Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays
1 Features
•
•
•
•
•
1
500-mA-Rated Collector Current (Single Output)
High-Voltage Outputs: 50 V
Output Clamp Diodes
Inputs Compatible With Various Types of Logic
Relay-Driver Applications
The ULx2004A devices have a 10.5-kΩ series base
resistor to allow operation directly from CMOS
devices that use supply voltages of 6 V to 15 V. The
required input current of the ULx2004A device is
below that of the ULx2003A devices, and the required
voltage is less than that required by the ULN2002A
device.
.
2 Applications
•
•
•
•
•
•
Device Information(1)
Relay Drivers
Stepper and DC Brushed Motor Drivers
Lamp Drivers
Display Drivers (LED and Gas Discharge)
Line Drivers
Logic Buffers
3 Description
The ULx200xA devices are high-voltage, high-current
Darlington transistor arrays. Each consists of seven
NPN Darlington pairs that feature high-voltage
outputs with common-cathode clamp diodes for
switching inductive loads.
PART NUMBER
PACKAGE
BODY SIZE (NOM)
ULx200xD
SOIC (16)
9.90 mm × 3.91 mm
ULx200xN
PDIP (16)
19.30 mm × 6.35 mm
ULN200xNS
SOP (16)
10.30 mm × 5.30 mm
ULN200xPW
TSSOP (16)
5.00 mm × 4.40 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
.
.
Simplified Block Diagram
9
COM
The collector-current rating of a single Darlington pair
is 500 mA. The Darlington pairs can be paralleled for
higher current capability. Applications include relay
drivers, hammer drivers, lamp drivers, display drivers
(LED and gas discharge), line drivers, and logic
buffers. For 100-V (otherwise interchangeable)
versions of the ULx2003A devices, see the SLRS023
data sheet for the SN75468 and SN75469 devices.
The ULN2002A device is designed specifically for use
with 14-V to 25-V PMOS devices. Each input of this
device has a Zener diode and resistor in series to
control the input current to a safe limit. The
ULx2003A devices have a 2.7-kΩ series base resistor
for each Darlington pair for operation directly with
TTL or 5-V CMOS devices.
1
16
1C
1B
2
15
2C
2B
3
14
3C
3B
4
13
4C
4B
5
12
5C
5B
6
11
6C
6B
7
7B
10
7C
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
6.6
4
4
4
4
5
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics: ULN2002A .......................
Electrical Characteristics: ULN2003A and
ULN2004A..................................................................
6.7 Electrical Characteristics: ULN2003AI ......................
6.8 Electrical Characteristics: ULN2003AI .....................
6.9 Electrical Characteristics: ULQ2003A and
ULQ2004A .................................................................
6.10 Switching Characteristics: ULN2002A, ULN2003A,
ULN2004A..................................................................
6.11 Switching Characteristics: ULN2003AI ..................
6.12 Switching Characteristics: ULN2003AI ..................
6.13 Switching Characteristics: ULQ2003A, ULQ2004A
6.14 Typical Characteristics ............................................
5
6
6
7
7
7
8
8
8
7
8
Parameter Measurement Information ................ 10
Detailed Description ............................................ 12
8.1
8.2
8.3
8.4
9
Overview .................................................................
Functional Block Diagrams .....................................
Feature Description.................................................
Device Functional Modes........................................
12
12
13
13
Application and Implementation ........................ 14
9.1 Application Information............................................ 14
9.2 Typical Application ................................................. 14
9.3 System Examples ................................................... 17
10 Power Supply Recommendations ..................... 18
11 Layout................................................................... 18
11.1 Layout Guidelines ................................................. 18
11.2 Layout Example .................................................... 18
12 Device and Documentation Support ................. 19
12.1
12.2
12.3
12.4
12.5
12.6
Documentation Support ........................................
