0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VSP2264GSJR

VSP2264GSJR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    96-TFBGA

  • 描述:

    IC VIDEO CCD SIGNAL PROC 96BGA

  • 数据手册
  • 价格&库存
VSP2264GSJR 数据手册
                   Data Manual March 2003 Mixed Signal Products SLES059 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2003, Texas Instruments Incorporated Contents Contents Section 1 2 3 Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Package/Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Timing Generator (TG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Correlated Double Sampler (CDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Input Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 14-Bit A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Digital Programmable-Gain Amplifier (DPGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.8 AFE Operating Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.9 Black-Level Clamp Loop and 10-Bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.10 Preblanking and Data Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.11 Power-Save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.12 Additional Output Delay Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.13 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.14 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.15 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.16 TG Vertical-Rate Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.16.1 Frame Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.16.2 Monitor Mode Operation (5A CCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.17 Still Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.17.1 Operation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.17.2 Operation Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.18 Readout Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.18.1 Operation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.18.2 Operation Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.19 Power-Save-1 Function Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.19.1 Operation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.19.2 Operation Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.20 Power-Save-2 Function Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.20.1 Operation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.20.2 Operation Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.21 TG Pixel-Rate Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.21.1 High-Speed Pulse Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.21.2 Default Timing Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.22 High-Speed Clock Timing Adjustable Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.22.1 ADCCK Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.22.2 SHP, SHD, PBLK, CLPOB, and CLPDM Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.22.3 H1, HL, H2, and R Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Serial Interface Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 March 2003 SLES059 iii Contents 3.1 3.2 4 5 6 iv Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 PGA Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 AFE Standby Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Operation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 Function Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 E-Shutter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.7 VDHD Polarity Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.8 SUBSW Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.9 V-Transfer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.10 H1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.11 H2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.12 R Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.13 SHP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.14 SHD Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.15 ADCCK Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.16 ADCCK2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.17 Test AFE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 HD-MCLK Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 VD-HD Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 High-Speed Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Horizontal Timing Chart (for 5A CCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Vertical Timing Chart (for 5A CCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Vertical High-Speed Transfer Timing Chart (for 5A CCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Vertical Rate CPOB Timing Chart (for 5A CCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Vertical Rate Timing (for 5A CCD) [frame mode—odd field] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Vertical Rate Timing (for 5A CCD) [frame mode—even field] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Vertical Rate Timing (for 5A CCD) [frame mode—still function—odd field] . . . . . . . . . . . . . . . . . . . . . 4.11 Vertical Rate Timing (for 5A CCD) [frame mode—still function—even field] . . . . . . . . . . . . . . . . . . . . 4.12 Vertical Rate Timing (for 5A CCD) [frame mode—still function turnoff] . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 Vertical Rate Timing (for 5A CCD) [monitor mode] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14 Vertical Rate Timing (for 5A CCD) [frame mode—long integration function] . . . . . . . . . . . . . . . . . . . . 4.15 Vertical Rate Timing (for 5A CCD) [monitor mode—long integration function] . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . 5.2 Electrical Characteristics, All Specifications at TA = 25°C, All Power Supply Voltages = 3 V, and Conversion Rate = 20 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SLES059 26 27 28 28 29 29 30 30 31 31 31 32 32 32 33 33 34 34 34 35 35 36 37 38 40 42 43 43 44 45 46 47 48 49 50 51 51 51 55 March 2003 List of Illustrations List of Illustrations Figure 2–1 2–2 2–3 2–4 2–5 2–6 2–7 Title Page VSP2264 High-Speed Clock Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VSP2264 Line and Pixel Counter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VSP2264 Vertical-Rate Timing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 VSP2264 AFE Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CDS and Input Clamp Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PGA Gain Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Digital PGA and Black-Level Clamp Loop Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 List of Tables Table Title Page 2–1 Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 March 2003 SLES059 v List of Tables vi SLES059 March 2003 Introduction 1 Introduction 1.1 Description The VSP2264 is a complete mixed-signal IC for CCD signal processing with a CCD timing generator and A/D converter. The system synchronizes the master clock, HD, and VD. The VSP2264 supports all signal terminals that the CCD and the vertical driver require. The R driver and H driver synchronize the A/D converter clock phase to realize ideal performance. The CCD channel has correlated double sampling (CDS) to extract image information from the CCD output signal. The digital control gain curve is linear in dB, ranging from –6 dB to 42 dB. A black-level clamping circuit ensures black reference level accuracy and speeds black-level recovery after a gain change. Input signal clamping with a CDS offset adjustment function is available. 