0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ULN2003ADR

ULN2003ADR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16_150MIL

  • 描述:

    高压大电流达林顿晶体管阵列

  • 数据手册
  • 价格&库存
ULN2003ADR 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays 1 Features • • • • • 1 500-mA-Rated Collector Current (Single Output) High-Voltage Outputs: 50 V Output Clamp Diodes Inputs Compatible With Various Types of Logic Relay-Driver Applications The ULx2004A devices have a 10.5-kΩ series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULx2004A device is below that of the ULx2003A devices, and the required voltage is less than that required by the ULN2002A device. . 2 Applications • • • • • • Device Information(1) Relay Drivers Stepper and DC Brushed Motor Drivers Lamp Drivers Display Drivers (LED and Gas Discharge) Line Drivers Logic Buffers 3 Description The ULx200xA devices are high-voltage, high-current Darlington transistor arrays. Each consists of seven NPN Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. PART NUMBER PACKAGE BODY SIZE (NOM) ULx200xD SOIC (16) 9.90 mm × 3.91 mm ULx200xN PDIP (16) 19.30 mm × 6.35 mm ULN200xNS SOP (16) 10.30 mm × 5.30 mm ULN200xPW TSSOP (16) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. . . Simplified Block Diagram 9 COM The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions of the ULx2003A devices, see the SLRS023 data sheet for the SN75468 and SN75469 devices. The ULN2002A device is designed specifically for use with 14-V to 25-V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULx2003A devices have a 2.7-kΩ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. 1 16 1C 1B 2 15 2C 2B 3 14 3C 3B 4 13 4C 4B 5 12 5C 5B 6 11 6C 6B 7 7B 10 7C 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics: ULN2002A ....................... Electrical Characteristics: ULN2003A and ULN2004A.................................................................. 6.7 Electrical Characteristics: ULN2003AI ...................... 6.8 Electrical Characteristics: ULN2003AI ..................... 6.9 Electrical Characteristics: ULQ2003A and ULQ2004A ................................................................. 6.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A.................................................................. 6.11 Switching Characteristics: ULN2003AI .................. 6.12 Switching Characteristics: ULN2003AI .................. 6.13 Switching Characteristics: ULQ2003A, ULQ2004A 6.14 Typical Characteristics ............................................ 5 6 6 7 7 7 8 8 8 7 8 Parameter Measurement Information ................ 10 Detailed Description ............................................ 12 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagrams ..................................... Feature Description................................................. Device Functional Modes........................................ 12 12 13 13 Application and Implementation ........................ 14 9.1 Application Information............................................ 14 9.2 Typical Application ................................................. 14 9.3 System Examples ................................................... 17 10 Power Supply Recommendations ..................... 18 11 Layout................................................................... 18 11.1 Layout Guidelines ................................................. 18 11.2 Layout Example .................................................... 18 12 Device and Documentation Support ................. 19 12.1 12.2 12.3 12.4 12.5 12.6 Documentation Support ........................................ Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 19 19 19 19 19 19 13 Mechanical, Packaging, and Orderable Information ........................................................... 19 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision O (January 2016) to Revision P • Page Changed ULN200xA Minimum Temperature Rating from –20 C to –40 C in the Absolute Maximum Ratings table ............ 4 Changes from Revision N (June 2015) to Revision O • Page Changed Pin Functions table to correct typographical error ................................................................................................. 