0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UCC28C56EVM-066

UCC28C56EVM-066

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    UCC28C56H-Q1 - AC/DC,主面 1,隔离 输出评估板

  • 数据手册
  • 价格&库存
UCC28C56EVM-066 数据手册
www.ti.com Table of Contents User’s Guide Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for 800-V Traction Inverters Table of Contents 1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines............................................ 2 2 Description.............................................................................................................................................................................. 3 2.1 EVM Electrical Performance Specifications....................................................................................................................... 4 3 Schematic Diagram................................................................................................................................................................ 5 4 EVM Setup and Operation......................................................................................................................................................6 4.1 Recommended Test Equipment......................................................................................................................................... 6 4.2 External Connections......................................................................................................................................................... 6 4.3 EVM Test Points.................................................................................................................................................................8 5 Performance Data................................................................................................................................................................... 9 5.1 Efficiency Versus Load, 10% to 100% Load.......................................................................................................................9 5.2 Efficiency Versus VIN at 100% Load..................................................................................................................................9 5.3 Power Loss Versus Load, 10% to 100% Load................................................................................................................. 10 5.4 Load Regulation, 10% to 100% Load...............................................................................................................................10 5.5 Light Load Regulation, 0-mA to 200-mA Load................................................................................................................. 11 5.6 Line Regulation, Various Loads........................................................................................................................................11 5.7 Startup Waveforms...........................................................................................................................................................12 5.8 Shutdown Waveforms...................................................................................................................................................... 14 5.9 Output Voltage Ripple...................................................................................................................................................... 16 5.10 Steady State Switching Waveforms............................................................................................................................... 18 5.11 Transient Load Waveforms.............................................................................................................................................20 5.12 Over Current and Short Circuit Protections....................................................................................................................22 5.13 Stability Measurements..................................................................................................................................................24 5.14 Thermal Measurements................................................................................................................................................. 26 6 Assembly and Printed Circuit Board (PCB)....................................................................................................................... 