1.2 Features The VSP2264 supports the following features: • CCD Signal Processing: – Correlated Double Sampling (CDS) – Programmable Black-Level Clamping • Timing Generator With R and H Drivers • Programmable Phase Control: – Fine Step: 0.6 ns – Wide Step: 8 ns • Programmable Gain Amplifier (PGA): –6 dB to 42 dB Gain Range • 12-Bit Digital Data Output: – Up to 25-MHz Conversion Rate – No Missing Codes • Signal-to-Noise Ratio: 79 dB • Portable Operation: • – Low Voltage: 3.0 V to 3.6 V – Low Power: 130 mW at 3.0 V and 20 MHz – Standby Plus Power Save-Mode: 39 mW – MCLK-Off Mode: 6 mW Recommended CCD: MN39594 (Panasonic) SLES059—March 2003 VSP2264 1 Introduction 1.3 Block Diagram SOUT SDATA SLOAD SCLK HD VD SYSRST VDD TPD TPP ADCCK VDD V-PULSE Serial Interface TG H-Driver H-PULSE R-Driver R MCLK CLPDM CLPOB ADCCK PBLK SHP SHD FINDX SUBSW Optical Black (OB) Level Clamping Input Clamp CCDIN Timing Control Correlated Double Sampling (CDS) Programmable Gain Amp. (PGA) –6 dB to 42 dB CCD Output Signal VSP2264 and Analog-to-Digital Converter Output Latch 12-Bit Digital Output B[11:0] Reference Voltage Generator COB 2 Pre-Blanking BYPP2 BYP BYPM REFN CM REFP BYPD VSS SLES059—March 2003 Introduction 1.4 1.5 Terminal Assignments 1 2 3 4 5 6 7 8 9 10 A BYP2 BYP (NC) CCDIN AVDD DVSS DVSS DVSS (NC) (NC) B BYPM COB (NC) AVDD AVSS DVDD DVDD DVDD DVSS H1 C CM AVDD AVSS (NC) AVSS MCLK BYPD SYSRST DVDD DVDD D REFP REFN (NC) (NC) (NC) (NC) (NC) H2 DVSS DVSS E AVDD AVSS AVSS (NC) (NC) R HL DVDD F TPD TPP DVSS (NC) (NC) (NC) SUBSW SUB G DVDD (NC) SLOAD (NC) (NC) (NC) (NC) V2 V3 V4 H SDATA SCLK B9 B6 B3 FINDX HD (NC) CH4 V1 J SOUT ADCCK B8 B5 B1 B0 DVSS DVDD CH1 CH3 K B11 B10 B7 B4 B2 (NC) DVDD VD DVSS CH2 Package/Ordering Information PRODUCT PACKAGE PACKAGE CODE OPERATION TEMPERATURE RANGE PACKAGE MARKING VSP2264GSJ BGA 96 GSJ –25°C 25°C to 85°C VSP2264 SLES059—March 2003 ORDERING NUMBER TRANSPORT MEDIA VSP2264GSJ 168-piece tray VSP2264GSJR Tape and reel VSP2264 3 Introduction 1.6 Terminal Functions TERMINAL TYPE† DESCRIPTIONS NAME NO. ADCCK J2 DO AVDD A5, B4, C2, E1 P Analog power supply AVSS B5, C3, C5, E2, E3 P Analog ground B0 J6 DO A/D converter output, bit 0 B1 J5 DO A/D converter output, bit 1 B2 K5 DO A/D converter output, bit 2 B3 H5 DO A/D converter output, bit 3 B4 K4 DO A/D converter output, bit 4 B5 J4 DO A/D converter output, bit 5 B6 H4 DO A/D converter output, bit 6 B7 K3 DO A/D converter output, bit 7 B8 J3 DO A/D converter output, bit 8 B9 H3 DO A/D converter output, bit 9 B10 K2 DO A/D converter output, bit 10 B11 K1 DO A/D converter output, bit 11 BYP A2 AO BYP2 A1 AO Internal reference C (bypass to ground)¶ Internal reference P (bypass to ground)§ BYPD C7 AO Bypass BYPM B1 AO Internal reference N (bypass to ground)‡ CCDIN A4 AI CCD signal input CH1 J9 DO Readout pulse 1 CH2 K10 DO Readout pulse 2 CH3 J10 DO Readout pulse 3 CH4 H9 DO Readout pulse 4 CM C1 AO A/D converter common-mode voltage (bypass to ground)¶ Optical black clamp loop reference (bypass to ground)‡ COB Clock for digital output buffer B2 AO DVDD B6, B7, B8, C9, C10, E10, G1, J8, K7 P Digital power supply DVSS A6, A7, A8, B9, D9, D10, F3, J7, K9 P Digital ground FINDX H6 DO Field index H1 B10 DO CCD horizontal driver 1 H2 D8 DO CCD horizontal driver 2 HD H7 DI HD input HL E9 DO H1 last pulse MCLK C6 DI Master clock input A3, A9, A10, B3, C4, D3, D4, D5, D6, D7, E4, E7, F4, F7, F8, G2, G4, G5, G6, G7, H8, K6 — No connection NC R E8 DO CCD reset driver † Designators in TYPE column: P–Power supply and ground, DI–Digital input, DO–Digital output, AI–Analog input, AO–Analog output ‡ Should be connected to ground with a bypass capacitor. A value of 0.1 µF to 0.22 µF is recommended; however, it depends on the application environment. See the Black Level Clamp Loop and 10-Bit DAC (Section 2.9) for details. § Should be connected to ground with a bypass capacitor. A value of 400 pF to 1000 pF is recommended; however, it depends on the application environment. See Voltage Reference (Section 2.13) for details. ¶ Should be connected to ground with a bypass capacitor (0.1 µF). See Voltage Reference (Section 2.13) for details. 4 VSP2264 SLES059—March 2003 Introduction TERMINAL TYPE† DESCRIPTIONS NAME NO. REFN D2 AO REFP D1 AO A/D converter negative voltage (bypass to ground)¶ A/D converter positive voltage (bypass to ground)¶ SCLK H2 DI Clock for serial-data shift SDATA H1 DI Serial-data input SLOAD G3 DI Serial-data latch signal SOUT J1 DO Serial-data monitor out F10 DO CCD substrate pulse SUBSW F9 DO CCD substrate bias control SYSRST C8 DI System reset TPD F1 DI/O SHD, CLPD TPP F2 DI/O SHP, CPOB, PBLK V1 H10 DO V1 pulse V2 G8 DO V2 pulse V3 G9 DO V3 pulse V4 G10 DO V4 pulse SUB VD K8 DI VD input † Designators in TYPE column: P–Power supply and ground, DI–Digital input, DO–Digital output, AI–Analog input, AO–Analog output ¶ Should be connected to ground with a bypass capacitor (0.1 µF). See Voltage Reference (Section 2.13) for details. SLES059—March 2003 VSP2264 5 Introduction 6 VSP2264 SLES059—March 2003 Theory of Operation 2 Theory of Operation 2.1 Introduction The VSP2264 is a high-resolution mixed-signal IC that contains key features associated with the processing of the CCD signal in a digital still camera (DSC). The VSP2264 integrates the analog front end (AFE) and CCD timing generator (TG) with the H and R drivers. The AFE block includes a correlated double sampler (CDS), 14-bit analog-to-digital converter (ADC), digital gain amplifier, black-level clamp loop, input clamp, CDS timing generator, and voltage reference. The built-in TG generates not only horizontal (H-rate) timing, but also vertical (V-rate) timing for the specified CCD model. Optimized timing is generated by selecting the CCD model and operating mode through the serial interface. 2.2 Timing Generator (TG) The TG generates both H-rate timing and V-rate timing. Figure 2–1 shows a high-speed timing block of the TG. This part generates six high-speed pulses for H-rate timing such as R, H1 and HL/H2, SHP/SHD, and ADCCK. These high-speed pulses are generated from the master clock, which has a speed of twice the pixel rate. The serial interface sets the amount of phase adjustment for these high-speed pulses in 16 steps (8 steps for R) with a minimum 0.6-ns pitch (four steps of 0.6 ns and four steps of 1.2 ns for R). The power mode controls the output driver enable/disable. An on-chip decoder calculates H clear according to the CCD model and operating mode. H1, HL, H2, and R can drive the CCD directly. The ADCCK, SHP, and SHD, signals support both the internal generation mode and the external supply mode. SLES059—March 2003 VSP2264 7 Theory of Operation MCLK 1/2 24 MHz to 50 MHz 12 MHz to 25 MHz Phase Adjust CLKO I/O Phase Adjust 64 Steps AFE Block ADCCK I/O Phase Adjust 16 Steps SHP I/O Phase Adjust 16 Steps SHD I/O Phase Adjust 8 Steps R F/F Power Save I/O Phase Adjust 16 Steps F/F H Clear Power Save H1, HL I/O Phase Adjust 16 Steps F/F H2 Figure 2–1. VSP2264 High-Speed Clock Block Diagram 8 VSP2264 SLES059—March 2003 Theory of Operation An on-chip V-rate timing generator creates all the signals that are required for specific CCD image sensors. The TG contains the line and pixel counters used to generate V-rate timing. Figure 2–2 is the block diagram of the line and pixel counter circuit. A maximum 2047 lines and 4095 pixels per line are supported in time scale. F/F SYSRST VD HD RST Decoder 11 Bit Line Counter (MAX 2047 Lines) clk H[10:0] F/F RST MCLK Pixel Counter (MAX 4095 Pixels) clk 13 Bit P[12:0] Figure 2–2. VSP2264 Line and Pixel Counter Block Diagram Figure 2–3 shows a V-rate timing generator block diagram. By one H (horizontal line) before CCD readout, serial data transfer must be completed by the user, and data must be loaded in the registers containing CCD model, operation mode, integration time, and electronic zoom area information. Just before CCD readout, information in the registers is supplied automatically to the decoder, which generates the V-rate signal using line counter and pixel counter data. Not only the signals used for the CCD, but also the strobe light control signal is