3 Changes from Revision M (February 2013) to Revision N Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • Deleted Ordering Information table. No specification changes. ............................................................................................. 1 • Moved Typical Characteristics into Specifications section. ................................................................................................... 8 Changes from Revision L (April 2012) to Revision M • Page Updated temperature rating for ULN2003AI in the ORDERING INFORMATION table ........................................................ 1 Changes from Revision K (August 2011) to Revision L • 2 Page Removed reference to obsolete ULN2001 device.................................................................................................................. 1 Submit Documentation Feedback Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 5 Pin Configuration and Functions D, N, NS, and PW Package 16-Pin SOIC, PDIP, SO, and TSSOP Top View 1B 2B 3B 4B 5B 6B 7B E 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 1C 2C 3C 4C 5C 6C 7C COM Pin Functions PIN NAME 1B 1 2B 2 3B 3 4B 4 5B 5 6B 6 7B 7 1C 16 2C 15 3C 14 4C 13 5C 12 6C 11 7C 10 COM E (1) I/O (1) NO. DESCRIPTION I Channel 1 through 7 Darlington base input O Channel 1 through 7 Darlington collector output 9 — Common cathode node for flyback diodes (required for inductive loads) 8 — Common emitter shared by all channels (typically tied to ground) I = Input, O = Output Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 3 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings at 25°C free-air temperature (unless otherwise noted) (1) MIN VCC Collector-emitter voltage Clamp diode reverse voltage VI IOK (2) 50 V V Peak collector current, See Figure 4 and Figure 5 500 mA Output clamp current 500 mA Total emitter-terminal current –2.5 A TJ Operating virtual junction temperature ULN200xA –40 70 ULN200xAI –40 105 ULQ200xA –40 85 ULQ200xAT –40 105 Lead temperature for 1.6 mm (1/16 inch) from case for 10 seconds (2) V 30 Operating free-air temperature range (1) UNIT 50 Input voltage (2) TA Tstg MAX Storage temperature –65 °C 150 °C 260 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted. 6.2 ESD Ratings VALUE Electrostatic discharge V(ESD) (1) (2) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VCC Collector-emitter voltage (non-V devices) TJ Junction temperature MIN MAX 0 50 UNIT V –40 125 °C 6.4 Thermal Information ULx200x THERMAL METRIC (1) D (SOIC) N (PDIP) NS (SO) PW (TSSOP) 16 PINS 16 PINS 16 PINS 16 PINS 73 67 64 108 °C/W UNIT RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 36 54 n/a 33.6 °C/W RθJB Junction-to-board thermal resistance n/a n/a n/a 51.9 °C/W ψJT Junction-to-top characterization parameter n/a n/a n/a 2.1 °C/W ψJB Junction-to-board characterization parameter n/a n/a n/a 51.4 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 6.5 Electrical Characteristics: ULN2002A TA = 25°C PARAMETER TEST FIGURE VI(on) ON-state input voltage Figure 14 VCE = 2 V, VOH High-level output voltage after switching Figure 18 VS = 50 V, IO = 300 mA VCE(sat) Collector-emitter saturation voltage Figure 12 VF Clamp forward voltage ICEX Collector cutoff current ULN2002A TEST CONDITIONS MIN TYP IC = 300 mA 13 mV IC = 100 mA 0.9 1.1 II = 350 μA, IC = 200 mA 1 1.3 II = 500 μA, IC = 350 mA 1.2 1.6 Figure 15 IF = 350 mA Figure 9 VCE = 50 V, II = 0 50 Figure 10 VCE = 50 V, TA = 70°C II = 0 100 VI = 6 V 500 IC = 500 μA OFF-state input current Figure 10 VCE = 50 V, II Input current Figure 11 VI = 17 V IR Clamp reverse current Figure 14 Ci Input capacitance VR = 50 V 1.7 50 V 2 V μA 65 μA 0.82 1.25 TA = 70°C mA 100 VR = 50 V VI = 0, V VS – 20 II = 250 μA, II(off) UNIT MAX μA 50 f = 1 MHz 25 pF 6.6 Electrical Characteristics: ULN2003A and ULN2004A TA = 25°C TEST FIGURE PARAMETER TEST CONDITIONS ULN2003A MIN TYP ULN2004A MAX MIN TYP IC = 125 mA VI(on) ON-state input voltage Figure 14 VCE = 2 V 2.4 IC = 250 mA 2.7 6 IC = 275 mA 7 Figure 18 VCE(sat) Collector-emitter saturation voltage Figure 13 ICEX Collector cutoff current