30 7 Bill of Materials (BOM)..........................................................................................................................................................32 8 Revision History................................................................................................................................................................... 35 Trademarks All trademarks are the property of their respective owners. SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines www.ti.com 1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines WARNING Always follow TI’s setup and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and those working around you. Contact TI's Product Information Center http:// support/ti./com for further information. Save all warnings and instructions for future reference. WARNING Failure to follow warnings and instructions may result in personal injury, property damage or death due to electrical shock and burn hazards. The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments. If you are not suitable qualified, you should immediately stop from further use of the HV EVM. 1. Work Area Safety a. Keep work area clean and orderly. b. Qualified observer(s) must be present anytime circuits are energized. c. Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access. d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip. e. Use stable and nonconductive work surface. f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible. 2. Electrical Safety As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages. a. De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely deenergized. b. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment connection, and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live. c. After EVM readiness is complete, energize the EVM as intended. WARNING While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard. 3. Personal Safety a. Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch. Limitation for safe use: EVMs are not to be used as all or part of a production unit. 2 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Description 2 Description The UCC28C56EVM-066 is a highly efficient primary-side controlled (using an AUX winding) flyback auxiliary power supply for EV/HEV automotive power trains. The design provides 15.2-VTYP, 40-W output for 800-V battery systems. It will deliver 40 W over the input voltage range from 125 V to 1000 V. The exact output voltage is load dependent. From 40-V to 125-V input the design will supply 20 W. The EVM utilizes a 1700-V silicon-carbide (SiC) MOSFET, making it ideal for 800-V battery systems. The EVM is a 4-layer board with the top and bottom layers dedicated to signal and power routing. The two inner layers are used only to route test points. In effect, this is a low-cost two-layer PCB. The controller and it's associated power components are tightly compacted into a 50 mm x 86 mm area, highlighted by the white rectangle show on the top silkscreen. Note, C1 is not included with the critical components because it's considered to be part of the general VIN bypass capacitors in the system. Every effort was made to use automotive qualified components. An automotive qualified 1700-V SiC MOSFET is listed in the BOM. The flyback transformer should be automotive qualified with consultation from the given transformer manufacturer. Figure 2-1. UCC28C56EVM-066, HVP066A, Top View Figure 2-2. UCC28C56EVM-066, HVP066A, Bottom View SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 3 Description www.ti.com 2.1 EVM Electrical Performance Specifications Table 2-1. EVM Electrical Specifications, VIN = 800 Vdc, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 40 800 1000 V INPUT CHARACTERISTICS VIN Input voltage range VVDD_ON VDD start voltage 17.6 18.8 20.0 V VVDD_OFF VDD stop voltage 15.0 15.5 16.0 V Input current at full load VIN = 1000 V, IOUT = 2.7 A - 52 IIN_FL - VIN = 40 V, IOUT = 1.3 A - 590 - IIN_NL Input current at no load VIN = 1000 V - 0.8 - VIN = 40 V - 13 - 100% load output 125 V ≤ VIN ≤ 1000 V - 15.2 - 50% load output 40 V ≤ VIN ≤ 1000 V - 15.6 - 10% load output 40 V ≤ VIN ≤ 1000 V - 16.3 - No load output 40 V ≤ VIN ≤ 1000 V - 19.3 - 125 V ≤ VIN ≤ 1000 V 0 - 2.7 40 V ≤ VIN ≤ 125 V 0 - 1.3 250 mA ≤ IOUT ≤ 2.7 A - ±3.5 - 0 mA ≤ IOUT ≤ 200 mA 4 - 25 VIN = 1000 V, IOUT = 2.7 A, 1 MHz BWL - 400 - VIN = 50 V, IOUT = 1.3 A, 1 MHz BWL - 280 - mA mA OUTPUT CHARACTERISTICS VOUT V IOUT VOUT load