supported. The CPOB, CLPD, and PBLK signals support both the internal generation mode and the external supply mode. SLES059—March 2003 VSP2264 9 Theory of Operation H[10:0] P[12:0] Serial Data Register F/F 11 Bits 13 Bits Decoder Q J V1 Variables 11 Bits 13 Bits Decoder V2 K V3 Variables V4 F/F 11 Bits 13 Bits Decoder J Q CH1 Variables 11 Bits 13 Bits Decoder CH2 K CH3 Variables CH4 F/F 11 Bits 13 Bits Decoder J Q CLPDM Variables CLPOB 11 Bits Decoder K 13 Bits PBLK Variables SWSUB SUB Figure 2–3. VSP2264 Vertical-Rate Timing Block Diagram 10 VSP2264 SLES059—March 2003 Theory of Operation 2.3 Analog Front End Figure 2–4 shows a simplified AFE block diagram of the VSP2264. The AFE circuit includes the correlated double sampler (CDS), a 14-bit analog-to-digital converter (ADC), digital gain amplifier, black-level clamp loop, input clamp, CDS timing generator, and voltage reference. An off-chip emitter-follower buffer or preamplifier is needed between the CCD output and the VSP2264 CCDIN input. CPOB ADCCK CLPOB SYSRST Off Chip On Chip 10-Bit DAC CCD Input CDS Decoder 14-Bit ADC 12-Bit Output Output Register CLPD Input Clamp ADCCK PBLK SYSRST Figure 2–4. VSP2264 AFE Simplified Block Diagram 2.4 Correlated Double Sampler (CDS) The output signal of a CCD image sensor is sampled twice during one pixel period, once during the reference interval and again during the data interval. Subtracting these two samples extracts the video information of the pixel and removes noise which is low frequency—the kTC and CCD reset noise. Figure 2–5 is a block diagram of the CDS. The CDS is driven through an off-chip coupling capacitor CIN. (A 0.1-µF capacitor is recommended for CIN). AC coupling is highly recommended because the dc level of the CCD output signal is usually too high (several volts) for the CDS to work properly. The appropriate common-mode voltage for the CDS is around 0.5 V–1.5 V. The reference-level sampling is performed while SHP is active, and the voltage level is held on sampling capacitor C1 at the trailing edge of SHP. The data-level sampling is performed while SHD is active, and the voltage level is held on sampling capacitor C2 at the trailing edge of SHD. Then the subtraction of the two levels is performed by the switched-capacitor amplifier. The off-chip emitter follower or equivalent buffer must be able to drive more than 10 pF because the 10-pF sampling capacitor is seen at the input terminal. (Usually additional stray capacitance of a few pF is present.) The analog input signal range of the VSP2264 is about 1 Vp-p. SLES059—March 2003 VSP2264 11 Theory of Operation Off Chip On Chip SHP C1 CCD Input CIN + OPA _ C2 CLPD SHD SHP CM Figure 2–5. CDS and Input Clamp Block Diagram 2.5 Input Clamp The buffered CCD output is capacitively coupled to the VSP2264. The input clamp restores the dc component of the input signal which was lost with the ac-coupling and establishes the desired dc bias point for the CDS. Figure 2–5 also shows the block diagram of the input clamp. The input level is clamped to the internal reference voltage CM (1.5 V) during the dummy pixel interval. More specifically, the clamping function becomes active when both CLPD and SHP are active. 2.6 14-Bit A/D Converter The ADC uses a fully differential pipelined architecture of 1.5 bits per stage, which is well-suited for low-power, low-voltage, and high-speed applications. The ADC provides 14-bit resolution for the entire scale. The 1.5-bit-per-stage structure of the ADC is advantageous in realizing better linearity for a smaller signal level. Improved linearity occurs because large linearity errors tend to occur at specific points in the full scale, and the linearity improves for a signal level below any such specific point. 2.7 Digital Programmable-Gain Amplifier (DPGA) Figure 2–6 shows the characteristics of the DPGA gain. The DPGA provides a gain range of –6 dB to 42 dB, which is linear in dB. The gain, controlled by a digital code with 10-bit resolution, can be set through the serial interface; see the Serial Interface Timing Specification (Section 3) for details. The default value of the gain control code is 128 (PGA gain = 0 dB). After powering on, the gain control value is undetermined. For this reason, it must be set to an appropriate value by using the serial interface or reset to the default value by strobing the SYSRST terminal. 12 VSP2264 SLES059—March 2003 Theory of Operation GAIN vs INPUT CODE FOR GAIN CONTROL 50 40 Gain – dB 30 20 10 0 –10 0 100 200 300 400 500 600 700 800 900 1000 Input Code for Gain Control (0 to 1023) Figure 2–6. PGA Gain Characteristics PBLK ADCCK PWSV 14-Bit ADC CCDIN CDS Digital PGA Output Register 10-Bit Current DAC Decoder ADC To Output Buffer BYPP CLPOB COB Off Chip On Chip ADCCK PWSV CPOB Figure 2–7. Digital PGA and Black-Level Clamp Loop Block Diagram 2.8 AFE Operating Timing The CDS and the ADC are operated by SHP, SHD, and their derivative timing clocks are generated by the internal on-chip timing generator. The DPGA output register and decoder are operated by ADCCK. The digital output data is synchronized with ADCCK. The timing relationship between the CCD signal, SHP, SHD, ADCCK, and the output data is shown in the VSP2264 timing specification. CPOB activates the black-level clamp loop during the OB pixel interval and CLPD activates input clamping during the dummy pixel interval. SLES059—March 2003 VSP2264 13 Theory of Operation 2.9 Black-Level Clamp Loop and 10-Bit DAC To extract the video information correctly, the CCD signal must be referenced to a well-established black level. The VSP2264 has an auto-zero loop (calibration loop) to establish the black level using the CCD optical black (OB) pixels. Figure 2–7 shows the block diagram of this loop. The input signal level from the OB pixels is identified as the real black level, and the loop is closed during this period (actually during the period while CPOB is active). While the auto-zero loop is closed, the difference between the ADC output code is evaluated and applied to the decoder, which then controls the 10-bit current DAC. The current DAC can charge or discharge the external capacitor at COB, depending on the sign of the code difference. The loop adjusts the voltage at COB, which sets the offset of the CDS to make the code difference zero. Thus the ADC output code converges to black level while CPOB is active and maintains the black level derived from the OB pixels after the loop has converged. CPOB performs the OB clamping of both channels simultaneously. To determine the loop time constant, an off-chip capacitor is required and should be connected to the COB terminal. The time constant T is calculated using the following equation: T+ C (16384 I MIN) (1) where C is the capacitor value connected to COB, IMIN is the minimum current (0.15 µA) of the control DAC in the OB level clamp loop, and 0.15 µA is equivalent to 1 LSB of the DAC output current. When C is 0.1 µF, then the time constant T is 40.7 µs for ADC output codes from 0 LSB to 1543 LSB (the convergence curve becomes exponential). For output codes above 1543 LSB, the current DAC injects constant (maximum) current into the capacitor and the convergence curve becomes linear. The slew rate SR is calculated using the following equation. SR + I MAX C (2) where C is the capacitor value connected to COB. IMAX is the maximum current (153 µA) of the control DAC in the OB level clamp loop, and 153 µA is equivalent to 1023 LSB of the DAC output current. Generally, OB level clamping at high speed causes clamping noise. However, the noise can be reduced by making C large. On the other hand, a large C requires a much longer time to restore from the power-save mode or right after the power goes ON. Therefore, 0.1 µF to 0.22 µF is considered a reasonable value for C. If the application environment requires a value outside this range, making careful adjustments by trial and error is recommended. The OB clamp level (the pedestal level) is programmable through the serial interface; see the Serial Interface Timing Specification (Section 3) for details. Also see the Serial Interface Timing Specification section for the relationship between input code and the OB clamp level. The black-level clamp loop not only eliminates the CCD black-level offset, but also eliminates the offsets of the VSP2264 CDS and ADC themselves. 