0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
THCV235-B

THCV235-B

  • 厂商:

    CEL

  • 封装:

    64-VFQFN裸露焊盘

  • 描述:

    ICSERIALIZERSINGLE64QFN

  • 数据手册
  • 价格&库存
THCV235-B 数据手册
THCV235_THCV236_Rev.3.70_E THCV235 and THCV236 SerDes transmitter and receiver with bi-directional transceiver General Description Features The THCV235 and THCV236 are designed to support video data transmission between the host and display. One high-speed lane can carry up to 32bit data and 3bits of synchronizing signals at a pixel clock frequency from 6MHz to 160MHz by converting RGB444 to YCbCr422. The chipset, which has one high-speed data lane, can transmit video data up to 1080p/60Hz. The maximum serial data rate is 4.00Gbps/lane.              Color depth selectable:24/32bit RGB YCbCr422 color space conversion function Wide frequency range AC coupling for high-speed lanes CDR requires no external frequency reference Wide range supply voltage from 1.7V to 3.6V Additional spread spectrum on data stream 2-wire serial interface bridge function(400kbps) Remote side GPIO control and monitoring Low speed data bridge function QFN64(9mm x 9mm) with exposed pad ground V-by-One® HS standard version1.4 compliant EU RoHS compliant Block Diagram Settings 2-wire I/F SDA/SCL Controls RCMP RCMN OSC LDO Copyright©2022 THine Electronics, Inc. Controls LVCMOS output TCMP TCMN Formatter YCbCr to RGB RXP RXN Deserializer TXP TXN CDR Serializer THCV236 PLL Formatter RGB to YCbCr D31-D0 HSYNC VSYNC DE CLKIN LVCMOS input THCV235 D31-D0 HSYNC VSYNC DE CLKOUT Settings 2-wire I/F SDA/SCL OSC CAPOUT CAPINA CAPINP LDO CAPOUT CAPINA 1/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Contents Page General Description .............................................................................................................................................. 1 Features .................................................................................................................................................................. 1 Block Diagram ....................................................................................................................................................... 1 Pin Configuration .................................................................................................................................................. 4 Pin Description ...................................................................................................................................................... 5 Pin Description for THCV235 .......................................................................................................................... 5 Pin Description for THCV236 .......................................................................................................................... 9 Functional Overview ........................................................................................................................................... 13 Functional Description ........................................................................................................................................ 13 Internal Reference Output/Input Function (CAPOUT, CAPINA, CAPINP) ............................................ 13 Power Down (PDN1, PDN0) ........................................................................................................................... 13 Main-Link Mode Setting................................................................................................................................. 14 V-by-One® HS Mode (MAINMODE=0) ........................................................................................................ 14 Sync Free Mode (MAINMODE=1) ................................................................................................................ 14 Color Space Conversion .................................................................................................................................. 14 Pre-emphasis and Drive Select Function (THCV235 only) ......................................................................... 14 Permanent Clock Output (THCV236 only) .................................................................................................. 15 Spread Spectrum Clock Generator (SSCG).................................................................................................. 15 Hot-Plug Function ........................................................................................................................................... 18 Lock Detect Function ...................................................................................................................................... 18 Field BET Operation ....................................................................................................................................... 20 Data Width and Frequency Range Select Function ..................................................................................... 22 Data Mapping .................................................................................................................................................. 24 Sub-Link Mode Setting ................................................................................................................................... 26 2-wire serial I/F Mode ..................................................................................................................................... 26 Low Speed Data Bridge Mode ........................................................................................................................ 39 Register Map ........................................................................................................................................................ 40 Absolute Maximum Ratings ............................................................................................................................... 50 Recommended Operating Conditions................................................................................................................ 50 Electrical Specification........................................................................................................................................ 50 LVCMOS DC Specification ............................................................................................................................ 50 CML DC Specification .................................................................................................................................... 51 CML Bi-Directional DC Specification ........................................................................................................... 51 Supply Current ................................................................................................................................................ 52 Switching Characteristics ............................................................................................................................... 52 Copyright©2022 THine Electronics, Inc. 2/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E AC Timing Diagrams and Test Circuits ............................................................................................................ 56 LVCMOS Input, Output Switching Characteristics .................................................................................... 56 CML Output Switching Characteristics ........................................................................................................ 57 CML Bi-directional Output Test Circuit ....................................................................................................... 58 Lock and Unlock Sequence ............................................................................................................................. 60 GPIO Switching Characteristics .................................................................................................................... 63 PCB Layout Guideline regarding VDD and AVDD for THCV236 ................................................................. 66 Package ................................................................................................................................................................. 67 Notices and Requests ........................................................................................................................................... 68 Copyright©2022 THine Electronics, Inc. 3/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Pin Configuration VDD HSYNC DE D30 D31 SSEN/GPIO0 BET/GPIO1 CAPOUT MAINMODE/TCMP HFSEL/TCMN TXP TXN CAPINA CAPINP LOCKN/MSSEL HTPDN/SUBMODE 47 48 VSYNC D29 46 D28 45 D27 44 D26 43 D25 42 D24 41 VDD 40 AVDD 39 D23 38 D22 37 D21 36 D20 35 D19 34 D18 33 D17 THCV235 (QFN 64pin) 49 32 50 31 51 30 52 29 53 28 54 27 55 26 (TOP VIEW) 56 57 25 24 65 EXPGND 58 23 59 22 60 21 61 20 62 19 63 18 64 17 VDD D16 D15 D14 D13 D12 CLKIN VDD D11 D10 D9 D8 D7 D6 D5 D4 16 15 14 13 11 12 10 9 8 7 6 5 4 3 2 1 VDD D3 D2 D1 D0 LATEN/SD3/AIN1/GPIO4 CMLDRV/SD2/AIN0/GPIO3 PRE/SD1 COL1/SD0 COL0/INT/GPIO2 RF/BETOUT TEST2 TEST1 LFSEL PDN1 PDN0 VDD HSYNC DE D1 D0 HTPDN/SUBMODE LOCKN/MSSEL CAPOUT RXN RXP CAPINA MAINMODE/RCMN HFSEL/RCMP RXDEFSEL OE BET 47 48 VSYNC D2 46 D3 45 D4 44 D5 43 D6 42 D7 41 VDD 40 AVDD 39 D8 38 D9 37 D10 36 D11 35 D12 34 D13 33 D14 THCV236 (QFN 64pin) 49 32 50 31 51 30 52 29 53 28 54 27 55 26 (TOP VIEW) 56 57 25 24 65 EXPGND 58 23 59 22 60 21 61 20 62 19 63 18 64 17 VDD D15 D16 D17 D18 D19 CLKOUT VDD D20 D21 D22 D23 D24/GPIO3 D25/GPIO4 D26 D27 16 15 14 13 11 12 9 10 8 7 6 5 4 3 2 1 VDD D28 D29 D30 D31 LATEN/SD3/AIN1/GPIO0 TTLDRV/SD2/AIN0/GPIO1 OUTSEL/SD1 COL1/SD0 COL0/INT/GPIO2 RF/BETOUT TEST2 TEST1 LFSEL PDN1 PDN0 Copyright©2022 THine Electronics, Inc. 4/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Pin Description Pin Description for THCV235 Pin Name TXP TXN MAINMODE/ TCMP 59 60 57 Pin No. Type CO CO I/CB HFSEL/TCMN 58 I/CB HTPDN/ SUBMODE 64 IL LOCKN/MSSEL 63 IL LATEN/SD3/AIN1/ GPIO4 11 B Copyright©2022 THine Electronics, Inc. Description High-Speed CML Signal Output(Main-Link) High-Speed CML Signal Output(Main-Link) MAINMODE : Setting V-by-One® HS Mode or Sync Free Mode when PDN1=0. 0 : V-by-One® HS Mode 1 : Sync Free Mode TCMP : CML Signal Bi-directional Input/Output(Sub-Link) when PDN1=1. HFSEL : High Frequency mode select when PDN1=0. 0 : High Frequency mode Disable 1 : High Frequency mode Enable TCMN : CML Signal Bi-directional Input/Output(Sub-Link) when PDN1=1. HTPDN : Hot Plug Detect Input when PDN1=0. SUBMODE : Sub-Link Mode Select when PDN1=1. 0: 2-wire serial interface(I/F) Mode(default No Clock Stretching mode) 1: Low Speed Data Bridge Mode Forbid the different setting between THCV235 and THCV236. LOCKN : Lock Detect Input when PDN1=0. MSSEL : Sub-Link Master/Slave Select when PDN1=1. 0 : Sub-Link Master side(inside 2-wire serial I/F is slave) 1 : Sub-Link Slave side(inside 2-wire serial I/F is master) Sub-Link Master is connected to HOST MPU. Forbid the same setting between THCV235 and THCV236. LATEN : Latch select input under Field BET(Main-Link or Sub-Link). 0 : NOT Latched result 1 : Latched result SD3 : Sub-Link Data Input/Output when PDN1=1 and SUBMODE=1. When Sub-Link is Master (MSSEL=0), SD3 is output. When Sub-Link is Slave (MSSEL=1), SD3 is input. AIN1 : Device ID setting for 2-wire serial I/F when SUBMODE=0 and MSSEL=0. See Table 26. GPIO4 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO4 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO4 is used as push pull output or input, no external component is required. 5/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E CMLDRV/SD2/ AIN0/GPIO3 10 B PRE/SD1 9 B COL1/SD0 8 B COL0/INT/GPIO2 7 B Copyright©2022 THine Electronics, Inc. CMLDRV : High-Speed CML Output Drive Strength Select when PDN1=0. 0 : Weak Drive Strength (600mV diff p-p) 1 : Normal Drive Strength (800mV diff p-p) SD2 : Sub-Link Data Input/Output when PDN1=1 and SUBMODE=1. When Sub-Link is Master (MSSEL=0), SD2 is input. When Sub-Link is Slave (MSSEL=1), SD2 is output. AIN0 : Device ID setting for 2-wire serial I/F when SUBMODE=0 and MSSEL=0. See Table 26. GPIO3 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO3 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO3 is used as push pull output or input, no external component is required. PRE : Pre-Emphasis Level Select Input when PDN1=0. 0 : Pre-Emphasis Disable 1 : Pre-Emphasis Enable (when CMLDRV=1. See Table 4) SD1 : Sub-Link Data Input/Output when PDN1=1. When SUBMODE=0, SD1 is used as SCL input/output for 2-wire serial I/F, requires pull-up resistor to VDD. When SUBMODE=1 and MSSEL=0, SD1 is input. When SUBMODE=1 and MSSEL=1, SD1 is output. COL1 : Color Space Converter Enable when PDN1=0 and MAINMODE=0. 