DATA SHEET
NEC's LOW DISTORTION DOWN-CONVERTER IC UPC3220GR FOR DIGITAL CATV
FEATURES
• • • • • LOW DISTORTION: IIP3 = +1.0 dBm TYP. WIDE AGC DYNAMIC RANGE: GCRtotal = 45.5 dB TYP. ON CHIP VIDEO AMPLIFIER SUPPLY VOLTAGE: 5V PACKAGED IN A 16-PIN SSOP SUITABLE FOR HIGH-DENSITY SURFACE MOUNTING
DESCRIPTION
NEC's UPC3220GR is a silicon monolithic IC designed for use as IF down-converter for digital CATV. This IC consists of AGC amplifier, mixer and video amplifier. NEC's UPC3220GR is packaged in a 16-pin SSOP (Shrink Small Outline Package) suitable for surface mount. This IC is manufactured using our 10 GHz fT NESAT II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformly and reliability.
APPLICATION
• Digital CATV Receivers
ORDERING INFORMATION
PART NUMBER ORDER NUMBER PACKAGE 16-pin plastic SSOP (5.72 mm (225)) (Pb-Free) Note MARKING C3220 SUPPLYING FORM • Embossed tape 12 mm wide • Pin 1 indicates pull-out direction of tape • Qty 2.5 kpcs/reel UPC3220GR-E1-A UPC3220GR-E1-A
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office. Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μPC3220GR
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.
California Eastern Laboratories
UPC3220GR INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION
(Top View)
RF IN1 RF IN2 VAGC GND OSC IN1 OSC IN2 VCC1 VCC2 1 2 3 4 5 6 Video Amp. 7 8 10 9 AMP OUT1 AMP OUT2 OSC OUT Buffer Amp. AGC Amp. Mixer 16 15 14 13 12 11 MIX OUT2 MIX OUT1 GND AMP IN1 AMP IN2 GND
UPC3220GR PIN EXPLANATIONS
PIN NO. 1 SYMBOL RF IN1 PIN VOLTAGE (V, TYP.) 1.46 EXPLANATION Input pin of IF signal. 1-pin is same phase and 2-pin is opposite phase at balance input. In case of single input, 1-pin or 2-pin should be grounded through capacitor (example 10 nF). EQUIVALENT CIRCUIT 7
2
RF IN2
1.46
AGC Control
1 3 VAGC 0 to 3.5 Automatic gain control pin. This pins bias govern the AGC output level. Minimum gain at VAGC = 0 V Maximum gain at VAGC = 3.5 V 3 7 AGC Control
2
4
GND
0.0
Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Input pin of Oscillator signal. 5-pin is same phase and 6-pin is opposite phase at balance input. In case of single input, 5-pin or 6-pin should be grounded through capacitor (ex. 10 nF).
––––––
5
OSC IN1
2.6
7
6
OSC IN2
2.6
5 7 VCC1 5.0 Power supply pin of IF down convertor block. Must be connected bypass capacitor to minimize ground impedance. Power supply pin of video amplifier. Must be connected bypass capacitor to minimize ground impedance. ––––––
6
8
VCC2
5.0
––––––
UPC3220GR
PIN NO. 9 PIN VOLTAGE (V, TYP.) 2.5
SYMBOL AMP OUT2
EXPLANATION Output pin of video amplifier. OUT1 and IN1 are same phase. OUT2 and IN2 are same phase.
EQUIVALENT CIRCUIT 8
10
AMP OUT1
2.5
9 10
11
GND
0.0
Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Signal input pin of video amplifier. This pin is high impedance.
––––––
12
AMP IN2
1.45
8
13
AMP IN1
1.45
12 14 GND 0.0 Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Output pin of mixer. This output pin features low-impedance because of its emitter-follower output port.
