CDB1601-120W CS1601 120W, High-efficiency PFC Demonstration Board
Features
General Description
The CDB1601-120W board demonstrates the performance of the CS1601 digital PFC controller as a standalone unit. This board is 95% efficient at full load, and has been tailored for use with a resonant second stage to power up to two T5 fluorescent lamps for a maximum output power of 108W. A resonant second stage driver efficiency of 94% is assumed for this application.
Line Voltage Range: 108 to 305 VACrms Output Voltage (VLINK): 460V Rated Pout : 115W Efficiency: 95% @ 115W Spread Spectrum Switching Frequency Integrated Digital Feedback Control Low Component Count
ORDERING INFORMATION CDB1601-120W Customer Demonstration Board
Actual Size:
258 mm x 43 mm 8.16 in x 1.7 in
www.cirrus.com
Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved)
MAR ‘11 DS931DB3
CDB1601-120W
IMPORTANT SAFETY INSTRUCTIONS
Read and follow all safety instructions prior to using this demonstration board.
7KLV (QJLQHHULQJ (YDOXDWLRQ 8QLW RU 'HPRQVWUDWLRQ %RDUG PXVW RQO\ EH XVHG IRU DVVHVVLQJ ,& SHUIRUPDQFH LQ D ODERUDWRU\ VHWWLQJ 7KLV SURGXFW LV QRW LQWHQGHG IRU DQ\ RWKHU XVH RU LQFRUSRUDWLRQ LQWR SURGXFWV IRU VDOH 7KLV SURGXFW PXVW RQO\ EH XVHG E\ TXDOLILHG WHFKQLFLDQV RU SURIHVVLRQDOV ZKR DUH WUDLQHG LQ WKH VDIHW\ SURFHGXUHV DVVRFLDWHG ZLWK WKH XVH RI GHPRQVWUDWLRQ ERDUGV
Risk of Electric Shock
• • 7KH GLUHFW FRQQHFWLRQ WR WKH $& SRZHU OLQH DQG WKH RSHQ DQG XQSURWHFWHG ERDUGV SUHVHQW D VHULRXV ULVN RI HOHFWULF VKRFN DQG FDQ FDXVH VHULRXV LQMXU\ RU GHDWK ([WUHPH FDXWLRQ QHHGV WR EH H[HUFLVHG ZKLOH KDQGOLQJ WKLV ERDUG $YRLG FRQWDFW ZLW K WK H H[SRVHG FRQGXFWRU R U WH UPLQDOV RI FRPSRQHQWV R Q WK H ERDUG +LJK Y ROWDJH L V SUHVHQW RQ H[SRVHG FRQGXFWRU DQG LW PD\ EH SUHVHQW RQ WHUPLQDOV RI DQ\ FRPSRQHQWV GLUHFWO\ RU LQGLUHFWO\ FRQQHFWHG WR WKH $& OLQH 'DQJHURXV YROWDJHV DQGRU FXUUHQWV PD\ EH LQWHUQDOO\ JHQHUDWHG DQG DFFHVVLEOH DW YDULRXV SRLQWV DFURVV WKH ERDUG &KDUJHG FDSDFLWRUV VWRUH KLJK YROWDJH HYHQ DIWHU WKH FLUFXLW KDV EHHQ GLVFRQQHFWHG IURP WKH $& OLQH 0DNH VXUH WK DW WKH SRZHU VRXUFH L V RII EHIRUH ZL ULQJ DQ\ FRQQHFWLRQ 0D NH VX UH WKDW DO O FRQQHFWRUV DUH ZHOO FRQQHFWHG EHIRUH WKH SRZHU VRXUFH LV RQ )ROORZ DOO ODERUDWRU\ VDIHW\ SURFHGXUHV HVWDEOLVKHG E\ \RXU HPSOR\HU DQG UHOHYDQW VDIHW\ UHJXODWLRQV DQG JXLGHOLQHV VXFK DV WKH RQHV OLVWHG XQGHU 26+$ *HQHUDO ,QGXVWU\ 5HJXODWLRQV 6XESDUW 6 DQG 1)3$ (
• • • •
