selected for RRT and CCT to operate at 110-kHz switching. 9.2.2.10 Start-Up Circuit At start-up, thedevicegets its power directly from the high-voltage bulk, through a high-voltage resistor (R START). The selection of the start-up resistor is the tradeoff between power loss and start-up time. The current flowing through R START at the minimum input voltage must be higher than the VDD current under UVLO conditions (100 µA at its maximum value). A resistance of 420-kΩ was chosen for RSTART, providing 250 µA of start-up current at low-line conditions. The start-up resistor is physically comprised of two 210-kΩ resistors in series to meet the high voltage requirements and power rating at high-line. After VDD is charged up above the UVLO-ON threshold, the UCC28C42-Q1 starts to consume full operating current. The VDD capacitor is required to provide enough energy to prevent its voltage from dropping below the UVLO-OFF threshold during start-up, before the output is able to reach its regulated level. A large bulk capacitance would hold more energy but would result in slower start-up time. In this design, a 120-µF capacitor is chosen to provide enough energy and maintain a start-up time of approximately 7 seconds. For faster start-up, the bulk capacitor value may be decreased or the RSTART resistor modified to a lower value. 9.2.2.11 Voltage Feedback Compensation Feedback compensation, also called closed-loop control, can reduce or eliminate steady state error, reduce the sensitivity of the system to parametric changes, change the gain or phase of a system over some desired frequency range, reduce the effects of small signal load disturbances and noise on system performance, and create a stable system from an unstable system. A system is stable if its response to a perturbation is that the perturbation eventually dies out. A peak current mode flyback uses an outer voltage feedback loop to stabilize the converter. To adequately compensate the voltage loop, the open-loop parameters of the power stage must be determined. 9.2.2.11.1 Power Stage Poles and Zeroes The first step in compensating a fixed frequency flyback is to verify if the converter is continuous conduction mode (CCM) or discontinuous conduction mode (DCM). If the primary inductance (L P) is greater than the inductance for DCM or CCM boundary mode operation, called the critical inductance (L Pcrit), then the converter operates in CCM: LP > LPcrit , then CCM LPcrit = (17) 2 R OUT × :NPS ;2 VIN p ×l 2 × fSW VIN + VOUT × NPS (18) For the entire input voltage range, the selected inductor has a value larger than the critical inductor. Therefore, the converter operates in CCM and the compensation loop requires design based on CCM flyback equations. The current-to-voltage conversion is done externally with the ground-referenced R CS and the internal 2R/R resistor divider which sets up the internal current sense gain, ACS = 3. The exact value of these internal resistors is not critical but thedeviceprovides tight control of the resistor divider ratio, so regardless of the actual resistor value variations their relative value to each other is maintained. The DC open-loop gain (G O) of the fixed-frequency voltage control loop of a peak current mode control CCM flyback converter shown in Equation 19 is approximated by first using the output load (R OUT), the primary to secondary turns ratio (NPS), and the maximum duty cycle (D) as calculated in Equation 20. GO = 28 R OUT × NPS 1 × 2 :1 F D; R CS × ACS + :2 × M; + 1 RL Submit Document Feedback (19) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 In Equation 19, D is calculated with Equation 20, τ L is calculated with Equation 21, and M is calculated with Equation 22. D= NPS × VOUT VBULKmin + :NPS × VOUT ; RL = M= (20) 2 × LP × fSW R OUT × :NPS ;2 (21) VOUT × NPS VBULKmin (22) For this design, a converter with an output voltage (V OUT) of 12 V, and 48 W relates to an output load (R OUT) equal to 3 Ω at full load. With a maximum duty cycle of 0.627, a current sense resistance of 0.75 Ω, and a primary to secondary turns-ratio of 10, the open-loop gain calculates to 3.082 or 9.776 dB. A CCM flyback has two zeroes that are of interest. The ESR and the output capacitance contribute a left-half plane zero (ω ESRz) to the power stage, and the frequency of this zero (f ESRz), are calculated with Equation 23 and Equation 24. XESRz = R ESR 