current range A VOUT_REG Load regulation VOUT_RIPPLE PK-to-PK AC ripple VOUT_SS_DELAY VIN applied to when VOUT begins rising from 0 V VIN = 50 V, IOUT = 1.3 A - 255 - VIN = 1000 V, IOUT = 2.7 A - 230 - VOUT_SS_trise VOUT soft start, rise time IOUT = 2.7 A - 10 - ms VOUT_SS_OS VOUT soft start overshoot VIN = 1000 V, IOUT = 2.7 A - 3.5 - % PMAX Maximum output power 125 V ≤ VIN ≤ 1000 V - - 40 40 V ≤ VIN ≤ 125 V - - 20 VIN = 400 V, IOUT = 2.7 A - 87.4 - VIN = 800 V, IOUT = 2.7 A - 86.1 - % mVPP ms W SYSTEMS CHARACTERISTICS 4 η Full load efficiency % fSW Switching frequency VIN = 800 V, IOUT = 2.7 A - 42.5 - kHz ICS(OCL) Current sense limit RCS = 455 mΩ - 2.2 - A fCO Bandwidth VIN = 800 V, IOUT = 2.7 A - 625 - VIN = 50 V, IOUT = 0.25 A - 3950 - PM Phase Margin VIN = 800 V, IOUT = 2.7 A - 105 - VIN = 50 V, IOUT = 0.25 A - 87 - GM Gain Margin VIN = 800 V, IOUT = 2.7 A - 40 - VIN = 50 V, IOUT = 0.25 A - 25 - ΔTMAX Max. temp. rise over TPCB T1 at 800 VIN, IOUT = 2.7 A, 40 W - 48.9 - T1 at 1000 VIN, IOUT = 2.7 A, 40 W - 55.3 - Hz deg dB °C Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematic Diagram 3 Schematic Diagram VIN C1 3 C4 1.5pF 1 C2 0.22uF C3 0.22uF 0.22uF D1 160V Q1 HV_GND 2 D2 130V HV_GND HV_GND HV Clamp R1 1.0M D3 160V 3 1 Q2 2 D5 22V D6 130V R2 62 HV Startup for VDD R3 1.0M R28 62 D8 130V D7 1.6kV 9 8 1 1 1 D14 40V D12 60V R13 20.0k HV_GND AUX C12 22uF HV_GND C13 4.7uF HV_GND 1 3 4 D13 200V FB C16 100nF C15 1000pF HV_GND 2.5V COMP 1 C19 22nF HV_GND C20 100pF 3 7 VDD R14 39.2 RT/CT FB OUT 6 OUT C18 1uF COMP CS 5 GND 1 R19 20.0k HV_GND Voltage Feedback Slope Compensation 2 1 R16 127 Q7 Current Filtering CS C21 2.2µF R22 4.02k C22 100pF 2 Q8 HV_GND R21 1.00k 1 R27 127 HV_GND Iso_GND C24 2200pF C8 10uF R8 100k Q5 1 R15 44.2k HV_GND Iso_GND Iso_GND Q6 HV_GND Rsense C23 22pF 3 R23 15.0k HV_GND Gate Drive R17 2.55k HV_GND R18 324k Gate_FET R26 2.00k Leading Edge Blanking R20 3.48k Current Sensing R24 0.91 18V Iso_GND C7 10uF C14 2200pF R11 10.0 3 VREF 2 VREF 2 7 12 2 4 NC NC NC 3 RT/CT 8 2 5V D10 C10 1000uF 3 VREF C9 1000uF + 200V HV_GND HV_GND + D11 NC 5 AUX Supply U1 UCC28C56H-Q1 R12 40.2k 11 10 6 Q3 2 C11 47nF 3 SW R10 0 3 VDD 1 Q4 2 Soft Start R6 10.0k Disable HV Startup R9 10.0k HV_GND 3 C17 330nF C6 R7 HV_GND Vout 2 2 D9 18V C5 1000pF Lpri=550 µH Npri:Nsec=10.2:1 Npri:Naux=8.5:1 1 HV_GND R4 100 T1 R5 1.00k 2 D4 130V R25 0.91 HV_GND HV_GND HV_GND Figure 3-1. UCC28C56EVM-066 Schematic. SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 5 EVM Setup and Operation www.ti.com 4 EVM Setup and Operation Safety: This evaluation module is not encapsulated and there are accessible voltages that are greater than 50 VDC. Isolation Input Transformer: A suitably rated 1:1 isolation transformer shall be used on the input(s) to this EVM and be constructed in a manner in which the primary winding(s) are separated from the secondary winding(s) by reinforced insulation, double insulation, or a screen connected to the protective conductor terminal. WARNING • • • • If you are not trained in the proper safety of handling and testing power electronics please do not test this evaluation module. While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard. Caution Hot surface. Contact may cause burns. Do not touch! Read this user's guide thoroughly before making test. WARNING Caution: Do not leave EVM powered when unattended. 4.1 Recommended Test Equipment 1. VIN: DC power supply, 40 V to 1000 V output, capable of supplying up to 2 A 2. IOUT: Electronic load, capable of supporting at least 25 V with loads of 0 A to 3.0 A 3. Two DVMs measuring DC voltage a. The DVM monitoring VIN+ must be able to withstand 1000 Vdc 4. Two DVMs measuring DC current 5. Oscilloscope: 4 channel, 500 MHz or better a. Recommend three high voltage probes (rated to 1000 V CAT II, 2500 Vpk b. Recommend one differential probe (±140V low range at 1/20, ±1400V high range at 1/200) 6. Thermal camera (optional) or thermocouple to measure T1 case temperature 4.2 External Connections The UCC28C56EVM-066 EVM utilizes screw terminals for quickly connecting to VIN and VOUT. Connecting the appropriate ammeters and voltmeters, as shown in Figure 4-1, allows accurate EVM efficiency and load regulation measurements. 4.2.1 Setup and Connection of Test Equipment 1. Before connecting it to the EVM, turn on and adjust the VIN power supply to 50 V and set its current limit to 1.5 A. 2. Turn off/disable the VIN power supply. 