6XLWDEOH H\H SURWHFWLRQ PXVW EH ZRUQ ZKHQ ZRUNLQJ ZLWK RU DURXQG GHPRQVWUDWLRQ ERDUGV $OZD\V FRPSO\ ZLWK \RXU HPSOR\HU¶V SROLFLHV UHJDUGLQJ WKH XVH RI SHUVRQDO SURWHFWLYH HTXLSPHQW $OO FRPSRQHQWV KHDW VLQNV RU PHWDOOLF SDUWV PD\ EH H[WUHPHO\ KRW WR WRXFK ZKHQ HOHFWULFDOO\ DFWLYH +HDWVLQNLQJ LV UHTXLUHG IRU 4 7KH HQG SURGXFW VKRXOG XVH WDU SLWFK RU DQ HTXLYDOHQW FRPSRXQG IRU WKLV SXUSRVH )RU ODE HYDOXDWLRQ SXUSRVHV D IDQ LV UHFRPPHQGHG WR SURYLGH DGHTXDWH FRROLQJ
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
2
DS931DB3
CDB1601-120W
1. INTRODUCTION
The CS1601 is a high-performance Variable Frequency Discontinuous Conduction Mode (VF-DCM), active Power Factor Correction (PFC) controller, optimized to deliver the lowest PFC system cost for electronic ballast applications. The CS1601 uses a digital control algorithm that is optimized for high efficiency and near unity power factor over a wide input voltage range (108-305 VAC). The CS1601 uses an adaptive digital control algorithm. Both the ON time and the switching frequency are varied on a cycle-by-cycle basis over the entire AC line to achieve close to unity power factor. The variation in switching frequency also provides a spread frequency spectrum, thus minimizing the conducted EMI filtering requirements. The feedback loop is closed through an integrated digital control system within the IC. Protection features such as overvoltage, overcurrent, overpower, open circuit, overtemperature, and brownout help protect the device during abnormal transient conditions. Details of these features are provided in the CS1601 data sheet. The CDB1601-120W board demonstrates the performance of the CS1601 over a wide input voltage range of 108 to 305 VAC, typically seen in universal input ballast applications. This board has been designed for a 460 V, 115 W full load output application. Extreme caution needs to be exercised while handling this board. This board is to be powered up by trained professionals only. Prior to applying AC power to the CDB1601-120W board, the CS1601 needs to be biased using an external 13 VDC power supply, applied across pins 1 and 3 of terminal block J5. Terminal block J6 is used to connect the AC line. The load is connected to J7. As a safety measure, jumper J1 is provided as a means to apply a small resistive load (200 kΩ minium) to rapidly discharge the output capacitors. Other jumpers and test points are provided to evaluate the behavior of the IC and the various sections of the design.
AC Line Input
J7 J5 J1
Figure 1. Board Connections
Output Terminals
J6
VDD Input
DANGER High Voltage Hazard
ONLY QUALIFIED PERSONNEL SHOULD HANDLE THE CDB1601-120W. WARNING: Heatsinking is required for Q4. The end product should use tar pitch or an equivalent compound for this purpose. For lab evaluation purposes, a fan is recommended to provide adequate cooling.