13
––––––
15
MIX OUT1
3.7
7
16
MIX OUT2
3.7
15 16
UPC3220GR ABSOLUTE MAXIMUM RATINGS
PARAMETER Supply Voltage Power Dissipation Operating Ambient Temperature Storage Temperature SYMBOL VCC PD TA Tstg TA = +25°C TA = +85°C Note CONDITIONS RATINGS 6.0 433 −40 to +85 −55 to +150 UNIT V mW °C °C
Note
Mounted on double-sided copper-clad 50 x 50 x 1.6 mm epoxy glass PWB
RECOMMENDED OPERATING RANGE
PARAMETER Supply Voltage Operating Ambient Temperature Gain Control Voltage Range SYMBOL VCC TA VAGC VCC = 4.5 to 5.5 V CONDITIONS MIN. 4.5 −40 0 TYP. 5.0 +25 − MAX. 5.5 +85 VCC UNIT V °C V
UPC3220GR ELECTRICAL CHARACTERISTICS
PARAMETER DC Characteristics Circuit Current 1 (Total Block) Circuit Current 2 (AGC Amplifier Block + Mixer Block) Circuit Current 3 (Video Amplifier Block) AGC Voltage High Level AGC Voltage Low Level RF Input Frequency Range IF Output Frequency Range Maximum Conversion Gain Minimum Conversion Gain AGC Dynamic Range Noise Figure 3rd Order Intermodulaion Distortion ICC1 ICC2 ICC3 VAGC (H) VAGC (L) fRF fIF CGMAX CGMIN GCRAGC NF IM3 No input signal, VCC1 = VCC2 = 5 V Note 4 No input signal, VCC1 = 5 V No input signal, VCC2 = 5 V @ Maximum gain @ Minimum gain fIF = 50 MHz constant fRF = 84 MHz constant VAGC = 3.0 V, Pin = −50 dBm VAGC = 0.5 V, Pin = −20 dBm VAGC = 0.5 to 3.0 V Note 4 Note 4 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 33.0 15.0 18.0 3.0 0 30 0.1 30.5 −18.0 36.0 − 24.0 42.0 20.0 22.0 − − − − 33.0 −12.5 45.5 7.0 26.5 53.5 25.5 28.0 VCC 0.5 250 150 35.5 −3.5 − 8.5 − mA mA mA V V MHz MHz dB dB dB dB dBc SYMBOL
(TA = +25ºC, VCC = 5 V)
TEST CONDITIONS MIN. TYP. MAX. UNIT
RF Characteristics (AGC Amplifier Block + Mixer Block: fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
DSB, VAGC = 3.0 V (@ Maximum gain) Note 2 Vout = 0.236 Vp-p × 2 tone, (single-ended output), Pin −30 dBm/tone fRF1 = 84 MHz, fRF2 = 85 MHz Pin = −55 dBm Pin = −25 dBm
Note 1 Note 3 Note 3 48.0 2.95 50.5 3.70 53.5 − dB Vp-p
RF Characteristics (Video Amplifier Block: f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Differential Gain Maximum Output Voltage 2 Gdiff Voclip2
Notes 1. By measurement circuit 1 2. By measurement circuit 2 3. By measurement circuit 4 4. By measurement circuit 6
UPC3220GR STANDARD CHARACTERISTICS
PARAMETER Input 3rd Order Distortion Intercept Point Maximum Output Voltage1 RF IN Impedance OSC IN Impedance MIXER OUT Impedance Frequency Range Input Impedance Output Impedance 3rd Order Intermodulaion Distortion SYMBOL IIP3 Voclip1 ZRFin ZOSCin ZMIXout fBW ZAMPin ZAMPout IM3
(TA = +25ºC, VCC = 5 V, ZS = 50 Ω)
TEST CONDITIONS VAGC = 0.5 V (@ Minimum gain) fRF1 = 84 MHz, fRF2 = 85 MHz Note 1 VAGC = 3.0 V, Pin = −20 dBm VAGC = 3.0 V, f = 84 MHz VAGC = 3.0 V, f = 134 MHz VAGC = 3.0 V, f = 50 MHz Note 1 Note 2 Note 2 Note 2 REFERENCE VALUE +1.0 0.65 440 − j1100 280 − j810 30.2 + j2.5 60 330 − j480 21.9 + j22.6 55.0 Note 3 Note 5 Note 5 Note 5 67.5 22.0 45.5 7.0 3.7 +1.0 51.0 Note 5 dB dB dB dB Vp-p dBm dBc UNIT dBm Vp-p Ω Ω Ω MHz Ω Ω dBc
AGC Amplifier Block + Mixer Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
Video Amplifier Block (f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Pin = −55 dBm, G (f = 10 MHz) −1 dB Note 3 f = 50 MHz f = 50 MHz Vout = 0.7 Vp-p × 2 tone, fin1 = 49 MHz, fin2 = 50 MHz VAGC = 3.0 V, Pin = −70 dBm VAGC = 0.5 V, Pin = −40 dBm VAGC = 0.5 to 3.0 V Note 4 Note 4
Total Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Maximum Conversion Gain Minimum Conversion Gain Total Dynamic Range Noise Figure Maximum Output Voltage Input 3rd Order Distortion Intercept Point 3rd Order Intermodulaion Distortion CGMAX CGMIN GCR NF Voclip IIP3total IM3total
DSB, VAGC = 3.0 V (@ Maximum gain) Note 6 VAGC = 3.0 V (@ Minimum gain) Note 5 VAGC = 0.5 V (@ Minimum gain) fRF1 = 84 MHz, fRF2 = 85 MHz Note 5 Vout = 0.7 Vp-p × 2 tone, Pin −40 dBm/tone fRF1 = 84 MHz, fRF2 = 85 MHz
Notes 1. By measurement circuit 1 2. By measurement circuit 3 3. By measurement circuit 4 4. By measurement circuit 5 5. By measurement circuit 6 6. By measurement circuit 7
Remark The graphs indicate nominal characteristics.