3. Connect the VIN power supply to J2 (VIN+) and J1 (GND). 4. Connect the variable load to J4 (VOUT+) and J3 (ISO_GND). 5. Set the load to the constant current (CC) and 0.25 A. Enable the load. 6 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Setup and Operation 4.2.2 Power On for the First Time 1. 2. 3. 4. 5. 6. Verify VIN is off/disabled and no voltage is applied to the UUT. Connect oscilloscope probes to VIN (20 V/DIV), VDD (4 V/DIV), and COMP (2 V/DIV). Connect the differential probe to VO and ISO_GND at low range, 1/20 (scaled to 4 V/DIV). Set the oscilloscope to single-trigger on VIN rising at 25 V. Set a time base of 50 ms/DIV. Verify that the load is set to 0.25 A and is still enabled. Turn on the VIN supply at 50 V. The oscilloscope should trigger and produce the waveforms shown in figure 5-6. If your result is the same as figure 5-6 then your EVM is functioning correctly, thus far. If your result does not resemble figure 5-6 then stop. Troubleshoot the EVM at 50 VIN. Do not increase VIN until after troubleshooting. 7. When VIN is 50 V only and with 0.25 A load, verify the following DC measurements at the test points: 8. 9. 10. 11. a. VOUT+ (yellow TP) to ISO_GND ≈ 16.4 Vdc b. V_AUX (white TP) to GND ≈ 18.7 Vdc c. VDD (white TP) to GND ≈ 18.6 Vdc d. VREF (white TP) to GND = 5.0 Vdc e. FB (white TP) to GND = 2.5 Vdc Turn off the VIN supply. Increase VIN to 400 V with 1.3 A load and repeat steps 4 to 8. Verify that VOUT is OK at this condition. Turn off the VIN supply. Increase VIN to 800 V. At 800 V and 0.25 A load [and 2.7 A load] your result should be similar to figure 5-7 [and figure 5-8]. If your results are the same as figure 5-7 and 5-8 at 800 V then your EVM is 100% functioning correctly and you can proceed with other tests. VIN DMM Digital Mulmeter 1000V Input Capable GND TP VIN TP VO DMM Digital Mul meter for Voltage Measureme nt ISO_GND TP VO TP VIN+ Lab HV DC Power Supply ISO_GND Digital Mulmeter for Current Measureme nt GND VOUT Digital Mulmeter for Current Measureme nt Electronic Load Figure 4-1. UCC28C56EVM-066, Recommended Efficiency and Typical Test Setup SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 7 EVM Setup and Operation www.ti.com 4.3 EVM Test Points Table 4-1 describes the various EVM test points, allowing easy access for connecting oscilloscope probes, DVM test leads and wire connections to lab test equipment. Table 4-1. Input, Output, Test Point (I/O/TP) Description 8 PIN I/O/TP COLOR J1 - Green J2 I J3 DESCRIPTION MIN TYP MAX GND - 0V - Green VIN+ 40 V 800 V 1000 V - Green ISO_GND - 0V - J4 O Green VOUT+ (depends on load) 14.5 V 15.5 V 20 V VDD TP White Analog controller bias supply - 18.6 V - VREF TP White Controller reference output 4.9 V 5V 5.1 V COMP TP White Error amplifier output 0V - 5V VFB TP White Inverting input to the error amplifier 2.45 V 2.5 V 2.55 V RT/CT TP White Fixed frequency triangle oscillator 0.9 VTYP 1.4 VPP 2.3 VPP VIN TP Red 40 V - 1000 V V_AUXL TP White AUX voltage after a 10 ohm series resistor - 18.7 V - V_AUX TP White AUX output voltage - 18.7 V - VG TP White Voltage at the gate of the SiC MOSFET 0V 18 V - SWN TP Silver Switching node (bottom of the PCB) 0V - VIN + 480 V VO TP Yellow Output voltage 14.5 V 15.5 V 20 V GND x5 TP Black GND - 0V - ISO_GND x2 TP Black Isolated GND - 0V - Input voltage Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data 5 Performance Data 5.1 Efficiency Versus Load, 10% to 100% Load 90% 85% Efficiency (%) 80% 75% 70% 65% 60% 55% 800 VIN 1000 VIN 50% 0.25 0.5 0.75 1 1.25 1.5 1.75 Load Current (A) 2 2.25 2.5 2.75 Figure 5-1. UCC28C56EVM Efficiency vs Load 5.2 Efficiency Versus VIN at 100% Load 95% 92.5% Efficiency (%) 90% 87.5% 85% 82.5% 80% 77.5% 75% 200 300 400 500 600 700 VIN (V) 800 900 1000 Figure 5-2. UCC28C56EVM Efficiency Versus VIN at 100% Load SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 9 Performance Data www.ti.com 5.3 Power Loss Versus Load, 10% to 100% Load 8 7 Power Loss (W) 6 5 4 3 2 1 800 VIN 1000 VIN 0 0.25 0.5 0.75 1 1.25 1.5 1.75 Load Current (A) 2 2.25 2.5 2.75 Figure 5-3. UCC28C56EVM Power loss versus load 5.4 Load Regulation, 10% to 100% Load 4% 800 VIN 1000 VIN 3% Output Error (%) 2% 1% 0 -1% -2% -3% -4% 0.25 0.5 0.75 1 1.25 1.5 1.75 Load Current (A) 2 2.25 2.5 2.75 Figure 5-4. UCC28C56EVM Load Regulation, 10% to 100% Load 10 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data 5.5 Light Load Regulation, 0-mA to 200-mA Load 24% 200 VIN 400 VIN 600 VIN 800 VIN 1000 VIN 22% 