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
19
19
19
19
19
19
13 Mechanical, Packaging, and Orderable
Information ........................................................... 19
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision O (January 2016) to Revision P
•
Page
Changed ULN200xA Minimum Temperature Rating from –20 C to –40 C in the Absolute Maximum Ratings table ............ 4
Changes from Revision N (June 2015) to Revision O
•
Page
Changed Pin Functions table to correct typographical error ................................................................................................. 3
Changes from Revision M (February 2013) to Revision N
Page
•
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
•
Deleted Ordering Information table. No specification changes. ............................................................................................. 1
•
Moved Typical Characteristics into Specifications section. ................................................................................................... 8
Changes from Revision L (April 2012) to Revision M
•
Page
Updated temperature rating for ULN2003AI in the ORDERING INFORMATION table ........................................................ 1
Changes from Revision K (August 2011) to Revision L
•
2
Page
Removed reference to obsolete ULN2001 device.................................................................................................................. 1
Submit Documentation Feedback
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
5 Pin Configuration and Functions
D, N, NS, and PW Package
16-Pin SOIC, PDIP, SO, and TSSOP
Top View
1B
2B
3B
4B
5B
6B
7B
E
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
1C
2C
3C
4C
5C
6C
7C
COM
Pin Functions
PIN
NAME
1B
1
2B
2
3B
3
4B
4
5B
5
6B
6
7B
7
1C
16
2C
15
3C
14
4C
13
5C
12
6C
11
7C
10
COM
E
(1)
I/O (1)
NO.
DESCRIPTION
I
Channel 1 through 7 Darlington base input
O
Channel 1 through 7 Darlington collector output
9
—
Common cathode node for flyback diodes (required for inductive loads)
8
—
Common emitter shared by all channels (typically tied to ground)
I = Input, O = Output
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
3
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
at 25°C free-air temperature (unless otherwise noted) (1)
MIN
VCC
Collector-emitter voltage
Clamp diode reverse voltage
VI
IOK
(2)
50
V
V
Peak collector current, See Figure 4 and Figure 5
500
mA
Output clamp current
500
mA
Total emitter-terminal current
–2.5
A
TJ
Operating virtual junction temperature
ULN200xA
–40
70
ULN200xAI
–40
105
ULQ200xA
–40
85
ULQ200xAT
–40
105
Lead temperature for 1.6 mm (1/16 inch) from case for 10 seconds
(2)
V
30
Operating free-air temperature range
(1)
UNIT
50
Input voltage (2)
TA
Tstg
MAX
Storage temperature
–65
°C
150
°C
260
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
6.2 ESD Ratings
VALUE
Electrostatic
discharge
V(ESD)
(1)
(2)
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±2000
Charged device model (CDM), per JEDEC specification JESD22-C101 (2)
±500
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