UPC3220GR MEASUREMENT CIRCUIT 1
0.1 µ F 0.1 µF//20 pF Spectrum Analyzer 50 Ω 51 Ω
RF2 50 Ω
RF1 50 Ω
1 2 3
AGC Amp.
Mixer
16 15 14
IF 1 µ F 1 kΩ 1 µ F 1 kΩ
VAGC LO 50 Ω
1 µF Note
0.1 µ F
4 5 6 7
OSC OUT Buffer Amp.
13 12 11 10 9
0.1 µ F 0.1 µ F
Video Amp.
VCC1
1 µF
0.1 µ F
8
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
MEASUREMENT CIRCUIT 2
Noise Source
Noise Figure Meter 50 Ω
RF
0.1 µ F 0.1 µ F//20 pF
1 2 3
AGC Amp.
Mixer
16 15 14
1 µ F 1 kΩ 1 µ F 1 kΩ
IF
51 Ω
VAGC LO 50 Ω
1 µF Note
0.1 µ F
4 5 6 7
OSC OUT Buffer Amp.
13 12 11 10 9
0.1 µ F 0.1 µ F
Video Amp.
VCC1
1 µF
0.1 µ F
8
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
UPC3220GR MEASUREMENT CIRCUIT 3
RF 0.1 µ F 0.1 µ F//20 pF
1 2 3
AGC Amp.
Mixer
1µ F
16 15 14
IF
1 µF 51 Ω
VAGC LO
1 µF
0.1 µ F
4 5 6 7
OSC OUT Buffer Amp.
13 12 11 10 9
0.1 µ F 0.1 µ F VCC1 1 µF 0.1 µ F
Video Amp.
8
LO Port Input Impedance
Network Analyzer 50 Ω 50 Ω
IF Port Input Impedance
RF Port Input Impedance
MEASUREMENT CIRCUIT 4
1 2 3 4 5 6 7 8
AGC Amp.
Mixer
16 15 14
OSC OUT Buffer Amp.
13 12 11 10 9
1µ F 1µ F 51 Ω 1 µ F 1 kΩ 1 µ F 1 kΩ 51 Ω 51 Ω
Vin 50 Ω
Video Amp.
Vout
Spectrum Analyzer 50 Ω
VCC2
1 µF
0.1 µ F
VOUT
51 Ω
Remarks 1. Voltage Gain (Single Ended) = 20 log (VOUT/Vin) (dB) 2. Differential Gain (Differential-out) = 20 log (2 × VOUT/Vin) (dB) 3. VOUT = Vout (Measured Value) × (1 050/50)
UPC3220GR MEASUREMENT CIRCUIT 5
1 2 3 4 5 6 7 8
AGC Amp.
Mixer
16 15 14
OSC OUT Buffer Amp.
13 12 11 10 9
1µ F 1µ F 51 Ω 1µ F 1µ F
Input Impedance
50 Ω Network Analyzer 50 Ω
Video Amp.
Output Impedance 51 Ω
VCC2
1 µF
0.1 µ F
MEASUREMENT CIRCUIT 6
RF 50 Ω 0.1 µ F 0.1 µ F//20 pF 1 kΩ 1 kΩ
1 2 3
AGC Amp.
Mixer
16 15 14
VAGC LO 50 Ω Note
1 µF
0.1 µ F
4 5 6 7 8
OSC OUT Buffer Amp.
13 12 11 10 9
1µ F 1µ F
Loss 10 dB @50 MHz
0.1 µ F 0.1 µ F
Video Amp.
Spectrum Analyzer 1 µ F 1 kΩ 1 µ F 1 kΩ 51 Ω 50 Ω
VCC1 1 µ F 0.1 µ F VCC2 1 µ F 0.1 µ F
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
UPC3220GR MEASUREMENT CIRCUIT 7
Noise Source Noise Figure Meter 50 Ω
RF
0.1 µ F 0.1 µ F//20 pF
1 2 3
AGC Amp.