20% Output Error (%) 18% 16% 14% 12% 10% 8% 6% 4% 2% 0 0 0.05 0.1 Load Current (A) 0.15 0.2 Figure 5-5. UCC28C56EVM Load Regulation, No Load to 200-mA Load 5.6 Line Regulation, Various Loads 5% 0.5 1.3 2.0 2.7 4% Output Error (%) 3% A A A A Load Load Load Load 2% 1% 0 -1% -2% -3% -4% -5% 50 150 250 350 450 550 650 Input Voltage (V) 750 850 950 Figure 5-6. UCC28C56EVM Line regulation, various loads SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 11 Performance Data www.ti.com 5.7 Startup Waveforms Figure 5-7. Start-Up 1: VIN = 50 V, Load = 0.25 A Figure 5-8. Start-Up 2: VIN = 50 V, Load = 1.3 A 12 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-9. Start-Up 3: VIN = 1000 V, Load = 0.25 A Figure 5-10. Start-Up 4: VIN = 1000 V, Load = 2.7 A SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 13 Performance Data www.ti.com 5.8 Shutdown Waveforms Figure 5-11. Shutdown, VIN Removal: VIN = 50 V, Load = 0.25 A Figure 5-12. Shutdown, VIN Removal: VIN = 50 V, Load = 1.3 A 14 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-13. Shutdown, VIN Removal: VIN = 1000 V, Load = 0.25 A Figure 5-14. Shutdown, VIN Removal: VIN = 1000 V, Load = 2.7 A SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 15 Performance Data www.ti.com 5.9 Output Voltage Ripple Figure 5-15. Output Voltage Ripple: VIN = 50 V, Load = 0.25 A Figure 5-16. Output Voltage Ripple: VIN = 50 V, Load = 1.3 A 16 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-17. Output Voltage Ripple: VIN = 1000 V, Load = 0.25 A Figure 5-18. Output Voltage Ripple: VIN = 1000 V, Load = 2.7 A SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 17 Performance Data www.ti.com 5.10 Steady State Switching Waveforms Figure 5-19. Steady State: VIN = 50 V, Load = 0.25 A Figure 5-20. Steady State: VIN = 50 V, Load = 1.3 A 18 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-21. Steady State: VIN = 1000 V, Load = 0.25 A Figure 5-22. Steady State: VIN = 1000 V, Load = 2.7 A SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 19 Performance Data www.ti.com 5.11 Transient Load Waveforms Figure 5-23. Transient Response: VIN = 50 V, Load = 100 mA to 650 mA at 25 Hz, 50% duty Figure 5-24. Transient Response: VIN = 50 V, Load = 100 mA to 1.3 A at 25 Hz, 50% duty 20 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-25. Transient Response: VIN = 800 V, Load = 0.25 A to 1.3 A at 25 Hz, 50% duty Figure 5-26. Transient Response: VIN = 800 V, Load = 0.25 A to 2.7 A at 25 Hz, 50% duty SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 21 Performance Data www.ti.com 5.12 Over Current and Short Circuit Protections Figure 5-27. 50 VIN, Startup with output shorted to ground Figure 5-28. 50 VIN, Output shorted to ground during operation 22 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-29. 800 VIN, Startup with output shorted to ground Figure 5-30. 800 VIN, Output shorted to ground during operation SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 23 Performance Data www.ti.com 5.13 Stability Measurements Figure 5-31. Bode Plot: VIN = 50 V, Load = 0.25A Figure 5-32. Bode Plot: VIN = 50 V, Load = 1.3 A 24 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-33. Bode Plot: VIN = 800 V, Load = 0.25 A Figure 5-34. Bode Plot: VIN = 800 V, Load = 2.7 A SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 25 Performance Data www.ti.com 5.14 Thermal Measurements Test Methodology: As shown in figure 5-35, the UCC28C56H EVM was placed in a protective enclosure to isolate the high-voltage (VIN > 50V) from test personnel. The enclosure did not provide any forced air movement (i.e. there are no fans). The following thermal results should be considered worst-case due to the dead-air environment. For each load condition, the soak time was 30 – 45 minutes. The hottest component on the EVM is the transformer. The transformer temperature was taken two ways: (1) by a thermocouple taped directly to the top of the windings (see figure 5-36), and (2) using a thermal camera and black electrical tape placed directly over the thermocouple/windings (see figure 5-37). The two methods provided results within 2 °C of each other. Temperature of the output rectifier diode and switching MOSFET were taken only with the thermal camera. The PCB temperature near the transformer was measured with a thermocouple. Figure 5-35. UCC28C56H EVM in plexiglass enclosure for HV safety. Virtually no airflow. Figure 5-36. Thermocouple taped to windings 26 Figure 5-37. Black tape