VCC
Collector-emitter voltage (non-V devices)
TJ
Junction temperature
MIN
MAX
0
50
UNIT
V
–40
125
°C
6.4 Thermal Information
ULx200x
THERMAL METRIC (1)
D
(SOIC)
N
(PDIP)
NS
(SO)
PW
(TSSOP)
16 PINS
16 PINS
16 PINS
16 PINS
73
67
64
108
°C/W
UNIT
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case (top) thermal resistance
36
54
n/a
33.6
°C/W
RθJB
Junction-to-board thermal resistance
n/a
n/a
n/a
51.9
°C/W
ψJT
Junction-to-top characterization parameter
n/a
n/a
n/a
2.1
°C/W
ψJB
Junction-to-board characterization parameter
n/a
n/a
n/a
51.4
°C/W
(1)
4
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Submit Documentation Feedback
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
6.5 Electrical Characteristics: ULN2002A
TA = 25°C
PARAMETER
TEST FIGURE
VI(on)
ON-state input voltage
Figure 14
VCE = 2 V,
VOH
High-level output voltage after
switching
Figure 18
VS = 50 V, IO = 300 mA
VCE(sat)
Collector-emitter saturation
voltage
Figure 12
VF
Clamp forward voltage
ICEX
Collector cutoff current
ULN2002A
TEST CONDITIONS
MIN
TYP
IC = 300 mA
13
mV
IC = 100 mA
0.9
1.1
II = 350 μA,
IC = 200 mA
1
1.3
II = 500 μA,
IC = 350 mA
1.2
1.6
Figure 15
IF = 350 mA
Figure 9
VCE = 50 V,
II = 0
50
Figure 10
VCE = 50 V,
TA = 70°C
II = 0
100
VI = 6 V
500
IC = 500 μA
OFF-state input current
Figure 10
VCE = 50 V,
II
Input current
Figure 11
VI = 17 V
IR
Clamp reverse current
Figure 14
Ci
Input capacitance
VR = 50 V
1.7
50
V
2
V
μA
65
μA
0.82
1.25
TA = 70°C
mA
100
VR = 50 V
VI = 0,
V
VS – 20
II = 250 μA,
II(off)
UNIT
MAX
μA
50
f = 1 MHz
25
pF
6.6 Electrical Characteristics: ULN2003A and ULN2004A
TA = 25°C
TEST
FIGURE
PARAMETER
TEST CONDITIONS
ULN2003A
MIN
TYP
ULN2004A
MAX
MIN
TYP
IC = 125 mA
VI(on)
ON-state input
voltage
Figure 14
VCE = 2 V
2.4
IC = 250 mA
2.7
6
IC = 275 mA
7
Figure 18
VCE(sat)
Collector-emitter
saturation voltage
Figure 13
ICEX
Collector cutoff
current
VS = 50 V, IO = 300 mA
8
VS – 20
VS – 20
IC = 100 mA
0.9
1.1
0.9
1.1
II = 350 μA,
IC = 200 mA
1
1.3
1
1.3
II = 500 μA,
IC = 350 mA
1.2
1.6
1.2
1.6
Figure 9
VCE = 50 V,
II = 0
50
50
Figure 10
VCE = 50 V,
TA = 70°C
II = 0
100
100
Clamp forward
voltage
Figure 16
IF = 350 mA
II(off)
Off-state input
current
Figure 11
VCE = 50 V,
TA = 70°C,
II
Input current
Figure 12
VI = 6 V
IC = 500 μA
50
2
65
0.93
1.7
50
Ci
Input capacitance
Figure 15
VR = 50 V
VR = 50 V
TA = 70°C
VI = 0,
f = 1 MHz
Copyright © 1976–2019, Texas Instruments Incorporated
μA
15
2
65
V
μA
1.35
VI = 5 V
VI = 12 V
Clamp reverse
current
V
500
1.7
VI = 3.85 V
IR
mV
II = 250 μA,
VF
V
3
IC = 350 mA
VOH
UNIT
5
IC = 200 mA
IC = 300 mA
High-level output
voltage after
switching
MAX
0.35
0.5
1
1.45
50
50
100
100
25
15
25
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
mA
μA
pF
5
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
6.7 Electrical Characteristics: ULN2003AI
TA = 25°C
PARAMETER
VI(on)
VOH
VCE(sat)
ON-state input voltage
High-level output voltage after
switching
Collector-emitter saturation voltage
TEST FIGURE
Figure 14
Figure 18
Figure 13
ULN2003AI
TEST
CONDITIONS
VCE = 2 V
MIN
2.4
IC = 250 mA
2.7
IC = 300 mA
3
II = 250 μA,
IC = 100 mA
II = 350 μA,
II = 500 μA,