0 : Color Space Converter Disable 1 : Color Space Converter Enable Data Width Setting when PDN1=0 and MAINMODE=1. See Table 20. SD0 : Sub-Link Data Input/Output when PDN1=1. When SUBMODE=0, SD0 is used as SDA input/output for 2-wire serial I/F, requires pull-up resistor to VDD. When SUBMODE=1 and MSSEL=0, SD0 is input. When SUBMODE=1 and MSSEL=1, SD0 is output. COL0 : Data Width Setting when PDN1=0. See Table 20. INT : Interrupt signal output for Sub-Link when SUBMODE=0 and MSSEL=0. It must be connected with a pull-up resistor to VDD. L : Interrupt occurred H : Steady state GPIO2 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO2 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO2 is used as push pull output or input, no external component is required. 6/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E BET/GPIO1 55 BO SSEN/GPIO0 54 BO CLKIN D31-D0 26 53,52,47-42, 39-33,31-27, 24-17,15-12 51 50 48 6 DE HSYNC VSYNC RF/BETOUT I I BET : Field BET entry when PDN1=0 or Sub-Link is active and Low Speed Data Bridge Mode(PDN1=1, SUBMODE=1). 0 : Normal Operation 1 : Field BET Operation GPIO1 : General Purpose Input/Output when SUBMODE=0. GPIO1 has Open-Drain Output buffer, it must be connected with a pull-up resistor to VDD. SSEN : Spread Spectrum Clock Generator(SSCG) Enable when PDN1=0 or Sub-Link is active and Low Speed Data Bridge Mode(PDN1=1, SUBMODE=1). 0 : SSCG Disable 1 : SSCG Enable GPIO0 : General Purpose Input/Output when SUBMODE=0. GPIO0 has Open-Drain Output buffer, it must be connected with a pull-up resistor to VDD. Clock Input Pixel Data Input DE Input HSYNC Input VSYNC Input RF : Input Clock Triggering edge select. See Figure 19 0 : Falling Edge 1 : Rising Edge BETOUT : Field BET Result Output when Field BET mode LFSEL 3 I Low Frequency mode select 0 : Low Frequency mode Disable 1 : Low Frequency mode Enable PDN1 2 IL Sub-Link Power Down 0 : Power Down. Main-Link setting by external pin 1 : Normal Operation. Main-Link Setting by 2-wire serial I/F PDN0 1 IL Main-Link Power Down 0 : Power Down 1 : Normal Operation TEST2 5 I Test pin. Must be tied to Ground for normal operation. TEST1 4 IL Test pin. Must be tied to Ground for normal operation. CAPOUT 56 PWR Decoupling Capacitor Pin, 1.2V output. CAPINA 61 PWR Reference Input for Analog Circuit. Must be tied to CAPOUT. CAPINP 62 PWR Reference Input for Analog Circuit. Must be tied to CAPOUT. VDD 49,41,32,25,16 PWR 1.7-3.6V Digital Power Supply Pin for LVCMOS I/O AVDD 40 PWR 1.7-3.6V Analog Power Supply Pin for LDO EXPGND 65 GND Exposed Pad Ground. Must be tied to the PCB ground plane through an array of vias. CO : CML Output buffer , CB : CML Bi-directional buffer I : LVCMOS Input buffer , IL : Low Speed LVCMOS Input buffer B : LVCMOS Bi-directional buffer , BO : Open-Drain LVCMOS Bi-directional buffer PWR : Power supply , GND : Ground Copyright©2022 THine Electronics, Inc. I I I B 7/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 1. Pin Sharing Description (THCV235) Sub-Link State → Sub-Link Power Down Sub-Link Master/Slave → PDN1 HTPDN/SUBMODE LOCKN/MSSEL BET/GPIO1 Low Speed Data Bridge Mode 2-wire serial I/F Mode - Master Slave Master Slave 0 * * 0 1 1 0 0 1 1 1 0 1 0 0 * 1 0 1 * INT SD0(SDA) SD1(SCL) AIN0 AIN1 GPIO2(*4) SD0(SDA) SD1(SCL) GPIO3(*5) GPIO4(*5) GPIO0(*4) GPIO1(*4) GPIO0(*4) GPIO1(*4) RF BETOUT(*2) COL0/INT/GPIO2 COL0 COL0 COL0 COL1/SD0 COL1 SD0(input) SD0(output)(*6) PRE/SD1 PRE SD1(input) SD1(output)(*6) CMLDRV/SD2/AIN0/GPIO3 CMLDRV SD2(input) SD2(output)(*6) -(*1) SD3(output)(*6) SD3(input) LATEN/SD3/AIN1/GPIO4 LATEN(*3) SSEN/GPIO0 SSEN SSEN SSEN BET/GPIO1 BET BET BET MAINMODE/TCMP MAINMODE TCMP HFSEL/TCMN HFSEL TCMN LOCKN/MSSEL LOCKN MSSEL HTPDN/SUBMODE HTPDN SUBMODE *1 There is no function. LVCMOS IO has input state. Must be fixed at 0 or 1 input. *2 When Field BET mode (Main-Link or Sub-Link), it functions as BETOUT output. *3 When Field BET mode (Main-Link or Sub-Link), it functions as LATEN input. *4 Programmable GPIO input is default on register setting. *5 Through GPIO open-drain output is default on register setting. *6 Low Speed Data Bridge Mode output is LVCMOS push pull buffer. RF/BETOUT Copyright©2022 THine Electronics, Inc. 8/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Pin Description for THCV236 Pin Name RXP RXN HFSEL/RCMP 58 57 61 Pin No. Type CI CI CB/I MAINMODE/ RCMN 60 CB/I HTPDN/ SUBMODE 54 BO LOCKN/ MSSEL 55 BO LATEN/SD3/ AIN1/GPIO0 11 B Copyright©2022 THine Electronics, Inc. Description High-Speed CML Signal Input(Main-Link) High-Speed CML Signal Input(Main-Link) HFSEL : High Frequency Mode select when PDN1=0. 0 : High Frequency Mode Disable 1 : High Frequency Mode Enable RCMP : CML Signal Bi-directional Input/Output(Sub-Link) when PDN1=1. MAINMODE : Setting V-by-One® HS Mode or Sync Free Mode when PDN1=0. 0 : V-by-One® HS Mode 1 : Sync Free Mode RCMN : CML Signal Bi-directional Input/Output(Sub-Link) when PDN1=1. HTPDN : Hot Plug Detect Output when PDN1=0. Must be connected to Tx HTPDN with 10kΩ pull-up resistor. SUBMODE : Sub-Link Mode Select when PDN1=1. 0 : 2-wire serial I/F Mode (default No Clock Stretching mode) 1 : Low Speed Data Bridge Mode Forbid the different setting between THCV235 and THCV236. LOCKN : Lock Detect Output when PDN1=0. Must be connected to Tx LOCKN with 10kΩ pull-up resistor. MSSEL : Sub-Link Master/Slave Select when PDN1=1. 0 : Sub-Link Master side(inside 2-wire serial I/F is slave) 1 : Sub-Link Slave side(inside 2-wire serial I/F is master) Sub-Link Master is connected to HOST MPU. Forbid the same setting between THCV235 and THCV236. LATEN : Latch select input under Field BET(Main-Link or Sub-Link). 0 : NOT Latched result 1 : Latched result SD3 : Sub-Link Data Input/Output when PDN1=1 and SUBMODE=1. When Sub-Link is Master (MSSEL=0), SD3 is output. When Sub-Link is Slave (MSSEL=1), SD3 is input. AIN1 : Device ID setting for 2-wire serial I/F when SUBMODE=0 and MSSEL=0. See Table 26. GPIO0 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO0 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO0 is used as push pull output or input, no external component is required. 9/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E TTLDRV/SD2/ AIN0/GPIO1 10 B OUTSEL/SD1 9 B COL1/SD0 8 B COL0/INT/ GPIO2 7 B CLKOUT D31-D26 26 12-15,17,18 O O Copyright©2022 THine Electronics, Inc. TTLDRV : TTL Output Drive Strength Select when PDN1=0. 0 : Weak Drive Strength 1 : Normal Drive Strength SD2 : Sub-Link Data Input/Output when PDN1=1 and SUBMODE=1. When Sub-Link is Master (MSSEL=0), SD2 is input. When Sub-Link is Slave (MSSEL=1), SD2 is output. AIN0 : Device ID setting for 2-wire serial I/F when SUBMODE=0 and MSSEL=0. See Table 26. GPIO1 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO1 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO1 is used as push pull output or input, no external component is required. OUTSEL : Permanent Clock Output Enable when PDN1=0. 0 : Permanent Clock Output Disable 1 : Permanent Clock Output Enable SD1 : Sub-Link Data Input/Output when PDN1=1. When SUBMODE=0, SD1 is used as SCL input/output for 2-wire serial I/F, requires pull-up resistor to VDD. When SUBMODE=1 and MSSEL=0, SD1 is input. When SUBMODE=1 and MSSEL=1, SD1 is output. COL1 : Color Space Converter Enable when PDN1=0 and MAINMODE=0. 0 : Color Space Converter Disable 1 : Color Space Converter Enable Data Width Setting when PDN1=0 and MAINMODE=1. See Table 20. SD0 : Sub-Link Data Input/Output when PDN1=1. When SUBMODE=0, SD0 is used as SDA input/output for 2-wire serial I/F, requires pull-up resistor to VDD. When SUBMODE=1 and MSSEL=0, SD0 is input. When SUBMODE=1 and MSSEL=1, SD0 is output. COL0 : Data Width Setting when PDN1=0. See Table 22. INT : Interrupt signal output for Sub-Link when SUBMODE=0 and Sub-Link Master. It must be connected with a pull-up resistor to VDD. L : Interrupt occurred H : Steady state GPIO2 : General Purpose Input/Output when SUBMODE=0 and MSSEL=1. When GPIO2 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO2 is used as push pull output or input, no external component is required. Clock Output Pixel Data Output 10/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E D25/GPIO4 19 B D24/GPIO3 20 B D23-D0 21-24,27-31,33-39, 42-47,52,53 51 50 48 63 O DE HSYNC VSYNC OE D25 : Pixel Data Output GPIO4 : General Purpose Input/Output when SUBMODE=0, MSSEL=0 and RXDEFSEL=0. When GPIO4 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO4 is used as push pull output or input, no external component is required. D24 : Pixel Data Output GPIO3 : General Purpose Input/Output when SUBMODE=0, MSSEL=0 and RXDEFSEL=0. When GPIO3 is used as Open-Drain Output, it must be connected with a pull-up resistor to VDD. When GPIO3 is used as push pull output or input, no external component is required. Pixel Data Output DE Output HSYNC Output VSYNC Output Output Enable 0 : LVCMOS Output Disable (Hi-Z) except for HTPDN, LOCKN when PDN1=0 and except for BETOUT when BET=1. 1 : LVCMOS Output Enable BET 64 IL Field BET entry 0 : Normal Operation 1 : Field BET Operation RF/BETOUT 6 B RF : Output Clock Triggering edge select. See Table 20. 0 : Falling Edge 1 : Rising Edge BETOUT : Field BET Result Output RXDEFSEL 62 I Internal Register Default Setting Select. See Table 44, Table 45 0 : for THCV231 1 : for THCV235 LFSEL 3 I Low Frequency mode select 0 : Low Frequency mode Disable 1 : Low Frequency mode Enable PDN1 2 IL Sub-Link Power Down 0 : Power Down. Main-Link setting by external pin 1 : Normal Operation. Main-Link Setting by 2-wire serial I/F PDN0 1 IL Main-Link Power Down 0 : Power Down 1 : Normal Operation TEST2 5 I Test pin. Must be tied to Ground for normal operation. TEST1 4 IL Test pin. Must be tied to Ground for normal operation. CAPOUT 56 PWR Decoupling Capacitor Pin, 1.2V output. CAPINA 59 PWR Reference Input for Analog Circuit. Must be tied to CAPOUT. VDD 49,41,32,25,16 PWR 1.7-3.6V Digital Power Supply Pin for LVCMOS I/O AVDD 40 PWR 1.7-3.6V Analog Power Supply Pin for LDO EXPGND 65 GND Exposed Pad Ground. Must be tied to the PCB ground plane through an array of vias. CI : CML Input buffer , CB : CML Bi-directional buffer I : LVCMOS Input buffer , IL : Low Speed LVCMOS Input buffer , O: LVCMOS Output buffer B : LVCMOS Bi-directional buffer , BO : Open-Drain LVCMOS Bi-directional buffer PWR : Power supply , GND : Ground Copyright©2022 THine Electronics, Inc. O O O IL 11/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 2. Pin Sharing Description (THCV236) Sub-Link State → Sub-Link Master/Slave → PDN1 HTPDN/SUBMODE LOCKN/MSSEL BET RXDEFSEL Sub-Link Power Down Low Speed Data Bridge Mode - Master Slave Master 1 Master 2 Slave 0 * * 0 * 1 1 0 0 * 1 1 1 0 * 1 0 0 0 1 1 0 0 0 0 1 0 1 0 * INT SD0(SDA) SD1(SCL) AIN0 AIN1 GPIO2(*4) SD0(SDA) SD1(SCL) GPIO1(*4) GPIO0(*4) GPIO3(*5) GPIO4(*5) D24 D25 RF/BETOUT COL0/INT/GPIO2 COL1/SD0 OUTSEL/SD1 TTLDRV/SD2/AIN0/GPIO1 LATEN/SD3/AIN1/GPIO0 D24/GPIO3 D25/GPIO4 HTPDN/SUBMODE LOCKN/MSSEL MAINMODE/RCMN HFSEL/RCMP 2-wire serial I/F Mode COL0 COL1 OUTSEL TTLDRV -(*1) COL0 SD0(input) SD1(input) SD2(input) SD3(output)(*6) D24 D25 HTPDN LOCKN MAINMODE HFSEL D24 D25 RF BETOUT(*2) COL0 INT SD0(output)(*6) SD0(SDA) SD1(output)(*6) SD1(SCL) SD2(output)(*6) AIN0 SD3(input) AIN1 LATEN(*3) D24 D24 D25 D25 SUBMODE MSSEL RCMN RCMP *1 There is no function. LVCMOS IO has input state. Must be fixed at 0 or 1 input. *2 When Field BET mode (Main-Link or Sub-Link), it functions as BETOUT output. *3 When Field BET mode (Main-Link or Sub-Link), it functions as LATEN input. *4 Programmable GPIO input is default on register setting. *5 Through GPIO input is default on register setting. *6 Low Speed Data Bridge Mode output is LVCMOS push pull buffer. Copyright©2022 THine Electronics, Inc. 12/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Functional Overview With High Speed CML SerDes, proprietary encoding scheme and CDR (Clock and Data Recovery) architecture, the THCV235 and THCV236 enable transmission of 24/30bit video data, 2bits of user defined data, synchronizing signals HSYNC,VSYNC and DE(Data Enable) as well as any data (up to 35 bit) through Main-Link by single differential pair cable with minimal external components. In addition, the THCV235 and THCV236 have Sub-Link which enables bi-directional transmission of 2-wire serial interface signals, GPIO signals and also HTPDN/LOCKN signals for Main-Link through the other 1-pair of CML-Line. It does not need any external frequency reference, such as a crystal oscillator. The THCV235 - THCV236 system is able to watch and control peripheral devices via 2-wire serial interface or GPIOs. They also can report interrupt events caused by change of GPIO inputs and internal statuses. Functional Description Internal Reference Output/Input Function (CAPOUT, CAPINA, CAPINP) An internal regulator produces the 1.2V (CAPOUT). This 1.2V linear regulator can’t supply any other external loads. Bypass CAPOUT to GND with 10uF. CAPINP (THCV235 only) supplies reference voltage for internal PLL, and CAPINA supplies reference voltage for any internal analog circuit. Bypass CAPINP/CAPINA to GND with 0.1uF to remove high frequency noise. CAPOUT, CAPINA and CAPINP must be tied together. Power supply AVDD is supposed to be stabilized with de-coupling capacitor and series noise filter (for example, ferrite bead). Figure 1. Connection of CAPOUT, CAPINA, CAPINP and Decoupling