Mixer
16 15 14
1 kΩ 1 kΩ
VAGC LO 50 Ω
1 µF Note
0.1 µ F
4 5 6 7 8
OSC OUT Buffer Amp.
13 12 11 10 9
1µ F 1µ F
0.1 µ F 0.1 µ F
Video Amp.
1 µ F 1 kΩ 1 µ F 1 kΩ 51 Ω
VCC1 1 µ F 0.1 µ F VCC2 1 µ F 0.1 µ F
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT1, 2 ASSEMBLED ON EVALUATION BOARD
1 kΩ 51 Ω
IFout
1 kΩ 1µF 0.1 µF 0.1 µF 20 pF
0.1 µF
VCC1 (AGC + MIX) 1µF 0.1 µF LOin
RF1, RF2in
1µF 0.1 µF
Note
µPC3220GR
VAGC
Note Balun Transformer
Remarks
1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout
UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT3 ASSEMBLED ON EVALUATION BOARD
1µF 51 Ω
0.1 µF IFout 0.1 µF 0.1 µF 20 pF RFin 1µF 0.1 µF 1µF 0.1 µF LOin 1µF VCC1 (AGC + MIX)
µPC3220GR
VAGC
Remarks
1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout 5. : Represents short-circuit strip
UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT4 ASSEMBLED ON EVALUATION BOARD
Vin
51 Ω
1 kΩ
Vout
1µF 1µF 0.1 µF 1µF 1µF 1µF
51 Ω 1 kΩ VCC2 (Video)
µPC3220GR
Remarks
1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents short-circuit strip
UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT5 ASSEMBLED ON EVALUATION BOARD
Input Impedance
Output Impedance
1µF
51 Ω 1µF 1µF 51 Ω 1µF
1µF 0.1 µF
VCC2 (Video)
µPC3220GR
Remarks
1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents short-circuit strip
UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT6, 7 ASSEMBLED ON EVALUATION BOARD
1 kΩ
Vout
1 kΩ
1µF 1µF 0.1 µF 1µF 1µF 1µF 0.1 µF 0.1 µF 20 pF 1µF 0.1 µF LOin
51 Ω 1 kΩ VCC2 (Video) VCC1 (VGC + MIX)
RFin
1µF 0.1 µF
Note
µPC3220GR
VAGC
Note Balun Transformer Remarks
1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout 5. : Represents short-circuit strip
UPC3220GR TYPICAL CHARACTERISTICS (TA = +25ºC, unless otherwise specified)
CIRCUIT CURRENT1 (TOTAL BLOCK) vs. SUPPLY VOLTAGE
Circuit Current1 (Total Block) ICC1 (mA) 60 VAGC = 0 V No Singnal 50 Measurement Cuicuit6 40 30 20 10 0 0 TA = +25°C TA = +85°C TA = -40°C 2 3 4 5 6 Circuit Current2 (AGC Amplifier + Mixer Block) ICC2 (mA)
CIRCUIT CURRENT2 (AGC AMPLIFIER + MIXER BLOCK) vs. SUPPLY VOLTAGE
30 VCC2 = VAGC = 0 V No Singnal 25 Measurement Cuicuit6 20 15 10 5 0 0 TA = +25°C TA = +85°C 1 2 3 TA = -40°C 4 5 6
1
Supply Voltage VCC1, 2 (V)
Supply Voltage VCC1 (V)
Circuit Current3 (Video Amplifier Block) ICC3 (mA)
CIRCUIT CURRENT3 (VIDEO AMPLIFIER BLOCK) vs. SUPPLY VOLTAGE
30 VCC1 = VAGC = 0 V No Singnal 25 Measurement Cuicuit6 20 15 10 TA = +25°C
5 TA = +85°C 0 TA = -40°C 0 1 2 3 4 5 6
Supply Voltage VCC2 (V)
Remark The graphs indicate nominal characteristics.