II = 0
Collector cutoff current
Figure 9
VCE = 50 V,
VF
Clamp forward voltage
Figure 16
IF = 350 mA
II(off)
OFF-state input current
Figure 11
VCE = 50 V,
II
Input current
Figure 12
VI = 3.85 V
IR
Clamp reverse current
Figure 15
VR = 50 V
Ci
Input capacitance
VI = 0,
MAX
IC = 200 mA
VS = 50 V, IO = 300 mA
ICEX
TYP
VS – 50
1.1
IC = 200 mA
1
1.3
IC = 350 mA
1.2
1.6
1.7
50
15
V
50
μA
2
V
65
0.93
f = 1 MHz
V
mV
0.9
IC = 500 μA
UNIT
μA
1.35
mA
50
μA
25
pF
6.8 Electrical Characteristics: ULN2003AI
TA = –40°C to 105°C
PARAMETER
VI(on)
VOH
VCE(sat)
ON-state input voltage
High-level output voltage after
switching
Collector-emitter saturation voltage
TEST FIGURE
Figure 14
Figure 18
Figure 13
TEST CONDITIONS
VCE = 2 V
II = 0
Figure 9
VCE = 50 V,
IF = 350 mA
II(off)
OFF-state input current
Figure 11
VCE = 50 V,
II
Input current
Figure 12
VI = 3.85 V
IR
Clamp reverse current
Figure 15
VR = 50 V
Ci
Input capacitance
Submit Documentation Feedback
3
II = 500 μA,
Figure 16
6
2.9
IC = 300 mA
II = 350 μA,
Clamp forward voltage
VI = 0,
MAX
2.7
IC = 100 mA
Collector cutoff current
TYP
IC = 250 mA
II = 250 μA,
VF
MIN
IC = 200 mA
VS = 50 V, IO = 300 mA
ICEX
ULN2003AI
VS – 50
1.2
IC = 200 mA
1
1.4
IC = 350 mA
1.2
1.7
1.7
30
15
V
100
μA
2.2
V
1.35
mA
100
μA
25
pF
65
0.93
f = 1 MHz
V
mV
0.9
IC = 500 μA
UNIT
μA
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
6.9 Electrical Characteristics: ULQ2003A and ULQ2004A
over recommended operating conditions (unless otherwise noted)
TEST
FIGURE
PARAMETER
TEST CONDITIONS
ULQ2003A
MIN
TYP
ULQ2004A
MAX
MIN
TYP
MAX
IC = 125 mA
ON-state input
voltage
VI(on)
Figure 14
VCE = 2 V
5
IC = 200 mA
2.7
IC = 250 mA
2.9
6
IC = 275 mA
7
IC = 300 mA
High-level output
voltage after
switching
VCE(sat)
Collector-emitter
saturation voltage
Collector cutoff
current
ICEX
Figure 18
VS = 50 V, IO = 300 mA
8
VS – 50
II = 350 μA,
II = 500 μA,
Figure 9
VCE = 50 V,
II = 0
Figure 10
VCE = 50 V,
TA = 70°C
II = 0
100
VI = 6 V
500
Clamp forward
voltage
Figure 16
IF = 350 mA
II(off)
OFF-state input
current
Figure 11
VCE = 50 V,
TA = 70°C,
0.9
1.2
IC = 200 mA
1
IC = 350 mA
1.2
Figure 12
0.9
1.1
1.4
1
1.3
1.7
1.2
1.6
100
1.7
IC = 500 μA
VI = 3.85 V
Input current
mV
IC = 100 mA
VF
II
VS – 50
II = 250 μA,
Figure 13
2.3
1.7
65
0.93
Clamp reverse
current
Ci
Input capacitance
Figure 15
50
TA = 25°C
VR = 50 V
VI = 0,
f = 1 MHz
15
2
65
μA
V
μA
1.35
VI = 5 V
VR = 50 V
V
50
0.35
0.5
1
1.45
VI = 12 V
IR
V
3
IC = 350 mA
VOH
UNIT
100
50
100
100
25
15
25
mA
μA
pF
6.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A
TA = 25°C
PARAMETER
TEST CONDITIONS
ULN2002A, ULN2003A,
ULN2004A
MIN
TYP
MAX
UNIT
tPLH
Propagation delay time, low- to high-level output
See Figure 17
0.25
1
μs
tPHL
Propagation delay time, high- to low-level output
See Figure 17
0.25
1
μs
6.11 Switching Characteristics: ULN2003AI
TA = 25°C
PARAMETER
TEST CONDITIONS
ULN2003AI
MIN
TYP
MAX
UNIT
tPLH
Propagation delay time, low- to high-level output
See Figure 17
0.25
1
μs
tPHL
Propagation delay time, high- to low-level output
See Figure 17
0.25
1
μs
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
7