2.10 Preblanking and Data Latency The VSP2264 has a preblanking function. When PBLK = LOW, the digital outputs all become zero at the ninth rising edge of ADCCK, counting from the time when PBLK becomes LOW, to accommodate the clock latency of the VSP2264. Data latency of this device is seven clock cycles. The digital output data come out on the rising edge of ADCCK with a delay of seven clock cycles. Some CCDs have a large transient output signal during blanking intervals. If the input voltage is higher than the supply rail or lower than the ground rail by 0.3 V, then protection diodes are turned on, limiting the input voltage. Such a high-swing signal can cause device damage to the VSP2264 and should be avoided. 14 VSP2264 SLES059—March 2003 Theory of Operation 2.11 Power-Save Mode For the purpose of power savings, the VSP2264 can be put into the power-save plus standby mode by serial interface command. In this mode, all the function blocks are disabled, the A/D outputs all go to zero and the TG output goes to high or low status as determined by the configuration of the serial interface command. The power consumption drops to 39 mW. Because all the bypass capacitors discharge during this mode, a substantial time (usually on the order of 200–300 ms) is required to restore from the power-save plus standby mode. 2.12 Additional Output Delay Control The VSP2264 can control the delay time of output data by setting registers through the serial interface. In some cases, the transition of output data affects analog performance. Generally, this is avoided by adjusting the timing of ADCCK. In case the ADCCK timing cannot be adjusted, the additional output delay control is effective for reducing the influence of transient noise. Refer to the Serial Interface Timing Specification (Section 3) for details. 2.13 Voltage Reference All the reference voltages and bias currents used on the device are created from internal band-gap circuitry. The CDS and the ADC mainly use three reference voltages, REFP (1.75 V), REFN (1.25 V) and CM (1.5 V). REFP and REFN are buffered on-chip. CM is derived as the midvoltage of the resistor chain connecting REFP and REFN internally. The ADC full-scale range is determined by twice the voltage difference between REFP and REFN. REFP, REFN, and CM should be heavily decoupled with appropriate capacitors. Table 2–1. Function Table OPERATION MODE 5A CCD† FUNCTION FRAME MONITOR LONG INTEGRATION (CHDEL) √ √ POWER SAVE (PWSV) √ √ STILL (STIL) √ √ E-SHUTTER √ † Recommended CCD MN39594 (Panasonic) √ 2.14 Operating Modes • Frame mode enables each pixel output with interlace. • Monitor mode enables the output of four from every 16 lines. 2.15 Functions • The long integration function stops CCD readout (CH1, CH2, CH3, CH4 pulse) at the end of one frame, as defined by the serial data instruction. • The power save function stops all clocks and preserves high or low levels according to the serial data instruction. • The e-shutter function enables electronic shutter operation by the serial data instruction. SLES059—March 2003 VSP2264 15 Theory of Operation 2.16 TG Vertical-Rate Operation 2.16.1 Frame Mode Operation 2.16.1.1 Operation Outline Horizontal output of the CCD is generated by reading out individual pixels vertically at 2-pixel intervals, and successively repeating the readout for each pixel column. Either the odd field or the even field is selectable. 2.16.1.2 Operation Sequence 1. Set serial data address 000100 bits 6–5 = 01. 2. Define odd/even by the relation of VD and HD or by serial address 000100 bits 8–7. 2A CCD, 2B CCD PIX Even Field Odd Field PIX PIX PIX PIX PIX PIX PIX Signal Transfer Direction 16 VSP2264 SLES059—March 2003 Theory of Operation 2.16.2 Monitor Mode Operation (5A CCD) 2.16.2.1 Operation Outline Horizontal output of the CCD is generated by summing pixels vertically in groups of two, and successively repeating the readout for each pixel column.The second and sixth of every 16 consecutive vertical pixels are selected for summing together, as are the ninth and 13th. 2.16.2.2 Operation Sequence 1. Set serial data address 000100 bits 6–5 = 11. 2. Operation proceeds without regard for odd-/even-field considerations. 5A CCD PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX PIX Signal Transfer Direction SLES059—March 2003 VSP2264 17 Theory of Operation 2.17 Still Function 2.17.1 Operation Outline Smear dump operation is available. SUB output is controlled by using the serial data instruction. The SUBSW level follows the still mode condition. SUBSW can be used for the SUB bias control circuit when using a mechanical shutter. It is recommended to set the toggling position of SUBSW after the mechanical shutter has closed. 2.17.2 Operation Sequence 1. Set the serial data address 000101. Input bit 2 = H, and set to the still mode. The SUB output is defined by the serial data instruction. Integration time is defined by ES 000111, and can be performed after step 2, following. 2. Input a pulse to SLOAD and send the serial data. Upon going to the still mode, during the horizontal scan time preceding a readout operation, a SUB output is made for every H and charge is drained. After the end of the SUB pulse, the SUB output goes high and charge integration starts. 3. Set the serial data address 001010. Input the STVV data in bits 0–5 for SUBSW rise time definition. 4. Input a pulse to SLOAD and send the serial data. 5. Input a VD rising edge. SUBSW goes high at the position defined by the serial data. Positioning uses the next HD input pulse as 1. A vertical high-speed pulse, which corresponds to more than the number of one field to V-CCD, is applied. 6. After one field of signal has been read out, input a VD pulse again and read out the signal, which was not read out during step 5. Input serial data for address 000101 and bit 2 = L to exit from the still mode. 7. Input a VD pulse after one field of CCD output signal has completed. SUBSW goes low at the next HD rising edge. NOTES: 1. Do not use the electronic shutter in the still mode, when SUBSW is high. 2. For the VD-to-VD interval, more than 90 counts of the HD-to-HD interval are required. 18 VSP2264 SLES059—March 2003 Theory of Operation 2.18 Readout Function 2.18.1 Operation Outline This mode can control a pair of pixels, which are mixed in the vertical transfer CCD. Control is not accomplished by the HD–VD phase, but by the serial data instruction. 2.18.2 Operation Sequence 1. Set serial data address 000100. At the same time, input data bit 7 = H and set the serial data control mode. In this case, readout timing is defined by the value of bit 8. When bit 8 = L, the odd field is read out; when bit 8 = H, the even field is read out. 2. Input a pulse to SLOAD and transfer the serial data. NOTE: If bit 7 = L, odd/even readout recognition is made by the HD–VD phase difference. 