UPC3220GR
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
40 35 30 Voltage Gain (dB) 25 20 15 10 5 Voltage Gain (dB) VCC1 = 5.5 V 5.0 V 4.5 V 35 30 25 20 15 10 5
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
TA = +85°C
TA = -40°C TA = +25°C
VAGC = 3.0 V 0 Pin = -50 dBm -5 fLO = 60 to 290 MHz PLO =-15 dBm -10 fIF = 50 MHz Measurement Cuicuit1 -15 0 50 100
150
200
250
VAGC = 3.0 V 0 VCC = 5.0 V -5 Pin = -50 dBm fLO = 60 to 290 MHz -10 PLO = -15 dBm -15 fIF = 50 MHz Measurement Cuicuit1 -20 0 50 100
150
200
250
RF Input Frequency Range fRF (MHz)
RF Input Frequency Range fRF (MHz)
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
40 VAGC = 1.5 V 35 Pin = -50 dBm fLO = 60 to 290 MHz 30 PLO = -15 dBm 25 fIF = 50 MHz Measurement Cuicuit1 20 15 10 5 0 -5 -10 -15 0 50 100 150 200 250 VCC1 = 5.5 V 5.0 V 4.5 V 35 30 25 Voltage Gain (dB) 20 15 10 5 0 -5 -10 -15 -20 0
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
VAGC = 1.5 V VCC = 5.0 V Pin = -50 dBm fLO = 60 to 290 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1
Voltage Gain (dB)
TA = +25°C
TA = -40°C
TA = +85°C
50
100
150
200
250
RF Input Frequency Range fRF (MHz)
RF Input Frequency Range fRF (MHz)
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
40 VAGC = 0.5 V 35 Pin = -20 dBm fLO = 60 to 290 MHz 30 PLO = -15 dBm 25 fIF = 50 MHz Measurement Cuicuit1 20 15 10 5 0 -5 -10 -15 0 50 100 150 200 250 VCC1 = 4.5 V 5.0 V 5.5 V 35
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
VAGC = 0.5 V 30 VCC = 5.0 V 25 Pin = -20 dBm fLO = 60 to 290 MHz 20 PLO = -15 dBm 15 fIF = 50 MHz Measurement Cuicuit1 10 5 0 -5 -10 -15 -20 0 50 100 150 200 250 TA = +25°C TA = -40°C TA = +85°C
Voltage Gain (dB)
RF Input Frequency Range fRF (MHz)
Voltage Gain (dB)
RF Input Frequency Range fRF (MHz)
Remark The graphs indicate nominal characteristics.
UPC3220GR
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
40 35 30 Voltage Gain (dB) 20 15 10 VAGC = 3.0 V 0 Pin = -50 dBm -5 fLO = 94 to 234 MHz PLO = -15 dBm -10 fRF = 84 MHz Measurement Cuicuit1 -15 0 20 60 40 5 Voltage Gain (dB) 25 VCC1 = 5.5 V 5.0 V 4.5 V 35 30 25 20 15 10 VAGC = 3.0 V 0 VCC1 = 5.0 V -5 Pin = -50 dBm fLO = 94 to 234 MHz -10 PLO = -15 dBm -15 fRF = 84 MHz Measurement Cuicuit1 -20 40 0 20 60 5 TA = +85°C TA = +25°C TA = -40°C
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
80
100 120 140 160
80
100 120 140 160
IF Output Frequency Range fIF (MHz)
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
40 VAGC = 1.5 V 35 Pin = -50 dBm fLO = 94 to 234 MHz 30 PLO = -15 dBm 25 fRF = 84 MHz Measurement Cuicuit1 20 15 10 5 0 -5 -10 -15 0 20 40 60 80 100 120 140 160 VCC1 = 4.5 V 5.0 V 5.5 V 35
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
VAGC = 1.5 V 30 VCC1 = 5.0 V 25 Pin = -50 dBm fLO = 94 to 234 MHz 20 PLO = -15 dBm 15 fRF = 84 MHz Measurement Cuicuit1 10 5 0 -5 -10 -15 -20 0 20 40 60 80 100 120 140 160 TA = +85°C
Voltage Gain (dB)
Voltage Gain (dB)
TA = +25°C
TA = -40°C
IF Output Frequency Range fIF (MHz)
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
40 VAGC = 0.5 V 35 Pin = -20 dBm fLO = 94 to 234 MHz 30 PLO = -15 dBm 25 fRF = 84 MHz Measurement Cuicuit1 20 15 10 5 0 -5 -10 -15 0 20 40 60 80 100 120 140 160 VCC1 = 4.5 V 5.0 V 5.5 V 35
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
VAGC = 0.5 V 30 VCC1 = 5.0 V 25 Pin = -20 dBm fLO = 94 to 234 MHz 20 PLO = -15 dBm 15 fRF = 84 MHz Measurement Cuicuit1 10 5 0 -5 -10 -15 -20 0 20 40 60 80 100 120 140 160 TA = +25°C TA = -40°C TA = +85°C
Voltage Gain (dB)
Voltage Gain (dB)
IF Output Frequency Range fIF (MHz)
IF Output Frequency Range fIF (MHz)
Remark The graphs indicate nominal characteristics.