VS = 50 V, IO = 300 mA 8 VS – 20 VS – 20 IC = 100 mA 0.9 1.1 0.9 1.1 II = 350 μA, IC = 200 mA 1 1.3 1 1.3 II = 500 μA, IC = 350 mA 1.2 1.6 1.2 1.6 Figure 9 VCE = 50 V, II = 0 50 50 Figure 10 VCE = 50 V, TA = 70°C II = 0 100 100 Clamp forward voltage Figure 16 IF = 350 mA II(off) Off-state input current Figure 11 VCE = 50 V, TA = 70°C, II Input current Figure 12 VI = 6 V IC = 500 μA 50 2 65 0.93 1.7 50 Ci Input capacitance Figure 15 VR = 50 V VR = 50 V TA = 70°C VI = 0, f = 1 MHz Copyright © 1976–2019, Texas Instruments Incorporated μA 15 2 65 V μA 1.35 VI = 5 V VI = 12 V Clamp reverse current V 500 1.7 VI = 3.85 V IR mV II = 250 μA, VF V 3 IC = 350 mA VOH UNIT 5 IC = 200 mA IC = 300 mA High-level output voltage after switching MAX 0.35 0.5 1 1.45 50 50 100 100 25 15 25 Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A mA μA pF 5 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 6.7 Electrical Characteristics: ULN2003AI TA = 25°C PARAMETER VI(on) VOH VCE(sat) ON-state input voltage High-level output voltage after switching Collector-emitter saturation voltage TEST FIGURE Figure 14 Figure 18 Figure 13 ULN2003AI TEST CONDITIONS VCE = 2 V MIN 2.4 IC = 250 mA 2.7 IC = 300 mA 3 II = 250 μA, IC = 100 mA II = 350 μA, II = 500 μA, II = 0 Collector cutoff current Figure 9 VCE = 50 V, VF Clamp forward voltage Figure 16 IF = 350 mA II(off) OFF-state input current Figure 11 VCE = 50 V, II Input current Figure 12 VI = 3.85 V IR Clamp reverse current Figure 15 VR = 50 V Ci Input capacitance VI = 0, MAX IC = 200 mA VS = 50 V, IO = 300 mA ICEX TYP VS – 50 1.1 IC = 200 mA 1 1.3 IC = 350 mA 1.2 1.6 1.7 50 15 V 50 μA 2 V 65 0.93 f = 1 MHz V mV 0.9 IC = 500 μA UNIT μA 1.35 mA 50 μA 25 pF 6.8 Electrical Characteristics: ULN2003AI TA = –40°C to 105°C PARAMETER VI(on) VOH VCE(sat) ON-state input voltage High-level output voltage after switching Collector-emitter saturation voltage TEST FIGURE Figure 14 Figure 18 Figure 13 TEST CONDITIONS VCE = 2 V II = 0 Figure 9 VCE = 50 V, IF = 350 mA II(off) OFF-state input current Figure 11 VCE = 50 V, II Input current Figure 12 VI = 3.85 V IR Clamp reverse current Figure 15 VR = 50 V Ci Input capacitance Submit Documentation Feedback 3 II = 500 μA, Figure 16 6 2.9 IC = 300 mA II = 350 μA, Clamp forward voltage VI = 0, MAX 2.7 IC = 100 mA Collector cutoff current TYP IC = 250 mA II = 250 μA, VF MIN IC = 200 mA VS = 50 V, IO = 300 mA ICEX ULN2003AI VS – 50 1.2 IC = 200 mA 1 1.4 IC = 350 mA 1.2 1.7 1.7 30 15 V 100 μA 2.2 V 1.35 mA 100 μA 25 pF 65 0.93 f = 1 MHz V mV 0.9 IC = 500 μA UNIT μA Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 6.9 Electrical Characteristics: ULQ2003A and ULQ2004A over recommended operating conditions (unless otherwise noted) TEST FIGURE PARAMETER TEST CONDITIONS ULQ2003A MIN TYP ULQ2004A MAX MIN TYP MAX IC = 125 mA ON-state input voltage VI(on) Figure 14 VCE = 2 V 5 IC = 200 mA 2.7 IC = 250 mA 2.9 6 IC = 275 mA 7 IC = 300 mA High-level output voltage after switching VCE(sat) Collector-emitter saturation voltage Collector cutoff current ICEX Figure 18 VS = 50 V, IO = 300 mA 8 VS – 50 II = 350 μA, II = 500 μA, Figure 9 VCE = 50 V, II = 0 Figure 10 VCE = 50 V, TA = 70°C II = 0 100 VI = 6 V 500 Clamp forward voltage Figure 16 IF = 350 mA II(off) OFF-state input current Figure 11 VCE = 50 V, TA = 70°C, 0.9 1.2 IC = 200 mA 1 IC = 350 mA 1.2 Figure 12 0.9 1.1 1.4 1 1.3 1.7 1.2 1.6 100 1.7 IC = 500 μA VI = 3.85 V Input current mV IC = 100 mA VF II VS – 50 II = 250 μA, Figure 13 2.3 1.7 65 0.93 Clamp reverse current Ci Input capacitance Figure 15 50 TA = 25°C VR = 50 V VI = 0, f = 1 MHz 15 2 65 μA V μA 1.35 VI = 5 V VR = 50 V V 50 0.35 0.5 1 1.45 VI = 12 V IR V 3 IC = 350 mA VOH UNIT 100 50 100 100 25 15 25 mA μA pF 6.