1 × COUT (23) 1 fESRz = 2 × N × R ESR × COUT (24) The fESRz zero for an output capacitance of 2200 µF and a total ESR of 43 mΩ is located at 1.682 kHz. CCM flyback converters have a zero in the right-half plane (RHP) in their transfer function. A RHP zero has the same 20 dB per decade rising gain magnitude with increasing frequency just like a left-half plane zero, but it adds a 90° phase lag instead of lead. This phase lag tends to limit the overall loop bandwidth. The frequency location (fRHPz) of the RHP zero (ωRHPz) is a function of the output load, the duty cycle, the primary inductance (L P), and the primary to secondary side turns ratio (NPS). XRHPz = fRHPz = R OUT × :1 F D;2 × :NPS ;2 LP × D (25) R OUT × :1 F D;2 × :NPS ;2 2 × N × LP × D (26) The right-half plane zero frequency increases with higher input voltage and lighter load. Generally, the design requires consideration of the worst case of the lowest right-half plane zero frequency and the converter must be compensated at the minimum input and maximum load condition. With a primary inductance of 1.5 mH, at 75-V DC input, the RHP zero frequency (fRHPz) is equal to 7.07 kHz at maximum duty cycle, full load. The power stage has one dominate pole (ω P1) which is in the region of interest, located at a lower frequency (f which is related to the duty cycle, the output load, and the output capacitance, and calculated with Equation 28. There is also a double pole placed at half the switching frequency of the converter (f P2) calculated with Equation 30. For this example, pole fP1 is located at 40.37 Hz and fP2 is at 55 kHz. P1); XP1 :1 F D;3 +1+D RL = R OUT × COUT Copyright © 2020 Texas Instruments Incorporated (27) Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 29 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 fP1 :1 F D;3 +1+D RL = 2 × N × R OUT × COUT www.ti.com (28) XP2 = N × fSW (29) fSW 2 (30) fP2 = 9.2.2.11.2 Slope Compensation Slope compensation is the large signal subharmonic instability that can occur with duty cycles that may extend beyond 50% where the rising primary side inductor current slope may not match the falling secondary side current slope. The subharmonic oscillation would result in an increase in the output voltage ripple and may even limit the power handling capability of the converter. The target of slope compensation is to achieve an ideal quality coefficient (QP), equal to 1 at half of the switching frequency. The QP is calculated with Equation 31. 1 N × >MC × :1 F D; F 0.5? QP = (31) where • • D is the primary side switch duty cycle MC is the slope compensation factor, which is defined with Equation 32 MC = Se +1 Sn (32) where • • Se is the compensation ramp slope Sn is the inductor rising slope The optimal goal of the slope compensation is to achieve Q P = 1; upon rearranging Equation 32 the ideal value of slope compensation factor is determined: Mideal 1 + 0.5 N = 1FD (33) For this design to have adequate slope compensation, M C must be 2.193 when D reaches it maximum value of 0.627. The inductor rising slope (Sn) at the CS pin is calculated with Equation 34. Sn = VINmin × R CS V = 0.038 Js LP (34) The compensation slope (Se) is calculated with Equation 35. Se = :MC F 1; × Sn = 44.74 30 Submit Document Feedback mV Js (35) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 The compensation slope is added into the system through R RAMP and R CSF. The C RAMP is an AC-coupling capacitor that allows the voltage ramp of the oscillator to be used without adding an offset to the current sense; select a value to approximate a high-frequency short circuit, such as 10 nF, as a starting point and make adjustments if required. The R RAMP and R CSF resistors form a voltage divider from the oscillator charge slope and this proportional ramp is injected into the CS pin to add slope compensation. Choose the value of R RAMP to be much larger than the RRT resistor so that it does not load down the internal oscillator and result in a frequency shift. The oscillator charge slope is calculated using the peak-to-peak voltage of the RT/CT sawtooth waveform (VOSCpp) equal to 1.9 V, and the minimum ON time, as shown in Equation 37. D t ONmin = SOSC = fSW (36) VOSCpp 1.9 V mV = = 333 5.7 Js Js t ONmin (37) To achieve a 44.74-mV/µs compensation slope, R CSF is calculated with Equation 38. In this design, R RAMP is selected as 24.9 kΩ, a 3.8-kΩ resistor was selected for RCSF. R CSF = R RAMP SOSC F1 Se (38) It has to be noticed that due to the PN junction of the BJT transistor, it can only source current, which means the capacitor C RAMP can only be charged, not discharged. Therefore, an extra discharge resistor R DIS is needed. Choose RDIS to be 1/10 of the RRAMP. 