Capacitor Power Down (PDN1, PDN0) PDN1 and PDN0 turn off internal circuitry of Main-Link and Sub-Link separately. Table 3. Power Down Setting PDN1 0 0 1 1 Copyright©2022 THine Electronics, Inc. PDN0 0 1 0 1 Operation Both Main-Link and Sub-Link power down Only Main-Link is active Only Sub-Link is active Both Main-Link and Sub-Link active 13/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Main-Link Mode Setting Two modes of Main-Link operation are available. Mode select is done by MAINMODE pin (when PDN1=0) or MAINMODE register (when PDN1=1). V-by-One® HS Mode (MAINMODE=0) V-by-One® HS Mode is compliant with V-by-One® HS standard Version1.4. (See Figure 3 and Table 14) Sync Free Mode (MAINMODE=1) Incoming data can be transmitted by Sync Free Mode without DE requirement. (See Table 14) Color Space Conversion The THCV235 converts RGB444 to YCbCr422 and the THCV236 converts back to RGB. This function can only be used in V-by-One® HS mode and enabled by COL1=1 setting. COL1 is external pin (when PDN1=0) or internal register (when PDN1=1). Color space conversion coefficients are compliant with ITU-R BT.709-5. Pre-emphasis and Drive Select Function (THCV235 only) Pre-emphasis can equalize severe signal degradation caused by long-distance or high-speed transmission. PRE pin or PRE register selects the strength of pre-emphasis. CMLDRV pin or CMLDRV register controls CML Main-Link output swing level. See Table 4 and Table 5. Table 4. Pre-emphasis and Drive Select function table (PDN1=0) CMLDRV (pin) 0 1 PRE (pin) 0 1 * Condition Pre-emphasis Level 0dB 600mV diff p-p 3.5dB 800mV diff p-p 0dB Swing Level Table 5. Pre-emphasis and Drive Select function table (PDN1=1) CMLDRV[1:0] (register) 00 01 10 11 Copyright©2022 THine Electronics, Inc. PRE (register) 0 1 0 1 * * Condition Pre-emphasis Level 0dB 400mV diff p-p 6dB 0dB 600mV diff p-p 3.5dB 800mV diff p-p 0dB Forbidden Swing Level 14/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Permanent Clock Output (THCV236 only) When there is no input from Main-Link, the THCV236 will output internal oscillator clock from CLKOUT pin. This function is controlled by OUTSEL pin or OUTSEL_ENABLE register and OUTSEL_SETTING register. See Table 6 and Table 7. Table 6. Permanent Clock Output function table (PDN1=0) Output Clock Frequency(*1) 40MHz OUTSEL (pin) 0 1 *1 typical value Table 7. Permanent Clock Output function table (PDN1=1) OUTSEL_ ENABLE (register) 0 1 OUTSEL_ SETTING (register) * 00 01 10 11 Output Clock Frequency(*1) 80MHz 40MHz(default) 20MHz 10MHz *1 typical value Spread Spectrum Clock Generator (SSCG) The THCV235 serial data output and the THCV236 parallel data and clock outputs are modulated by programmable SSCG. The THCV235 SSCG is enabled by SSEN pin or SSEN register. The THCV236 SSCG is enabled by only SSEN register. The modulation rate and modulation frequency variation of output spread is controlled through the SSCG control registers on each device. Do not enable spread spectrum for both the THCV235 and THCV236 at the same time. Table 8. SSCG enable signal (THCV235) PDN1 0 1 SUBMODE * (Function as HTPDN) 0 1 Mode Entry Signal SSEN (pin) SSEN (register) SSEN (pin) Description 0:SSCG Disable 1:SSCG Enable Table 9. SSCG enable signal (THCV236) PDN1 SUBMODE Mode Entry Signal Description * * SSEN(register) 0:SSCG Disable 1:SSCG Enable When customer use the mode and frequency range shown in Table 10, register setting is required according to Table 11. Copyright©2022 THine Electronics, Inc. 15/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 10. Main-Link mode and frequency range requiring register setting Mode Setting MAINMODE HFSEL 0 0 0 0 0 1 1 0 1 0 1 0 1 1 *1 Don’t care *2 See Table 11 LFSEL 0 0 0 0 0 0 0 COL1 (*1) COL0 0 1 (*1) (*1) 0 0 1 0 1 0 (*1) (*1) (*1) Freq.Range[MHz] (SSCG Enable) min max 26.6 50 33.3 66.6 50 100 26.6 40 26.6 50 33.3 66.6 50 100 Register Setting (*2) Case1 Case2 Case3 Case1 Case1 Case2 Case3 Table 11. SSCG register setting Step 1 2 3 4 Register Address(HEX) Sub-Link Sub-Link Master side Slave side 0x70 0xF0 0x76 0xF6 0x78 0xF8 0x7C 0xFC Register Value(HEX) Case3 THCV235 THCV236 0x01 0x02 0x02 0x01 0x3C 0x30 0x20 0x35 0x34 0x24 Case1 Case2 Description Set 1 to PLL_SET_EN Set PLL_SET0 Set PLL_SET1 Set PLL_SET2 Modulation frequency fmod can be determined by HFSEL and LFSEL settings, input clock frequency and FMOD register setting (default value 0xD). Refer to following formula. f mod  f CLKSSCG 128  FMOD fCLKSSCG is the frequency listed in Table 12 and Table 13. Table 12. fCLKSSCG (THCV235) HFSEL 0 0 1 1 LFSEL 0 1 0 1 fCLKSSCG (1/tTCIP)/2 1/tTCIP (1/tTCIP)/4 Forbidden Setting Table 13. fCLKSSCG (THCV236) HFSEL 0 0 1 1 LFSEL 0 1 0 1 fCLKSSCG (1/tRCP)/2 1/tRCP (1/tRCP)/4 Forbidden Setting Up to 0.5 % spread at the 30kHz modulation frequency is stable for most cases. In case of using out of this range, please verify at the actual system. Copyright©2022 THine Electronics, Inc. 16/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Data Enable 0 is the conceptual diagram of the V-by-One® HS mode operation (MAINMODE=0) of the chipset. Figure 2. Conceptual Diagram of the Basic Operation of the Chipset in V-by-One® HS mode There are some requirements for DE. 0 shows the timing diagram of it. Note: In V-by-One® HS Mode (MAINMODE=0) and High Frequency Mode (HFSEL=1), the period between rising edges of DE (tDEINT), high time of DE (tDEH) should always satisfy following equations. tDEH = tTCIP*(2m) tDEINT = tTCIP*(2n) m,n=2,3,4,5,6…… Figure 3. Data and Synchronizing Signals Transmission Timing Diagram in V-by-One® HS mode Copyright©2022 THine Electronics, Inc. 17/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 14. DE Requirement Symbol tDEH tDEL Parameter DE=1 Duration DE=0 Duration Condition MAINMODE=0 HFSEL=0 MAINMODE=0 HFSEL=1 MAINMODE=1 MAINMODE=0 HFSEL=0 MAINMODE=0 HFSEL=1 MAINMODE=1 Min Typ Max Unit 2×tTCIP - - ns 4×tTCIP - - ns Don’t care 2×tTCIP - - ns 4×tTCIP - - ns Don’t care Hot-Plug Function HTPDN signal indicates connecting condition between the Transmitter and the Receiver. HTPDN of the transmitter side is high when the Receiver is not active or not connected. Then Transmitter can enter into the power down mode. HTPDN is set to low by the Receiver when Receiver is active and connects to the Transmitter, and then Transmitter must start up and transmit CDR training pattern for link training. When PDN1 = 0 (Sub-Link Power Down), HTPDN is transferred to Transmitter by HTPDN pin. HTPDN is open-drain output at the receiver side. Pull-up resistor is needed at the transmitter side. HTPDN connection between the Transmitter and the Receiver can be omitted as an application option. In this case, HTPDN at the Transmitter side should always be taken as low. When PDN1 = 1 (Sub-Link Active), HTPDN is transferred to Transmitter via Sub-Link line. HTPDN/SUBMODE pin functions as Sub-Link mode select (SUBMODE). HOST MPU can confirm HTPDN state by reading Sub-Link Master register (0x00 bit0 HTPDN). Lock Detect Function LOCKN indicates whether the receiver CDR PLL is in the lock state or not. LOCKN at the Transmitter input is set to High by pull-up resistor when Receiver is not active or at the CDR PLL training state. LOCKN is set to low by the Receiver when CDR lock is done. Then the CDR training mode finishes and Transmitter shifts to the normal operation. When PDN1 = 0 (Sub-Link Power Down), LOCKN is transferred to Transmitter by LOCKN pin. LOCKN is open-drain output at the receiver side. Pull-up resistor is needed at the transmitter side. When HTPDN is included in an application, the LOCKN signal should only be considered when the HTPDN is pulled low by the Receiver. When PDN1 = 1 (Sub-Link Active), LOCKN is transferred via Sub-Link line. LOCKN/MSSEL pin functions as Sub-Link Master/Slave select (MSSEL). HOST MPU can confirm LOCKN state by reading Sub-Link Master register (0x00 bit1 LOCKN). Copyright©2022 THine Electronics, Inc. 18/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 15 HTPDN,LOCKN transmission route setting PDN1 0 1 HTPDN,LOCKN HTPDN, LOCKN are transmitted via external DC signal. HTPDN, LOCKN are transmitted via Sub-Link. Figure 4. Hot-plug and Lock Detect Scheme when PDN1=0 Figure 5. HTPDN,LOCKN transmission route when PDN1=1 Copyright©2022 THine Electronics, Inc. 19/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Field BET Operation In order to help users to check validity of CML serial line (Main-Link and Sub-Link), the THCV235 and THCV236 have an operation mode in which they act as a bit error tester (BET). In Main-Link Field BET mode, the THCV235 internally generates test pattern which is then serialized onto the Main-Link CML line. The THCV236 also has BET function mode. The THCV236 receives the data stream and checks bit errors. The generated data pattern is then 8b/10b encoded, scrambled, and serialized onto the CML channel. As for the THCV236, the internal test pattern check circuit gets enabled and reports result on a certain pin named BETOUT. In Sub-Link Field BET mode, Sub-Link Master device internally generates test pattern which is then serialized onto the Sub-Link CML line. Sub-Link Slave device also has BET function mode. Sub-Link Slave device receives the data stream and checks bit errors. Note that Sub-Link Slave device must be set this mode prior to Sub-Link Master device. Pattern check result is output from BETOUT pin of the Sub-Link Slave device. The BETOUT pin goes LOW whenever bit errors occur, or it stays HIGH when there is no bit error. In Main-Link Field BET mode, user can select two kinds of check result, latched result or NOT latched result by setting LATEN pin input. The latched result is reset by setting LATEN=0. In Sub-Link Field BET mode, only latched result is available. In order to reset the latched result, please once turn off the power and entry Sub-Link Field BET from power on sequence. LATEN/SD3/AIN1/GPIO4 pin (THCV235) and LATEN/SD3/AIN1/GPIO0 pin (THCV236) function as LATEN in Field BET mode (Main-Link or Sub-Link). It is not possible to realize Main-Link Field BET and Sub-Link Field BET at the same time. Table 16. Main-Link Field BET Operation Settings Register value with brace (e.g. {0}) means default. PDN0 (pin) THCV235/236 Common PDN1 SUBMODE BET_SEL (pin) (pin) (register) 0x53[0] 0 1 THCV235 BET (pin) : SUBMODE=1 (register) 0x53[1] : SUBMODE=0 THCV236 BET LATEN (pin) (pin) - 0(*1) 1 1 1 0(*1) 1 1 0 {0} 1 1 1 0 1 0 1 0 1 Sub-Link Power Down Normal Operation Condition Output Latch Select Not Latched Result Latched Result Not Latched Result Latched Result Not Latched Result Latched Result *1 When PDN0=1, PDN1=0 and BET=1 or PDN0=1, PDN1=1, SUBMODE=1 and BET=1, BET_SEL is set to 0 automatically. Table 17. THCV236 Main-Link Field BET Result BETOUT L H Copyright©2022 THine Electronics, Inc. Output Bit Error Occurred No Error 20/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 18. Sub-Link Field BET Operation Setting Register value with brace (e.g. {0}) means default. SUBMODE=1. Common Master Slave Initial 0 1 BET_SEL (register) 0x53[0] {0} 0 - 0 BET_SEL (register) 0xD3[0] {0} 1 1(*2) 1 ↓ ↓ ↓ ↓ - ↓ 1(*1) ↓ ↓ 1 2 ↓ ↓ 1(*1) ↓ - 1 ↓ ↓ ↓ ↓ MSSEL (pin) LATEN (pin) BET_SEL (register) 0xD3[0] {0} MSSEL (pin) LATEN (pin) Step PDN0 (pin) PDN1 (pin) MSSEL (pin) LATEN (pin) BET (pin) MSSEL (pin) LATEN (pin) BET (pin) 0 SUBMODE=0. Common Master Slave Initial 0 1 BET_SEL (register) 0x53[0] {0} 0 - BET (pin) : THCV236 (register)0x53[1] : THCV235 0 1 1(*2) BET (pin) : THCV236 (register)0xD3[1] : THCV235 0 1 ↓ ↓ 1 ↓ - ↓ 1 ↓ ↓ ↓ 2 ↓ ↓ ↓ ↓ - ↓ ↓ ↓ ↓ 1 3 ↓ ↓ ↓ ↓ - 1 ↓ ↓ ↓ ↓ Step PDN0 (pin) PDN1 (pin) *1 When PDN0=0, PDN1=1, SUBMODE=1 and BET=1, BET_SEL is set to 1 automatically. *2 Forbidden 0 setting Table 19. Sub-Link Slave device Sub-Link Field BET Result BETOUT L H Output Bit Error Occurred No Error Figure 6. Main-Link Field BET Configuration Figure 7. Sub-Link Field BET Configuration Copyright©2022 THine Electronics, Inc. 21/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Data Width and Frequency Range Select Function The THCV235 and THCV236 support a variety of data width and frequency range. Frequency range is different depending on the mode setting and SSCG enable and disable setting. Refer to Table 20 and Table 21 for details. Table 20. Main-Link Operation Mode Select (PDN1=1 and SUBMODE=0) Freq.Range [MHz] SSCG SSCG Disable Enable (*1) Mode Setting MAIN MODE 0 0 0 0 0 0 0 0 0 HFSEL LFSEL COL1 COL0 min max min max 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 15 20 15 20 7.5 10 7.5 10 50 70 50 70 50 70 50 70 12 15 20 6 7.5 10 50 70 50 70 50 70 - 100 133.3 100 133.3 15 20 15 20 70 160 70 160 70 160 70 160 80 100 133.3 12 15 20 70 160 70 160 70 160 - 26.6 33.3 26.6 33.3 16.4 19.2 16.4 19.2 50 70 50 70 50 70 50 70 26.6 26.6 33.3 16.4 16.4 19 50 70 50 70 50 70 - 100 133.3 100 133.3 32.5 38 32.5 38 70 160 70 160 70 160 70 160 80 100 133.3 32.6 32.6 38 70 160 70 160 70 160 - 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 * 0 0 1 1 0 0 1 1 * 0 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 * 1 * Main-Link CML Bit Rate Data Width Comment Data Sync x40 x30 x40 x30 x80 