2.19 Power-Save-1 Function Explanation 2.19.1 Operation Outline Power save by stopping 2.19.2 H1, HL, R, V3, V4, CH1, CH2, CH3, CH4, SUB = Fixed high H2, SHP, SHD, ADCCK, V1, V2 = Fixed low Operation Sequence 1. Set serial data 000100. Set data bit PWSV1 = H to enter the power-save mode. 2. Input a pulse for SLOAD and transfer the serial data. 3. Transfer data into the TG. NOTES: 1. After release from this mode, signal performance is not assured during 1 V. 2. Do not use both power-save modes 1 and 2 at the same time. 2.20 Power-Save-2 Function Explanation 2.20.1 Operation Outline Power save by stopping H1, HL, H2, R, SHP, SHD, ADCCK, V1–V4, CH1–CH4, SUB. 2.20.2 Operation Sequence (same as power-save mode 1) NOTES: (same as power-save mode 1) SLES059—March 2003 VSP2264 19 Theory of Operation 2.21 TG Pixel-Rate Operation 2.21.1 High-Speed Pulse Adjustment For a high-speed pulse, the CCD signal sampling time is adjustable (see serial data addresses from 001100 to 010111). The default value is set as follows. (25-MHz Operation) 0 ns 8.2~14.8 ns R CCD SHP (Deault) SHP (Adjustment) 1.2~10.2 ns 15.2~24.2 ns SHD (Default) SHD (Adjustment) 24.2~33.2 ns 2.21.2 20 35.2~44.2 ns Default Timing Value • R: Standard reset duration is 25% of cycle. • SHP: Standard rise point is 50% of cycle, based on a 3-ns CCD signal delay. Actual delay depends on the system. • SHD: Standard rise point is 100% of cycle, based on a 3-ns CCD signal delay. Actual delay depends on the system. • H1: Standard duration is 50% of cycle. • H1 and H2 are complementary. The crossover point of the H1 rising edge and H2 falling edge should be higher than VDD/2. • H2: Standard duration is 50% of cycle. • ADCCK: Standard rise and fall points are 25% and 75% of cycle, respectively, based on a 3-ns CCD signal delay. VSP2264 SLES059—March 2003 Theory of Operation 2.22 High-Speed Clock Timing Adjustable Range The timing reference for the values in the following table is the R pulse rising edge. 25-MHz OPERATION TERMINAL R SHP SHD H1 HL H1, H2 ADCCK (phase 00) 2.22.1 EDGE MIN STD 20-MHz OPERATION MAX MIN STD 12-MHz OPERATION MAX MIN STD MAX NOTE Rising 0 0 0 0 0 0 0 0 0 0% Falling 8.2 10 14.8 10.7 12.5 17.3 19.0 20.8 25.6 25% Rising 15.2 20 24.2 20.2 25 29.2 36.9 41.7 45.9 50% Falling 1.2 6 10.2 6.2 11 15.2 22.9 27.7 31.9 14 ns Rising 35.2 40 44.2 45.2 50 54.2 78.5 83.3 87.5 100% Falling 24.2 29 33.2 34.2 39 43.2 67.5 72.3 76.5 11 ns Rising –4.2 0 4.8 –4.2 0 4.8 –4.2 0 4.8 0% Falling 15.8 20 24.8 20.8 25 29.8 37.5 41.7 46.5 50% 50% Rising 15.8 20 24.8 20.8 25 29.8 37.5 41.7 46.5 Falling –4.2 0 4.8 –4.2 0 4.8 –4.2 0 4.8 0% Rising 3.6 6 12.6 7.1 9.5 16.1 15.1 17.5 24.1 25% Falling 23.6 26 32.6 32.1 34.5 41.1 56.7 59.1 65.7 75% ADCCK Clock The signal can be monitored on the ADCCK I/O terminal. External input is available via the serial data instruction. TG Circuit 0 AFE Circuit 1 ADCCK_EXT ADCCK_MON ADCCK (PAD) SLES059—March 2003 VSP2264 21 Theory of Operation 2.22.2 SHP, SHD, PBLK, CLPOB, and CLPDM Clocks Signal monitoring and signal input for SHP, SHD, PBLK, CLPOB, and CLPDM are available using the corresponding I/O terminal. 0 (SHP Signal) AFE Circuit TG Circuit SHP_EXT 1 TG Circuit (CLPOB Signal) 0 AFE Circuit CLPOB_EXT TG Circuit (PBLK Signal) 1 0 AFE Circuit PBLK_EXT 1 SHP_MON TP023A = 1, TP23B = 0 TP023A = 0, TP23B = 1 TP023A = 1, TP23B = 1 TP2 (PAD) TP023A = 1, TP23B = 0 TP023A = 0, TP23B = 1 TP023A = 1, TP23B = 1 TG Circuit 0 (SHD Signal) AFE Circuit SHD_EXT TG Circuit (CLPDM Signal) 1 0 AFE Circuit SHD_MON CLPDM_EXT 1 TP23C = 0 TP23C = 1 TP3 (PAD) TP23C = 0 TP23C = 1 22 VSP2264 SLES059—March 2003 Theory of Operation 2.22.3 H1, HL, H2, and R Clocks High-speed signals for the CCD (H1, HL, H2, R) are available using the corresponding I/O terminals. (H1 Signal) TG Circuit H1 (PAD) HL (PAD) (H2 Signal) H2 (PAD) (R Signal) R (PAD) TG Circuit TG Circuit SLES059—March 2003 VSP2264 23 Theory of Operation 24 VSP2264 SLES059—March 2003 Serial Interface Timing Specification 3 Serial Interface Timing Specification tXH tXS SLOAD tCKH tCKL tCKP SCLK tDH tDS MSB SDATA LSB 2 Bytes PARAMETER MIN TYP MAX UNIT tCKP tCKH Clock period 100 ns Clock high-pulse duration 40 ns tCKL tDS Clock low-pulse duration 40 ns Data setup time 30 ns tDH tXS Data hold time 30 ns SLOAD to SCLK setup time 30 ns tXH SCLK to SLOAD hold time 30 ns A data shift operation should decode at the rising edge of SCLK while SLOAD is LOW. At the rising edge of SLOAD, 2 bytes of input data are loaded into the parallel latch in the VSP2264. When the input serial data is longer than 2 bytes (16 bits), the last 2 bytes become effective and the previous bits are lost. SD15 MSB SD14 SD13 SD12 SD11 SD10 LSB SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 A5 A4 A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Register address (default) Register data (default value) Serial data for the AFE is applied to the operation at every ADCCK edge (addresses 000000 to 000011). Serial data input for the TG should be made when the CCD operation is changed. Serial data for the TG is applied to the operation 1 H before every readout. (CCD) starting point (addresses 000100 to 011000). Horizontal Transfer CCD READOUT Horizontal Transfer CCD READOUT HD SERIAL DATA is Applied to Operation SERIAL DATA is Applied to Operation SOUT Serial data output, starting from address 000000, occurs during CCD readout. SLES059—March 2003 VSP2264 25 Serial Interface Timing Specification 3.1 Serial Data Format Register Name A5 A4 A3 A2 A1 A0 D9 MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 LSB Configura -tion 0 0 0 0 0 0 0 O3 O2 O1 O0 P2 P1 P0 J1 J0 PGA gain 0 0 0 0 0 1 G9 G8 G7 G6 G5 G4 G3 G2 G1 G0 Reserved 0 0 0 0 1 0 — — — — — — — — — — AFE standby 0 0 0 0 1 1 0 0 0 0 0 C0 0 0 0 0 Operation mode 0 0 0 1 0 0 ES10 MSB CHMOD2 CHMOD1 DRV2 DRV1 1 0 1 PWSV2 PWSV1 Function 0 0 0 1 0 1 0 0 0 0 0 1 0 STILL 0 CHDEL Reserved 0 0 0 1 1 0 — — — — — — — — — — E-shutter 0 0 0 1 1 1 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0 LSB VDHD polarity 0 0 1 0 0 0 OBSEL2 CLPDSEL POLHV 0 0 0 1 FINDX 0 0 SUBSW 0 0 1 0 0 1 SUBSW9 MSB SUBSW8 SUBSW7 SUBSW6 SUBSW5 SUBSW4 SUBSW3 SUBSW2 SUBSW1 SUBSW0 LSB V-transfer 0 0 1 0 1 0 0 0 0 0 STVV5 MSB STVV4 STVV3 STVV2 STVV1 STVV0 LSB Reserved 0 0 1 0 1 1 — — — — — — — — — — H1 0 0 1 1 0 0 0 0 0 0 0 0 H1fa3 MSB H1fa2 H1fa1 H1fa0 LSB Reserved 0 0 1 1 0 1 — — — — — — — — — — Reserved 0 0 1 1 1 0 — — — — — — — — — — H2 0 0 1 1 1 1 0 0 0 0 0 0 H2ri3 MSB H2ri2 H2ri1 H2ri0 LSB Reserved 0 1 0 0 0 0 — — — — — — — — — — R 0 1 0 0 0 1 0 0 0 0 0 Rfa4 MSB Rfa3 Rfa2 Rfa1 Rfa0 LSB SHP 0 1 0 0 1 0 SHP ext SHP mon 0 0 0 0 SHPfa3 MSB SHPfa2 SHPfa1 SHPfa0 LSB Reserved 0 1 0 0 1 1 — — — — — — — — — — SHD 0 1 0 1 0 0 SHD ext SHD mon 0 0 0 0 SHDfa3 MSB SHDfa2 SHDfa1 SHPfa0 LSB Reserved 0 1 0 1 0 1 — — — — — — — — — — ADCCK 0 1 0 1 1 0 ADCCK ext ADCCK mon 0 0 0 0 ADCCKri3 MSB ADCCKri2 ADCCKri1 ADCCKri0 ADCCK2 0 1 0 1 1 1 ADCKQ1 ADCKQ2 0 0 0 0 0 0 0 0 Test AFE 0 1 1 0 0 0 TP23 MSB TP23 TP23 LSB 0 CLPDM ext 0 PBLK ext 0 CLPOB ext 0 LSB Do not input values into reserved registers. 26 VSP2264 SLES059—March 2003 Serial Interface Timing Specification 3.2 Register Default Values REGISTER NAME SLES059—March 2003 A5 A4 A3 A2 A1 A0 Configuration 0 0 0 0 0 0 DEFAULT VALUE 01 0000 0000 PGA gain 0 0 0 0 0 1 00 1000 0000 Reserved 0 0 0 0 1 0 00 0000 0000 AFE standby 0 0 0 0 1 1 00 0000 0000 Operation mode 0 0 0 1 0 0 00 0111 0100 Function 0 0 0 1 0 1 00 0001 0000 Reserved 0 0 0 1 1 0 00 0000 0000 E-shutter 0 0 0 1 1 1 01 1101 1001 VDHD polarity 0 0 1 0 0 0 00 0000 1100 SUBSW 0 0 1 0 0 1 00 0000 0000 V-transfer 0 0 1 0 1 0 00 0000 0000 Reserved 0 0 1 0 1 1 00 0000 0000 H1 0 0 1 1 0 0 00 0000 0111 Reserved 0 0 1 1 0 1 00 0000 0000 Reserved 0 0 1 1 1 0 00 0000 0000 H2 0 0 1 1 1 1 00 0000 0111 Reserved 0 1 0 0 0 0 00 0000 0000 R 0 1 0 0 0 1 00 0000 0000 SHP 0 1 0 0 1 0 01 0000 1000 Reserved 0 1 0 0 1 1 00 0000 0000 SHD 0 1 0 1 0 0 01 0000 1000 Reserved 0 1 0 1 0 1 00 0000 0000 ADCCK 0 1 0 1 1 0 01 0000 0100 ADCCK2 0 1 0 1 1 1 01 0000 0000 Test AFE 0 1 1 0 0 0 00 0000 0000 VSP2264 27 Serial Interface Timing Specification 3.2.1 Configuration Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 0 0 0 0 0 O3 O2 O1 O0 P2 P1 P0 J1 J0 0 1 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD8–SD5 O[3:0] 1000 DESCRIPTION SD4 P2 0 SHP/SHD clock polarity 0 = Polarity of SHP/SHD is active low. 1 = Polarity of SHP/SHD is active high. SD3 P1 0 CLPOB clock polarity 0 = Polarity of CLPOB is active low. 1 = Polarity of CLPOB is active high. SD2 P0 0 CLPDM clock polarity 0 = Polarity of CLPDM is active low. 1 = Polarity of CLPDM is active high. SD1–SD0 J[1:0] 00 Additional output delay 00 = Additional delay is 0 ns. 01 = Additional delay is 5 ns (typical). 