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A TA = 25°C PARAMETER TEST CONDITIONS ULN2002A, ULN2003A, ULN2004A MIN TYP MAX UNIT tPLH Propagation delay time, low- to high-level output See Figure 17 0.25 1 μs tPHL Propagation delay time, high- to low-level output See Figure 17 0.25 1 μs 6.11 Switching Characteristics: ULN2003AI TA = 25°C PARAMETER TEST CONDITIONS ULN2003AI MIN TYP MAX UNIT tPLH Propagation delay time, low- to high-level output See Figure 17 0.25 1 μs tPHL Propagation delay time, high- to low-level output See Figure 17 0.25 1 μs Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 7 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 6.12 Switching Characteristics: ULN2003AI TA = –40°C to 105°C PARAMETER ULN2003AI TEST CONDITIONS MIN TYP MAX UNIT tPLH Propagation delay time, low- to high-level output See Figure 17 1 10 μs tPHL Propagation delay time, high- to low-level output See Figure 17 1 10 μs 6.13 Switching Characteristics: ULQ2003A, ULQ2004A over recommended operating conditions (unless otherwise noted) PARAMETER ULQ2003A, ULQ2004A TEST CONDITIONS MIN TYP MAX UNIT tPLH Propagation delay time, low- to high-level output See Figure 17 1 10 μs tPHL Propagation delay time, high- to low-level output See Figure 17 1 10 μs VCE(sat) VCE(sat) - Collector-Emitter Saturation Voltage - V 2.5 TA = 25°C 2 II = 250 µA II = 350 µA II = 500 µA 1.5 1 0.5 0 0 100 200 300 400 500 600 700 IC - Collector Current - mA Figure 1. Collector-Emitter Saturation Voltage vs Collector Current (One Darlington) 8 Submit Documentation Feedback 800 VCE(sat) VCE(sat) - Collector-Emitter Saturation Voltage - V 6.14 Typical Characteristics 2.5 TA = 25°C II = 250 µA 2 II = 350 µA 1.5 II = 500 µA 1 0.5 0 0 100 200 300 400 500 600 700 800 IC(tot) - Total Collector Current - mA Figure 2. Collector-Emitter Saturation Voltage vs Total Collector Current (Two Darlingtons in Parallel) Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 Typical Characteristics (continued) 600 500 450 IIC C - Maximum Collector Current - mA RL = 10 Ω TA = 25°C IC IC - Collector Current - mA 400 VS = 10 V 350 VS = 8 V 300 250 200 150 100 50 0 500 N=1 400 N=4 N=3 300 N=2 N=6 200 N = 7 N=5 100 TA = 70°C N = Number of Outputs Conducting Simultaneously 0 25 0 50 75 100 125 150 200 175 0 10 20 30 40 II - Input Current - µA 50 60 70 80 90 100 Duty Cycle - % Figure 3. Collector Current vs Input Current Figure 4. D Package Maximum Collector Current vs Duty Cycle 600 2000 TJ = -40°C to 105°C IIC C - Maximum Collector Current - mA 1800 500 400 N=4 300 N=5 N=6 N=7 1600 Input Current – µA N=1 N=3 N=2 200 1200 1000 Maximum 800 600 100 0 1400 400 TA = 85°C N = Number of Outputs Conducting Simultaneously 0 10 20 30 40 50 60 70 Typical 200 80 0 90 100 2 2.5 3 3.5 4 Input Voltage – V Duty Cycle - % 4.5 5 Figure 6. Maximum and Typical Input Current vs Input Voltage Figure 5. N Package Maximum Collector Current vs Duty Cycle 500 2.1 V CE = 2 V TJ = -40°C to 105°C TJ = -40°C to 105°C 450 400 Output Current – mA Maximum VCE(sat) Voltage – V 1.9 1.7 1.5 Maximum 1.3 350 300 250 Minimum 200 1.1 150 Typical 0.9 100 200 300 400 500 Output Current – mA Figure 7. Maximum and Typical Saturated VCE vs Output Current Copyright © 1976–2019, Texas Instruments Incorporated 100 250 350 450 550 650 Input Current – µA Figure 8. Minimum Output Current vs Input Current Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 9 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 7 Parameter Measurement Information Open Open VCE ICEX VCE ICEX Open VI Figure 9. ICEX Test Circuit Open Figure 10. ICEX Test Circuit Open VCE II(off) II(on) IC Open VI Figure 11. II(off) Test Circuit Figure 12. II Test Circuit II is fixed for measuring VCE(sat), variable for measuring hFE. Open hFE = IC II VCE II Open Figure 13. hFE, VCE(sat) Test Circuit VI(on) IC VCE IC Figure 14. VI(on) Test Circuit VR IR VF IF Open Open Figure 15. IR Test Circuit 10 Submit Documentation Feedback Figure 16. VF Test Circuit Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 Parameter Measurement Information (continued) 200 W ≤10 ns ≤5 ns Figure 17. Propagation Delay-Time Waveforms 90% 1.5 V Input VIH (see Note C) 90% 1.5 V 10% 10% 40 µs 0V VOH Output VOL VOLTAGE WAVEFORMS For testing the ULN2003A device, ULN2003AI device, and ULQ2003A devices, VIH = 3 V; for the ULN2002A device, VIH = 13 V; for the ULN2004A and the ULQ2004A devices, VIH = 8 V. Figure 18. Latch-Up Test Circuit and Voltage Waveforms Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 11 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 8 Detailed Description 8.1 Overview This standard device has proven ubiquity and versatility across a wide range of applications. This is due to integration of 7 Darlington transistors of the device that are capable of sinking up to 500 mA and wide GPIO range capability. The ULN2003A device comprises seven high-voltage, high-current NPN Darlington transistor pairs. All units feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads. The ULN2003A device has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2003A device offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs. This device can operate over a wide temperature range (–40°C to 105°C). 