9.2.2.11.3 Open-Loop Gain Once the power stage poles and zeros are calculated and the slope compensation is determined, the power stage open-loop gain and phase of the CCM flyback converter can be plotted as a function of frequency. The power stage transfer function can be characterized with Equation 39. HOPEN :s; = G0 × l1 + s:f; s:f; p × l1 F p 1 XESRz XRHPz × s:f; s:f; s:f;2 1+ 1 + + XP1 XP2 × Q P :XP2 ;2 (39) The bode for the open-loop gain and phase can be plotted by using Equation 40. GainOPEN :s; = 20 × log: HOPEN :s; ; (40) See Figure 9-3 and Figure 9-4. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 31 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 10 0 5 -45 Phase (q) Gain (dB) 0 -5 -10 -15 -90 -135 -20 -180 -25 1 10 100 1000 frequency (Hz) 10000 100000 D001 Figure 9-3. Converter Open-Loop Bode Plot - Gain 1 10 100 1000 frequency (Hz) 10000 100000 D002 Figure 9-4. Converter Open-Loop Bode Plot Phase 9.2.2.11.4 Compensation Loop The design of the compensation loop involves selecting the appropriate components so that the required gain, poles, and zeros can be designed to result in a stable system over the entire operating range. There are three distinct portions of the loop: the TL431A-Q1 (or TL431B-Q1), the opto-coupler, and the error amplifier. Each of these stages combines with the power stage to result in a stable robust system. For good transient response, the bandwidth of the finalized design must be as large as possible. The bandwidth of a CCM flyback, fBW, is limited to ¼ of the RHP zero frequency, or approximately 1.77 kHz using Equation 41. fBW = fRHPz 4 (41) The gain of the open-loop power stage at f BW can be calculated using Equation 40 or can be observed on the Bode plot (Figure 9-3) and is equal to –19.55 dB and the phase at fBW is equal to –58°. The secondary side portion of the compensation loop begins with establishing the regulated steady state output voltage. To set the regulated output voltage, a TL431A-Q1 (or TL431B-Q1) adjustable precision shunt regulator is ideally suited for use on the secondary side of isolated converters due to its accurate voltage reference and internal op-amp. The resistors used in the divider from the output terminals of the converter to the TL431A-Q1 (or TL431B-Q1) REF pin are selected based upon the desired power consumption. Because the REF input current for the TL431A-Q1 (or TL431B-Q1) is only 2 µA, selecting the resistors for a divider current (IFB_REF) of 1 mA results in minimal error. The top divider resistor (RFBU) is calculated: R FBU = VOUT F REFTL431 IFB _REF (42) The TL431A-Q1 (or TL431B-Q1) reference voltage (REFTL431) has a typical value of 2.495 V. A 9.53-kΩ resistor is chosen for RFBU. To set the output voltage to 12 V, 2.49 kΩ is used for RFBB. R FBB = REFTL431 × R FBU VOUT F REFTL431 (43) For good phase margin, a compensator zero (f COMPz) is required and should be placed at 1/10th the desired bandwidth: fCOMPz = 32 fBW 10 Submit Document Feedback (44) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 XCOMPz = 2 × N × fCOMPz (45) With this converter, f COMPz should be set at approximately 177 Hz. A series resistor (R COMPz) and capacitor (C COMPz) placed across the TL431A-Q1 (or TL431B-Q1) cathode to REF sets the compensator zero location. Setting CCOMPz to 0.01 µF, RCOMPz is calculated: R COMPz = XCOMPz 1 × CCOMPz (46) Using a standard value of 88.7 kΩ for RZ and a 0.01 µF for CZ results in a zero placed at 179 Hz. In Figure 9-2, R TLbias provides cathode current to the TL431A-Q1 (or TL431B-Q1) from the regulated voltage provided from the Zener diode (D REG). For robust performance, 10 mA is provided to bias the TL431A-Q1 (TL431B-Q1) by way of the 10-V Zener and a 1-kΩ resistor is used for RTLbias. The gain of the TL431A-Q1 (or TL431B-Q1) portion of the compensation loop is calculated with Equation 47. GTL431 :s; = lR COMPz + 1 1 p× R FBU s(f) × CZCOMPz (47) A compensation pole is required at the frequency of right half plane zero or the ESR zero, whichever is lowest. Based previous the analysis, the right half plane