x60 x80 x60 32 24 32 24 32 24 32 24 3 3 3 3 3 3 3 3 x25 20 3 x20 16 3 x25 30 3 x20 24 3 x50 x40 x30 x100 x80 x60 - 35 30 22 35 30 22 - x25 19 x20 15 x15 11 - - Color Space Conversion Color Space Conversion Color Space Conversion Color Space Conversion (*2) (*2) Color Space Conversion. (*2) Color Space Conversion Color Space Conversion. (*2) Color Space Conversion Forbidden Forbidden Forbidden (*2) (*2) (*2) Forbidden Forbidden *1 Note that register setting is required depending on the mode setting and used frequency range. See Table 10. *2 Register setting is required. See Table 21. Table 21. Register setting (HFSEL=1 and Frequency range is from 50MHz to 70MHz) Step 1 2 3 4 Register Address(HEX) Sub-Link Sub-Link Master side Slave side 0x70 0xF0 0x76 0xF6 0x78 0xF8 0x7C 0xFC Copyright©2022 THine Electronics, Inc. Register Value(HEX) THCV235 THCV236 0x01 0x02 0x01 0x20 0x24 22/68 Description Set 1 to PLL_SET_EN Set PLL_SET0 Set PLL_SET1 Set PLL_SET2 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 22. Main-Link Operation Mode Select (PDN1=0 or PDN1=1 and SUBMODE=1) Freq.Range [MHz] Mode Setting MAIN MODE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 SSCG Disable SSCG Enable (THCV235 Only) HFSEL LFSEL COL1 COL0 min max min max 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 * 0 0 1 1 0 0 1 1 0 0 1 1 * 0 1 0 1 0 1 0 1 0 1 0 1 * 0 1 0 1 0 1 0 1 0 1 0 1 * 15 20 15 20 7.5 10 7.5 10 70 70 70 70 12 15 20 6 7.5 10 70 70 70 - 100 133.3 100 133.3 15 20 15 20 160 160 160 160 80 100 133.3 12 15 20 160 160 160 - 50 66.6 50 66.6 16.4 19.2 16.4 19.2 100 100 100 100 40 50 66.6 16.4 16.4 19.2 100 100 100 - 100 133.3 100 133.3 32.5 38 32.5 38 160 160 160 160 80 100 133.3 32.5 32.5 38 160 160 160 - Copyright©2022 THine Electronics, Inc. 23/68 Main-Link CML Bit Rate x40 x30 x40 x30 x80 x60 x80 x60 x25 x20 x25 x20 x50 x40 x30 x100 x80 x60 x25 x20 x15 - Data Width Comment Data Sync 32 24 32 24 32 24 32 24 20 16 30 24 3 3 3 3 3 3 3 3 3 3 3 3 35 30 22 35 30 22 19 15 11 - Color Space Conversion Color Space Conversion Color Space Conversion Color Space Conversion Color Space Conversion Color Space Conversion Forbidden Forbidden Forbidden Forbidden Forbidden THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Data Mapping Table 23. V-by-One® HS Mode Data Mapping MAINMODE HFSEL LFSEL COL1 COL0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 HSYNC VSYNC DE 0 0 0 0 0 R2 R3 R4 R5 R6 R7 R8 R9 G2 G3 G4 G5 G6 G7 G8 G9 B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) B8(*1) B9(*1) CONT1 (*1,*2) CONT2 (*1,*2) B0(*1) B1(*1) G0(*1) G1(*1) R0(*1) R1(*1) HSYNC VSYNC DE 0 0 0 0 1 R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0(*1) B1(*1) B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) HSYNC VSYNC DE 0 0 0 1 0 R2 R3 R4 R5 R6 R7 R8 R9 G2 G3 G4 G5 G6 G7 G8 G9 B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) B8(*1) B9(*1) CONT1 (*1,*2) CONT2 (*1,*2) B0(*1) B1(*1) G0(*1) G1(*1) R0(*1) R1(*1) HSYNC VSYNC DE 0 0 0 1 1 R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0(*1) B1(*1) B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) HSYNC VSYNC DE 0 0 1 0 0 R2 R3 R4 R5 R6 R7 R8 R9 G2 G3 G4 G5 G6 G7 G8 G9 B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) B8(*1) B9(*1) CONT1 (*1,*2) CONT2 (*1,*2) B0(*1) B1(*1) G0(*1) G1(*1) R0(*1) R1(*1) HSYNC VSYNC DE 0 0 1 0 1 R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0(*1) B1(*1) B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) HSYNC VSYNC DE 0 0 1 1 0 R2 R3 R4 R5 R6 R7 R8 R9 G2 G3 G4 G5 G6 G7 G8 G9 B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) B8(*1) B9(*1) CONT1 (*1,*2) CONT2 (*1,*2) B0(*1) B1(*1) G0(*1) G1(*1) R0(*1) R1(*1) HSYNC VSYNC DE 0 0 1 1 1 R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0(*1) B1(*1) B2(*1) B3(*1) B4(*1) B5(*1) B6(*1) B7(*1) 0 1 0 0 0 Cb/Cr2 Cb/Cr3 Cb/Cr4 Cb/Cr5 Cb/Cr6 Cb/Cr7 Cb/Cr8 Cb/Cr9 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 - 0 1 0 0 1 Cb/Cr0 Cb/Cr1 Cb/Cr2 Cb/Cr3 Cb/Cr4 Cb/Cr5 Cb/Cr6 Cb/Cr7 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 - 0 1 0 1 0 R2 R3 R4 R5 R6 R7 R8 R9 G2 G3 G4 G5 G6 G7 G8 G9 B2 B3 B4 B5 B6 B7 B8 B9 0 1 0 1 1 R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3 G4 G5 G6 G7 B0 B1 B2 B3 B4 B5 B6 B7 - - - - - - - - - - HSYNC VSYNC DE Y0(*1) Y1(*1) Cb/Cr0(*1) Cb/Cr1(*1) HSYNC VSYNC DE HSYNC VSYNC DE B0 B1 G0(*1) G1(*1) R0(*1) R1(*1) HSYNC VSYNC DE HSYNC VSYNC DE *1 CTL bits, which are carried during DE=0 except the first pixel and the last pixel (when COL1=0) or the first 3pixels and the last 3pixels (when COL1=1). *2 User defined data inputs (THCV235) and outputs (THCV236). Copyright©2022 THine Electronics, Inc. 24/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 24. Sync Free Mode Data Mapping MAINMODE 1 1 1 HFSEL 0 0 0 LFSEL 0 0 0 COL1 0 0 1 COL0 0 1 0 D0 D0 D0 D0 D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D5 D5 D5 D6 D6 D6 D6 D7 D7 D7 D7 D8 D8 D8 D8 D9 D9 D9 D9 D10 D10 D10 D10 D11 D11 D11 D11 D12 D12 D12 D12 D13 D13 D13 D13 D14 D14 D14 D14 D15 D15 D15 D15 D16 D16 D16 D16 D17 D17 D17 D17 D18 D18 D18 D18 D19 D19 D19 D20 D20 D20 D21 D21 D21 D22 D22 D22 D23 D23 D23 D24 D24 D24 D25 D25 D25 D26 D26 D26 D27 D27 D28 D28 D29 D29 D30 D30 D31 D31 HSYNC(*1) HSYNC HSYNC HSYNC VSYNC(*1) VSYNC VSYNC VSYNC DE(*1) DE DE DE *1 Any signal as well as sync signal can be transmitted. Copyright©2022 THine Electronics, Inc. 1 0 0 1 1 - 1 0 1 0 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 HSYNC VSYNC DE 1 0 1 0 1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 HSYNC VSYNC DE 25/68 1 0 1 1 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 HSYNC VSYNC DE 1 0 1 1 1 - 1 1 0 0 0 D0/C0 D1/C1 D2/C2 D3/C3 D4/C4 D5/C5 D6/C6 D7/C7 D8/Y0 D9/Y1 D10/Y2 D11/Y3 D12/Y4 D13/Y5 D14/Y6 D15/Y7 HSYNC VSYNC DE/FIELD 1 1 0 0 1 D0/RAW4 D1/RAW5 D2/RAW6 D3/RAW7 D4/RAW8 D5/RAW9 D6/RAW10 D7/RAW11 D8/RAW0 D9/RAW1 D10/RAW2 D11/RAW3 HSYNC VSYNC DE 1 1 0 1 0 D0/YC0 D1/YC1 D2/YC2 D3/YC3 D4/YC4 D5/YC5 D6/YC6 D7/YC7 HSYNC VSYNC DE 1 1 0 1 1 - THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Sub-Link Mode Setting PDN1=1 setting makes Sub-Link active and two modes of Sub-Link operation are available. Sub-Link operation mode is select by SUBMODE pin. When SUBMODE=0, Sub-Link is 2-wire serial I/F Mode. When SUBMODE=1, Sub-Link is Low Speed Data Bridge Mode. SUBMODE must be same setting at the THCV235 and THCV236.Bi-directional communication is done between Sub-Link Master device and Sub-Link Slave device in both modes. MSSEL pin selects Master/Slave side of Sub-Link and 2-wire serial interface in the devices. MSSEL must be different setting at the THCV235 and THCV236. See Table 25 about Sub-Link operation mode settings. Table 25. Sub-Link operation mode, Master/Slave Setting SUBMODE 0 1 MSSEL 0 1 0 1 Operation Mode 2-wire serial I/F Low Speed Data Bridge Sub-Link Master/Slave Sub-Link Master (2-wire serial Slave) Sub-Link Slave (2-wire serial Master) Sub-Link Master Sub-Link Slave 2-wire serial I/F Mode 2-wire serial I/F Mode enables register access, using GPIO (General Purpose Input/Output) pin and interrupt function. Sub-Link Master device has 2-wire serial slave block and can be connected to HOST MPU, Sub-Link Slave device has 2-wire serial master block and can be connected to remote side 2-wire serial slave devices. HOST MPU can access register of Sub-Link Master device, Sub-Link Slave device and remote side 2-wire serial slave devices. 2-wire serial I/F Device ID setting AIN1 and AIN0 pins determine Device ID setting of the THCV235 and THCV236. Only Sub-Link Master device's AIN1 and AIN0 pin works. AIN1 and AIN0 choose one of 4 addresses which give an identification address to the THCV235 and THCV236 under 2-wire serial interface bus topology. This Device ID is used as I2C Slave Address, while I2C Master Device connected to the Sub-Link Master device accesses to the Sub-Link Master device. This Device ID is also used as 2WIRE_TARGEET_DEV_ADR in the Sub-Link Master device's 0x20 Register to set the target device ID as the Sub-Link Slave device. Table 26. 2-wire serial I/F Device ID select (Sub-Link Master device Only) AIN1 0 0 1 1 Copyright©2022 THine Electronics, Inc. AIN0 0 1 0 1 Device ID (7’h) 0x0B 0x34 0x77 0x65 26/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E 2-wire serial I/F Clock Stretching In principle, when Sub-Link bridges 2-wire serial interface communication from Sub-Link Master to Sub-Link Slave or remote side 2-wire serial slave devices, time lag occurs between HOST MPU side 2-wire serial access and Sub-Link Slave internal bus access or remote side 2-wire serial access. 2WIRE_MODE (Sub-Link Master side register, 0x0F bit1-0) selects whether 2-wire serial slave of Sub-Link Master perform clock stretching. When 2WIRE_MODE = 00, Sub-Link Master device wait HOST MPU until Sub-Link Slave register access or remote side 2-wire serial slave register access is completed by clock stretching. When 2WIRE_MODE = 01, Sub-Link Master device informs HOST MPU that Sub-Link Slave register access or remote side 2-wire serial register access has been completed by interruption (INT pin) without clock stretching. Figure 8. 2WIRE_MODE Operation Copyright©2022 THine Electronics, Inc. 27/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Read/Write access to Sub-Link Master Register HOST MPU can directly access Sub-Link Master’s register by 2-wire serial I/F. Register address of Sub-Link Master is from 0x00 to 0x7F. See Register Map for more information. Figure 9. Host to Sub-Link Master Register access configuration Figure 10. 2-wire serial I/F write to Sub-Link Master register protocol Figure 11. 2-wire serial I/F read to Sub-Link Master register protocol Copyright©2022 THine Electronics, Inc. 28/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Read/Write access to Sub-Link Slave Register HOST MPU can access to Sub-Link Slave’s register via Sub-Link Master by Sub-Link Master register settings. Register address of Sub-Link Slave is from 0x80 to 0xFF. See Register Map for more information. Figure 12. Host MPU to Sub-Link Slave Register access configuration Table 27. Sub-Link slave register Write Procedure Step Description R/W Address 1 Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). W 0x02 bit7 2 Set the data for Sub-Link Slave to write (Max 16byte). W 0x10-0x1F W 0x20 W 0x21 Set Device ID of Sub-Link Master device. 3 (Value corresponding to AIN1 and AIN0 setting. e.g.[AIN1,AIN0]=[0,0] → 7’h0B) Set the byte number written to Sub-Link Slave (Max 16byte) 4 (Byte number = register value + 1) 5 Set the start address of Sub-Link Slave register to write. W 0x23 6 Write 1 to WR_START_8B. (Start write access to Sub-Link Slave register) W 0x25 (*1) 7 2-wire serial slave of Sub-Link Master perform clock stretching until Sub-Link Slave - - - - R 0x02 bit7 (*2) 7 (*3) 8 register access is completed. When write access is completed, 2WIRE_ACS_END_INT register value become 1 and interrupt occurs (INT=H → L). If write access was normally ended, read value should be “0x1”. *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 29/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 28. Sub-Link slave register Read Procedure Step 1 Description Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). R/W Address W 0x02 bit7 W 0x20 W 0x22 Set Device ID of Sub-Link Master device. 2 (Value corresponding to AIN1 and AIN0 setting. e.g.[AIN1,AIN0]=[0,0] → 7’h0B) Set the byte number read from Sub-Link Slave(Max 16byte). 3 (Byte number = register value + 1) 4 Set the start address of Sub-Link Slave register to read. W 0x24 5 Write 1 to RD_START_8B. (Start read access to Sub-Link Slave register) W 0x26 (*1) - - - - 2-wire serial slave of Sub-Link Master perform clock stretching until Sub-Link Slave 6 register access is completed. When read access is completed, SCL is released and (*2) read data is stored in Sub-Link Master register (Address 0x10-0x1F). When read access is completed, read data is stored in Sub-Link Master register 6 (Address 0x10-0x1F) and 2WIRE_ACS_END_INT register value become 1 and (*3) interrupt occurs (INT=H → L). 7 If read access was normally ended, read value should be “0x1”. R 0x02 8 HOST MPU read data stored in Sub-Link Master register. R 0x10-0x1F *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 30/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Read/Write access to remote side 2-wire serial slave devices connected to Sub-Link Slave Device HOST MPU can access to remote side 2-wire serial slave register via Sub-Link Master and Sub-Link Slave by Sub-Link Master register settings. Sub-Link Slave has 2-wire serial master block. Up to 8 devices are connectable to 2-wire serial master of Sub-Link Slave device. Figure 13. Host to 2-wire serial Slave devices connected to Sub-Link Slave device access configuration Table 29. Remote side 2-wire serial slave register Write Procedure for 8bit register address Step Description R/W Address W 0x04-0x0B Set slave address of remote side 2-wire serial slave device (Low-order 7bits), 1 and enable this address (High-order 1bit). 