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
6.12 Switching Characteristics: ULN2003AI
TA = –40°C to 105°C
PARAMETER
ULN2003AI
TEST CONDITIONS
MIN
TYP
MAX
UNIT
tPLH
Propagation delay time, low- to high-level output
See Figure 17
1
10
μs
tPHL
Propagation delay time, high- to low-level output
See Figure 17
1
10
μs
6.13 Switching Characteristics: ULQ2003A, ULQ2004A
over recommended operating conditions (unless otherwise noted)
PARAMETER
ULQ2003A, ULQ2004A
TEST CONDITIONS
MIN
TYP
MAX
UNIT
tPLH
Propagation delay time, low- to high-level output
See Figure 17
1
10
μs
tPHL
Propagation delay time, high- to low-level output
See Figure 17
1
10
μs
VCE(sat)
VCE(sat) - Collector-Emitter Saturation Voltage - V
2.5
TA = 25°C
2
II = 250 µA
II = 350 µA
II = 500 µA
1.5
1
0.5
0
0
100
200
300
400
500
600
700
IC - Collector Current - mA
Figure 1. Collector-Emitter Saturation Voltage
vs Collector Current (One Darlington)
8
Submit Documentation Feedback
800
VCE(sat)
VCE(sat) - Collector-Emitter Saturation Voltage - V
6.14 Typical Characteristics
2.5
TA = 25°C
II = 250 µA
2
II = 350 µA
1.5
II = 500 µA
1
0.5
0
0
100
200
300
400
500
600
700
800
IC(tot) - Total Collector Current - mA
Figure 2. Collector-Emitter Saturation Voltage
vs Total Collector Current (Two Darlingtons in Parallel)
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
Typical Characteristics (continued)
600
500
450
IIC
C - Maximum Collector Current - mA
RL = 10 Ω
TA = 25°C
IC
IC - Collector Current - mA
400
VS = 10 V
350
VS = 8 V
300
250
200
150
100
50
0
500
N=1
400
N=4
N=3
300
N=2
N=6
200 N = 7
N=5
100
TA = 70°C
N = Number of Outputs
Conducting Simultaneously
0
25
0
50
75
100
125
150
200
175
0
10
20
30
40
II - Input Current - µA
50
60
70
80
90 100
Duty Cycle - %
Figure 3. Collector Current vs Input Current
Figure 4. D Package Maximum Collector Current
vs Duty Cycle
600
2000
TJ = -40°C to 105°C
IIC
C - Maximum Collector Current - mA
1800
500
400
N=4
300
N=5
N=6
N=7
1600
Input Current – µA
N=1
N=3
N=2
200
1200
1000
Maximum
800
600
100
0
1400
400
TA = 85°C
N = Number of Outputs
Conducting Simultaneously
0
10
20
30
40
50
60
70
Typical
200
80
0
90 100
2
2.5
3
3.5
4
Input Voltage – V
Duty Cycle - %
4.5
5
Figure 6. Maximum and Typical Input Current
vs Input Voltage
Figure 5. N Package Maximum Collector Current
vs Duty Cycle
500
2.1
V CE = 2 V
TJ = -40°C to 105°C
TJ = -40°C to 105°C
450
400
Output Current – mA
Maximum VCE(sat) Voltage – V
1.9
1.7
1.5
Maximum
1.3
350
300
250
Minimum
200
1.1
150
Typical
0.9
100
200
300
400
500
Output Current – mA
Figure 7. Maximum and Typical Saturated VCE
vs Output Current
Copyright © 1976–2019, Texas Instruments Incorporated
100
250
350
450
550
650
Input Current – µA
Figure 8. Minimum Output Current vs Input Current
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
9
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
7 Parameter Measurement Information
Open
Open
VCE
ICEX
VCE
ICEX
Open
VI
Figure 9. ICEX Test Circuit
Open
Figure 10. ICEX Test Circuit
Open
VCE
II(off)
II(on)
IC
Open
VI
Figure 11. II(off) Test Circuit
Figure 12. II Test Circuit
II is fixed for measuring VCE(sat), variable for measuring hFE.