zero (f RHPz) is located at 7.07 kHz and the ESR zero (f ESRz) is at 1.68 kHz; therefore, for this design, the compensation pole must be put at 1.68 kHz. The opto-coupler contains a parasitic pole that is difficult to characterize over frequency so the opto-coupler is set up with a pulldown resistor (R OPTO) equal to 1 kΩ, which moves the parasitic opto-coupler pole further out and beyond the range of interest for this design. The required compensation pole can be added to the primary side error amplifier using R COMPp and C COMPp. Choosing RCOMPp as 10 kΩ, the required value of CCOMPp is determined using Equation 48. CCOMPp = 1 2 × N × fESRz × R COMPp = 9.46 nF (48) A 10-nF capacitor is used for CCOMPp setting the compensation pole at 1.59 kHz. Adding a DC gain to the primary-side error amplifier may be required to obtain the required bandwidth and helps to adjust the loop gain as needed. Using 4.99 kΩ for R FBG sets the DC gain on the error amplifier to 2. At this point the gain transfer function of the error amplifier stage (G EA(s)) of the compensation loop can be characterized using Equation 49. GEA :s; = l R COMPp 1 p×F G 1 + s:f; × CCOMPp × R COMPp R FBG (49) Using an opto-coupler whose current transfer ratio (CTR) is typically at 100% in the frequency range of interest so that CTR = 1, the transfer function of the opto-coupler stage (GOPTO(s)) is found using Equation 50. GOPTO (s) = CTR × R OPTO R LED (50) The bias resistor (R LED) to the internal diode of the opto-coupler and the pull-down resistor on the opto emitter (R OPTO) sets the gain across the isolation boundary. R OPTO has already been set to 1 kΩ but the value of R LED has not yet been determined. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 33 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 The total closed loop gain (G TOTAL(s)) is the combination of the open-loop power stage (H o(s)), the opto gain (G OPTO(s)), the error amplifier gain (G EA(s)), and the gain of the TL431A-Q1 (or TL431B-Q1) stage (G TL431(s)), as shown in Equation 51. GTOTAL :s; = HOPEN :s; × GOPTO :s; × GEA :s; × GTL431 :s; (51) The required value for R LED can be selected to achieve the desired crossover frequency (f BW). By setting the total loop gain equal to 1 at the desired crossover frequency and rearranging Equation 51, the optimal value for RLED can be determined, as shown in Equation 52. R LED Q HOPEN :s; × CTR × COPTO × GEA :s; × GTL431 :s; (52) A 1.3-kΩ resistor suits the requirement for RLED. Based on the compensation loop structure, the entire compensation loop transfer function is written as Equation 53. GCLOSED :s; = HOPEN :s; × l ×n R COMPz R COMPp CTR × R OPTO 1 p×l p×F G R LED R FBG 1 + ks × CCOMPp × R COMPp o 1 A +@ s × CCOMPz r R FBU (53) The final closed-loop bode plots are show in Figure 9-5 and Figure 9-6. The converter achieves a crossover frequency of approximately 1.8 kHz and has a phase margin of approximately 67°. TI recommends checking the loop stability across all the corner cases including component tolerances to ensure system stability. 80 0 60 -45 Degrees (q) Gain (dB) 40 20 -90 0 -135 -20 -180 -40 1 10 100 1000 frequency (Hz) 10000 100000 D003 Figure 9-5. Converter Closed-Loop Bode Plot – Gain 34 Submit Document Feedback 1 10 100 1000 frequency (Hz) 10000 100000 D001 D004 Figure 9-6. Converter Closed-Loop Bode Plot – Phase Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 www.ti.com UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 9.2.3 Application Curves Figure 9-7. Primary Side MOSFET Drain to Source Voltage at 240-V AC Input (100 V/div) CH1: Output Voltage AC Coupled, 200 mV/div CH4: Output Current, 1 A/div Figure 9-8. Primary Side MOSFET Drain to Source Voltage at 120-V AC Input (100 V/div) Figure 9-10. Output Voltage Ripple at Full Load (100 mV/div) Figure 9-9. Output Voltage During 0.9-A to 2.7-A Load Transient Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 35 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com Figure 9-11. Output Voltage Behavior at Full Load Start-up (5 V/div) 10 Power Supply Recommendations The absolute maximum supply voltage is 20 V, including any transients that may be present. If this voltage is exceeded, device damage is likely. This is in contrast to the predecessor bipolar devices, which could survive up to 30 V. Thus, the supply pin must be decoupled as close to the GND pin as