2 Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). W 0x02 bit7 3 Set the data for remote side 2-wire serial slave to write (Max 14byte). W 0x10-0x1D W 0x20 W 0x21 W 0x23 W 0x25 (*1) - - - - Set slave address of access target 2-wire serial slave (choose the value set in 4 0x04-0x0B[6:0]), and set 0 to 0x20 bit7. Set the byte number written to remote side 2-wire serial slave (Max 14byte). 5 (Byte number = register value + 1) 6 Set the start address of remote side 2-wire serial slave register to write. Write 1 to WR_START_8B. (Start write access to remote side 2-wire serial slave 7 register) 8 (*2) 8 (*3) 2-wire serial slave of Sub-Link Master perform clock stretching until remote side 2-wire serial slave register access is completed. When write access is completed, 2WIRE_ACS_END_INT register value become 1 and interrupt occurs (INT=H → L). 9 If wire access was normally ended, read value should be “0x1”. R 0x02 10 Repeat from step2 to step9 if needed. - - *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 31/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 30. Remote side 2-wire serial slave register Write Procedure for 16bit register address Step Description R/W Address W 0x04-0x0B Set slave address of remote side 2-wire serial slave device (Low-order 7bits), 1 and enable this address (High-order 1bit). 2 Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). W 0x02 bit7 3 Set the data for remote side 2-wire serial slave to write (Max 14byte). W 0x10-0x1D W 0x20 W 0x21 W 0x27 W 0x28 W 0x2B (*1) - - - - Set slave address of access target 2-wire serial slave (choose the value set in 4 0x04-0x0B[6:0]), and set 1 to 0x20 bit7. Set the byte number written to remote side 2-wire serial slave (Max 14byte). 5 (Byte number = register value + 1) Set the low-order bits([7:0]) of start address of remote side 2-wire serial slave register 6 to write. Set the high-order bits([15:8]) of start address of remote side 2-wire serial slave 7 register to write. Write 1 to WR_START_16B. (Start write access to remote side 2-wire serial slave 8 register) 9 (*2) 9 2-wire serial slave of Sub-Link Master perform clock stretching until remote side 2-wire serial slave register access is completed. When write access is completed, 2WIRE_ACS_END_INT register value become 1 (*3) and interrupt occurs (INT=H → L). 10 If write access was normally ended, read value should be “0x1”. R 0x02 11 Repeat from step2 to step10 if needed. - - *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 32/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 31. Remote side 2-wire serial slave register Read Procedure for 8bit register address Step Description R/W Address W 0x04-0x0B W 0x02 bit7 W 0x20 W 0x22 W 0x24 W 0x26 (*1) - - - - Set slave address of remote side 2-wire serial slave device (Low-order 7bits), 1 and enable this address (High-order 1bit). 2 Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). Set slave address of access target 2-wire serial slave (choose the value set in 3 0x04-0x0B[6:0]), and set 0 to 0x20 bit7. Set the byte number read from remote side 2-wire serial slave(Max 14byte). 4 (Byte number = register value + 1) 5 Set the start address of remote side 2-wire serial slave register to read. Write 1 to RD_START_8B. (Start read access to remote side 2-wire serial slave 6 register) 2-wire serial slave of Sub-Link Master perform clock stretching until Sub-Link Slave 7 register access is completed. When read access is completed, SCL is released and (*2) read data is stored in Sub-Link Master register (Address 0x10-0x1F). When read access is completed, read data is stored in Sub-Link Master register 7 (Address 0x10-0x1F) and 2WIRE_ACS_END_INT register value become 1 and (*3) interrupt occurs (INT=H → L). 8 If read access was normally ended, read value should be “0x1”. R 0x02 9 HOST MPU read data stored in Sub-Link Master register. R 0x10-0x1F 10 Repeat from step2 to step10 if needed. - - *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 33/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 32. Remote side 2-wire serial slave register Read Procedure for 16bit register address Step Description R/W Address W 0x04-0x0B W 0x02 bit7 W 0x20 W 0x22 W 0x29 W 0x2A W 0x2C (*1) - - - - Set slave address of remote side 2-wire serial slave device (Low-order 7bits), 1 and enable this address (High-order 1bit). 2 Write 1 or 0 and clear(auto clear) access status register (2WIRE_ACS_END_INT). Set slave address of access target 2-wire serial slave (choose the value set in 3 0x04-0x0B[6:0]), and set 1 to 0x20 bit7. 4 Set the byte number read from remote side 2-wire serial slave(Max 14byte). Set the low-order bits([7:0]) of start address of remote side 2-wire serial slave register to 5 read. Set the high-order bits([15:8]) of start address of remote side 2-wire serial slave register 6 to read. Write 1 to RD_START_16B. (Start read access to remote side 2-wire serial slave 7 register) 2-wire serial slave of Sub-Link Master perform clock stretching until Sub-Link Slave 8 register access is completed. When read access is completed, SCL is released and read (*2) data is stored in Sub-Link Master register (Address 0x10-0x1F). When read access is completed, read data is stored in Sub-Link Master register 8 (Address 0x10-0x1F) and 2WIRE_ACS_END_INT register value become 1 and interrupt (*3) occurs (INT=H → L). 9 If read access was normally ended, read value should be “0x1”. R 0x02 10 HOST MPU read data stored in Sub-Link Master register. R 0x10-0x1F 11 Repeat from step2 to step10 if needed. - - *1 It’s Prohibit that HOST MPU start access to Sub-Link Slave or remote 2-wire serial slave before the previous access to Sub-Link Slave or remote side 2-wire serial slave is completed. *2 When 2WIRE_MODE = 00 (Clock Stretching Mode) *3 When 2WIRE_MODE = 01 (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 34/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E GPIO The GPIO pin provides up to 5-I/O ports (THCV235) or 3-I/O ports (THCV236) and 2 types of GPIO are available (“Through GPIO” and “Programmable GPIO”). The number of available GPIO pin depends on Sub-Link operation mode settings (See Table 34 and Table 35). All GPIO pins have another function if being set (See Table 1, Table 2). GPIO type is selected by GPIO_TYPE register (0x40(Sub-Link Master), 0xC0(Sub-Link Slave)). Programmable GPIO is available by all GPIO pins. Through GPIO is available by only GPIO4 and GPIO3 pin. See Through GPIO section and Programmable GPIO section about detail of respective GPIO type. Table 33. GPIO Type GPIO# GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 Through GPIO GPIO Type Programmable GPIO Available Available Unavailable Table 34. GPIO setting of THCV235 Function Sub-Link Sub-Link Master Slave AIN1 GPIO4 AIN0 GPIO3 INT GPIO2 GPIO1 GPIO1 GPIO0 GPIO0 Pin Name LATEN/SD3/AIN1/GPIO4 CMLDRV/SD2/AIN0/GPIO3 COL0/INT/GPIO2 BET/GPIO1 SSEN/GPIO0 Table 35. GPIO setting of THCV236 Pin Name D25/GPIO4 D24/GPIO3 COL0/INT/GPIO2 TTLDRV/SD2/AIN0/GPIO1 LATEN/SD3/AIN1/GPIO0 Copyright©2022 THine Electronics, Inc. Function Sub-Link Master RXDEFSEL=0 RXDEFSEL=1 GPIO4 D25 GPIO3 D24 INT INT AIN0 AIN0 AIN1 AIN1 35/68 Sub-Link Slave D25 D24 GPIO2 GPIO1 GPIO0 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Through GPIO Input to GPIO4 and GPIO3 of Sub-Link Master device is output from GPIO4 and GPIO3 of Sub-Link Slave device respectively. Note that these GPIO signals can’t be transferred from Sub-Link Slave device to Sub-Link Master device and Through GPIO function is available only when THCV235 is Sub-Link Slave and THCV236 is Sub-Link Master and RXDEFSEL=0. Register settings are required. See Table 36. It’s possible to confirm GPIO4 and GPIO3 input value to Sub-Link Master by register read (0x41 GPIO_INPUT_MONITOR). Each GPIO output signal goes to Low when Sub-Link communication fails. Sub-Link communication status can be observed by register read (0x82 bit2 COMERR_INT). When the THCV236 is Sub-Link Master and RXDEFSEL=1 (THCV236 has no GPIO4 and GPIO3 input pin as Through GPIO), Through GPIO outputs of THCV235 (Sub-Link Slave) keep low. *1 See Table 36 Figure 14. Through GPIO (Only GPIO4 and GPIO3) Table 36. THCV235, THCV236(RXDEFSEL=0) Through GPIO register setting Device Sub-Link Master/Slave GPIO Input/Output Number GPIO4 , GPIO3 Input/Output Configuration (I:Input, O:Output) Register Settings GPIO Type Input Output GPIO4 GPIO3 Address (HEX) GPIO IO Direction Value (BIN) Address (HEX) Value (BIN) THCV235 Slave 0 2 O O 0xC0 XXX11XXX 0xC3 XXX00XXX THCV236 Master 2 0 I I 0x40 XXX11XXX 0x43 XXX11XXX Copyright©2022 THine Electronics, Inc. 36/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Programmable GPIO Settings input/output and reading/writing are controlled by register settings in the Sub-Link Master. HOST MPU commands register setting in the Sub-Link Master. *1 See Table 37, Table 38 Figure 15. Programmable GPIO Register settings are required according to the number of GPIO used by customer. See Table 37 and Table 38. When the number of GPIO used by customer is less than the value listed in Table 37 and Table 38, choose any setting which includes that. Table 37. THCV235 Programmable GPIO register setting Sub-Link Master/Slave Master Slave GPIO4 – GPIO0 Input/Output Configuration (I:Input, O:Output, -:Unavailable) GPIO Input/Output Number Register Settings GPIO Type Input Output GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 2 1 0 5 4 3 2 1 0 0 1 2 0 1 2 3 4 5 I I I I I O I I I I O O I I I O O O I I O I I O O O O I O O I O O O O O GPIO IO Direction Address (HEX) Value (BIN) Address (HEX) 0x40 XXXXXX00 0x43 0xC0 XXX00000 Value (BIN) XXXXXX11 XXXXXX10 XXXXXX00 XXX11111 XXX11110 XXX11100 XXX11000 XXX10000 XXX00000 0xC3 Table 38. THCV236 Programmable GPIO register setting Sub-Link Master/Slave GPIO Input/Output Number GPIO4 – GPIO0 Input/Output Configuration (I:Input, O:Output, -:Unavailable) Register Settings GPIO Type GPIO IO Direction Input Output GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 Address (HEX) Master 2 1 0 0 1 2 I I O I O O - - - 0x40 XXX00XXX 0x43 Slave 3 2 1 0 0 1 2 3 - - I I O O I O I O I I O O 0xC0 XXXXX000 0xC3 Copyright©2022 THine Electronics, Inc. 37/68 Value (BIN) Address (HEX) Value (BIN) XXX11XXX XXX10XXX XXX00XXX XXXXX111 XXXXX101 XXXXX010 XXXXX000 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Interruption INT pin outputs interrupt event indicator on Sub-Link Master side of the system. The INT signal is active low. Being set by 2-wire serial interface, the THCV235 and THCV236 can monitor any changes of GPIO input pins, Sub-Link communication statuses and internal statuses as an interrupt. About the way to make interruption occur and the way to clear the interruption, see Table 40 (Address 0x02, 0x03) and Table 41 (Address 0x82, 0x83). Figure 16. 2-wire serial I/F Interrupt to HOST access configuration Table 39. Interrupt output INT L H Copyright©2022 THine Electronics, Inc. State Interrupt occurred Steady state 38/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Low Speed Data Bridge Mode Low speed data input to SD2, SD1 and SD0 of Sub-Link Master device is output respectively from SD2, SD1 and SD0 of Sub-Link Slave device by LVCMOS push pull output buffer. Low speed data input to SD3 of Sub-Link Slave device is output from SD3 of Sub-Link Master device by LVCMOS push pull output buffer. At Low Speed Data Bridge Mode, access to register of the THCV235 and THCV236 is unable. Figure 17. Low Speed Data Bridge Mode configuration Copyright©2022 THine Electronics, Inc. 39/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Register Map HOST MPU can set various operating conditions of the THCV235 and THCV236 through internal registers. The THCV235 and THCV236 have two types of register address map depending upon Sub-Link configuration. Sub-Link Master (2-wire serial slave) is connected to external HOST MPU (2-wire serial master). Sub-Link Slave (2-wire serial master) is connected to external 2-wire serial slave devices. Sub-Link Master device has address 0x00-0x7F, Sub-Link Slave device has address 0x80-0xFF. See Figure 18. Figure 18. Sub-Link Master/Slave device Register Address configuration Copyright©2022 THine Electronics, Inc. 40/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 40. Sub-Link Master Control Register Address (Hex) Bit# R/W Default (Hex) 0x00 7:3 R 0x00 0x01 Register Name Note Reserved 2 R 0 INT 1 R 1 LOCKN 0 R 1 HTPDN 7:1 R 0x00 0 RW 0 SFTRST 7 RW 0 2WIRE_ACS_END_INT 6 RW 0 LOCKN_INT 5 RW 0 HTPDN_INT 4 R 0 SLAVESIDE_INT 0x02 0x03 Description 3 R 0 GPIO_INT 2 RW 0 COMERR_INT 1 RW 0 2WIRE_TIMEOUT_INT 0 RW 0 SLINK_TIMEOUT_INT 7 R (*2) 6 RW 0 LOCKN_INT_ENABLE 5 RW 0 HTPDN_INT_ENABLE 4 RW 0 SLAVESIDE_INT_ENABLE 3 RW 0 GPIO_INT_ENABLE 2 RW 0 COMERR_INT_ENABLE 1 RW 0 2WIRE_TIMEOUT_INT_ENABLE 0 RW 0 SLINK_TIMEOUT_INT_ENABLE 2WIRE_ACS_END_INT_ENABLE *1 These registers are always active independent of Interrupt permission register. *2 When No clock stretching mode, the value is 1 fixed, otherwise 0 fixed. Copyright©2022 THine Electronics, Inc. - Interrupt condition 0: Steady state 1: Interrupt occurred(INT output =L) V-by-One® HS lock status 0: Locked (LOCKN=L) 1: Unlocked V-by-One® HS plug status 0: Connected (HTPDN=L) 1: Not connected or Rx inactive Reserved Sub-Link soft reset Write 1: Sub-Link reset Automatically cleared into 0 after reset action. 