0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPT7935SIT

SPT7935SIT

  • 厂商:

    CADEKA

  • 封装:

  • 描述:

    SPT7935SIT - 12-BIT, 20 MSPS, 79 mW A/D CONVERTER - Cadeka Microcircuits LLC.

  • 详情介绍
  • 数据手册
  • 价格&库存
SPT7935SIT 数据手册
SPT7935 12-BIT, 20 MSPS, 79 mW A/D CONVERTER FEATURES • • • • • • • 12-Bit, 20 MSPS Analog-to-Digital Converter Monolithic CMOS Internal Track-and-Hold Low Input Capacitance: 1.4 pF Low Power Dissipation: 79 mW 2.8 – 3.6 V Power Supply Range TTL-Compatible Outputs APPLICATIONS • • • • • • • CCD Imaging Cameras and Sensors Medical Imaging RF Communications Document and Film Scanners Electro-Optics Transient Signal Analysis Handheld Equipment GENERAL DESCRIPTION The SPT7935 12-bit, 20 MSPS analog-to-digital converter has a pipelined converter architecture built in a CMOS process. It delivers high performance with a typical power dissipation of only 79 mW. With low distortion and high dynamic range, this device offers the performance needed for imaging, multimedia, telecommunications and instrumentation applications. The SPT7935 is available in a 44-lead Thin Quad Flat Pack (TQFP) package in the industrial temperature range (–40 to +85 °C). BLOCK DIAGRAM ADC DAC + – G=2 D Pipeline Stage VIN+ VIN– VREF+ VREF– CLK Clock Driver Digital Delays, Error Correction and Output 12 Stage 1 Stage 2 Stage 9 Stage 10 2-Bit ADC Digital Output (D0 – D11) ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C Supply Voltages VDD1 .................................................................... –0.5 V to +6 V VDD2 .................................................................... –0.5 V to +6 V VDD3 .................................................................... –0.5 V to +6 V Input Voltages Analog Input ................................. –0.5 V to (VDD +0.5 V) Digital Input .................................. –0.5 V to (VDD +0.5 V) VREF+ .......................................... –0.5 V to (VDD +0.5 V) VREF– .......................................... –0.5 V to (VDD +0.5 V) CLK .............................................. –0.5 V to (VDD +0.5 V) Temperature Operating Temperature ............................. –40 to +85 °C Storage Temperature ............................... –65 to +125 °C Note: 1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications. ELECTRICAL SPECIFICATIONS TA=TMIN–TMAX , VDD1=VDD2=VDD3=3.3 V, VREF–=1.0 V, VREF+=2.0 V, Common Mode Voltage=1.65 V, ƒCLK=20 MSPS, Bias 1=90 µA, Bias 2=9.5 µA, Differential Input, Duty Cycle=50%, unless otherwise specified. PARAMETERS DC Accuracy Resolution Differential Linearity Integral Linearity No Missing Codes Analog Input Input Voltage Range (Differential) Common Mode Input Voltage Input Capacitance Input Bandwidth (Large Signal) Offset (Mid-scale) Gain Error Reference Voltages Reference Input Voltage Range (VREF+ – VREF–) Negative Reference Voltage (VREF–) Positive Reference Voltage (VREF+) Common Mode Output Voltage (VCM) VREF+ Current VREF– Current Switching Performance Maximum Conversion Rate Pipeline Delay (See Timing Diagram) Aperture Delay Time (TAP) Aperture Jitter Time Dynamic Performance Effective Number of Bits ƒIN = 5.0 MHz ƒIN = 10.0 MHz Signal-To-Noise Ratio ƒIN = 5.0 MHz ƒIN = 10.0 MHz Total Harmonic Distortion ƒIN = 5.0 MHz ƒIN = 10.0 MHz TEST CONDITIONS TEST LEVEL MIN SPT7935 TYP 12 ±0.6 ±3.0 Guaranteed ±0.6 1.2 ±1.0 1.65 1.4 120 ±1.0 0.3 1.0 1.0 2.0 1.65 35 –25 ±1.7 1.9 MAX UNITS Bits LSB LSB V V VI IV IV V V V V IV IV IV VI V V VI IV V V VIN+=VIN–=VCM V V pF MHz % FSR % FSR V V V V µA µA MHz Clocks ns ps-rms 0.6 0.9 1.9 1.3 1.7 1.3 2.6 1.8 IO = –1 µA 20 7.5 5 10 VI V VI V VI V 9.2 9.8 9.0 62 58 –68 –60 –61 Bits Bits dB dB dB dB 59 SPT7935 2 7/12/00 ELECTRICAL SPECIFICATIONS TA=TMIN–TMAX , VDD1=VDD2=VDD3=3.3 V, VREF–=1.0 V, VREF+=2.0 V, Common Mode Voltage=1.65 V, ƒCLK=20 MSPS, Bias 1=90 µA, Bias 2=9.5 µA, Differential Input, Duty Cycle=50%, unless otherwise specified. PARAMETERS Dynamic Performance–Continued Signal-To-Noise and Distortion ƒIN = 5 MHz ƒIN = 10 MHz Spurious Free Dynamic Range ƒIN = 5.0 MHz ƒIN = 10.0 MHz Differential Phase Differential Gain Digital Inputs Logic 1 Voltage Logic 0 Voltage Maximum Input Current Low Maximum Input Current High Input Capacitance Digital Outputs Logic 1 Voltage Logic 0 Voltage CLK to Output Delay Time (tD) Power Supply Requirements Supply Voltages VDD1, VDD2, VDD3 Supply Current IDD Power Dissipation Power Supply Rejection Ratio (PSRR) TEST CONDITIONS TEST LEVEL MIN SPT7935 TYP MAX UNITS VI V VI V V V VI VI VI VI V VI VI IV 57 61 56 70 61 0.2 0.5 dB dB dB dB Degrees % 62 80% VDD 20% VDD ±1 µA ±1 µA pF V V ns VIN = GND VIN = VDD 1.8 85% VDD 4 95% VDD 0.1 8 IO = -2 mA IO = +2 mA 0.4 12 IV VI VI V 2.8 3.3 24 79 67 3.6 30 100 V mA mW dB TEST LEVEL CODES TEST LEVEL I All electrical characteristics are subject to the following conditions: All parameters having II min/max specifications are guaranteed. The Test Level column indicates the specific III device testing actually performed during proIV duction and Quality Assurance inspection. Any blank section in the data column indiV cates that the specification is not tested at the specified condition. VI TEST PROCEDURE 100% production tested at the specified temperature. 