8.2 Functional Block Diagrams All resistor values shown are nominal. The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collectors go below GND, an external Schottky diode should be added to clamp negative undershoots. COM 7V Output C 10.5 NŸ Input B 7.2 NŸ E 3 NŸ Figure 19. ULN2002A Block Diagram COM Output C RB 2.7 NŸ Input B Output C RB 10.5 NŸ Input B 7.2 NŸ 3 NŸ E Figure 20. ULN2003A, ULQ2003A and ULN2003AI Block Diagram 12 COM Submit Documentation Feedback 7.2 NŸ 3 NŸ E Figure 21. ULN2004A and LQ2004A Block Diagram Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 8.3 Feature Description Each channel of the ULN2003A device consists of Darlington connected NPN transistors. This connection creates the effect of a single transistor with a very high-current gain (β2). This can be as high as 10,000 A/A at certain currents. The very high β allows for high-output current drive with a very low input current, essentially equating to operation with low GPIO voltages. The GPIO voltage is converted to base current through the 2.7-kΩ resistor connected between the input and base of the predriver Darlington NPN. The 7.2-kΩ and 3-kΩ resistors connected between the base and emitter of each respective NPN act as pulldowns and suppress the amount of leakage that may occur from the input. The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the coils causes a reverse current to flow into the coil supply through the kick-back diode. In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diodes are forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device pins. 8.4 Device Functional Modes 8.4.1 Inductive Load Drive When the COM pin is tied to the coil supply voltage, ULN2003A device is able to drive inductive loads and suppress the kick-back voltage through the internal free-wheeling diodes. 8.4.2 Resistive Load Drive When driving a resistive load, a pullup resistor is needed in order for ULN2003A device to sink current and for there to be a logic high level. The COM pin can be left floating for these applications. Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 13 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information Typically, the ULN2003A device drives a high-voltage or high-current (or both) peripheral from an MCU or logic device that cannot tolerate these conditions. This design is a common application of ULN2003A device, driving inductive loads. This includes motors, solenoids and relays. Figure 22 shows a model for each load type. 9.2 Typical Application ULN2003A 3.3-V Logic 3.3-V Logic IN1 OUT1 IN2 OUT2 IN3 OUT3 IN4 OUT4 VSUP 3.3-V Logic IN5 OUT5 IN6 OUT6 IN7 OUT7 GND COM VSUP Figure 22. ULN2003A Device as Inductive Load Driver 9.2.1 Design Requirements For this design example, use the parameters listed in Table 1 as the input parameters. Table 1. Design Parameters DESIGN PARAMETER 14 Submit Documentation Feedback EXAMPLE VALUE GPIO voltage 3.3 V or 5 V Coil supply voltage 12 V to 48 V Number of channels 7 Output current (RCOIL) 20 mA to 300 mA per channel Duty cycle 100% Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 9.2.2 Detailed Design Procedure When using ULN2003A device in a coil driving application, determine the following: • Input voltage range • Temperature range • Output and drive current • Power dissipation 9.2.2.1 Drive Current The coil voltage (VSUP), coil resistance (RCOIL), and low-level output voltage (VCE(SAT) or VOL) determine the coil current. ICOIL = (VSUP – VCE(SAT)) / RCOIL (1) 9.2.2.2 Low-Level Output Voltage The low-level output voltage (VOL) is the same as VCE(SAT) and can be determined by, Figure 1, Figure 2, or Figure 7. 