0 is always read. Cause of interrupt access completion to register of Sub-Link Slave or Remote side 2-wire serial Slave device 0: Access incomplete 1: Access complete Any write action: clear this bit into 0 Cause of interrupt LOCKN 0: No change on lock status ever 1: Lock status has once changed Any write action: clear this bit into 0 Cause of interrupt HTPDN 0: No change on plug status ever 1: Plug status has once changed Any write action: clear this bit into 0 Cause of interrupt Sub-Link Slave side 0: No interrupt at Sub-Link Slave ever 1: Interrupted at Sub-Link Slave once This bit is cleared when cause of interrupt register at Sub-Link Slave (0x82) is cleared. Cause of interrupt Sub-Link Master GPIO 0: No change in Master GPIO inputs ever 1: Master GPIO inputs have once changed. This bit is cleared when GPIOn_INPUT_MONITOR (n=4~0) register (0x41) is read. Cause of interrupt Sub-Link communication Error 0: No communication error on Sub-Link ever 1: Communication error on Sub-Link once happened Any write action: clear this bit into 0 Cause of interrupt 2-wire serial time out 0: 2-wire serial access in time ever 1: 2-wire serial access has once had time out Any write action: clear this bit into 0 Cause of interrupt Sub-Link time out 0: Sub-Link access in time ever 1: Sub-Link has once had time out Any write action: clear this bit into 0 0: "2WIRE_ACS_END_INT" is blocked to take interrupt action 1: "2WIRE_ACS_END_INT" is allowed to take action on INT output 0: "LOCKN_INT" is blocked to take interrupt action 1: "LOCKN_INT" is allowed to take action on INT output 0: "HTPDN_INT" is blocked to take interrupt action 1: "HTPDN_INT" is allowed to take action on INT output 0: "SLAVESIDE_INT" is blocked to take interrupt action 1: "SLAVESIDE_INT" is allowed to take action on INT output 0: "GPIO_INT" is blocked to take interrupt action 1: "GPIO_INT" is allowed to take action on INT output 0: "COMERR_INT" is blocked to take interrupt action 1: "COMERR_INT" is allowed to take action on INT output 0: "2WIRE_TIMEOUT_INT" is blocked to take interrupt action 1: "2WIRE_TIMEOUT_INT" is allowed to take action on INT output 0: "SLINK_TIMEOUT_INT" is blocked to take interrupt action 1: "SLINK_TIMEOUT_INT" is allowed to take action on INT output 41/68 - - - (*1) THine Electronics, Inc. SC: E - THCV235_THCV236_Rev.3.70_E Table 40. Sub-Link Master Control Register (continued) Address (Hex) 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D-0x3F *3 Bit# R/W Default (Hex) Register Name Description Note 0: Value in "2WIRE_DEV_ADDR_0" is inactive 1: Value in "2WIRE_DEV_ADDR_0" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_0 Remote side 2-wire serial Slave Device Address #0 0: Value in "2WIRE_DEV_ADDR_1" is inactive 7 RW 0 2WIRE_DEV_ADDR_1_ENABLE 1: Value in "2WIRE_DEV_ADDR_1" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_1 Remote side 2-wire serial Slave Device Address #1 0: Value in "2WIRE_DEV_ADDR_2" is inactive 7 RW 0 2WIRE_DEV_ADDR_2_ENABLE 1: Value in "2WIRE_DEV_ADDR_2" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_2 Remote side 2-wire serial Slave Device Address #2 0: Value in "2WIRE_DEV_ADDR_3" is inactive 7 RW 0 2WIRE_DEV_ADDR_3_ENABLE 1: Value in "2WIRE_DEV_ADDR_3" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_3 Remote side 2-wire serial Slave Device Address #3 0: Value in "2WIRE_DEV_ADDR_4" is inactive 7 RW 0 2WIRE_DEV_ADDR_4_ENABLE 1: Value in "2WIRE_DEV_ADDR_4" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_4 Remote side 2-wire serial Slave Device Address #4 0: Value in "2WIRE_DEV_ADDR_5" is inactive 7 RW 0 2WIRE_DEV_ADDR_5_ENABLE 1: Value in "2WIRE_DEV_ADDR_5" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_5 Remote side 2-wire serial Slave Device Address #5 0: Value in "2WIRE_DEV_ADDR_6" is inactive 7 RW 0 2WIRE_DEV_ADDR_6_ENABLE 1: Value in "2WIRE_DEV_ADDR_6" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_6 Remote side 2-wire serial Slave Device Address #6 0: Value in "2WIRE_DEV_ADDR_7" is inactive 7 RW 0 2WIRE_DEV_ADDR_7_ENABLE 1: Value in "2WIRE_DEV_ADDR_7" is active 6:0 RW 0x00 2WIRE_DEV_ADDR_7 Remote side 2-wire serial Slave Device Address #7 7:0 RW 0x00 Reserved 7:0 R 0x00 Reserved 7:2 R 0x00 Reserved 1:0 RW 0x0 Reserved. Must be 0 7:2 R 0x00 Reserved 00: clock stretching mode 01: No clock stretching mode 1:0 RW 0x1 2WIRE_MODE 10: Reserved (Forbidden) 11: Reserved (Forbidden) 7:0 RW 0x00 2WIRE_DATA0 2-wire serial I/F Write/Read Data #0 7:0 RW 0x00 2WIRE_DATA1 2-wire serial I/F Write/Read Data #1 7:0 RW 0x00 2WIRE_DATA2 2-wire serial I/F Write/Read Data #2 7:0 RW 0x00 2WIRE_DATA3 2-wire serial I/F Write/Read Data #3 7:0 RW 0x00 2WIRE_DATA4 2-wire serial I/F Write/Read Data #4 7:0 RW 0x00 2WIRE_DATA5 2-wire serial I/F Write/Read Data #5 7:0 RW 0x00 2WIRE_DATA6 2-wire serial I/F Write/Read Data #6 7:0 RW 0x00 2WIRE_DATA7 2-wire serial I/F Write/Read Data #7 7:0 RW 0x00 2WIRE_DATA8 2-wire serial I/F Write/Read Data #8 7:0 RW 0x00 2WIRE_DATA9 2-wire serial I/F Write/Read Data #9 7:0 RW 0x00 2WIRE_DATA10 2-wire serial I/F Write/Read Data #10 7:0 RW 0x00 2WIRE_DATA11 2-wire serial I/F Write/Read Data #11 7:0 RW 0x00 2WIRE_DATA12 2-wire serial I/F Write/Read Data #12 7:0 RW 0x00 2WIRE_DATA13 2-wire serial I/F Write/Read Data #13 7:0 RW 0x00 2WIRE_DATA14 2-wire serial I/F Write/Read Data #14 7:0 RW 0x00 2WIRE_DATA15 2-wire serial I/F Write/Read Data #15 Remote side 2-wire Slave device's Register Address bit width select 7 RW 0 2WIRE_ADR_SEL 0: 8bit Register Address 1: 16bit Register Address 6:0 RW 0x00 2WIRE_TARGET_DEV_ADR 2-wire serial I/F Access Target Device Address setting 7:4 R 0x0 Reserved 2-wire serial I/F Write Request Byte Number for both 8bit and 16bit Register 3:0 RW 0x0 WR_REQ_BYTE Address device. Byte Number = register value + 1 (e.g. 0x2 for 3byte burst) 7:4 R 0x0 Reserved 2-wire serial I/F Read Request Byte Number for both 8bit and 16bit Register 3:0 RW 0x0 RD_REQ_BYTE Address device. Byte Number = register value + 1 (e.g. 0x2 for 3byte burst) 7:0 RW 0x00 WR_START_ADR_8B 2-wire serial I/F Write Start Register Address for 8bit Register Address device 7:0 RW 0x00 RD_START_ADR_8B 2-wire serial I/F Read Start Register Address for 8bit Register Address device 7:1 R 0x00 Reserved 0 RW 0 WR_START_8B 2-wire serial I/F Write Access Start Trigger for 8bit Register Address device 7:1 R 0x00 Reserved 0 RW 0 RD_START_8B 2-wire serial I/F Read Access Start Trigger for 8bit Register Address device 2-wire serial I/F Write Start Register Address(Low-order bits = [7:0]) for 16bit 7:0 RW 0x00 WR_START_ADR_16B_0 Register Address device 2-wire serial I/F Write Start Register Address(High-order bits = [15:8]) for 16bit 7:0 RW 0x00 WR_START_ADR_16B_1 Register Address device 2-wire serial I/F Read Start Register Address(Low-order bits = [7:0]) for 16bit 7:0 RW 0x00 RD_START_ADR_16B_0 Register Address device 2-wire serial I/F Read Start Register Address(High-order bits = [15:8]) for 16bit 7:0 RW 0x00 RD_START_ADR_16B_1 Register Address device 7:1 R 0x00 Reserved 0 RW 0 WT_START_16B 2-wire serial I/F Write Access Start Trigger for 16bit Register Address device 7:1 R 0x00 Reserved 0 RW 0 RD_START_16B 2-wire serial I/F Read Access Start Trigger for 16bit Register Address device 7:0 R 0x00 Reserved Assignment of 2-wire serial slave device address connected to Sub-Link Slave outside 7 RW 0 2WIRE_DEV_ADDR_0_ENABLE Copyright©2022 THine Electronics, Inc. 42/68 (*3) THine Electronics, Inc. SC: E - THCV235_THCV236_Rev.3.70_E Table 41. Sub-Link Slave Control Register Address (Hex) 0x80 0x81 Bit# R/W Default (Hex) 7:0 7:1 R R 0x00 0x00 0 RW 0 7:6 R 0x0 5 RW 0 2WIRE_RST_END_INT 4 RW 0 2WIRE_NACK_INT 3 R 0 GPIO_INT 2 RW 0 COMERR_INT 1 RW 0 2WIRE_TIMEOUT_INT 0 RW 0 SLINK_TIMEOUT_INT 7:6 R 0x0 5 RW 0 2WIRE_RST_ENABLED_INT_ENABLE 4 RW 0 2WIRE_NACK_INT_ENABLE 3 RW 0 GPIO_INT_ENABLE 2 RW 0 COMERR_INT_ENABLE 1 RW 0 2WIRE_TIMEOUT_INT_ENABLE 0 RW 0 SLINK_TIMEOUT_INT_ENABLE 7:0 R 0x00 7 R 0 6:0 RW 0x2D 7 R 0 6:0 RW 0x37 7:2 1:0 7:2 1:0 R RW R RW 0x00 0x0 0x00 0x1 7:0 R 0x00 Name 2WIRE_RST 0x82 0x83 0x84 -0x8B 0x8C 0x8D 0x8E 0x8F 0x90 -0xBF *1 Description Note Reserved Reserved 2-wire serial I/F reset Write 1: 16 pulse SCL signal is sent to 2-wire serial slave device connected to Sub-Link Slave. This bit is a remedy against SDA=L, 2-wire serial stuck condition. Automatically cleared into 0 after reset action.0 is always read. Reserved Cause of interrupt 2-wire serial reset done 0: Normal operation 1: 2-wire serial reset signal has all finished Any write action: clear this bit into 0 Cause of interrupt 2-wire serial Slave NACK 0: No NACK from remote side 2-wire serial slave ever 1: NACK from remote side 2-wire serial slave once come Any write action: clear this bit into 0 Cause of interrupt Sub-Link Slave GPIO 0: No change in Slave GPIO inputs ever 1: Slave GPIO inputs have once changed. This bit is cleared when GPIOn_INPUT_MONITOR (n=4~0) register (0xC1) is read. Cause of interrupt Sub-Link communication Error 0: No communication error on Sub-Link ever 1: Communication error on Sub-Link once happened Any write action: clear this bit into 0 Cause of interrupt 2-wire serial time out 0: 2-wire serial access in time ever 1: 2-wire serial access has once had time out Any write action: clear this bit into 0 Cause of interrupt Sub-Link time out0: Sub-Link access in time ever 1: Sub-Link has once had time out Any write action: clear this bit into 0 Reserved 0: "2WIRE_RST_END_INT" is blocked to be reported to Master Side. 1: "2WIRE_RST_END_INT" is allowed to be reported to Master Side. 0: "2WIRE_NACK_INT" is blocked to be reported to Master Side. 1: "2WIRE_NACK_INT" is allowed to be reported to Master Side. 0: "GPIO_INT" is blocked to be reported to Master Side. 1: "GPIO_INT" is allowed to be reported to Master Side. 0: "COMERR_INT" is blocked to be reported to Master Side. 1: "COMERR_INT" is allowed to be reported to Master Side. 0: "2WIRE_TIMEOUT_INT" is blocked to be reported to Master Side. 1: "2WIRE_TIMEOUT_INT" is allowed to be reported to Master Side. 0: "SLINK_TIMEOUT_INT" is blocked to be reported to Master Side. 1: "SLINK_TIMEOUT_INT" is allowed to be reported to Master Side. - - - - - - - - (*1) Reserved SCL_W_H SCL_W_L - Reserved SCL High width [tHIGH] setting. Output SCL High width is defined as below. ((SCL_W_H + 1) * 8 + 8) * tOSC Reserved SCL Low width [tLOW ] setting. Output SCL Low width is defined as below. ((SCL_W_L + 1) * 8 + 8) * tOSC Reserved Reserved. Must be 0 Reserved Reserved Reserved 43/68 - Interrupt signal from Sub-Link Slave is reported to Sub-Link Master as Cause of interrupt Sub-Link Slave Side (0x02 bit4 SLAVESIDE_INT). Copyright©2022 THine Electronics, Inc. - THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 42 THCV235 GPIO Control Register Map Address (Hex) Sub-Link Sub-Link Master Slave 0x40 0xC0 0x41 0x42 0x43 0x44 *1 *2 *3 0xC1 0xC2 0xC3 0xC4 R/W Default (Hex) 7:5 R 0x0 4 RW 1 GPIO4_TYPE 3 RW 1 GPIO3_TYPE 2 R 0 GPIO2_TYPE 1 R 0 GPIO1_TYPE 0 R 0 GPIO0_TYPE 7:5 4 3 2 1 0 7:5 4 3 2 1 0 7:5 R R R R R R R RW RW RW RW RW R 0x0 0 0 0 0 0 0x0 0 0 0 0 0 0x0 4:0 RW 0x07 7:5 R 0x0 4 RW 1 GPIO4_FILT_ENABLE 3 RW 1 GPIO3_FILT_ENABLE 2 RW 1 GPIO2_FILT_ENABLE 1 RW 1 GPIO1_FILT_ENABLE 0 RW 1 GPIO0_FILT_ENABLE Bit# Name GPIO4_INPUT_MONITOR GPIO3_INPUT_MONITOR GPIO2_INPUT_MONITOR GPIO1_INPUT_MONITOR GPIO0_INPUT_MONITOR GPIO4_OUT GPIO3_OUT GPIO2_OUT GPIO1_OUT GPIO0_OUT GPIO_IO_SEL Description Note Reserved GPIO4 type select 0: Programmable GPIO 1: Through GPIO GPIO3 type select 0: Programmable GPIO 1: Through GPIO GPIO2 type select 0: Programmable GPIO 0 Fix GPIO1 type select 0: Programmable GPIO 0 Fix GPIO0 type select 0: Programmable GPIO 0 Fix Reserved GPIO4 input value GPIO3 input value GPIO2 input value GPIO1 input value GPIO0 input value Reserved GPIO4 output value setting GPIO3 output value setting GPIO2 output value setting GPIO1 output value setting GPIO0 output value setting Reserved GPIO input/output direction setting See Table 36, Table 37 and Table 38 Reserved GPIO4 input filter enable 0: Disable 1: Enable GPIO3 input filter enable 0: Disable 1: Enable GPIO2 input filter enable 0: Disable 1: Enable GPIO1 input filter enable 0: Disable 1: Enable GPIO0 input filter enable 0: Disable 1: Enable - - - - - (*1) (*2) - (*3) Active only when GPIO is set as input port. Active only when GPIO type is set as "Programmable GPIO" and set as output port. Filter eliminates input glitch shorter than tOSC/2. Copyright©2022 THine Electronics, Inc. 44/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 42 THCV235 GPIO Control Register Map (continued) Address (Hex) Sub-Link Sub-Link Master Slave 0x45 0xC5 0x46 0x47 -0x4F *4 0xC6 Bit# R/W Default (Hex) 7:5 R 0x0 4 RW 1 GPIO4_INT_ENABLE 3 RW 1 GPIO3_INT_ENABLE 2 RW 1 GPIO2_INT_ENABLE 1 RW 1 GPIO1_INT_ENABLE GPIO0_INT_ENABLE Name Description 0 RW 1 7:5 R 0x0 4 RW 0 GPIO4_OUTBUF_SEL 3 RW 0 GPIO3_OUTBUF_SEL 2 RW 0 GPIO2_OUTBUF_SEL 1 RW 0 GPIO1_OUTBUF_SEL 0 RW 0 GPIO0_OUTBUF_SEL 0xC7 7:0 R 0x00 -0xCF GPIO