UPC3220GR
VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE
40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 0 VCC1 = 4.5 V 5.0 V 5.5 V
VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE
40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 0
Voltage Gain (dB)
Voltage Gain (dB)
TA = -40°C +25°C +85°C VCC1 = 5.0 V fRF = 84 MHz Pin = -50 dBm fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Gain Control Voltage Range VAGC (V)
fRF = 84 MHz Pin = -50 dBm fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Gain Control Voltage Range VAGC (V)
NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE
35 30 Noise Figure NF (dB) 25 20 15 10 5 0 1.0 1.5 2.0 2.5 3.0 3.5 VCC1 = 5.5 V 5.0 V 4.5 V fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit2 35 30 Noise Figure NF (dB) 25 20 15 10 5
NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE
VCC1 = 5.0 V fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit2
TA = +85°C +25°C -40°C
0 1.0
1.5
2.0
2.5
3.0
3.5
Gain Control Voltage Range VAGC (V)
Gain Control Voltage Range VAGC (V)
Remark The graphs indicate nominal characteristics.
UPC3220GR
OUTPUT POWER vs. INPUT POWER
Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) -15 -20 -25 -30 -35 -40 -45 -50 -55 -55 -50 -45 -40 -35 VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 -30 -25 -20 -15 Input Power Pin (dBm) VCC1 = 5.5 V 5.0 V 4.5 V -15 -20 -25 -30 -35 -40 -45 -50
OUTPUT POWER vs. INPUT POWER
TA = +25°C
-40°C +85°C VCC1 = 5.0 V VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 -30 -25 -20 -15
-55 -55
-50
-45
-40
-35
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
-20
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -60 -50 -40 VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -30 -20
2 TONE OUTPUT POWER vs. INPUT POWER
-20 -30 -40 -50 -60 -70 -80 -90 -100 -60 -50 -40 VCC1 = 5.0 V VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -30 -20 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
-20
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
2 TONE OUTPUT POWER vs. INPUT POWER
-20 -30 -40 -50 -60 -70 -80 -90 -100 -50 -40 -30 VCC1 = 5.0 V VAGC = 2.1 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -20 -10 TA = -40°C +25°C +85°C
VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -50 -40 -30 VAGC = 2.1 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -20 -10
Input Power Pin (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR
2 TONE OUTPUT POWER vs. INPUT POWER
-20 VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
-20 -30 -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VCC1 = 5.0 V VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
-20
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10
2 TONE OUTPUT POWER vs. INPUT POWER
-20 -30 -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VCC1 = 5.0 V VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR
–Video Amplifier Block– VOLTAGE GAIN (SINGLE-ENDED) vs. INPUT FREQUENCY
50 Voltage Gain (Single-ended) (dB) Voltage Gain (Single-ended) (dB) VCC2 = 4.5 V 49 5.0 V 5.5 V 48 47 46 45 44 43 42 41 Pin = -55 dBm Measurement Cuicuit4 40 10 50 49 48 47 46 45 44 43 42 VCC2 = 5 V 41 Pin = -55 dBm Measurement Cuicuit4 40 10
VOLTAGE GAIN (SINGLE-ENDED) vs. INPUT FREQUENCY
TA = -40°C +25°C +85°C
50
100
50
100
Input Frequency fin (MHz)
Input Frequency fin (MHz)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) VCC2 = 4.5 V 5.0 V -5 5.5 V -10 -15 -20 -25 -30 -35 -40 -50 -45 -40 -35 fIF = 50 MHz Measurement Cuicuit4 -20 -15 -30 -25 0 0 -5 -10 -15 -20 -25 -30 -35
OUTPUT POWER vs. INPUT POWER
TA = -40°C +25°C +85°C
-40 -50
-45
-40
-35
VCC2 = 5 V fIF = 50 MHz Measurement Cuicuit4 -20 -15 -30 -25
Input Power Pin (dBm)
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
VCC2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -90 -60 -50 -40 fIF1 = 50 MHz fIF2 = 49 MHz Measurement Cuicuit4 -30 -20 0
2 TONE OUTPUT POWER vs. INPUT POWER
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -60 -50 -40 VCC2 = 5 V fIF1 = 50 MHz fIF2 = 49 MHz Measurement Cuicuit4 -30 -20 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR
–Total Block– VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
80 VCC1, 2 = 4.5 V 5.0 V 70 5.5 V Voltage Gain (dB) Voltage Gain (dB) 60 50 40 30 20 VAGC = 3.0 V (Pin = -70 dBm) VAGC = 1.5 V (Pin = -40 dBm) 80 70 60 50 40 30 20 10 150 200 250 TA = -40°C +25°C +85°C 0 50 0 VAGC = 0.5 V (Pin = -40 dBm) 100 Measurement Cuicuit6 150 200 250
VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE
PLO = -15 dBm VCC1, 2 = 5 V fLO = 60 to 290 MHz fIF = 50 MHz VAGC = 3.0 V (Pin = -70 dBm) VAGC = 1.5 V (Pin = -40 dBm)
VAGC = 0.5 V (Pin = -40 dBm)
fLO = 60 to 290 MHz 10 PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 0 50 100 0
RF Input Frequency Range fRF (MHz)
RF Input Frequency Range fRF (MHz)
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
80 70 Voltage Gain (dB) 60 50 40 30 20 VCC1, 2 = 4.5 V 5.0 V 5.5 V 10 20 40 0 VAGC = 0.5 V (Pin = -40 dBm) 60 80 100 120 140 160 fLO = 94 to 234 MHz PLO = -15 dBm fRF = 84 MHz Measurement Cuicuit6 VAGC = 3.0 V (Pin = -70 dBm) VAGC = 1.5 V (Pin = -40 dBm) Voltage Gain (dB) 80 70 60 50 40 30 20 10
VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE
Measurement Cuicuit6 VCC1, 2 = 5 V fLO = 94 to 234 MHz PLO = -15 dBm fRF = 84 MHz VAGC = 3.0 V (Pin = -70 dBm) VAGC = 1.5 V (Pin = ñ40 dBm)
TA = -40°C +25°C +85°C 0 20 40 0
VAGC = 0.5 V (Pin = -40 dBm) 60 80 100 120 140 160
IF Output Frequency Range fIF (MHz)
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE
75 70 65 Voltage Gain (dB) 60 55 50 45 40 35 30 25 20 0 0.5 1.0 1.5 fRF = 84 MHz Pin = -70 dBm fLO = 134 MHz PLO = -15 dBm Measurement Cuicuit6 2.0 2.5 3.0 3.5 Gain Control Voltage Range VAGC (V) VCC1, 2 = 4.5 V 5.0 V 5.5 V
VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE
70 65 60 Voltage Gain (dB) 55 50 45 40 35 30 25 20 15 0 0.5 1.0 1.5 VCC1, 2 = 5 V fRF = 84 MHz Pin = -70 dBm fLO = 134 MHz PLO = -15 dBm Measurement Cuicuit6 2.5 3.0 3.5 2.0 TA = -40°C +25°C +85°C
Gain Control Voltage Range VAGC (V)
Remark The graphs indicate nominal characteristics.
UPC3220GR
NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE
35 30 Noise Figure NF (dB) 25 20 15 10 fIF = 50 MHz fLO = 134 MHz 5 PLO = -15 dBm Measurement Cuicuit7 0 1.0 1.5 2.0 Noise Figure NF (dB) VCC1, 2 = 4.5 V 5.0 V 5.5 V 35 30 25 20 15 10
NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE
TA = -40°C +25°C +85°C
2.5
3.0
3.5
VCC1, 2 = 5 V fIF = 50 MHz 5 fLO = 134 MHz PLO = ñ15 dBm Measurement Cuicuit7 0 1.0 1.5 2.0
2.5
3.0
3.5
Gain Control Voltage Range VAGC (V)
Gain Control Voltage Range VAGC (V)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) 0 -5 -10 -15 -20 -25 -30 -35 -40 -75 -70 -65 -60 -55 VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 -50 -45 -40 -35 Input Power Pin (dBm) VCC1, 2 = 5.5 V 5.0 V 4.5 V 0 -5 -10 -15 -20 -25 -30 -35
OUTPUT POWER vs. INPUT POWER
TA = +25°C
-40°C VCC1, 2 = 5.0 V VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 -50 -45 -40 -35
+85°C
-40 -75
-70
-65
-60
-55
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -80 -70 -60 VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -50 -40 0
2 TONE OUTPUT POWER vs. INPUT POWER
0 -10 -20 -30 -40 -50 -60 -70 -80 -80 -70 -60 VCC1, 2 = 5.0 V VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -50 -40 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -50 -40 -30 VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -20 -10 0
2 TONE OUTPUT POWER vs. INPUT POWER
0 -10 -20 -30 -40 -50 -60 -70 -80 -50 -40 -30 VCC1, 2 = 5 V VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -20 -10 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -35 -25 -15 VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -5 5
0
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER vs. INPUT POWER
2 TONE OUTPUT POWER vs. INPUT POWER
0 -10 -20 -30 -40 -50 -60 -70 -80 -35 -25 -15 VCC1, 2 = 5.0 V VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -5 5 TA = -40°C +25°C +85°C
Input Power Pin (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR
3rd Order Intermoduration Distortion IM3 (dBc) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