for thermal camera Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Transformer Temperature (C) Transformer Temperature vs Load 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 200 VIN 400 VIN 600 VIN 800 VIN 1000 VIN 0 0.25 0.5 0.75 1 1.25 1.5 1.75 Load Current (A) 2 2.25 2.5 2.75 Figure 5-38. Transformer temperature vs load SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 27 Performance Data www.ti.com Table 5-1. Thermal Results: VIN = 50 V, 1.3 A, 20 W load Transformer & PCB Temperatures: Thermal camera measurement: 55.7 °C Thermocouple measurement: 53.9 °C Average temperature rise: 54.8 °C PCB temperature: 30.6 °C Transformer TRISE = 53.9 °C - 30.6 °C = 23.3 °C Figure 5-39. Transformer temperature is 55.7°C Figure 5-40. Output diode temperature is 43.6°C 28 Figure 5-41. MOSFET temperature is 46.3°C Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data Table 5-2. Thermal Results: VIN = 800 V, 2.7 A, 40 W load Transformer & PCB Temperatures: Thermal camera measurement: 86.7 °C Thermocouple measurement: 86.2 °C Average temperature rise: 86.5 °C PCB temperature: 37.6 °C Transformer TRISE = 86.5 °C - 37.6°C = 48.9 °C Figure 5-42. Transformer temperature is 86.7°C Figure 5-43. Output diode temperature is 61.5°C Figure 5-44. MOSFET temperature is 72.8°C SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 29 Assembly and Printed Circuit Board (PCB) www.ti.com 6 Assembly and Printed Circuit Board (PCB) The UCC28C56EVM-066 is designed using a four-layer PCB. Only traces on the top and bottom layers are used for UCC28C56 connections, so the EVM is basically a two-layer PCB. The two middle layers are dedicated to routing only the test points. Figure 6-1. UCC28C56EVM-066, PCB Top Layer, Assembly Figure 6-2. UCC28C56EVM-066, Signal Layer 1, Routing for test points only 30 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Assembly and Printed Circuit Board (PCB) Figure 6-3. UCC28C56EVM-066, Signal Layer 2, Routing for test points only Figure 6-4. UCC28C56EVM-066, PCB Bottom Layer, Assembly (mirrored view) SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 31 Bill of Materials (BOM) www.ti.com 7 Bill of Materials (BOM) Table 7-1. UCC28C56EVM-066 Bill of Materials Item # 32 Designator Quantity Value Description PackageReference Printed Circuit Board PartNumber Manufacturer 1 !PCB1 1 UCC28C56EVM066 Any 2 C1, C2, C3 3 120nF Capacitor, Film, 0.12uF, 1600Vdc, Radial, AEC-Q101 RADIAL R75TN312050H3 J KEMET 3 C4 1 1.5pF CAP, CERM, 1.5 pF, 1000 V, COG/ NPO, 1206 1206 1206Y1K01P50D AR Knowles Syfer 4 C5 1 1000pF CAP, CERM, 1000 pF, 630 V, +/- 5%, 1206 C0G/NP0, 1206 GRM31B5C2J102 MuRata JW01L 5 C7, C8 2 10uF CAP, CERM, 10 uF, 50 V, +/- 10%, X7R, 1210 1210 CL32B106KBJNN Samsung WE 6 C9, C10 2 1mF CAP, AL, 1000 uF, 25 V, +/- 20%, 0.033 ohm, TH, AEC-Q200 RADIAL EEU-FK1E102L Panasonic 7 C11 1 0.047uF CAP, CERM, 0.047 uF, 50 V, +/10%, X7R, AEC-Q200 Grade 1, 0603 0603 CGA3E2X7R1H4 73K080AA TDK 8 C12 1 22uF CAP, AL, 22 uF, 35 V, +/- 20%, 0.36 ohm, AEC-Q200, SMD SMT Radial D 35TZV22M6.3X6. 1 Rubycon 9 C13 1 4.7uF CAP, CERM, 4.7 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 1210 1210 CGA6P3X7R1H4 75K250AB TDK 10 C14, C24 2 2200pF CAP, CERM, 2200 pF, 4000 V,+/10%, X7R, 1812, AEC-Q200 1812 1812Y4K00222K ST Knowles Syfer 11 C15 1 1000pF CAP, CERM, 1000 pF, 50 V, +/- 10%, 0805 X7R, 0805 CC0805KRX7R9 BB102 Yageo America 12 C16 1 0.1uF CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0805 0805 CC0805KRX7R9 BB104 Yageo 12 C17 1 0.33uF CAP, CERM, 0.33 uF, 16 V, +/- 10%, X7R, 0805 0805 CL21B334KOCN NNC Samsung 13 C18 1 1uF CAP, CERM, 1 uF, 50 V, +/- 10%, X7R, 1206 1206 UMK316B7105KL Taiyo Yuden HT 14 C19 1 0.022uF CAP, CERM, 0.022 uF, 50 V, +/10%, X7R, 0805 0805 CC0805KRX7R9 BB223 Yageo America 15 C20, C22 2 100pF CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0805 0805 CC0805JRNPO9 BN101 Yageo America 16 C21 1 2.2uF CAP, CERM, 2.2 µF, 25 V,+/- 10%, X7R, AEC-Q200 Grade 1, 0805 0805 GCM21BR71E22 5KA73L MuRata 17 C23 1 22pF CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, 0805 0805 CC0805JRNPO9 BN220 Yageo 18 D1, D3 2 160V Diode, TVS, Uni, 160V, 259VC, AEC- SMC Q101, SMC SMCJ160AHE3_ A/I Vishay Semiconductor 19 D2, D4, D6, D8 4 130V Diode, Zener, 130 V, 200 mW, SOD-323F, AEC-Q101 SOD-323F UDZLVFHTE-171 30 Rohm 20 D5 1 22V Diode, Zener, 22 V, 5%, 200 mW, SOD-323, AEC-Q101 SOD-323 BZX384C22HE3-18 21 D7 1 1.6kV Diode, Avalanche, 1.6kV, 1.5A, AEC- DO-214AC Q101, SMA 22 D9 1 18V Diode, Zener, 