input transition is counted as GPIO_INT(0x02 or 0x82 bit3). Copyright©2022 THine Electronics, Inc. Note Reserved GPIO4 interrupt enable 0: Disable 1: Enable GPIO3 interrupt enable 0: Disable 1: Enable GPIO2 interrupt enable 0: Disable 1: Enable GPIO1 interrupt enable 0: Disable 1: Enable GPIO0 interrupt enable 0: Disable 1: Enable Reserved GPIO4 output buffer select 0: GPIO4 is open-drain output 1: GPIO4 is push pull output GPIO3 output buffer select 0: GPIO3 is open-drain output 1: GPIO3 is push pull output GPIO2 output buffer select 0: GPIO2 is open-drain output 1: GPIO2 is push pull output GPIO1 has only open-drain output buffer. Must be 0 setting 0: GPIO1 is open-drain output GPIO0 has only open-drain output buffer. Must be 0 setting 0: GPIO0 is open-drain output - (*4) - - - Reserved 45/68 - THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 43. THCV235 Main-Link Control Register Map Address (Hex) Sub-Link Sub-Link Master Slave 0x50 0xD0 0x51 0x52 0x53 0xD1 0xD2 0xD3 0x54 0xD4 0x55 -0x6C 0x6D 0xD5 -0xEC 0xED 0x6E 0xEE 0x6F 0x70 0xEF 0xF0 0x71 -0x75 0x76 0xF1 -0xF5 0xF6 0x77 0xF7 0x78 0x79 -0x7B 0x7C 0xF8 0xF9 -0xFB 0xFC 0x7D -0x7F *1 *2 *3 Bit# R/W Default (Hex) 7 RW 0 MAINMODE 6 RW 0 HFSEL 5 RW 0 COL1 4 RW 0 COL0 3 RW 0 PRE 2:1 RW 0x2 0 7:6 RW R 0 0x0 5 RW 0 4:0 RW 0x05 SPREAD 7:4 3:0 7:2 R RW R 0x0 0xD 0x00 FMOD 1 RW 0 BET 0 RW 0 BET_SEL 7 6:0 R RW 0 0x3E MAINMODE setting 0: V-by-One® HS Mode 1: Sync Free Mode HFSEL setting 0: High Frequency Mode Disable 1: High Frequency Mode Enable COL1 setting when MAINMODE =0 0: Color Space Converter Disable 1: Color Space Converter Enable when MAINMODE =1 Data Width Setting. See Table 20. COL0 setting Data Width Setting. See Table 20. PRE setting 0: Pre-Emphasis Disable 1: Pre-Emphasis Enable CMLDRV setting 00: 400mV diff p-p 01: 600mV diff p-p 10: 800mV diff p-p 11: Reserved (Forbidden) Reserved Reserved SSEN setting 0: SSCG Disable 1: SSCG Enable SSCG modulation depth setting Spread depth = ±SPREAD x 0.1% (Center Spread) Reserved SSCG Modulation Frequency setting Reserved Field BET Mode Enable setting 0: Normal Mode 1: Field BET Operation Main-Link / Sub-Link Field BET Mode select 0: Main-Link Field BET Mode 1: Sub-Link Field BET Mode Reserved Reserved. Must be default setting. 7:0 RW 0x00 Reserved 7:3 2:0 7:1 0 7:0 7:2 1 R RW R RW R R RW 0x00 0x1 0x00 1 0x00 0x00 0 0 RW 0 7:0 R 0x00 Reserved 7:6 5:0 7:4 3:0 7:0 R RW R RW RW 0x0 0xXX 0x0 0x0 0xXX Reserved 7:0 RW 0x00 Reserved. Must be default setting. 7:6 5:0 R RW 0x0 0xXX Reserved. Name CMLDRV SSEN PLL_SET_EN Description SSCG PLL setting PLL_SET1 Reserved Reserved. Must be default setting. SSCG PLL setting - - - (*1) - (*2) - (*3) (*3) - SSCG PLL setting 0xFD 7:0 RW 0xXX -0xFF See Table 4 and Table 5 SSEN=1 and SPREAD=0 setting is forbidden See Table 11, Table 21 Copyright©2022 THine Electronics, Inc. - Reserved Reserved Reserved Reserved. Must be 1 Reserved Reserved Reserved. Must be 0 SSCG PLL setting register Enable 1: Enable 0: Disable PLL_SET0 PLL_SET2 Note (*3) Reserved. Must be default setting. 46/68 - THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 44. THCV236 GPIO Control Register Map Address (Hex) Sub-Link Sub-Link Master Slave 0x40 0xC0 0x41 0x42 0x43 0x44 *1 *2 *3 *4 *5 *6 0xC1 0xC2 0xC3 0xC4 Bit# R/W Default (Hex) 7:5 R 0x0 4 RW 1 GPIO4_TYPE 3 RW 1 GPIO3_TYPE 2 R 0 GPIO2_TYPE 1 R 0 GPIO1_TYPE GPIO0_TYPE Name 0 R 0 7:5 4 3 2 1 0 7:5 4 3 2 1 0 7:5 4 3 2:0 7:5 R R R R R R R RW RW RW RW RW R RW RW RW R 0x0 0 0 0 0 0 0x0 0 0 0 0 0 0x0 4 RW 1 GPIO4_FILT_ENABLE 3 RW 1 GPIO3_FILT_ENABLE 2 RW 1 GPIO0_FILT_ENABLE(*6) 1 RW 1 GPIO1_FILT_ENABLE 0 RW 1 GPIO2_FILT_ENABLE(*6) (*4) (*4) Description GPIO4_INPUT_MONITOR GPIO3_INPUT_MONITOR GPIO0_INPUT_MONITOR(*2) GPIO1_INPUT_MONITOR GPIO2_INPUT_MONITOR(*2) GPIO4_OUT GPIO3_OUT GPIO2_OUT GPIO1_OUT GPIO0_OUT GPIO_IO_SEL 0x7 0x0 Note Reserved GPIO4 type select 0: Programmable GPIO 1: Through GPIO GPIO3 type select 0: Programmable GPIO 1: Through GPIO GPIO2 type select 0: Programmable GPIO 0 Fix GPIO1 type select 0: Programmable GPIO 0 Fix GPIO0 type select 0: Programmable GPIO 0 Fix Reserved GPIO4 input value GPIO3 input value GPIO0 input value GPIO1 input value GPIO2 input value Reserved GPIO4 output value setting GPIO3 output value setting GPIO2 output value setting GPIO1 output value setting GPIO0 output value setting Reserved - - - - - (*1) - (*3) - GPIO input/output direction setting See Table 36, Table 37 and Table 38 - Reserved GPIO4 input filter enable 0: Disable 1: Enable GPIO3 input filter enable 0: Disable 1: Enable GPIO0 input filter enable 0: Disable 1: Enable GPIO1 input filter enable 0: Disable 1: Enable GPIO2 input filter enable 0: Disable 1: Enable - (*5) Active only when GPIO is set as input port. Note that GPIO2_INPUT_MONITOR corresponds to Bit#”0”, GPIO0_INPUT_MONITOR corresponds to Bit#”2”. Active only when GPIO type is set as "Programmable GPIO" and set as output port. Default value depends on RXDEFSEL setting when Power on sequence. RXDEFSEL=1 → default value is 0, RXDEFSEL=0 → default value is 1. Filter eliminates input glitch shorter than tOSC/2. Note that GPIO2_FILT_ENABLE corresponds to Bit#”0”, GPIO0_FILT_ENABLE corresponds to Bit#”2”. Copyright©2022 THine Electronics, Inc. 47/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 44. THCV236 GPIO Control Register Map (continued) Address (Hex) Sub-Link Sub-Link Master Slave 0x45 0xC5 0x46 0x47 -0x4F *7 *8 0xC6 R/W Default (Hex) 7:5 R 0x0 4 RW 1 GPIO4_INT_ENABLE 3 RW 1 GPIO3_INT_ENABLE 2 RW 1 GPIO0_INT_ENABLE(*8) 1 RW 1 GPIO1_INT_ENABLE 0 RW 1 GPIO2_INT_ENABLE(*8) 7:5 R 0x0 4 RW 0 GPIO4_OUTBUF_SEL 3 RW 0 GPIO3_OUTBUF_SEL 2 RW 0 GPIO2_OUTBUF_SEL 1 RW 0 GPIO1_OUTBUF_SEL 0 RW 0 GPIO0_OUTBUF_SEL Bit# Name Description Note Reserved GPIO4 interrupt enable 0: Disable 1: Enable GPIO3 interrupt enable 0: Disable 1: Enable GPIO0 interrupt enable 0: Disable 1: Enable GPIO1 interrupt enable 0: Disable 1: Enable GPIO2 interrupt enable 0: Disable 1: Enable Reserved GPIO4 output buffer select 0: GPIO4 is open-drain output 1: GPIO4 is push pull output GPIO3 output buffer select 0: GPIO3 is open-drain output 1: GPIO3 is push pull output GPIO2 output buffer select 0: GPIO2 is open-drain output 1: GPIO2 is push pull output GPIO1 output buffer select 0: GPIO1 is open-drain output 1: GPIO1 is push pull output GPIO0 output buffer select 0: GPIO0 is open-drain output 1: GPIO0 is push pull output - (*7) - - - - - 0xC7 7:0 R 0x00 Reserved -0xCF GPIO input transition is counted as GPIO_INT(0x02 or 0x82 bit3). Note that GPIO2_INT_ENABLE corresponds to Bit#”0”, GPIO0_INT_ENABLE corresponds to Bit#”2”. Copyright©2022 THine Electronics, Inc. 48/68 - THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 45. THCV236 Main-Link Control Register Map Address (Hex) Sub-Link Master 0x50 0x51 0x52 0x53 Sub-Link Slave 0xD0 0xD1 0xD2 0xD3 0x54 0xD4 0x55 -0x6C 0x6D 0xD5 -0xEC 0xED 0x6E 0xEE 0x6F 0x70 0xEF 0xF0 0x71 -0x75 0x76 0xF1 -0xF5 0xF6 0x77 0xF7 0x78 0x79 -0x7B 0x7C 0xF8 0xF9 -0xFB 0xFC 0x7D -0x7F *1 *2 *3 *4 Bit# R/W Default (Hex) 7 RW (*1) MAINMODE 6 RW (*1) HFSEL 5 RW 0 COL1 4 RW (*1) COL0 3 2:1 RW RW 0 0x0 Name TTLDRV Description MAINMODE setting 0: V-by-One® HS Mode 1: Sync Free Mode HFSEL setting 0: High Frequency Mode Disable 1: High Frequency Mode Enable COL1 setting when MAINMODE =0 0: Color Space Converter Disable 1: Color Space Converter Enable when MAINMODE =1 Data Width Setting. See Table 20. COL0 setting Data Width Setting. See Table 20. Reserved Reserved TTLDRV setting 0: Weak Drive Strength 1: Normal Drive Strength Reserved SSEN setting 0: SSCG Disable 1: SSCG Enable SSCG modulation depth setting Spread depth = ±SPREAD x 0.1% (Center Spread) Reserved SSCG Modulation Frequency setting Reserved Reserved Main-Link / Sub-Link Field BET Mode select 0: Main-Link Field BET Mode 1: Sub-Link Field BET Mode Reserved Reserved. Must be default setting. 0 RW 0 7:6 R 0x0 5 RW 0 4:0 RW 0x05 7:4 3:0 7:2 1 R RW R RW 0x0 0xD 0x00 0 0 RW 0 7 6:0 R RW 0 0x3E 7:0 RW 0x00 7:3 R 0x00 2 RW 0 OUTSEL_ENABLE 1:0 RW 0x1 OUTSEL_SETTING 7:1 0 7:0 7:2 1 R RW R R RW 0x00 1 0x00 0x00 0 0 RW 0 7:0 R 0x00 Reserved 7:6 5:0 7:4 3:0 7:0 R RW R RW RW 0x0 0xXX 0x0 0x0 0xXX Reserved 7:0 RW 0x00 Reserved. Must be default setting. 7:6 5:0 R RW 0x0 0xXX Reserved. SSEN SPREAD FMOD BET_SEL Note - - - - (*2) - Reserved PLL_SET_EN PLL_SET0 SSCG PLL setting PLL_SET1 Reserved Reserved. Must be default setting. SSCG PLL setting PLL_SET2 - Reserved Permanent Clock Output Enable setting 0: Permanent Clock Output Disable 1: Permanent Clock Output Enable Permanent Clock Frequency setting 00: 80MHz (Clock Period : tOSC) 01: 40MHz (Clock Period : tOSC/2) 10: 20MHz (Clock Period : tOSC/4) 11: 10MHz (Clock Period : tOSC/8) Reserved Reserved. Must be 1 Reserved Reserved Reserved. Must be 0 SSCG PLL setting register Enable 1: Enable 0: Disable - (*3) (*4) (*4) - SSCG PLL setting (*4) 0xFD 7:0 RW 0xXX Reserved. Must be default setting. -0xFF Default value depends on RXDEFSEL setting when Power on sequence. RXDEFSEL=1 → default value is 0, RXDEFSEL=0 → default value is 1. SSEN=1 and SPREAD=0 setting is forbidden. Described value is typical value. It has variation in the range from min spec value to max spec value of tOSC. See Table 11, Table 21 Copyright©2022 THine Electronics, Inc. 49/68 THine Electronics, Inc. SC: E - THCV235_THCV236_Rev.3.70_E Absolute Maximum Ratings Table 46. Absolute Maximum Ratings Parameter Supply Voltage(VDD,AVDD) LVCMOS Input Voltage LVCMOS Output Voltage LVCMOS Bi-directional buffer Input Voltage LVCMOS Bi-directional buffer Output Voltage Open-Drain Output Voltage CML Receiver Input Voltage CML Transmitter Output Voltage CML Bi-directional buffer Input Voltage CML Bi-directional buffer Output Voltage Output Current Storage temperature Junction temperature Reflow Peak Temperature/Time Maximum Power Dissipation @+25°C Min -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -50 -55 - Typ - Max 4.0 VDD+0.3 VDD+0.3 VDD+0.3 VDD+0.3 4.0 CAPINA+0.3 CAPINA+0.3 VDD+0.3 VDD+0.3 50 125 125 260/10 3.9 Unit V V V V V V V V V V mA °C °C °C/sec W Max 3.6 105 Unit V °C Recommended Operating Conditions Table 47. Recommended Operating Condition Parameter Supply Voltage(VDD,AVDD) Operating Ambient Temperature Min 1.7 -40 Typ - Electrical Specification LVCMOS DC Specification Table 48. LVCMOS DC Specification Symbol VIH Parameter High Level Input Voltage Pin Type I IL,B VIL Low Level Input Voltage I IL,B VOH High Level Output Voltage VOL Low Level Output Voltage O,B O,B BO IIH IIL IOZH IOZL Input Leak Current High Input Leak Current Low Output Leak Current High in Hi-Z State Output Leak Current Low in Hi-Z State Copyright©2022 THine Electronics, Inc. I,IL I,IL Condition VDD=1.7-2.0V VDD=2.0-3.0V VDD=3.0-3.6V VDD=1.7-3.6V VDD=1.7-2.0V VDD=2.0-3.0V VDD=3.0-3.6V VDD=1.7-3.6V VDD=1.7-3.6V IOH=-4mA VDD=1.7-3.6V IOL=4mA VDD=1.7-3.6V IOL=2mA VIN=VDD VIN=0V O,B,BO VIN=VDD O,B,BO VIN=0V 50/68 Min 0.65×VDD 0.70×VDD 2.0 0.70×VDD 0 0 0 0 Typ - Max VDD VDD VDD VDD 0.35×VDD 0.30×VDD 0.8 0.30×VDD Unit V V V V V V V V VDD-0.45 - VDD V 0 - 0.45 V 0 - 0.2 V -10 - 10 - uA uA - - 10 uA -10 - 10 uA THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E CML DC Specification Table 49. CML DC Specification(THCV235) Symbol VTOD PRE Parameter CML Differential Output Voltage CML Pre-emphasis Level VTOC CML Common Mode Output Voltage ITOH ITOS CML Output Leak Current High CML Output Short Current Condition(*1) PDN1=0,CMLDRV=0 PDN1=0,CMLDRV=1 PDN1=1,CMLDRV[1:0]=00 PDN1=1,CMLDRV[1:0]=01 PDN1=1,CMLDRV[1:0]=10 PRE=0 PDN1=0,PRE=1,CMLDRV=0 PDN1=1,PRE=1,CMLDRV[1:0]=00 PDN1=1,PRE=1,CMLDRV[1:0]=01 PRE=0 PDN1=0,PRE=1,CMLDRV=0 PDN1=1,PRE=1,CMLDRV[1:0]=00 PDN1=1,PRE=1,CMLDRV[1:0]=01 PDN0=0,TXP/N=CAPINA PDN0=0,TXP/N=0V Min 200 300 133 200 300 - Typ Max 300 400 400 500 200 267 300 400 400 500 0 50 100 50 CAPINA-VTOD CAPINA-1.5×VTOD CAPINA-2×VTOD CAPINA-1.5×VTOD -30 30 -80 - Unit mV mV mV mV mV % % % % mV mV mV mV uA mA *1 When PDN1=0, PRE and CMLDRV are external pins. When PDN1=1, PRE and CMLDRV[1:0] are registers. Table 50. CML DC Specification(THCV236) Symbol VRTH VRTL IRIH IRIL IRRIH IRRIL RRIN Parameter CML Differential Input High Threshold CML Differential Input High Threshold CML Input Leak Current High CML Input Leak Current Low CML Input Current High CML Input Current Low CML Differential Input Resistance Condition PDN0=0,RXP/N=CAPINA PDN0=0,RXP/N=0V RXP/N=CAPINA RXP/N=0V - Min -50 -10 -10 -6 80 Typ 100 Max 50 10 10 2 120 Unit mV mV uA uA mA mA Ω CML Bi-Directional DC Specification Table 51. CML Bi-Directional DC Specification Symbol VBTH VBTL IBIH IBIL RTERM VBOD VBOC IBOZ Parameter Bi-Directional Buffer Differential Input High Threshold Bi-Directional Buffer Differential Input Low Threshold Bi-Directional Buffer Output Leak Current High Bi-Directional Buffer Output Leak Current Low Bi-Directional Buffer Termination Resistance Bi-Directional Buffer Differential Output Voltage Bi-Directional Buffer Common Output Voltage Bi-Directional Buffer TRI-STATE Current Copyright©2022 THine Electronics, Inc. Condition Min Typ Max Unit - - - 150 mV - -150 - - mV xCMP/N=VDD(x=T,R) -10 - 10 uA