CED6355/CEU6355
P-Channel Enhancement Mode Field Effect Transistor FEATURES
-60V, -26A, RDS(ON) = 42mΩ RDS(ON) = 65mΩ @VGS = -10V. @VGS = -4.5V. PRELIMINARY
Super high dense cell design for extremely low RDS(ON). High power and current handing capability. Lead free product is acquired. TO-251 & TO-252 package. D
D G S CEU SERIES TO-252(D-PAK)
G D
G
S CED SERIES TO-251(I-PAK)
S
ABSOLUTE MAXIMUM RATINGS
Parameter Drain-Source Voltage Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed
a
Tc = 25 C unless otherwise noted Symbol Limit VDS VGS ID IDM PD TJ,Tstg -60
Units V V A A W W/ C C
±20
-26 -104 50 0.4 -55 to 150
Maximum Power Dissipation @ TC = 25 C - Derate above 25 C Operating and Store Temperature Range
Thermal Characteristics
Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient Symbol RθJC RθJA Limit 2.5 50 Units C/W C/W
This is preliminary information on a new product in development now . Details are subject to change without notice . 1
Rev 1. 2006.Aug http://www.cetsemi.com
CED6355/CEU6355
Electrical Characteristics
Parameter Off Characteristics Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Dynamic Characteristics c Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Switching Characteristics c Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Drain-Source Diode Forward Current Drain-Source Diode Forward Voltage b td(on) tr td(off) tf Qg Qgs Qgd IS VSD VGS = 0V, IS = -26A VDS = -30V, ID = -20A, VGS = -10V VDD = -30V, ID = -20A, VGS = -10V, RGEN = 3Ω 15 4 47 11 32.2 5.7 5.4 -26 -1.3 30 8 94 22 42.8 ns ns ns ns nC nC nC A V gFS Ciss Coss Crss VDS = -10V, ID = -26A VDS = -30V, VGS = 0V, f = 1.0 MHz 22 2020 180 95 S pF pF pF VGS(th) RDS(on) VGS = VDS, ID = -250µA VGS = -10V, ID = -26A VGS = -4.5V, ID = -21A -1 35 50 -3 42 65 V mΩ mΩ BVDSS IDSS IGSSF IGSSR VGS = 0V, ID = -250µA VDS = -60V, VGS = 0V VGS = 20V, VDS = 0V VGS = -20V, VDS = 0V -60 -1 100 -100 V
µA
Tc = 25 C unless otherwise noted Symbol Test Condition Min Typ Max Units
nA nA
6
Drain-Source Diode Characteristics and Maximun Ratings
Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing.
2
CED6355/CEU6355
25 -VGS=10,8,6,4V 35
-ID, Drain Current (A)
20
-ID, Drain Current (A)
28
15
21
10
14 25 C 7 TJ=125 C -55 C
-VGS=3V
5
0 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
-VDS, Drain-to-Source Voltage (V) Figure 1. Output Characteristics
3000 2500 Ciss 2000 1500 1000 500 0 Crss 0 5 10 15 20 25 30 Coss 2.2 1.9 1.6 1.3 1.0 0.7 0.4 -100
-VGS, Gate-to-Source Voltage (V) Figure 2. Transfer Characteristics
RDS(ON), Normalized RDS(ON), On-Resistance(Ohms)
ID=-26A VGS=-10V
C, Capacitance (pF)
-50
0
50
100
150
200
-VDS, Drain-to-Source Voltage (V) Figure 3. Capacitance
1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 -50
TJ, Junction Temperature( C) Figure 4. On-Resistance Variation with Temperature -IS, Source-drain current (A)
10
3
VTH, Normalized Gate-Source Threshold Voltage
VDS=VGS ID=-250µA
VGS=0V
10
2
10
1
10 -25 0 25 50 75 100 125 150
0
0.3
0.6
0.9
1.2
1.5
1.8
TJ, Junction Temperature( C) Figure 5. Gate Threshold Variation with Temperature
-VSD, Body Diode Forward Voltage (V) Figure 6. Body Diode Forward Voltage Variation with Source Current
3
CED6355/CEU6355
-VGS, Gate to Source Voltage (V)
10 V =-30V DS ID=-20A 8 10
3
-ID, Drain Current (A)
10
2
100µs
1
6
10
4
1ms 10ms DC
2
10
0
6
10
-1
0 0 10 20 30 40
10
-1
10
0
10
1
10
2
Qg, Total Gate Charge (nC) Figure 7. Gate Charge
-VDS, Drain-Source Voltage (V) Figure 8. Maximum Safe Operating Area
VDD t on V IN D VGS RGEN G
90%
toff tr
90%
RL VOUT
td(on) VOUT
td(off)
90% 10%
tf
10%
INVERTED
S
VIN
50% 10%
50%
PULSE WIDTH
Figure 9. Switching Test Circuit
Figure 10. Switching Waveforms
r(t),Normalized Effective Transient Thermal Impedance
10
0
D=0.5
0.2
10
-1
0.1 0.05 0.02 0.01 Single Pulse
PDM t1 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2
10
-2
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve
4