18 V, 4%, 200 mW, AEC-Q101, SOD-323 23 D10 1 18V 24 D11 1 25 D12 26 Alternate PartNumber Alternate Manufaturer 1206N1R5D102C Walsin T HV1812Y102KXV Vishay Vitramon ATHV SMCJ160A-TP Micro Commercial Co Vishay Semiconductor SZMM3Z22VST1 G ON Semi BYG10YHE3_A/I Vishay SMCJ160A-TP Micro Commercial Co. SOD-323 GDZ18B-HE3-18 Vishay DDZ9705S-7 Diodes, Inc. Diode, Zener, 18 V, 1 W, ±6.39%, SMT, PMDTM, AEC-Q101 SOD-128 PDZVTFTR18B ROHM ZMY18-GS18 Vishay Semiconductor 200V Diode Array, Comon Cathode, Schottky, 200V, 40A, AEC-Q101 TO-247AD MBR40200PTH Taiwan Semiconductor MBR90200WT SMC Diode Solutions 1 60V Diode, Schottky, 60 V, 1 A, SMA, AEC-Q101 SMA SS16HE3_B/H Vishay Semiconductor SS16AU_R1_000A1 Panjit International D13 1 200V Diode, Standard Recovery, 200 V, 1 A, SMA, AEC-Q101 SMA S1DHE3_A/H Vishay Semiconductor 27 D14 1 40V Diode, Schottky, 30 V, 30 mA, AECQ101, SOD-323 SOD-323 SD101CWSHE3-08 Vishay RB501V-40-TP Micro Commercial Co 28 H1 1 Black Anodize d Heat Sink TO-247 Aluminum 5.0W @ 60°C Board Level, Vertical PTH_HEATSINK_2 0MM47_25MM0 C247-025-1AE Ohmite C247-025-1VE Ohmite 29 HW1, HW2, HW3, HW4, HW5 5 SJ61A6 3M 30 J1, J2, J3, J4 4 Terminal Block, 5.08 mm, 2x1, TH 1715721 Phoenix Contact 31 KIT1 0 Mounting Kit, DISCARD the TO_220 thermal pad, Use SILPAD1 instead 4880SG Aavid Thermalloy 2POS Terminal Block Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Bill of Materials (BOM) Table 7-1. UCC28C56EVM-066 Bill of Materials (continued) Item # Designator Quantity Value Description PackageReference PartNumber Manufacturer 32 Q1, Q2 2 600V MOSFET, N-CH, Depletion Mode, 600 V, 0.021 A, SOT-23, AEC-Q101 SOT-23 BSS126H6906XT Infineon SA1 Technologies 33 Q3 1 60V MOSFET, N-CH, 60 V, 0.19 A, SOT-23 SOT-23 NX7002AK,215 Nexperia USA Inc 34 Q4 1 60V Transistor, PNP, 60 V, 0.6 A, SOT-23, SOT-23 AEC-Q101 PMBT2907A,235 Nexperia USA Inc 35 Q5 1 1700V MOSFET, N-Ch, SiC, 1700V, 5A, AEC-Q101, TO-247 TO-247-3 SCT1000N170AG ST Microelectronics 36 Q6 1 60V Transistor, PNP, 60 V, 2 A, SOT-23, AEC-Q101 SOT-23 PBSS5350THR Nexperia USA Inc 37 Q7, Q8 2 40V Transistor, NPN, 40 V, 0.2 A, SOT-23, AEC-Q101 SOT-23 MMBT3904,215 Nexperia USA Inc 38 R1, R3 2 1.0Meg RES, 1.0 M, 5%, 0.1 W, AEC-Q200 0603 CRCW06031M00 Vishay-Dale Grade 0, 0603 39 R2, R28 2 61.9 RES, 61.9, 5%, 0.75 W, AEC-Q200 R4 1 100 RES, 100, 1%, 0.25 W, AEC-Q200 2010 R5 1 1.00k RES, 1.00 k, 1%, 0.1 W, AEC-Q200 1206 R6, R9 2 10.0k RES, 10.0 k, 1%, 0.1 W, AEC-Q200 0603 R8 1 100k RES, 100 k, 1%, 0.125 W, AEC- 0603 R10 1 0 RES, 0, 5%, 0.25 W, AEC-Q200 0805 R11 1 10.0 RES, 10.0, 1%, 0.1 W, AEC-Q200 1206 R12 1 40.2k RES, 40.2 k, 1%, 0.125 W, AEC- R9 Vishay-Dale CRCW06031K00 Vishay-Dale CRCW060310K0 Vishay-Dale CRCW0805100K Vishay-Dale CRCW12060000 Vishay-Dale Z0EA 0603 Grade 0, 0603 46 RMCF2010FT61 Electronics FKEA Grade 0, 1206 45 CRCW1206100R Stackpole FKEA Q200 Grade 0, 0805 44 Vishay-Dale FKEA Grade 0, 0603 43 G2R1000MT17D / GeneSIC / C2M1000170D Wolfspeed FKEA Grade 0, 0603 42 CRCW201061R9 FKEF Grade 0, 1206 41 Alternate Manufaturer JNEA Grade 0, 2010 40 Alternate PartNumber CRCW060310R0 Vishay-Dale FKEA 0805 ERJ-6ENF4022V Panasonic 0805 CRCW080520K0 Vishay-Dale Q200 Grade 0, 0805 47 R13 1 20.0k RES, 20.0 k, 1%, 0.125 W, AECQ200 Grade 0, 0805 48 R14 1 39.2 RES, 39.2, 1%, 0.25 W, AEC-Q200 FKEA 1206 Grade 0, 1206 49 R15 1 44.2k RES, 44.2 k, 1%, 0.1 W, AEC-Q200 R16, R27 2 127 RES, 127, 1%, 0.125 W, AEC-Q200 0603 R17 1 2.55k RES, 2.55 k, 1%, 0.125 W, AEC- 0805 R18 1 324k RES, 324 k, 1%, 0.125 W, AEC- 0805 R19 1 20.0k RES, 20.0 k, 1%, 0.125 W, AEC- CRCW0805127R Vishay-Dale CRCW08052K55 Vishay-Dale FKEA 0805 Q200 Grade 0, 0805 53 Vishay-Dale FKEA Q200 Grade 0, 0805 52 CRCW060344K2 FKEA Grade 0, 0805 51 Vishay-Dale FKEA Grade 0, 0603 50 CRCW120639R2 CRCW0805324K Vishay-Dale FKEA 0805 ERJ-6ENF2002V Panasonic 0805 CRCW08053K48 Vishay-Dale Q200 Grade 0, 0805 54 R20 1 3.48k RES, 3.48 k, 1%, 0.125 W, AECQ200 Grade 0, 0805 55 R21 1 1.00k RES, 1.00 k, 1%, 0.125 W, AEC- FKEA 0805 Q200 Grade 0, 0805 56 R22 1 4.02k RES, 4.02 k, 1%, 0.125 W, AECQ200 Grade 0, 0805 CRCW08051K00 Vishay-Dale FKEA 0805 CRCW08054K02 Vishay-Dale FKEA SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 33 Bill of Materials (BOM) www.ti.com Table 7-1. UCC28C56EVM-066 Bill of Materials (continued) Item # 57 Designator R23 Quantity 1 Value 15.0k Description RES, 15.0 k, 1%, 0.125 W, AEC- PackageReference 0805 Q200 Grade 0, 0805 PartNumber CRCW080515K0 Manufacturer Vishay-Dale R24, R25 2 0.91 RES, 