xCMP/N=0V(x=T,R) -10 - 10 uA Transmitter State Receiver State 37.5 150 50 200 62.5 250 Ω Ω RDIFF=400Ω 300 - 660 mV - VDD-0.3 - V -10 - 10 uA PDN1=0 51/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Supply Current Table 52. Supply Current(THCV235) Symbol ITCCW ITCCS Parameter Transmitter Supply Current Transmitter Power Down Supply Current Condition PDN0=1,PDN1=1, HFSEL=1 PDN0=0 and PDN1=0 All Inputs = Fixed 0 or 1 Typical value is under 25°C Min - Typ - Max 160 Unit mA - 2.5 20 mA Min Typ Max Unit - - 220 mA - 2.5 20 mA Table 53. Supply Current(THCV236) Symbol Parameter IRCCW Receiver Supply Current IRCCS Receiver Power Down Supply Current Condition Cload=8pF, PDN0=1,PDN1=1,HFSEL=1 PDN0=0 and PDN1=0 All Inputs = Fixed 0 or 1 Typical value is under 25°C Switching Characteristics Table 54. Switching Characteristics (THCV235) Symbol tTBIT tTRF tTCIP tTCH tTCL tTS tTH tTPD tTCD tTPLL0 tTPLL1 tTNP0 tTNP1 Parameter Unit Interval CML Output Rise and Fall Time (20%-80%) CLKIN Period CLKIN High Time CLKIN Low Time Data Input Setup to CLKIN Data Input Hold to CLKIN Power On to PDN0 High Delay Input Clock to Output Data Delay PDN0 High to CML Output Delay PDN0 Low to CML Output High Fix Delay LOCKN High to Training Pattern Output Delay LOCKN Low to Data Pattern Output Delay Copyright©2022 THine Electronics, Inc. Condition - Min 250 Typ - Max 1666 Unit ps - 50 - 150 ps See Table 20 MAINMODE=0, HFSEL=0,COL1=0 MAINMODE=0, HFSEL=0,COL1=1 MAINMODE=0, HFSEL=1,COL1=0 MAINMODE=0, HFSEL=1,COL1=1 MAINMODE=1, HFSEL=0 MAINMODE=1, HFSEL=1 - 1000/Freq.Range[MHz] 0.35×tTCIP 0.5×tTCIP 0.65×tTCIP 0.35×tTCIP 0.5×tTCIP 0.65×tTCIP 2.0 1.0 0 - ns ns ns ns ns ns 55×tTCIP - 62×tTCIP ns 76×tTCIP - 83×tTCIP ns 107×tTCIP - 124×tTCIP ns 128×tTCIP - 145×tTCIP ns 56×tTCIP - 65×tTCIP ns 109×tTCIP - 132×tTCIP ns - - 10 ms - - - 20 ns - - - 10 ms - - - 10 ms 52/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 55. Switching Characteristics (THCV236) Symbol tRBIT tRCP tRCH tRCL tDOUT tRPD tRDC tRHPD0 tRHPD1 tRPLL0 tRPLL1 tRLCK0 tRLCK1 tROSC0 tROSC1 tROSC2 tRS tRH Parameter Unit Interval CLKOUT Period CLKOUT High Time CLKOUT Low Time Data Output Period Power On to PDN0 High Delay Input Data to Output Clock Delay PDN0 High to HTPDN Low Delay PDN0 Low to HTPDN High Delay Training Pattern Input to LOCKN Low Delay PDN0 Low to LOCKN High Delay LOCKN Low to Data Output Delay LOCKN High to Data Output Stop Delay PDN0 High to Permanent Clock output Delay LOCKN Low to Permanent Clock output Low Delay LOCKN High to Permanent Clock output Delay Data Output Setup to CLKOUT Data Output Hold to CLKOUT tTLH Clock, Data Output Low to High Transition Time tTHL Clock, Data Output High to Low Transition Time Condition See Table 20 - Min Typ Max 250 1666 1000/Freq.Range[MHz] tRCP/2 tRCP/2 tRCP - Unit ps ns ns ns ns - 0 - - ns MAINMODE=0,HFSEL=0,COL1=0 MAINMODE=0,HFSEL=0,COL1=1 MAINMODE=0,HFSEL=1,COL1=0 MAINMODE=0,HFSEL=1,COL1=1 MAINMODE=1,HFSEL=0 MAINMODE=1,HFSEL=1 60×tRCP 81×tRCP 114×tRCP 135×tRCP 61×tRCP 116×tRCP - 67×tRCP 88×tRCP 132×tRCP 153×tRCP 70×tRCP 140×tRCP ns ns ns ns ns ns - - - 10 ms - - - 50 us - - - 10 ms - - - 10 us - - - 5 ms - - - 10 us OUTSEL=1 - - 5 ms OUTSEL=1 - - 1 ms OUTSEL=1 - - 10 us - 0.45×tRCP-0.65 - - ns - 0.45×tRCP-0.65 - - ns - - 2.0 3.5 0.8 1.9 2.4 4.4 1.0 2.2 ns ns ns ns ns ns ns ns Clock , TTLDRV=0 Data , TTLDRV=0 Clock , TTLDRV=1 Data , TTLDRV=1 Clock , TTLDRV=0 Data , TTLDRV=0 Clock , TTLDRV=1 Data , TTLDRV=1 Table 56. CML Bi-Directional Switching Characteristics Symbol tBUI tBRF tBPJTX tBPJRX Parameter Bi-Directional Buffer Unit Interval Bi-Directional Buffer Rise and Fall Time(20%-80%) Bi-Directional Buffer Transmitter Period Jitter Accuracy (peak to peak) Bi-Directional Buffer Receiver Period Jitter Tolerance (peak to peak) Copyright©2022 THine Electronics, Inc. Condition - Min 80 Typ 100 Max 120 Unit ns - 150 - 1000 ps - - - 1 ns - 8 - - ns 53/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 57. 2-wire serial slave AC Timing (Sub-Link Master device) Symbol fSCL tSU;STA tHD;STA tLOW tHIGH tHD;DAT tSU;DAT tr tf tSU;STO tBUF tSP tPDS Parameter SCL clock frequency Setup time (repeated) START condition Hold time (repeated) START condition LOW period of the SCL clock HIGH period of the SCL clock Data hold time: output Data hold time: input Data setup time: output Data setup time: input Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals (pull-up resistor:2.5kΩ,bus capacitance:400pF) Setup time for STOP condition Bus free time between a STOP and START condition Pulse width of spikes which must be suppressed by the input filter Required wait time from PDN1 high to START condition Min 0.6 0.6 1.3 0.6 20 500 100 - Typ 9×tOSC - Max 400 300(*1) Unit kHz us us us us us ns ns ns ns - - 300 ns 0.6 1.3 2 - 50 - us us ns ms Max 15.625 Unit ns - us - us *1 Please adjust Pull-up resistor and bus capacitance to meet the spec value. Table 58. 2-wire serial master AC Timing (Sub-Link Slave device) Symbol tOSC tHD;STA Parameter Cycle of internal oscillator clock Min 10.417 - us 20 31×tOSC 100 - Typ 12.5 (SCL_W_H × 8 – 3) × tOSC ((SCL_W_L + 1) × 8 + 8) × tOSC ((SCL_W_H + 1) × 8 + 8) × tOSC 9×tOSC - 300(*1) us ns ns ns ns - - 300 ns - 386×tOSC - ns 4.7 - - us Hold time (repeated) START condition - tLOW LOW period of the SCL clock - tHIGH HIGH period of the SCL clock - tHD;DAT tSU;DAT tr tf tSU;STO tBUF Data hold time: output Data hold time: input Data setup time: output Data setup time: input Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals (pull-up resistor:2.5kΩ,bus capacitance:400pF) Setup time for STOP condition Bus free time between a STOP and START condition *1 Please adjust Pull-up resistor and bus capacitance to meet the spec value. Copyright©2022 THine Electronics, Inc. 54/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Table 59. 2-wire serial interface transaction wait time Symbol tWSSR tRSSR tWRS tRPW tRRS tRPR tSSEP Parameter Write access completion time to Sub-Link Slave register Read access completion time to Sub-Link Slave register Write start to Remote side Start Condition generating time Remote side Stop Condition generating to Write access completion time Read start to Remote side Start Condition generating time Remote side Stop Condition generating to Read access completion time Min Typ Max Unit - - 110 us - - 90 us - - 65 us - - 300 us - - 65 us - - 300 us Depending on characteristics of 2-wire serial slave devices connected to Sub-Link Slave Sub-Link Slave External processing time us Table 60. Sub-Link control switching characteristics (2-wire serial I/F Mode) Symbol tPVM tPVS tTGPIO tIVM tIRM tIVS tIRS tPS tPH Parameter Programmable GPIO output at Sub-Link Master data valid Programmable GPIO output at Sub-Link Slave data valid Through GPIO delay Sub-Link Master interrupt valid Sub-Link Master interrupt reset delay Sub-Link Slave interrupt valid 2WIRE_MODE=00 Sub-Link Slave interrupt reset delay 2WIRE_MODE=01 Programmable GPIO input data setup Programmable GPIO input data hold Min 10000×(1/fSCL) 0 Typ - Max 0 110 280 90 0 300 300 0 - Unit us us us us us us us us us Table 61. Sub-Link control switching characteristics (Low Speed Data Bridge Mode) Symbol tLSD fLSSR Parameter Low Speed Data input to output delay Low Speed Data input sampling rate Copyright©2022 THine Electronics, Inc. Min 70 55/68 Typ - Max 20 - Unit us kHz THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E AC Timing Diagrams and Test Circuits LVCMOS Input, Output Switching Characteristics Figure 19. LVCMOS Input Switching Timing Diagrams Figure 20. LVCMOS Output Switching Timing Diagrams Copyright©2022 THine Electronics, Inc. 56/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E CML Output Switching Characteristics Figure 21. CML Output Switching Characteristics Figure 22. CML Buffer Equivalent Circuit Copyright©2022 THine Electronics, Inc. 57/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E CML Bi-directional Output Test Circuit Figure 23. Bi-directional CML VBOD/VBOC Test Circuit Figure 24. Bi-directional CML Switching Timing Diagram and Test Circuit Copyright©2022 THine Electronics, Inc. 58/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Latency Characteristics Figure 25. THCV235 Latency pixel 1st bit tRBIT Vdiff = (RXP) - (RXN) tRCP tRDC RF=0 CLKOUT VDD/2 RF=1 D31-D0 HSYNC,VSYNC DE VDD/2 VDD/2 Figure 26. THCV236 Latency Copyright©2022 THine Electronics, Inc. 59/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Lock and Unlock Sequence Figure 27. THCV235 Lock/Unlock Sequence VDD tRPD PDN0 HTPDN tRHPD1 PDN1=0 → External Pin PDN1=1 → Register(0x00 bit0) tRHPD0 CDR Training pattern RXP/N ALN Training pattern LOCKN tRLCK0 PDN1=0 → External Pin PDN1=1 → Register(0x00 bit1) CLKOUT (OUTSEL=0) Normal pattern tRPLL1 tRPLL0 Pixel Clock D31-D0,DE HSYNC,VSYNC Low Low Permanent Clock (Internal OSC Clock) Invalid Clock Valid Clock tROSC1 tOSC/N (N=1,2,4,8)(*1) Low Low Pixel Clock tROSC0 (OUTSEL=1) Valid Clock Invalid Clock Low Permanent Clock (Internal OSC Clock) CLKOUT tRLCK1 Low tROSC2 InValid Data Valid Data InValid Data *1 N depends on setting of OUTSEL_SETTING register (0x6D or 0xED bit1,0). See Register Map (Table 38) Figure 28. THCV236 Lock/Unlock Sequence Copyright©2022 THine Electronics, Inc. 60/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E 2-wire serial I/F Switching Characteristics Figure 29. 2-wire serial interface Timing Diagram Figure 30. Write access completion time to Sub-Link Slave register Figure 31. Read access completion time to Sub-Link Slave register Copyright©2022 THine Electronics, Inc. 61/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Figure 32. Write access completion time to Remote side 2-wire serial slave register Figure 33. Read access completion time to Remote side 2-wire serial slave register Copyright©2022 THine Electronics, Inc. 62/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E GPIO Switching Characteristics Figure 34. Through GPIO delay Figure 35. Programmable GPIO input timing at Sub-Link Master side Figure 36. Programmable GPIO output timing at Sub-Link Master side Figure 37. Programmable GPIO output timing at Sub-Link Slave side Copyright©2022 THine Electronics, Inc. 63/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Figure 38. GPIO input and other interrupt event timing at Sub-Link Master side Figure 39. GPIO input and other interrupt event timing at Sub-Link Slave side (Clock Stretching Mode) Figure 40. GPIO input and other interrupt event timing at Sub-Link Slave side (No Clock Stretching Mode) Copyright©2022 THine Electronics, Inc. 64/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Low Speed Data Bridge Switching Characteristics Figure 41. Low Speed Data Bridge Mode Data Delay Copyright©2022 THine Electronics, Inc. 65/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E PCB Layout Guideline regarding VDD and AVDD for THCV236 When power is supplied from reverse side layer to AVDD, please place ferrite bead between through-hole and AVDD/VDD pins (Good Example1, 2). If it is needed to set ferrite beads on reverse side, please set GND-through-hole between AVDD and VDD, and separate the distance as possible (Example). Don’t set through-holes next to each other between ferrite beads and AVDD/VDD pins (Bad Example). Good Example 1 Good Example 2 Example Bad Example 3.6V-1.7V Isolate throughholes as possible Bottom Layer 42 41 40 39 Copyright©2022 THine Electronics, Inc. 66/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Package TOP VIEW LASER MARK FOR PIN1 9.00 BOTTOM VIEW 7.20 49 64 48 1 33 16 32 17 0.25 0.50 0.40 SIDE VIEW Unit : mm Figure 42. 64-pin QFN package physical dimension Copyright©2022 THine Electronics, Inc. 67/68 THine Electronics, Inc. SC: E THCV235_THCV236_Rev.3.70_E Notices and Requests 1. The product specifications described in this material are subject to change without prior notice. 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. THine Electronics, Inc. (“THine”) is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, THine may not be able to correct them immediately. 3. This material contains THine’s copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without THine’s prior permission is prohibited. 4. Note that even if infringement of any third party's industrial ownership should occur by using this product, THine will be exempted from the responsibility unless it directly relates to the production process or functions of the product. 5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above. 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage. 7. Please note that this product is not designed to be radiation-proof. 8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user’s request, testing of all functions and performance of the product is not necessarily performed. 9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act. 10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses. 11. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights. THine Electronics, Inc. http://www.thine.co.jp Copyright©2022 THine Electronics, Inc. 68/68 THine Electronics, Inc. SC: E
THCV235-B 价格&库存

很抱歉,暂时无法提供与“THCV235-B”相匹配的价格&库存,您可以联系我们找货

免费人工找货