100% production tested at TA = +25 °C, and sample tested at the specified temperatures. QA sample tested only at the specified temperatures. Parameter is guaranteed (but not tested) by design and characterization data. Parameter is a typical value for information purposes only. 100% production tested at TA = +25 °C. Parameter is guaranteed over specified temperature range. SPT7935 3 7/12/00 TYPICAL PERFORMANCE CHARACTERISTICS THD, SNR, SINAD vs Input Frequency 80 THD, SNR, SINAD vs Sample Rate 80 70 70 THD SNR THD SNR SINAD THD, SNR, SINAD (dB) THD, SNR, SINAD (dB) 60 THD SNR SINAD 60 SINAD 50 50 40 40 30 30 20 100 20 Input Frequency (MHz) 101 102 10 0 101 102 Sample Rate (MSPS) Note: Bias1 and Bias2 currents optimized for each sample rate. THD, SNR, SINAD vs Temperature 70 Power Dissipation vs Sample Rate 150 68 125 THD, SNR, SINAD (dB) THD 66 Power Dissipation (mW) 100 64 SNR 62 75 SINAD 60 50 58 25 56 0 25 70 0 Temperature (°C) 10 0 101 102 Sample Rate (MSPS) Note: Bias1 and Bias2 optimized for each sample rate. Bias 1 Voltage vs Bias 1 Current 3.4 3.2 3.0 0.90 Bias 2 Voltage vs Bias 2 Current 0.85 VBias1 (V) 0.80 VBias2 (V) 2.8 2.6 2.4 2.2 2.0 0 30 60 90 120 150 180 IBias1 VBias1 30 2.19 60 2.53 90 2.79 120 3.00 150 3.22 0.75 0.70 IBias2 3 6 9 12 15 VBias2 0.6975 0.7535 0.796 0.8295 0.8595 0.65 0.60 0 3 6 9 12 15 18 IBias1 (µA) IBias2 (µA) SPT7935 4 7/12/00 Figure 1 – Timing Diagram Sampling Points N-1 N N+1 tAP AIN CLK N+2 N+6 N+7 N+8 tD DOUT N-2 N-1 N GENERAL DESCRIPTION The SPT7935 is an ultra-low power, 12-bit, 20 MSPS ADC. It has a pipelined architecture and incorporates digital error correction of the 11 most significant bits. This error correction ensures good linearity performance for input frequencies up to Nyquist. The inputs are fully differential, making the device insensitive to system-level noise. This device can also be used in a single-ended mode. (See analog input section.) With the power dissipation roughly proportional to the sampling rate, this device is ideal for very low power applications in the range of 1 to 20 MSPS. TYPICAL INTERFACE CIRCUIT The SPT7935 requires few external components to achieve the stated operation and performance. Figure 2 shows the typical interface requirements when using the SPT7935 in normal circuit operation. The following sections provide a description of the functions and outline critical performance criteria to consider for achieving the optimal device performance. ANALOG INPUT The input of the SPT7935 can be configured in various ways depending on if a single-ended or differential, AC- or DCcoupled input is desired. +3.3 V CLK In (3 V Logic) Figure 2 – Typical Interface Circuit Ref– In (+1.15 V) 4.7 µF + .01 µF 10 µF + +3.3 V .01 µF Ref+ In (+2.15 V) + 4.7 µF .01 µF 11 +3.3 V Digital 0.1 µF 1 GND CLK Decoupling Cap VREF– VDD1 VDD2 N/C VDD2 VDD1 VDD3 VREF+ VDD1 12 N/C N/C N/C VDD3 44 (LSB) D0 D1 D2 90 µA 9.5 µA .01 µF (+1.65 V) GND Bias1 Bias2 VCM GND U1 SPT7935 D3 D4 D5 D6 D7 D8 D9 D10 D11 Interfacing 3 V Logic RF In 51 68 pF VIN+ VIN– 22 Minicircuit T1-6T GND GND 34 (MSB) 23 33 AGND Notes: All VDD1, VDD2 and VDD3 should be tied together. FB = Ferrite Bead; must be placed as close to U1 as possible. FB DGND SPT7935 5 7/12/00 The AC coupled input is most conveniently implemented using a transformer with a center tapped secondary winding. The center tap is connected to the VCM pin as shown in figure 2. To obtain low distortion, it is important that the selected transformer does not exhibit core saturation at the full-scale voltage. Proper termination of the input is important for input signal purity. A small capacitor across the inputs attenuates kickback noise from the internal sample and hold. Figure 3 illustrates a solution (based on operational amplifiers) that can be used if a DC coupled single-ended input is desired. The selection criteria of the buffer op-amps is as follows: – Open loop gain >75 dB – Gain bandwidth product >50 MHz – Total harmonic distortion ≤–75 dB – Signal to noise ratio >75 dB COMMON MODE VOLTAGE REFERENCE CIRCUIT The SPT7935 has an on-board common mode voltage reference circuit (VCM). It is typically one-half of the supply voltage and can drive loads of up to 20 µA. This circuit is commonly used to drive the center tap of the RF transformer in fully differential applications. For single-ended applications, this output can be used to provide the level shifting required for the single-to-differential converter conversion circuit. BIAS CURRENT CIRCUITS The bias currents suggested (Bias 1 and Bias 2 in figure 2) optimize device performance for the stated