Open
hFE =
IC
II
VCE
II
Open
Figure 13. hFE, VCE(sat) Test Circuit
VI(on)
IC
VCE
IC
Figure 14. VI(on) Test Circuit
VR
IR
VF
IF
Open
Open
Figure 15. IR Test Circuit
10
Submit Documentation Feedback
Figure 16. VF Test Circuit
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
Parameter Measurement Information (continued)
200 W
≤10 ns
≤5 ns
Figure 17. Propagation Delay-Time Waveforms
90%
1.5 V
Input
VIH
(see Note C)
90%
1.5 V
10%
10%
40 µs
0V
VOH
Output
VOL
VOLTAGE WAVEFORMS
For testing the ULN2003A device, ULN2003AI device, and
ULQ2003A devices, VIH = 3 V; for the ULN2002A device, VIH = 13
V; for the ULN2004A and the ULQ2004A devices, VIH = 8 V.
Figure 18. Latch-Up Test Circuit and Voltage Waveforms
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
11
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
8 Detailed Description
8.1 Overview
This standard device has proven ubiquity and versatility across a wide range of applications. This is due to
integration of 7 Darlington transistors of the device that are capable of sinking up to 500 mA and wide GPIO
range capability.
The ULN2003A device comprises seven high-voltage, high-current NPN Darlington transistor pairs. All units
feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain
suppression diodes for inductive loads. The ULN2003A device has a series base resistor to each Darlington pair,
thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2003A
device offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and
LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by
paralleling the outputs.
This device can operate over a wide temperature range (–40°C to 105°C).
8.2 Functional Block Diagrams
All resistor values shown are nominal. The collector-emitter diode is a parasitic structure and should not be used
to conduct current. If the collectors go below GND, an external Schottky diode should be added to clamp
negative undershoots.
COM
7V
Output C
10.5 NŸ
Input B
7.2 NŸ
E
3 NŸ
Figure 19. ULN2002A Block Diagram
COM
Output C
RB
2.7 NŸ
Input B
Output C
RB
10.5 NŸ
Input B
7.2 NŸ
3 NŸ
E
Figure 20. ULN2003A, ULQ2003A and ULN2003AI
Block Diagram
12
COM
Submit Documentation Feedback
7.2 NŸ
3 NŸ
E
Figure 21. ULN2004A and LQ2004A Block Diagram
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
8.3 Feature Description
Each channel of the ULN2003A device consists of Darlington connected NPN transistors. This connection
creates the effect of a single transistor with a very high-current gain (β2). This can be as high as 10,000 A/A at
certain currents. The very high β allows for high-output current drive with a very low input current, essentially
equating to operation with low GPIO voltages.
The GPIO voltage is converted to base current through the 2.7-kΩ resistor connected between the input and
base of the predriver Darlington NPN. The 7.2-kΩ and 3-kΩ resistors connected between the base and emitter of
each respective NPN act as pulldowns and suppress the amount of leakage that may occur from the input.
The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an
inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the
coils causes a reverse current to flow into the coil supply through the kick-back diode.
In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diodes are
forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device
pins.
8.4 Device Functional Modes
8.4.1 Inductive Load Drive
When the COM pin is tied to the coil supply voltage, ULN2003A device is able to drive inductive loads and
suppress the kick-back voltage through the internal free-wheeling diodes.
8.4.2 Resistive Load Drive
When driving a resistive load, a pullup resistor is needed in order for ULN2003A device to sink current and for
there to be a logic high level. The COM pin can be left floating for these applications.
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
13
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
Typically, the ULN2003A device drives a high-voltage or high-current (or both) peripheral from an MCU or logic
device that cannot tolerate these conditions. This design is a common application of ULN2003A device, driving
inductive loads. This includes motors, solenoids and relays. Figure 22 shows a model for each load type.