possible. Also, because no clamp is included in the device, the supply pin must be protected from external sources which could exceed the 20-V level. To prevent false triggering due to leading edge noises, an RC current sense filter may be required on CS. Keep the time constant of the RC filter well below the minimum on-time pulse width. To prevent noise problems with high-speed switching transients, bypass VREF to ground with a ceramic capacitor close to the device package. A minimum of 0.1-µF ceramic capacitor is required. Additional VREF bypassing is required for external loads on the reference. An electrolytic capacitor may also be used in addition to the ceramic capacitor. 36 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 11 Layout 11.1 Layout Guidelines 11.1.1 Precautions Careful layout of the printed board is a necessity for high-frequency power supplies. As the device-switching speeds and operating frequencies increase, the layout of the converter becomes increasingly important. This 8-pin device has only a single ground for the logic and power connections. This forces the gate-drive current pulses to flow through the same ground that the control circuit uses for reference. Thus, the interconnect inductance must be minimized as much as possible. One implication is to place the device (gate driver) circuitry close to the MOSFET it is driving. This can conflict with the need for the error amplifier and the feedback path to be away from the noise generating components. The single most critical item in a PWM controlled printed-circuit board layout is the placement of the timing capacitor. While both the supply and reference bypass capacitor locations are important, the timing capacitor placement is far more critical. Any noise spikes on the C CT waveform due to lengthy printed circuit trace inductance or pick-up noise from being in proximity to high power switching noise causes a variety of operational problems. Dilemmas vary from incorrect operating frequency caused by pre-triggering the oscillator due to noise spikes to frequency jumping with varying duty cycles, also caused by noise spikes. The placement of the timing capacitor must be treated as the most important layout consideration. Keep PC traces as short as possible to minimize added series inductance. 11.1.2 Feedback Traces Try to run the feedback trace as far from the inductor and noisy power traces as possible. You would also like the feedback trace to be as direct as possible and somewhat thick. These two sometimes involve a trade-off, but keeping it away from EMI and other noise sources is the more critical of the two. If possible, run the feedback trace on the side of the PCB opposite of the inductor with a ground plane separating the two. 11.1.3 Bypass Capacitors When using a low value ceramic bypass capacitor, it must be placed as close to the VDD pin of the device as possible. This eliminates as much trace inductance effects as possible and give the internal device rail a cleaner voltage supply. Using surface mount capacitors also reduces lead length and lessens the chance of noise coupling into the effective antenna created by through-hole components. 11.1.4 Compensation Components For best stability, external compensation components must be placed close to the IC. Keep FB lead length as short as possible and FB stray capacitance as small as possible. TI recommends surface mount components here as well for the same reasons discussed for the filter capacitors. These must not be placed very close to traces with high switching noise. 11.1.5 Traces and Ground Planes Make all of the power (high current) traces as short, direct, and thick as possible. It is good practice on a standard PCB board to make the traces an absolute minimum of 15 mils (0.381 mm) per ampere. The inductor, output capacitors, and output diode must be as close to each other possible. This helps reduce the EMI radiated by the power traces due to the high switching currents through them. This also reduces lead inductance and resistance as well, which in turn reduces noise spikes, ringing, and resistive losses that produce voltage errors. The grounds of the IC, input capacitors, output capacitors, and output diode, if applicable, must be connected close together directly to a ground plane. It would also be a good idea to have a ground plane on both sides of the PCB. This reduces noise as well by reducing ground loop errors as well as by absorbing more of the EMI radiated by the inductor. For multi-layer boards with more than two layers, a ground plane can be used to separate the power plane, where the power traces and components are, and the signal plane, where the feedback and compensation and components are, for improved performance. On multi-layer boards the use of vias is required to connect traces and different planes. It is good practice to use one standard via per 200 mA of current if the trace conducts a significant amount of current from one plane to the other. