CEDF634/CEUF634
N-Channel Enhancement Mode Field Effect Transistor FEATURES
250V, 6.7A, RDS(ON) = 450mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. Lead free product is acquired. TO-251 & TO-252 package. D
D G S CEU SERIES TO-252(D-PAK)
G D
G
S CED SERIES TO-251(I-PAK)
S
ABSOLUTE MAXIMUM RATINGS
Parameter Drain-Source Voltage Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed
a
Tc = 25 C unless otherwise noted Symbol Limit VDS VGS ID IDM PD TJ,Tstg 250
Units V V A A W W/ C C
±30
6.7 26 46 0.37 -55 to 150
Maximum Power Dissipation @ TC = 25 C - Derate above 25 C Operating and Store Temperature Range
Thermal Characteristics
Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient Symbol RθJC RθJA Limit 2.7 50 Units C/W C/W
2005.January 6 - 138
http://www.cetsemi.com
CEDF634/CEUF634
Electrical Characteristics
Parameter Off Characteristics Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Switching Characteristics c Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Drain-Source Diode Forward Current Drain-Source Diode Forward Voltage b td(on) tr td(off) tf Qg Qgs Qgd IS VSD VGS = 0V, IS = 8.1A 0.9 VDS = 200V, ID =5.6A, VGS = 10V VDD = 125V, ID = 5.6A, VGS = 10V, RGEN = 12Ω 19 11 46 10 26 5 11 8.1 1.5 40 30 90 30 33 ns ns ns ns nC nC nC A V
c
Tc = 25 C unless otherwise noted Symbol BVDSS IDSS IGSSF IGSSR VGS(th) RDS(on) gFS Ciss Coss Crss Test Condition VGS = 0V, ID = 250µA VDS = 250V, VGS = 0V VGS = 30V, VDS = 0V VGS = -30V, VDS = 0V VGS = VDS, ID = 250µA VGS = 10V, ID = 5.1A VDS = 50V, ID = 5.1A 4.4 630 100 40 2 Min 250 25 100 -100 4 450 Typ Max Units V
µA
nA nA V mΩ S pF pF pF
6
VDS = 25V, VGS = 0V, f = 1.0 MHz
Drain-Source Diode Characteristics and Maximun Ratings
Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing.
6 - 139
CEDF634/CEUF634
12 VGS=10,9,8,7V 10 8 10
1
ID, Drain Current (A)
VGS=6V
6 4 2
ID, Drain Current (A)
10
0
TJ=150 C
-55 C
VGS=5V
VGS=4V
0 0 1 2 3 4 5 6 10
-1
25 C 2 4 6
1.VDS=40V 2.Pulse Test 8 10
VDS, Drain-to-Source Voltage (V) Figure 1. Output Characteristics
1200 1000 800 600 400 200 0 0 10 20 30 40 50 Coss Crss 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -100
VGS, Gate-to-Source Voltage (V) Figure 2. Transfer Characteristics
Ciss
RDS(ON), Normalized RDS(ON), On-Resistance(Ohms)
ID=5.1A VGS=10V
C, Capacitance (pF)
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V) Figure 3. Capacitance
1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 -50
TJ, Junction Temperature( C) Figure 4. On-Resistance Variation with Temperature
VGS=0V
1
VTH, Normalized Gate-Source Threshold Voltage
VDS=VGS ID=250µA
IS, Source-drain current (A)
10
10
0
10 -25 0 25 50 75 100 125 150
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C) Figure 5. Gate Threshold Variation with Temperature
VSD, Body Diode Forward Voltage (V) Figure 6. Body Diode Forward Voltage Variation with Source Current
6 - 140
CEDF634/CEUF634
VGS, Gate to Source Voltage (V)
10 VDS=200V ID=5.6A 10
2
RDS(ON)Limit
ID, Drain Current (A)
8
10
1
100ms 1ms 10ms
6
4
10
0
DC
2
0 0 4 8 12 16 20 24 28
10
-1
TC=25 C TJ=150 C Single Pulse 10
0
6
10
1
10
2
10
3
Qg, Total Gate Charge (nC) Figure 7. Gate Charge
VDS, Drain-Source Voltage (V) Figure 8. Maximum Safe Operating Area
VDD t on V IN D VGS RGEN G
90%
toff tr
90%
RL VOUT
td(on) VOUT
td(off)
90% 10%
tf
10%
INVERTED
S
VIN
50% 10%
50%
PULSE WIDTH
Figure 9. Switching Test Circuit
Figure 10. Switching Waveforms
r(t),Normalized Effective Transient Thermal Impedance
10
0
D=0.5
0.2
10
-1
0.1 0.05 0.02 0.01 Single Pulse
PDM t1 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2
10
-2
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve
6 - 141