IM3, 2 TONE OUTPUT POWER, GAIN CONTROL VOLTAGE vs. INPUT POWER
-30 -40 -50 -60 -70 -80 -90 -80 -70 -60 IM3 -50 -40 -30 -20 -10 0 VAGC 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Gain Control Voltage Range VAGC (V) -20 Pout 4.0
VCC1, 2 = 4.5 V 5.0 V 5.5 V Conditions fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz @Vout = 0.7 Vp-p/tone Measurement Cuicuit6
Input Power Pin (dBm)
3rd Order Intermoduration Distortion IM3 (dBc) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
IM3, 2 TONE OUTPUT POWER, GAIN CONTROL VOLTAGE vs. INPUT POWER
-30 -40 -50 -60 -70 -80 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 IM3 VAGC 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Gain Control Voltage Range VAGC (V) -20 Pout 4.0
TA = -40°C +25°C +85°C Conditions fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz @Vout = 0.7 Vp-p/tone Measurement Cuicuit6
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
UPC3220GR S-PARAMETERS –AGC Amplifier Block + Mixer Block
MIXER RF Input Impedance
(Vcc1 = 5.0 V, VAGC = 3.0 V, by measurement circuit 3)
1 2 3 4
1 : 30 MHz 2 : 84 MHz 3 : 150 MHz 4 : 250 MHz
1.830 kΩ 443.0 Ω 207.4 Ω 109.7 Ω
-1.603 kΩ -1.096 kΩ -728.7 Ω -454.1 Ω
3.309 pF 1.730 pF 1.456 pF 1.402 pF
MIXER RF Output Impedance
2 3 14
1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz
29.48 Ω 29.98 Ω 30.17 Ω 30.79 Ω
634.6 mΩ 1.908 Ω 2.476 Ω 4.171 Ω
10.07 nH 8.431 nH 7.884 nH 6.638 nH
UPC3220GR
MIXER OSC Input Impedance
2 3 4
1
1 : 30 MHz 2 : 100 MHz 3 : 134 MHz 4 : 250 MHz
1.820 kΩ 415.5 Ω 284.6 Ω 133.4 Ω
-1.823 kΩ -1.010 Ω -813.1 Ω -487.0 Ω
2.911 pF 1.575 pF 1.461 pF 1.307 pF
UPC3220GR –Video Amplifier Block (Vcc2 = 5.0 V, by measurement circuit 5)
Video Amplifier Input Impedance
1 3 4 2
1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz
1.187 kΩ 389.8 Ω 333.4 Ω 245.5 Ω
-1.177 kΩ -588.3 Ω -481.1 Ω -369.7 Ω
13.54 pF 7.516 pF 6.617 pF 4.304 pF
Video Amplifier Output Impedance
2 1
3 4
1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz
10.04 Ω 15.86 Ω 21.54 Ω 45.48 Ω
5.225 Ω 17.70 Ω 22.61 Ω 23.89 Ω
83.16 nH 78.25 nH 71.96 nH 38.02 nH
UPC3220GR PACKAGE DIMENSIONS 16--PIN PLASTIC SSOP
16
(5.72 mm (225))(UNIT:mm)
9
detail of lead end
1 5.2±0.3
8
5º± 5º
1.8 MAX. 1.5±0.1 S 0.65 0.22+0.10 -0.05 0.125±0.075 0.475 MAX. 0.10 M
6.4±0.2 4.4±0.2 1.0±0.2
0.5±0.2 0.17
+0.08 -0.07
0.10 S
UPC3220GR
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to VCC line.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.
Soldering Method Infrared Reflow Soldering Conditions Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass) Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass) Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass) : 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below : 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below : 350°C or below : 3 seconds or less : 0.2%(Wt.) or below Condition Symbol IR260
Wave Soldering
WS260
Partial Heating
HS350
Caution Do not use different soldering methods together (except for partial heating).
Life Support Applications These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.
04/25/2005
A Business Partner of NEC Compound Semiconductor Devices, Ltd.
4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500 Facsimile: (408) 988-0279
Subject: Compliance with EU Directives CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE. CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive. This status is based on CEL’s understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.
Restricted Substance per RoHS Lead (Pb) Mercury Cadmium Hexavalent Chromium PBB PBDE Concentration Limit per RoHS (values are not yet fixed) < 1000 PPM < 1000 PPM < 100 PPM < 1000 PPM < 1000 PPM < 1000 PPM Concentration contained in CEL devices -A Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected -AZ (*)
If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.
Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall CEL’s liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis. See CEL Terms and Conditions for additional clarification of warranties and liability.