sample rate of 20 MSPS. To achieve the best dynamic performance when operating the device at sample rates other than 20 MSPS, the bias current levels should be adjusted. Table I shows the settings for Bias 1 and Bias 2 for selected sample rates. The “Bias Voltage vs Bias Current” graphs on page 4 show the relationship between the bias current and the bias voltage. Table I – Sample Rate Settings Sample Rate (MHz) 1 5 10 20 Bias 1 (µA) 20 50 80 90 Bias 2 (µA) 3.5 6.5 8.0 9.5 POWER SUPPLIES AND GROUNDING The SPT7935 is operated from a single power supply in the range of 2.8 to 3.6 volts. Nominal operation is suggested to be 3.3 volts. All power supply pins should be bypassed as close to the package as possible. The analog and digital grounds should be connected together with a ferrite bead as shown in the typical interface circuit and as close to the ADC as possible. REFERENCES The SPT7935 has a differential analog input. The voltages applied to the VREF+ and VREF- pins determine the input voltage range and are equal to ±(VREF+ – VREF–). This voltage range will be symmetric about the common mode voltage. Externally generated reference voltages must be connected to these pins. (See figure 2, Typical Interface Circuit.) For best performance, these voltages should be symmetrical about the midpoint of the supply voltage. Figure 3 – DC-Coupled Single Ended to Differential Conversion (Power Supplies and Bypassing are Not Shown) R3 VCM (R3)/2 – + Input Voltage (±0.5 V) R2 R2 R – + 15 pF VIN– 51 Ω R R 51 Ω VIN+ R3 R ADC + – R 51 Ω SPT7935 6 7/12/00 CLOCK The SPT7935 accepts a low voltage CMOS logic level at the CLK input. The duty cycle of the clock should be kept as close to 50% as possible. Because consecutive stages in the ADC are clocked in opposite phase to each other, a non-50% duty cycle reduces the settling time available for every other stage and thus potentially causing a degradation of dynamic performance. For optimal performance at high input frequencies, the clock should have low jitter and fast edges. The rise/fall times should be kept shorter than 2 ns. Overshoot and undershoot should be avoided. Clock jitter causes the noise floor to rise proportional to the input frequency. Because jitter can be caused by crosstalk on the PC board, it is recommended that the clock trace be kept as short as possible and standard transmission line practices be followed. DIGITAL OUTPUTS The digital output data appears in an offset binary code at 3.3 V CMOS logic levels. A negative full scale input results in an all zeros output code (000…0). A positive full scale input results in an all 1’s code (111…1). The output data is available 7.5 clock cycles after the data is sampled. The input signal is sampled on the high to low transition of the input clock. Output data should be latched on the low to high clock transition as shown in figure 1, the Timing Diagram. The output data is invalid for the first 20 clock cycles after the device is powered up. EVALUATION BOARD The EB7935 Evaluation Board is available to aid designers in demonstrating the full performance capability of the SPT7935. The board includes an on-board clock driver, adjustable voltage references, adjustable bias current circuits, single-to-differential input buffers with adjustable levels, a single-to-differential transformer (1:1), digital output buffers and 3.3/5 V adjustable logic outputs. An application note (AN7935) is also available which describes the operation of the evaluation board and provides an example of the recommended power and ground layout and signal routing. Contact the factory for price and availability. PACKAGE OUTLINE 44L TQFP A B INCHES SYMBOL A B C D E F C D MILLIMETERS MAX MIN 12.00 Typ 10.00 Typ 10.00 Typ 12.00 Typ 0.80 Typ 0.018 0.057 0.006 0.030 0.300 1.35 0.05 0.450 1.00 Typ 0-7° 0.45 1.45 0.15 0.750 MAX MIN 0.472 Typ 0.394 Typ 0.394 Typ 0.472 Typ 0.031 Typ 0.012 0.053 0.002 0.018 0.039 Typ 0-7° G H I J K Index Pin 1 E F G I H J K SPT7935 7 7/12/00 PIN ASSIGNMENTS D0 (LSB) 43 VDD3 44 D6 D8 D1 42 D3 40 D7 D9 D4 D5 D2 41 PIN FUNCTIONS Name VIN+, VIN– VREF+, VREF– 33 32 31 30 29 28 27 26 25 24 23 D10 D11 (MSB) GND GND GND GND GND GND GND GND GND Function Analog Inputs External Reference Inputs Input Clock Common Mode Output Voltage (1.65 V typ) Bias Current (90 µA typ) Bias Current (9.5 µA typ) Digital Outputs (D0 = LSB) Analog Ground Analog Power Supply Digital Power Supply Digital Output Power Supply No Connect Pins. Recommended to connect to analog ground. 38 37 36 39 35 34 GND CLK N/C VDD3 VDD2 VDD2 VDD1 VDD1 VDD1 VREFVREF+ 1 2 3 4 5 6 7 8 9 10 11 15 14 16 17 18 19 12 N/C 13 N/C 20 21 22 CLK VCM Bias 1 Bias 2 D0 – D11 GND VDD1 VDD2 VDD3 N/C GND GND ORDERING INFORMATION PART NUMBER SPT7935SIT TEMPERATURE RANGE –40 to +85 °C PACKAGE TYPE 44L TQFP N/C N/C VIN- Bias 1 Bias 2 VIN+ VCM SPT7935 8 7/12/00
SPT7935SIT
物料型号: - 型号:SPT7935 - 封装:44-lead Thin Quad Flat Pack (TQFP)