10 = Additional delay is 10 ns (typical). 11 = Additional delay is 13 ns (typical). Programmable OB clamp level 0000 = 2 LSB 0001 = 18 LSB 0010 = 34 LSB 0011 = 50 LSB 0100 = 66 LSB 0101 = 82 LSB 0110 = 98 LSB 0111 = 114 LSB 1000 = 130 LSB (default) 1001 = 146 LSB 1010 = 162 LSB 1011 = 178 LSB 1100 = 194 LSB 1101 = 210 LSB 1110 = 226 LSB 1111 = 242 LSB 3.2.2 PGA Gain Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 0 0 0 1 G9 G8 G7 G6 G5 G4 F3 G2 G1 G0 0 0 1 0 0 0 0 0 0 0 default 28 BIT NAME DEFAULT VALUE SD9–SD0 G[9:0] 00 1000 0000 VSP2264 DESCRIPTION PGA gain characteristics 00 0000 0000 = –6 dB 00 0011 0101 = –3 dB 00 1000 0000 = 0 dB 00 1011 0101 = 3 dB 00 1111 1111 = 6 dB 01 0111 1111 = 12 dB 10 0010 0000 = 20 dB 11 0100 1000 = 34 dB 11 1111 1111 = 42 dB SLES059—March 2003 Serial Interface Timing Specification 3.2.3 AFE Standby Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 0 0 1 1 0 0 0 0 0 C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD4 C0 0 DESCRIPTION AFE operation mode (normal/standby) 0 = AFE normal operation mode 1 = AFE standby mode 3.2.4 Operation Mode Register SD15 SD14 SD13 SD12 0 0 0 1 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 ES10 MSB CHMOD2 CHMOD1 DRV2 DRV1 1 0 1 PWSV2 PWSV1 0 0 0 1 1 1 0 1 0 0 default BIT NAME DEFAULT VALUE SD9 ES10 0 SUB (SUB pin) pulse number instruction. MSB of the 11 bits ES[10:0]. The 10 bits ES[9:0] are located in SD9 through SD0 at address 000111. SD8–SD7 CHMOD[2:1] 00 Operation mode: X0 = HD-VD phase (default) 01 = Odd field 11 = Even field SD6–SD5 DRV [2:1] 11 Operation mode: 00 = Reserved 01 = Frame mode 10 = Reserved 11 = Monitor mode (default) SD4–SD2 — 101 SD1 PWSV2† 0 Output pin state: 0 = normal operation 1 = (H1, R, V3, V4, CH1, CH2, CH3, CH4, SUB , SHP, SHD, CPOB, CLPDM, PBLK, H2, ADCCK, V1, V2= Fixed low) SD0 PWSV1† 0 Output pin state: 0 = normal operation‡ 1 = (H1, R, V3, V4, CH1, CH2, CH3, CH4, SUB, SHP, SHD, CPOB, CLPDM, PBLK = Fixed high) (H2, ADCCK, V1, V2 = Fixed low) DESCRIPTION Reserved; input required † When PWSV1 = PWSV2 = 1, automatically set to PWSV1 = 1, PWSV2 = 0. SLES059—March 2003 VSP2264 29 Serial Interface Timing Specification 3.2.5 Function Register SD15 SD14 SD13 SD12 0 0 0 1 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 0 0 0 0 1 0 STILL 0 CHDEL 0 0 0 0 0 1 0 0 0 0 default BIT NAME DEFAULT VALUE SD4 — 1 Reserved; input required SD3 — 0 Reserved; input required SD2 STILL 0 Function: 0 = normal operation 1 = Still function (see Still Function, Section 2.17) SD1 — 0 Reserved; input required SD0 CHDEL 0 Output pin: 0 = normal operation 1 = CH1, CH2, CH3, CH4 terminals are fixed high for longer integration. DESCRIPTION 3.2.6 E-Shutter Register SD15 SD14 SD13 SD12 0 0 0 1 default 30 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 1 1 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0 LSB 0 1 1 1 0 1 1 0 0 1 BIT NAME DEFAULT VALUE SD9–SD0 ES[9:0] 01 1101 1001 VSP2264 DESCRIPTION SUB (SUB terminal) pulse number instruction SUB pulse number is defined using a binary code from 0 ≤ n ≤ A–3. Note that A is an HD number between two successive VD pulses. When n = 0, SUB pulse is zero. SUB pulse starts 2 H after readout (CH1 to CH4). Integration time is defined by (A – n – 1) H. Initial: 70.3 ms integration at 50 MHz (MCLK) in frame mode SLES059—March 2003 Serial Interface Timing Specification 3.2.7 VDHD Polarity Register SD15 SD14 SD13 SD12 0 0 1 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 OBSEL2 CLPDSEL POLHV 0 0 0 1 FINDX 0 0 0 0 0 0 0 0 1 1 0 0 0 default BIT NAME DEFAULT VALUE SD9 OBSEL2 0 V-rate OB selection: 0 = Vertical-rate CPOB timing 1 = negative SD8 CLPDSEL 0 V-blank CLPD selection: 0 = V-blank 1 = Continuous CLPD SD7 POLHV 0 VD, HD polarity selection: 0 = positive 1 = negative SD6–SD4 — 0 Reserved; input required 1 Reserved; input required 1 Field indes selection: 0 = Active If CHMOD[1:0] = 00, FINDX follows the VD-HD phase. If CHMOD[1:0] = 01, FINDX = 0. If CHMOD[1:0] = 10, FINDX follows the VD-HD phase. If CHMOD[1:0] = 11, FINDX = 1. 1 = Fixed low SD3 SD2 FINDX DESCRIPTION 3.2.8 SUBSW Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 1 0 0 1 SUBSW9 MSB SUBSW8 SUBSW7 SUBSW6 SUBSW5 SUBSW4 SUBSW3 SUBSW2 SUBSW1 SUBSW0 LSB 0 0 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD9–SD0 SUBSW[9:0] 00 0000 0000 DESCRIPTION SUBSW signal output position when in the still function. SUBSW signal output position is defined by 1 H step using a binary code from 0 ≤ SUBSW ≤ A – STW – 40. Note that A is an HD number between two successive VD pulses. When n0 = 0, SUBSW must be kept 0. Count as 1 the first HD after VD or after a trigger pulse. 3.2.9 V-Transfer Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 1 0 1 0 0 0 0 0 STVV5 MSB STVV4 STVV3 STVV2 STVV1 STVV0 LSB 0 0 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD9–SD8 — 00 Reserved; input required SD6 — 0 Reserved; input required SD5–SD0 STVV[5:0] 00 0000 SLES059—March 2003 DESCRIPTION Vertical high speed transfer position control when in the still function. Position is controlled by 1-H steps, counting in binary code from 0 ≤ STW ≤ 63, where STW ≤ A – SUBSW – 40. Note that A is an HD number between two successive VD pulses. When n0 = 0, vertical high speed transfer synchronizes to the SUBSW rising edge. VSP2264 31 Serial Interface Timing Specification 3.2.10 H1 Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 1 1 0 0 0 0 0 0 0 0 H1fa3 MSB H1fa2 H1fa1 H1fa0 LSB 0 0 0 0 0 0 0 1 1 1 default BIT NAME DEFAULT VALUE SD3–SD0 H1fa[3:0] 0111 3.2.11 DESCRIPTION H1 delay definition using 4 bits: 1111 = H1 delay, maximum L 0111 = H1 delay, typical (default) L 0000 = H1 delay, minimum H2 Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 0 1 1 1 1 0 0 0 0 0 0 H2ri3 MSB H2ri2 H2ri1 H2ri0 LSB 0 0 0 0 0 0 0 1 1 1 default BIT NAME DEFAULT VALUE SD3–SD0 H2ri[3:0] 0111 3.2.12 DESCRIPTION H2 delay edge definition using 4 bits 1111 = H2 delay, maximum L 0111 = H2 delay, typical (default) L 0000 = H2 delay, minimum R Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 0 0 1 0 0 0 0 0 Rfa4 MSB Rfa3 Rfa2 Rfa1 Rfa0 LSB 0 0 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD4–SD0 Rfa[4:0] 0 0000 32 VSP2264 DESCRIPTION R falling edge definition using 5 bits R duration, maximum = 111XX 110XX 101XX 100XX R duration, typical = 0XX00 0XX01 0XX10 R duration, minimum = 0XX11 SLES059—March 2003 Serial Interface Timing Specification 3.2.13 SHP Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 0 1 0 SHP ext SHP mon 0 0 0 0 SHPfa3 MSB SHPfa2 SHPfa1 SHPfa0 LSB 0 1 0 0 0 0 1 0 0 0 default BIT NAME DEFAULT VALUE SD9 SHP ext 0 External selection: 0 = Without using external SHP clock 1 = Using external SHP clock SD8 SHP mon 1 Monitor selection: 0 = SHP clock monitor 1 = SHP clock without monitor SD3–SD0 SHPfa[3:0] 1000 3.2.14 DESCRIPTION SHP delay edge definition using 4 bits 1111 = SHP delay, maximum L 1000 = SHP delay, typical L 0000 = SHP delay, minimum SHD Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 1 0 0 SHD ext SHD mon 0 0 0 0 SHDfa3 MSB SHDfa2 SHDfa1 SHDfa0 LSB 0 1 0 0 0 0 1 0 0 0 default BIT NAME DEFAULT VALUE SD9 SHD ext 0 External selection: 0 = Without using external SHD clock 1 = Using external SHD clock SD8 SHD mon 1 Monitor selection: 0 = SHD clock monitor 1 = SHD clock without monitor SD3–SD0 SHDfa[3:0] 1000 SLES059—March 2003 DESCRIPTION SHD delay edge definition using 4 bits 1111 = SHD delay, maximum L 1000 = SHD