9.2.2.3 Power Dissipation and Temperature The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils driven can be determined by Figure 4 or Figure 5. For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003A device on-chip power dissipation PD: N PD = å VOLi ´ ILi i=1 where • • N is the number of channels active together VOLi is the OUTi pin voltage for the load current ILi. This is the same as VCE(SAT) (2) To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must be lower that or equal to the maximum allowable power dissipation (PD(MAX)) dictated by below equation Equation 3. PD MAX TJ MAX TA TJA where • • • TJ(max) is the target maximum junction temperature TA is the operating ambient temperature RθJA is the package junction to ambient thermal resistance (3) Limit the die junction temperature of the ULN2003A device to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation. Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 15 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 9.2.3 Application Curves 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -0.004 14 12 Output voltage - V Output voltage - V The characterization data shown in Figure 23 and Figure 24 were generated using the ULN2003A device driving an OMRON G5NB relay and under the following conditions: VIN = 5 V, VSUP= 12 V, and RCOIL= 2.8 kΩ. 8 6 4 2 0 0.004 0.008 Time (s) 0.012 0 -0.004 0.016 D001 Figure 23. Output Response With Activation of Coil (Turnon) 16 10 Submit Documentation Feedback 0 0.004 0.008 Time (s) 0.012 0.016 D001 Figure 24. Output Response With De-activation of Coil (Turnoff) Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 9.3 System Examples ULN2002A VSS V 16 1 16 2 15 2 15 3 14 3 14 4 4 13 13 5 12 6 11 7 10 8 9 12 6 11 7 10 8 9 Lam Test TTL Output Figure 25. P-MOS to Load ULN2004A ULQ2004A VDD V 1 5 P-MOS Output ULQ2003A VCC Figure 26. TTL to Load VCC V V ULQ2003A 1 16 1 16 2 15 2 15 3 14 3 14 4 13 4 13 5 12 5 12 6 11 6 11 7 10 7 10 8 9 8 9 RP CMOS Output TTL Output Figure 27. Buffer for Higher Current Loads Copyright © 1976–2019, Texas Instruments Incorporated Figure 28. Use of Pullup Resistors to Increase Drive Current Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 17 ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 www.ti.com 10 Power Supply Recommendations This device does not need a power supply. However, the COM pin is typically tied to the system power supply. When this is the case, it is very important to ensure that the output voltage does not heavily exceed the COM pin voltage. This discrepancy heavily forward biases the fly-back diodes and causes a large current to flow into COM, potentially damaging the on-chip metal or over-heating the device. 11 Layout 11.1 Layout Guidelines Thin traces can be used on the input due to the low-current logic that is typically used to drive ULN2003A device. Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick traces for the output to drive whatever high currents that may be needed. Wire thickness can be determined by the current density of the trace material and desired drive current. Because all of the channels currents return to a common emitter, it is best to size that trace width to be very wide. Some applications require up to 2.5 A. 11.2 Layout Example GND 1B 2B 1 2 16 15 1C 2C 3B 3 14 3C 4B 5B 4 13 12 4C 5C 6B 5 6 11 6C 7B 7 8 10 9 7C E VCOM Figure 29. Package Layout 18 Submit Documentation Feedback Copyright © 1976–2019, Texas Instruments Incorporated Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A www.ti.com SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: SN7546x Darlington Transistor Arrays, SLRS023 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 2. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ULN2002A Click here Click here Click here Click here Click here ULN2003A Click here Click here Click here Click here Click here ULN2003AI Click here Click here Click here Click here Click here ULN2004A Click here Click here Click here Click here Click here ULQ2003A Click here Click here Click here Click here Click here ULQ2004A Click here Click here Click here Click here Click here 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Copyright © 1976–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A 19 PACKAGE OPTION ADDENDUM www.ti.com 14-Aug-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ULN2002AN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -20 to 70 ULN2002AN ULN2002ANE4 ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -20 to 70 ULN2002AN ULN2003AD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ADE4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ADR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ADRE4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ADRG3 ACTIVE SOIC D 16 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ADRG4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003AID ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIDE4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIDG4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIDR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIDRE4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIDRG4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU | SN N / A for Pkg Type -40 to 105 ULN2003AIN ULN2003AINE4 ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 105 ULN2003AIN ULN2003AINSR ACTIVE SO NS 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 ULN2003AI ULN2003AIPW ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 UN2003AI ULN2003AIPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 105 UN2003AI ULN2003AIPWRG4 ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 UN2003AI Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 14-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ULN2003AN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU | SN N / A for Pkg Type -40 to 70 ULN2003AN ULN2003ANE4 ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 70 ULN2003AN ULN2003ANS ACTIVE SO NS 16 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ANSR ACTIVE SO NS 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ANSRE4 ACTIVE SO NS 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003ANSRG4 ACTIVE SO NS 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 ULN2003A ULN2003APW ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 UN2003A ULN2003APWG4 ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 UN2003A ULN2003APWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 70 UN2003A ULN2003APWRG4 ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 70 UN2003A ULN2004AD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004ADE4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004ADG4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004ADR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004ADRE4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004ADRG4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULN2004AN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -20 to 70 ULN2004AN ULN2004ANE4 ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -20 to 70 ULN2004AN ULN2004ANSR ACTIVE SO NS 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -20 to 70 ULN2004A ULQ2003AD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ULQ2003A ULQ2003ADG4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM Addendum-Page 2 ULQ2003A Samples PACKAGE OPTION ADDENDUM www.ti.com 14-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ULQ2003ADR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ULQ2003A ULQ2003ADRG4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM ULQ2003AN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 ULQ2003A ULQ2004AD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ULQ2004A ULQ2004ADG4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM ULQ2004ADR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM ULQ2004ADRG4 ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM ULQ2004AN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type ULQ2003A ULQ2004A -40 to 85 ULQ2004A ULQ2004A -40 to 85 ULQ2004AN (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ULN2003ADR 价格&库存

很抱歉,暂时无法提供与“ULN2003ADR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ULN2003ADR
  •  国内价格
  • 5+0.73704
  • 20+0.67044
  • 100+0.60384
  • 500+0.53724
  • 1000+0.50616
  • 2000+0.48396

库存:5950