器件简介: - SPT7935是一款12位、20 MSPS的模数转换器,采用CMOS工艺构建的流水线式转换架构。典型功耗仅为79毫瓦,具有低失真和高动态范围,适用于成像、多媒体、电信和仪器应用。

引脚分配: - VIN+, VIN-:模拟输入 - VREF+, VREF-:外部参考输入 - CLK:输入时钟 - VCM:共模输出电压(典型值1.65V) - Bias 1:偏置电流(典型值90微安) - Bias 2:偏置电流(典型值9.5微安) - DO-D11:数字输出(D0 = 最低有效位) - GND:模拟地 - VDD1:模拟电源 - VDD2:数字电源 - VDD3:数字输出电源 - N/C:不连接引脚,建议连接至模拟地

参数特性: - 分辨率:12位 - 差分线性度:±0.6LSB - 积分线性度(无缺失码):±3.0 - 输入电压范围(差分):±0.6V - 共模输入电压:1.2V至1.9V - 输入电容:1.4pF - 输入带宽(大信号):120MHz - 偏移(中量程):±1.0% FSR - 增益误差:0.3% FSR

功能详解: - SPT7935具有全差分输入,对系统级噪声不敏感,也可以在单端模式下使用。 - 内置共模电压参考电路(VCM),通常为供电电压的一半,可以驱动高达20微安的负载。 - 电源电压范围2.8至3.6V,建议操作电压为3.3V。 - 数字输出数据以偏移二进制码的形式出现,在3.3V CMOS逻辑电平。

应用信息: - 适用于CCD成像相机和传感器、医疗成像、射频通信、文档和胶片扫描仪、电光学、手持设备、瞬态信号分析等领域。

封装信息: - 44L TQFP封装,工业温度范围(-40至+85°C)。
SPT7935SIT 价格&库存

很抱歉,暂时无法提供与“SPT7935SIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货