delay, typical L 0000 = SHD delay, minimum VSP2264 33 Serial Interface Timing Specification 3.2.15 ADCCK Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 1 1 0 ADCCK ext ADCCK mon 0 0 0 0 ADCCKri3 MSB ADCCKri2 ADCCKri1 ADCCKri0 LSB 0 1 0 0 0 0 0 1 0 0 default BIT NAME DEFAULT VALUE SD9 ADCCK ext 0 External selection: 0 = Without use of external ADCCK clock 1 = Use external ADCCK clock SD8 ADCCK mon 1 Monitor selection: 0 = ADCCK clock monitor 1 = ADCCK clock without monitor SD3–SD0 ADCCKri[3:0] 0100 3.2.16 DESCRIPTION ADCCK delay edge definition using 4 bits 1111 = maximum delay 0100 = typical delay 0000 = minimum delay ADCCK2 Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 0 1 1 1 ADCCK Q1 ADCCK Q2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 default BIT NAME DEFAULT VALUE SD9–SD8 ADCCKQ[1:2] 01 3.2.17 DESCRIPTION ADCCK 90° adjustment: 00 = ADCCK phase is lagging 0° with respect to CLKO 01 = ADCCK phase is lagging 90° with respect to CLKO 10 = ADCCK phase is lagging 180° with respect to CLKO 11 = ADCCK phase is lagging 270° with respect to CLKO Test AFE Register SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 0 1 1 0 0 0 TP23 MSB TP23 TP23 LSB 0 CLPDM ext 0 PBLK ext 0 CLPOB ext 0 0 0 0 0 0 0 0 0 0 0 default 34 BIT NAME DEFAULT VALUE SD9–SD7 TP23[2:0] 000 SD5 CLPDM ext 0 CLPDM input source selection: 0 = Use internally generated CLPDM clock, with or without monitor 1 = Use external CLPDM clock SD4 — 0 Reserved; input required SD3 PBLK ext 0 PBLK input source selection: 0 = Use internally generated PBLK clock, with or without monitor 1 = Use external PBLK clock SD2 — 0 Reserved; input required SD1 CLPOB ext 0 CLPOB input source selection: 0 = Use internally generated CLPOB clock, with or without monitor 1 = Use external CLPOB clock SD0 — 0 Reserved; input required VSP2264 DESCRIPTION TP23 input source selection: 000 = open 001 = SHP and SHD 110 = CLPOB and CLPDM 111 = PBLK and CLPDM SLES059—March 2003 Timing Specification 4 Timing Specification 4.1 HD-MCLK Relation HD tMCK MCLK tCH3 tPCLK(latency) tCH2 CLKO tCH1 P[12:0] N (Pix) H[10:0] 0 (Pix) N (H) PARAMETER 0 (H) MIN TYP MAX UNIT tCH1 tCH2 CLKO rising edge to HD rising edge –9 9 ns MCLK rising edge to HD rising edge 4 12 ns tCH3 tMCK HD rising edge to MCLK falling edge Master clock period tPCLK(latency) Clock start latency † Unit T is the master clock cycle duration. SLES059—March 2003 0 ns 20 41.7 10 VSP2264 ns T† 35 Timing Specification 4.2 VD-HD Relation (1) Odd Field VD HD tH tVHA H[10:0] 0 (H) 1 (H) tHCLK(latency) (2) Even Field VD HD tHVB tVHB tH N (H) H[10:0] PARAMETER 0 (H) MIN tVHA tHVB HD rising edge to VD rising edge (odd field) >0 HD rising edge to VD rising edge (even field) > 30 tVHB tH VD rising edge to HD rising edge (even field) > 30 HD duration tHCLK(latency) H clock start latency † Unit T is the master clock cycle duration. TYP MAX 1 HD TYP MAX UNIT HD–HD SLES059—March 2003 Timing Specification 4.3 High-Speed Timing Specifications MCLK tCKP (See Note 1) CLKO H1 tH12 (See Note 2) H2 R tRCCD (See Note 3) CCD tPF tPR tWP SHP tDR tPD tDP SHD tINHIBIT tWD tADC tCKP ADCCK tOD tHOLD B[11:0] N-8 N-7 PARAMETER tADC N-6 N-5 MIN TYP MAX UNIT 83.3 ns tCKP(1) tH12(2) Clock period Horizontal transfer pulse delay 1 ns tRCCD(3) tPF Reset-to-CCD reset delay (varies with CCD model and wiring) 3 ns tPR tDR SHP rising edge to CCD CDS falling edge delay tWP tWD SHP pulse duration 14 ns SHD pulse duration 11 ns tPD tDP SHP trailing edge to SHD leading edge 8 ns SHD trailing edge to SHP leading edge 12 ns tINHIBIT tADC Inhibited clock period tHOLD tOD Output hold time DL Data latency, normal operation mode 40 CCD CDS rising edge to SHP falling edge delay 5 SHD rising edge to CCD signal-out rising edge delay ADCLK high/low pulse duration ns 5 ns 5 ns 20 20 ns 41.7 2 ns ns Output delay (no load) 27 9 (fixed) ns ADCCK cycles NOTES: 1. Clock period varies by CCD model. 2. Adjust horizontal transfer pulse delay as required by the printed circuit board pattern and layout. 3. Reset-to-CDS delay depends on CCD signal response delay. Default setting is 3 ns. SLES059—March 2003 VSP2264 37 Timing Specification 4.4 Horizontal Timing Chart (for 5A CCD) 0t = 6240t HD†(+10t) 920t 116t 118t OB:58 Pix CCD_OUT† 976t 1000t Dummy 2 Pix PD: 2620 Pix Dummy:28 Pix OB:12 Pix 119t 920t 119t 920t (Effective Pixels) H1 H2 20t 80t CPOB 119t 996t PBLK 924t 970t CLPD 1) Frame Mode : Enlarged Section 208t 608t ΦV1 368t 768t ΦV2 288t 528t ΦV3 448t 688t ΦV4 120t 204t ΦSUB 2) Monitor Mode : Enlarged Section 94t 224t 302t 432t 510t 640t 718t 848t ΦV1 146t 276t 354t 484t 562t 692t 770t 900t ΦV2 120t 198t 328t 406t 536t 614t 744t 822t ΦV3 172t 250t 380t 458t 588t 666t 796t 874t ΦV4 120t 204t ΦSUB † External Input 38 VSP2264 SLES059—March 2003 Timing Specification 4.4 Horizontal Timing Chart (for 5A CCD) (continued) 0t = 6240t HD†(+10t) 920t 116t 118t OB:58 Pix CCD_OUT† 976t 1000t Dummy 2 Pix PD: 2620 Pix Dummy:28 Pix OB:12 Pix 119t 920t 119t 920t (Effective Pixels) H1 H2 20t 80t CPOB 119t 996t PBLK 924t 970t CLPD 3) Long Integration : Enlarged Section 288t 688t ΦV1 208t 448t ΦV2 128t 368t 608t 848t ΦV3 528t 768t ΦV4 ΦSUB † External Input SLES059—March 2003 VSP2264 39 Timing Specification 4.5 Vertical Timing Chart (for 5A CCD) 1) V-Rate Readout Detailed Timing Chart (Frame Mode, Odd Field) 0t HD†(+10t) 208t 608t ΦV1 368t 288t 368t 768t ΦV2 288t 528t ΦV3 448t 688t ΦV4 ΦCH1, 3 282t 428t ΦCH2, 4 2) V-Rate Readout Detailed Timing Chart (Frame Mode, Even Field) 0t HD†(+10t) 208t 208t 608t 608t ΦV1 368t 768t 368t 768t ΦV2 288t 528t 288t 528t ΦV3 288t 688t 448t 688t ΦV4 282t 428t ΦCH1, 3 ΦCH2, 4 † External Input 40 VSP2264 SLES059—March 2003 Timing Specification 4.5 Vertical Timing Chart (for 5A CCD) (continued) 1) V-Rate Readout Detailed Timing Chart (Monitor Mode) 0t HD†(+10t) 94t 94t 608t 224t 302t 432t 510t 640t 718t 848t ΦV1 146t 146t 276t 354t 770t 484t 562t 692t 770t 900t ΦV2 528t 120t 120t 198t 328t 406t 536t 614t 744t 822t ΦV3 288t 688t 172t 250t 380t 458t 588t 666t 796t 874t ΦV4 ΦCH1 ΦCH2 282t 428t ΦCH3 764t 910t ΦCH4 † External Input SLES059—March 2003 VSP2264 41 Timing Specification 4.6 Vertical High-Speed Transfer Timing Chart (for 5A CCD) High-Speed Transfer Start Point 208t 338t 416t 546t ΦV1 390t 260t 468t 598t ΦV2 234t 442t 312t 520t ΦV3 286t 364t 494t 572t ΦV4 (0) (1) (2) (3) (4) (5) High-Speed Transfer End Point 1664t 1794t 1872t ΦV1 1716t 1846t ΦV2 1690t 1768t ΦV3 1742t 1820t ΦV4 (1148) 42 VSP2264 SLES059—March 2003 Timing Specification 4.7 Vertical-Rate CPOB Timing Chart (for 5A CCD) When serial data address 001000 data bit 9 is high, the OB line following readout has special CPOB timing. 920t 0 952t 1 2 16 48 80 112 1008 H2 CPOB (2) (16) 48 49 50 51 9 11 13 47 7 45 44 46 43 OB7 42 OB5 41 40 39 38 37 36 34 35 33 3 2 1 0 5 3 1 OB3 OB1 2074 2075 (1037) (1036) (1035) 1982 OB (1034) 1980 2073 (1033) 1978 1984 (1032) CCD_OUT} 1976 2072 (1031) 2071 VD} 1974 HD} 2070 Vertical Rate Timing (for 5A CCD) [frame mode—odd field] 2069 4.8 (1) ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ FI Data Latch{ † Internal Use ‡ External Input SLES059—March 2003 VSP2264 43 1032 1977 1033 1979 1034 1981 1035 1983 1036 OB 1037 (0) (1) 1038 1039 (2) 1040 (3) 1041 (33) 1071 (34) 1072 (35) 1073 (36) 1074 (37) 1075 (38) 1076 (39) 1077 SLES059—March 2003 (40) 1078 OB2 (41) 1079 OB4 (42) OB6 (43) OB8 (44) 1082 2 (45) 1083 4 (46) 1084 6 (47) 1085 8 (48) 1086 10 (49) 1087 12 (50) 1088 14 (51) 1089 1080 1081 Timing Specification 1031 1975 Vertical Rate Timing (for 5A CCD) [frame mode—even field] HD} VD} CCD_OUT} ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ FI Data Latch{ VSP2264 † Internal Use ‡ External Input 4.9 44 1973 Timing Specification 48 49 50 51 9 11 13 47 7 45 44 46 43 OB7 42 OB5 41 40 39 38 37 36 34 35 33 3 2 1 0 2075 5 3 1 OB3 OB1 2074 (1036) (1037) OB (1035) 1982 2073 (1034) 1980 