9.2 Typical Application
ULN2003A
3.3-V Logic
3.3-V Logic
IN1
OUT1
IN2
OUT2
IN3
OUT3
IN4
OUT4
VSUP
3.3-V Logic
IN5
OUT5
IN6
OUT6
IN7
OUT7
GND
COM
VSUP
Figure 22. ULN2003A Device as Inductive Load Driver
9.2.1 Design Requirements
For this design example, use the parameters listed in Table 1 as the input parameters.
Table 1. Design Parameters
DESIGN PARAMETER
14
Submit Documentation Feedback
EXAMPLE VALUE
GPIO voltage
3.3 V or 5 V
Coil supply voltage
12 V to 48 V
Number of channels
7
Output current (RCOIL)
20 mA to 300 mA per channel
Duty cycle
100%
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
9.2.2 Detailed Design Procedure
When using ULN2003A device in a coil driving application, determine the following:
• Input voltage range
• Temperature range
• Output and drive current
• Power dissipation
9.2.2.1 Drive Current
The coil voltage (VSUP), coil resistance (RCOIL), and low-level output voltage (VCE(SAT) or VOL) determine the coil
current.
ICOIL = (VSUP – VCE(SAT)) / RCOIL
(1)
9.2.2.2 Low-Level Output Voltage
The low-level output voltage (VOL) is the same as VCE(SAT) and can be determined by, Figure 1, Figure 2, or
Figure 7.
9.2.2.3 Power Dissipation and Temperature
The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils
driven can be determined by Figure 4 or Figure 5.
For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003A
device on-chip power dissipation PD:
N
PD = å VOLi ´ ILi
i=1
where
•
•
N is the number of channels active together
VOLi is the OUTi pin voltage for the load current ILi. This is the same as VCE(SAT)
(2)
To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must be lower that or
equal to the maximum allowable power dissipation (PD(MAX)) dictated by below equation Equation 3.
PD MAX
TJ MAX
TA
TJA
where
•
•
•
TJ(max) is the target maximum junction temperature
TA is the operating ambient temperature
RθJA is the package junction to ambient thermal resistance
(3)
Limit the die junction temperature of the ULN2003A device to less than 125°C. The IC junction temperature is
directly proportional to the on-chip power dissipation.
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
15
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
9.2.3 Application Curves
13
12
11
10
9
8
7
6
5
4
3
2
1
0
-0.004
14
12
Output voltage - V
Output voltage - V
The characterization data shown in Figure 23 and Figure 24 were generated using the ULN2003A device driving
an OMRON G5NB relay and under the following conditions: VIN = 5 V, VSUP= 12 V, and RCOIL= 2.8 kΩ.
8
6
4
2
0
0.004
0.008
Time (s)
0.012
0
-0.004
0.016
D001
Figure 23. Output Response With Activation of Coil
(Turnon)
16
10
Submit Documentation Feedback
0
0.004
0.008
Time (s)
0.012
0.016
D001
Figure 24. Output Response With De-activation of Coil
(Turnoff)
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
9.3 System Examples
ULN2002A
VSS
V
16
1
16
2
15
2
15
3
14
3
14
4
4
13
13
5
12
6
11
7
10
8
9
12
6
11
7
10
8
9
Lam
Test
TTL
Output
Figure 25. P-MOS to Load
ULN2004A
ULQ2004A
VDD
V
1
5
P-MOS
Output
ULQ2003A
VCC
Figure 26. TTL to Load
VCC
V
V
ULQ2003A
1
16
1
16
2
15
2
15
3
14
3
14
4
13
4
13
5
12
5
12
6
11
6
11
7
10
7
10
8
9
8
9
RP
CMOS
Output
TTL
Output
Figure 27. Buffer for Higher Current Loads
Copyright © 1976–2019, Texas Instruments Incorporated
Figure 28. Use of Pullup Resistors to Increase
Drive Current
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
17
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
www.ti.com
10 Power Supply Recommendations
This device does not need a power supply. However, the COM pin is typically tied to the system power supply.