0.91, 1%, 0.75W, 2010 2010 RL73H2HR91FTE TE Connectivity 59 R26 1 2.00k RES, 2.00 k, 1%, 0.125 W, AEC- 0805 CRCW08052K00 Q200 Grade 0, 0805 61 T1 THERM PAD 1 550 μH 1 1 62 THERM PAD 1 9200V 2 Alternate Manufaturer FKEA 58 60 Alternate PartNumber Vishay-Dale FKEA Transformer, PRI 40-1000V, SEC XFRMR_SMD_38M ZD2200-BE 15V 2.7A, AUX 20V 35mA M3_31MM9 Coilcraft Thermal Pad for Q5, 21.84mm x HF115AC-0.0055- Bergquist 18.79mm, W/ ADH AC-90 Thermal Pad for D11 (no hole), CD-02-05-247-N Wakefield-Vette 5010 Keystone 5011 Keystone Yellow Multipurpose 5014 Keystone 24.1mm x 19.0mm x 0.076mm, , 0.107degC-in2/W 63 TP1 1 Test Point, Multipurpose, Red, TH Red Multipurpose Testpoint 64 TP2, TP3, 7 Test Point, Multipurpose, Black, TH TP4, TP5, Black Multipurpose Testpoint TP6, TP8, TP10 65 TP7 1 Test Point, Multipurpose, Yellow, TH Testpoint 66 TP9 1 PC Test Point, SMT PC Test Point, SMT 5017 Keystone 67 TP11, TP12, 8 Test Point, Multipurpose, White, TH White Multipurpose 5012 Keystone TP13, TP14, Testpoint TP15, TP16, TP17, TP18 68 U1 1 Automotive BiCMOS Low-Power D0008A Current Mode PWM Controller, UCC28C56QDRQ Texas Instruments 1 SOIC-8, AEC-Q101 69 70 C6 C25 0 0 1000pF 0.33uF CAP, CERM, 1000 pF, 630 V, +/- 5%, 1206 GRM31B5C2J102 MuRata C0G/NP0, 1206 JW01L CAP, CERM, 0.33 uF, 50 V, +/- 10%, 0603 X7R, AEC-Q200 Grade 1, 0603 71 C26 0 0.22uF CAP, CERM, 0.22 uF, 25 V, +/- 10%, FID1, FID2, 0 Fiducial mark. There is nothing to FID3, FID4, TDK 34K080AB 0603 X7R, 0603 72 CGA3E3X7R1H3 C1608X7R1E224 TDK K080AC Fiducial N/A N/A Sullins 100mil, 1x2, PBC02SAAN Sullins Connector buy or mount. FID5, FID6 73 J5, J6, J7 0 Header, 100mil, 2x1, Gold, TH 230 mil above Solutions insulator 74 R7 0 100 RES, 100, 1%, 0.25 W, AEC-Q200 1206 Grade 0, 1206 75 R29 0 10.0 RES, 10.0, 1%, 0.1 W, AEC-Q200 R30 0 2.00k RES, 2.00 k, 1%, 0.1 W, AEC-Q200 Vishay-Dale FKEA 0603 Grade 0, 0603 76 CRCW1206100R CRCW060310R0 Vishay-Dale FKEA 0603 ERJ3EKF2001V Panasonic Grade 0, 0603 34 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 800-V Traction Inverters Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Revision History Table 7-1. UCC28C56EVM-066 Bill of Materials (continued) Item # 77 Designator R31 Quantity 0 Value 1.24k Description RES, 1.24 k, 1%, 0.1 W, AEC-Q200 PackageReference 0603 Grade 0, 0603 78 R32 0 12.4k RES, 12.4 k, 1%, 0.1 W, 0603 PartNumber CRCW06031K24 Manufacturer Alternate PartNumber Alternate Manufaturer Vishay-Dale FKEA 0603 RC0603FR-0712 Yageo K4L 79 R33, R37 0 1.00k RES, 1.00 k, 1%, 0.1 W, 0603 0603 RC0603FR-071K Yageo L 80 R34 0 6.81k RES, 6.81 k, 1%, 0.1 W, 0603 0603 RC0603FR-076K Yageo 81L 81 R35 0 2.43k RES, 2.43 k, 1%, 0.1 W, 0603 0603 RC0603FR-072K Yageo 43L 82 R36 0 0 RES, 0, 5%, 0.1 W, 0603 0603 RC0603JR-070R Yageo L 83 TP19, TP20 0 Test Point, Multipurpose, Yellow, TH Yellow Multipurpose 5014 Keystone Testpoint 84 U2 0 Optocoupler, 5 kV, 80-160% CTR, DIP-4L Gullwing FOD817ASD SMT 85 U3 0 Automotive Catalog Adjustable Precision Shunt Regulator, 34 ppm / Fairchild Semiconductor DBZ0003A TL431AQDBZRQ Texas Instruments 1 degC, 100 mA, -40 to 125 degC, 3pin SOT-23 (DBZ), Green (RoHS & no Sb/Br) Notes: Unless otherwise noted in the Alternate PartNumber and/or Alternate Manufacturer columns, all parts may be substituted with equivalents. 8 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (October 2022) to Revision C (December 2022) Page • Added EVM Electrical Performance Specifications table................................................................................... 4 Changes from Revision A (July 2022) to Revision B (October 2022) Page • Updated Schematic diagram.............................................................................................................................. 5 • Updated PCB images....................................................................................................................................... 30 • Updated Bill of Materials...................................................................................................................................32 SLUUCN1C – JUNE 2022 – REVISED DECEMBER 2022 Using the UCC28C56EVM-066 High-Density 40-W Auxiliary Power Supply for Submit Document Feedback 800-V Traction Inverters Copyright © 2022 Texas Instruments Incorporated 35 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
UCC28C56EVM-066 价格&库存

很抱歉,暂时无法提供与“UCC28C56EVM-066”相匹配的价格&库存,您可以联系我们找货

免费人工找货
UCC28C56EVM-066
    •  国内价格
    • 1+2123.29700

    库存:0