1984 (1033) 1978 2072 (1032) CCD_OUT} 1976 2071 (1031) 2070 VD} 1974 HD} 2069 4.10 Vertical Rate Timing (for 5A CCD) [frame mode—still function—odd field] ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ SUBSW FI Data Latch{ † Internal Use ‡ External Input SLES059—March 2003 VSP2264 45 1032 1977 1033 1979 1034 1981 1035 1983 1036 OB 1037 (0) 1038 (1) 1039 (2) 1040 (3) 1041 (33) 1071 SLES059—March 2003 (34) 1072 (35) 1073 (36) 1074 (37) 1075 (38) 1076 (39) 1077 (40) 1078 OB2 (41) 1079 OB4 (42) 1080 OB6 (43) 1081 OB8 (44) 1082 2 (45) 1083 4 (46) 1084 6 (47) 1085 8 (48) 1086 10 (49) 1087 12 (50) 1088 14 (51) 1089 Timing Specification HD} VD} CCD_OUT} ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ SUBSW FI Data Latch{ † Internal Use ‡ External Input VSP2264 1031 1975 4.11 Vertical Rate Timing (for 5A CCD) [frame mode—still function—even field] 46 1973 Timing Specification 48 49 50 51 9 11 13 47 7 46 44 45 43 OB7 42 OB5 41 40 39 38 37 36 35 34 33 3 2 1 0 2075 5 3 1 OB3 OB1 2074 (1036) (1037) OB (1035) 1982 2073 (1034) 1980 1984 (1033) 1978 2072 (1032) CCD_OUT} 1976 2071 (1031) 2070 VD} 1974 HD} 2069 4.12 Vertical Rate Timing (for 5A CCD) [frame mode—still function turnoff] ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ SUBSW FI Data Latch{ † Internal Use ‡ External Input SLES059—March 2003 VSP2264 47 Timing Specification 74 78 20 65 69 19 58 62 18 49 53 17 42 46 16 33 37 15 13 26 30 14 12 17 21 11 10 14 10 1 5 9 OB2 OB6 8 7 6 5 4 3 1 2 0 261 260 259 258 257 256 255 254 253 HD} 252 4.13 Vertical Rate Timing (for 5A CCD) [monitor mode] 1937 1946 1953 1962 1969 1978 1985 1994 1950 1957 1966 1973 1982 1989 1998 OB 1930 1941 CCD_OUT} 1934 VD} ΦV1 ΦV2 ΦV3 ΦV4 CH1 CH2 CH3 CH4 SUB H1 H2 PBLK{ CPOB{ CLPD{ Data Latch{ † Internal Use ‡ External Input 48 VSP2264 SLES059—March 2003 Timing Specification 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 30 29 1 HD} 0 4.14 Vertical Rate Timing (for 5A CCD) [frame mode—long integration function] VD} CCD_OUT} ΦV1 ΦV2 ΦV3 ΦV4 CH1, 3 CH2, 4 SUB H1 H2 PBLK{ CPOB{ CLPD{ Data Latch{ † Internal Use ‡ External Input SLES059—March 2003 VSP2264 49 Timing Specification 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 260 259 258 257 256 255 254 253 HD} 252 4.15 Vertical Rate Timing (for 5A CCD) [monitor mode—long integration function] VD} CCD_OUT} ΦV1 ΦV2 ΦV3 ΦV4 CH1 CH2 CH3 CH4 SUB H1 H2 PBLK{ CPOB{ CLPD{ Data Latch{ † Internal Use ‡ External Input 50 VSP2264 SLES059—March 2003 Electrical Characteristics 5 Electrical Characteristics 5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)† Supply voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V Supply voltage differences, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.1 V Ground voltage differences, VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.1 V Digital input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (VDD + 0.3 V) Analog input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (VCC + 0.3 V) Input current (any terminals except supplies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Ambient temperature under bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to 85°C Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Package temperature (IR reflow, peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 5.2 Electrical Characteristics, All Specifications at TA = 25°C, All Power Supply Voltages = 3 V, and Conversion Rate = 20 MHz (unless otherwise noted) VSP2267GSJ PARAMETER TEST CONDITIONS MIN TYP Resolution MAX 12 UNIT Bits Conversion rate 12 25 MHz Clock rate 24 50 MHz DIGITAL INPUTS Logic family VT+ VT– Input voltage IIH IIL Input current CMOS LOW to HIGH threshold voltage 1.7 HIGH to LOW threshold voltage 1 V Logic HIGH, VIN = 3 V ±20 Logic LOW, VIN = 0 V ±20 Input capacitance 5 Maximum input voltage µA A pF –0.3 5.3 V DIGITAL OUTPUTS (DATA) Logic family CMOS Logic coding VOH VOL Output voltage Straight binary Logic HIGH, IOH = –2 mA Logic LOW, IOL = 2 mA J[1:0] = 00 Additional output data delay SLES059—March 2003 2.4 0.4 V 0 J[1:0] = 01 5 J[1:0] = 10 10 J[1:0] = 11 13 ns VSP2264 51 Electrical Characteristics 5.2 Electrical Characteristics, All Specifications at TA = 25°C, All Power Supply Voltages = 3 V, and Conversion Rate = 20 MHz (unless otherwise noted) (continued) VSP2267GSJ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT H-DRIVER OUTPUTS Output voltage (SUB) Out ut voltage (HL, V1...V4, CH1...CH4, Output SUBSW, FI) Logic HIGH (VOH) IOH = –0.85 mA Logic HIGH (VOH) IOH = –1.7 mA 0.4 VDD–0.6 Logic LOW (VOL) IOL = 1.7 mA Logic HIGH (VOH) IOH = 0 mA Output voltage g ((R)) VDD–0.6 Logic LOW (VOL) IOL = 0.85 mA Logic HIGH (VOH) IOH = –6.8 mA 0.4 Output voltage g ((H1,, H2)) Logic HIGH (VOH) IOH = –13.6 mA VDD–0.6 V 0.4 VDD–0.05 VDD–0.6 V Logic LOW (VOL) IOL = 13.6 mA TP output voltage (TPP (TPP, TPD, TPD ADCCK) Logic HIGH (VOH) IOH = –1.7 mA V VDD–0.05 Logic LOW (VOL) IOL = 6.8 mA Logic HIGH (VOH) IOH = 0 mA V 0.4 VDD–0.6 Logic LOW (VOL) IOL = 1.7 mA 0.4 V REFERENCE Positive reference voltage 1.75 V Negative reference voltage 1.25 V ANALOG INPUT (CCDIN) Input signal level for full-scale out PGA gain = 0 dB 900 Input capacitance mV 15 Input limit –0.3 pF 3.3 V TRANSFER CHARACTERISTICS Differential nonlinearity (DNL) PGA gain = 0 dB Integral nonlinearity (INL) PGA gain = 0 dB No missing codes ±0.5 LSB ±1 LSB Specified Step response settling time Full-scale step input 1 pixel Overload recovery time Step input from 1.8 V to 0 V 2 pixels 9 (fixed) Clock cycles Data latency Signal to noise ratio (see Note 1) Signal-to-noise Grounded input cap, PGA gain = 0 dB 79 Grounded input cap, Gain = 12 dB 67 CCD offset correction range –180 dB 200 mV INPUT CLAMP Clamp-on resistance 400 Ω Clamp level 1.5 V PROGRAMMABLE GAIN AMP (PGA) Gain control resolution 10 Bits Maximum gain Gain code = 11 1111 1111 42 dB High gain Gain code = 11 0100 1000 34 dB Medium gain Gain code = 10 0010 0000 20 dB Low gain Gain code = 00 1000 0000 0 dB Minimum gain Gain code = 00 0000 0000 –6 dB ±0.5 dB Gain control error NOTE 1: SNR = 20 log (full-scale voltage/rms noise) 52 VSP2264 SLES059—March 2003 Electrical Characteristics 5.2 Electrical Characteristics, All Specifications at TA = 25°C, All Power Supply Voltages = 3 V, and Conversion Rate = 20 MHz (unless otherwise noted) (continued) VSP2267GSJ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT OPTICAL BLACK CLAMP LOOP Control DAC resolution 10 Programmable range of clamp level Optical black clamp level 2 OBCLP level at CODE = 1000 Bits 242 LSB 130 Minimum output current for control DAC COB terminal ±0.15 µA Maximum output current for control DAC COB terminal ±153 µA Loop time constant CCOB = 0.1 µF 40.7 µs Slew rate CCOB = 0.1 µF, Saturated output current of control DAC 1530 V/s POWER SUPPLY VCC Supply voltage 3.0 Power dissipation (AFE) Power dissipation (TG+H, R driver) 3.6 V 80 Normall operation N ti mode: d no CCD lload d ((att 3 V and 20 MHz) 50 Power dissipation (total) without CCD load Power dissi ation (total) dissipation 3.3 mW 130 Standby plus power-save mode (at 3 V and 20 MHz) 39 Master clock-off mode (at 3 V) mW 6 TEMPERATURE RANGE Operation temperature Rth Thermal resistance SLES059—March 2003 –25 85 °C °C/W 37 VSP2264 53 Electrical Characteristics 54 VSP2264 SLES059—March 2003 Mechanical Data 6 Mechanical Data GSJ (S-PBGA-N96) PLASTIC BALL GRID ARRAY 9,10 8,90 7,20 TYP SQ 0,80 K J H G F E 0,40 D A1 Corner C B A 1 2 3 4 5 6 7 8 9 10 Bottom View 0,35 0,25 1,20 MAX Seating Plane 0,50 0,40 0,08 0,45 MAX 0,08 4204222/A 02/02 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. MicroStar Junior package configuration. Fall within JEDEC MO-225. MicroStar Junior is a trademark of Texas Instruments. SLES059—March 2003 VSP2264 55 Mechanical Data 56 VSP2264 SLES059—March 2003
VSP2264GSJR 价格&库存

很抱歉,暂时无法提供与“VSP2264GSJR”相匹配的价格&库存,您可以联系我们找货

免费人工找货