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 37 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com Arrange the components so that the switching current loops curl in the same direction. Due to the way switching regulators operate, there are two power states. One state when the switch is ON and one when the switch is OFF. During each state there is a current loop made by the power components that are currently conducting. Place the power components so that during each of the two states the current loop is conducting in the same direction. This prevents magnetic field reversal caused by the traces between the two half-cycles and reduces radiated EMI. 38 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 11.2 Layout Example Figure 11-1. UCC28C4x-Q1 Layout Example Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 39 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 www.ti.com 12 Device and Documentation Support 12.1 Device Support 12.1.1 Development Support 12.1.1.1 Custom Design With WEBENCH® Tools Click here to create a custom design using the UCC28C4x-Q1 devices with the WEBENCH® Power Designer. 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. In most cases, these actions are available: • Run electrical simulations to see important waveforms and circuit performance • Run thermal simulations to understand board thermal performance • Export customized schematic and layout into popular CAD formats • Print PDF reports for the design, and share the design with colleagues Get more information about WEBENCH tools at www.ti.com/WEBENCH. 12.2 Documentation Support 12.2.1 Related Documentation (UCC28C4x-Q1 Technical Documents) 12.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 12-1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY UCC28C40-Q1 Click here Click here Click here Click here Click here UCC28C41-Q1 Click here Click here Click here Click here Click here UCC28C42-Q1 Click here Click here Click here Click here Click here UCC28C43-Q1 Click here Click here Click here Click here Click here UCC28C44-Q1 Click here Click here Click here Click here Click here UCC28C45-Q1 Click here Click here Click here Click here Click here 12.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.5 Trademarks TI E2E™ is a trademark of Texas Instruments. WEBENCH® is a registered trademark of Texas Instruments. All trademarks are the property of their respective owners. 40 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 UCC28C40-Q1, UCC28C41-Q1, UCC28C42-Q1, UCC28C43-Q1, UCC28C44-Q1, UCC28C45-Q1 www.ti.com SLUSA12F – DECEMBER 2009 – REVISED OCTOBER 2020 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: UCC28C40-Q1 UCC28C41-Q1 UCC28C42-Q1 UCC28C43-Q1 UCC28C44-Q1 UCC28C45-Q1 41 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) UCC28C40QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C40Q UCC28C41QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C41Q UCC28C42QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C42Q UCC28C43QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C43Q UCC28C44QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C44Q UCC28C45QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28C45Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
UCC28C45QDRQ1 价格&库存

很抱歉,暂时无法提供与“UCC28C45QDRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
UCC28C45QDRQ1
  •  国内价格 香港价格
  • 1+14.769871+1.77398
  • 10+10.8409210+1.30208
  • 25+9.8613825+1.18443
  • 100+8.77978100+1.05452
  • 250+8.26453250+0.99264
  • 500+7.95385500+0.95532
  • 1000+7.698111000+0.92461

库存:5023

UCC28C45QDRQ1
  •  国内价格 香港价格
  • 2500+7.428272500+0.89220
  • 5000+7.265565000+0.87265
  • 7500+7.184147500+0.86287

库存:5023

UCC28C45QDRQ1
  •  国内价格
  • 1+7.03080
  • 10+6.35040
  • 30+5.92920
  • 100+5.48640
  • 500+5.29200

库存:920