When this is the case, it is very important to ensure that the output voltage does not heavily exceed the COM pin
voltage. This discrepancy heavily forward biases the fly-back diodes and causes a large current to flow into
COM, potentially damaging the on-chip metal or over-heating the device.
11 Layout
11.1 Layout Guidelines
Thin traces can be used on the input due to the low-current logic that is typically used to drive ULN2003A device.
Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick
traces for the output to drive whatever high currents that may be needed. Wire thickness can be determined by
the current density of the trace material and desired drive current.
Because all of the channels currents return to a common emitter, it is best to size that trace width to be very
wide. Some applications require up to 2.5 A.
11.2 Layout Example
GND
1B
2B
1
2
16
15
1C
2C
3B
3
14
3C
4B
5B
4
13
12
4C
5C
6B
5
6
11
6C
7B
7
8
10
9
7C
E
VCOM
Figure 29. Package Layout
18
Submit Documentation Feedback
Copyright © 1976–2019, Texas Instruments Incorporated
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
ULN2002A, ULN2003A, ULN2003AI
ULQ2003A, ULN2004A, ULQ2004A
www.ti.com
SLRS027P – DECEMBER 1976 – REVISED AUGUST 2019
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation, see the following:
SN7546x Darlington Transistor Arrays, SLRS023
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 2. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
ULN2002A
Click here
Click here
Click here
Click here
Click here
ULN2003A
Click here
Click here
Click here
Click here
Click here
ULN2003AI
Click here
Click here
Click here
Click here
Click here
ULN2004A
Click here
Click here
Click here
Click here
Click here
ULQ2003A
Click here
Click here
Click here
Click here
Click here
ULQ2004A
Click here
Click here
Click here
Click here
Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser based versions of this data sheet, refer to the left hand navigation.
Copyright © 1976–2019, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A
19
PACKAGE OPTION ADDENDUM
www.ti.com
14-Aug-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
ULN2002AN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 70
ULN2002AN
ULN2002ANE4
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 70
ULN2002AN
ULN2003AD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ADE4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ADR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ADRE4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ADRG3
ACTIVE
SOIC
D
16
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ADRG4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003AID
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIDE4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIDG4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIDRE4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIDRG4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
-40 to 105
ULN2003AIN
ULN2003AINE4
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 105
ULN2003AIN
ULN2003AINSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
ULN2003AI
ULN2003AIPW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
UN2003AI
ULN2003AIPWR
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 105
UN2003AI
ULN2003AIPWRG4
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 105
UN2003AI
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
14-Aug-2021
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
ULN2003AN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
-40 to 70
ULN2003AN
ULN2003ANE4
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 70
ULN2003AN
ULN2003ANS
ACTIVE
SO
NS
16
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ANSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ANSRE4
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003ANSRG4
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
ULN2003A
ULN2003APW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
UN2003A
ULN2003APWG4
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
UN2003A
ULN2003APWR
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 70
UN2003A
ULN2003APWRG4
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 70
UN2003A
ULN2004AD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004ADE4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004ADG4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004ADR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004ADRE4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004ADRG4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULN2004AN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 70
ULN2004AN
ULN2004ANE4
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 70
ULN2004AN
ULN2004ANSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 70
ULN2004A
ULQ2003AD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
ULQ2003A
ULQ2003ADG4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
Addendum-Page 2
ULQ2003A
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
14-Aug-2021
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
ULQ2003ADR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
ULQ2003A
ULQ2003ADRG4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
ULQ2003AN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
ULQ2003A
ULQ2004AD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
ULQ2004A
ULQ2004ADG4
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
ULQ2004ADR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
ULQ2004ADRG4
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
ULQ2004AN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
ULQ2003A
ULQ2004A
-40 to 85
ULQ2004A
ULQ2004A
-40 to 85
ULQ2004AN
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of