DS931DB3
3
2
1
2
1
3
3
4
4
12
108-305 VAC
6 9 L3 1 2
1.15M
SHORT WITH 28 AWG WIRE
10
2
2
1
1
C3 0.22uF C13 0.22uF 2 R12 1.15M 3
+
C1 2200pF
1
1
GND
4
4
3
1
C2 2200pF NO POP -
LINE
2
4
RV1 S14K300 NO POP
NO POP C4 0.47uF
3
2
75V LL4148
SHORT WITH 28 AWG WIRE
L1 5mH D4
R1 24.9
1
JMP1 1.15" WIRE JUMPER
JMP3 0.500" WIRE JUMPER
JMP2 0.750" WIRE JUMPER
4
ECO# INC BY/DATE
G.MENDEL G.P. RADHAKRISHNAN
REV CHK BY/DATE
DESCRIPTION
A
08/27/2010 08/10/2010
G.P. RADHAKRISHNAN
INITIAL DESIGN A. GARZA
12/7/10 12/7/10
G.P. RADHAKRISHNAN
ECO804 B B1
1/31/11 1/31/11
COLIN LAMBERT
CHANGED L2 TO NEW FOOTPRINT ADDED 28AWG, 24AWG & 16AWG WIRES CHGD C13 TO 330V, CHGD WARNING LABEL
3/21/11 3/21/11
ECO826 ECO840 C A. GARZA
A. GARZA
DANGER: HIGH VOLTAGE
FOR USE BY TRAINED PROFESSIONALS ONLY
TP2 D1 2 MUR160 1
NO POP L7 4mH
TP6 SHORT WITH 16 AWG WIRE A1 A2 D2 2 MURS360T3G 600V 1 TP1 L2 380uH TP3 TP4
2. SCHEMATIC
NO POP L6 4mH
TYPICAL VLINK 460 VDC
J7 TERM BLK 1 2
45 - 65 Hz
1
D
L4 2 Q4 STF13NM60N
S
SHORT WITH 28 AWG WIRE
R11
2 1 2 R6 0
HS1 12.5W J3
GND DC LOAD
F2 1mH
BR1 GBU4J-BP 600V TP5
G
3.15A 1 3 20K R7 C6 ELEC 47uF 250V
1mH NO POP
115 W
R19 100K 1W
J6 TERM BLK JMP4 0.300" WIRE JUMPER
C5 0.33uF
C14 ELEC 47uF 250V
Resistors for cap discharge
2
GROUND
L5 5mH NO POP
R13 1.15M
R20 100K 1W GND J1
3 R9 0.1 2W
NO POP R18 0.24 1W R22 0.24 1W
NEUTRAL
R10 1.15M
R8 0.1 2W NO POP
Jumper for preloading
R15 1.15M
Open for efficiency measurements
CHGND
R5 17.8K
R14 1K
R16 1.15M
R4 0
TP7
NO POP C12 X7R 2200pF
U1 CS1601-FSZ
NO POP C11 X7R 2200pF
R2 100
TP8
J5 TERM BLK 1
1 2 3 4
IFB NC IAC CS
VDD GD GND ZCD
8 7 6 5
2
C10 COG 100pF
R3 NO POP 1K
3
C7 33pF COG
C9 X7R 4.7uF
R17 1.78K
C8 COG 330pF NO POP GND
SHORT WITH 24 AWG WIRE
Buss Bar
E3 E4
AUXILIARY HARDWARE AND RELATED DOCUMENTS:
MH1 MH3 FD1 MH2 MH4 TO220-INSUL-MOUNT-HEATSINK-KIT SCREW-PHILIPS-4-40THR-PH-5/16-L-Z WIRE-BLUE-INSULATED-28AWG WIRE-BLACK-INSULATED-24AWG WIRE-BLACK-INSULATED-16AWG 1 FD2 1 FD3 1
NOTES: UNLESS OTHERWISE SPECIFIED;
1. ALL RESISTOR VALUES ARE IN OHMS.
4880G
L 500 UL1422 28/1 BLU 3050/1 BK005 3057/1 BK005 DESCRIPTION:
SCH DWGASSY DWGPCB DWG600-00466-Z1 603-00466-Z1 240-00466-Z1
PART #:
600-00466-Z1 SCHEM., CDB1601-120W
SHEET TITLE: LBL SUBASSY PROD ID AND REV 422-00013-01 DRAWN BY: ENGINEER
REV C
CDB1601-120W FOR LIGHTING APPLICATIONS
G.P. RADHAKRISHNAN
DATE:
11/22/2010
SIZE C
G.P. RADHAKRISHNAN 1 OF 1 SHEET
CDB1601-120W
DS931DB3
Figure 2. Schematic
DS931DB3
%,// 2) 0$7(5,$/ 3DJH RI
1RWHV NO POP NO POP NO POP 'HVFULSWLRQ DIODE RECT BRIDGE 600V 4A NPb GBU CAP 2200pF ±10% 2000V CER NPb RAD CAP 0.22uF ±20% 305V PLY FLM NPb TH CAP 0.47uF ±20% 305V PLY FLM NPb TH CAP 0.33uF ±10% 630V POLY NPb RAD CAP 47UF ±20% 250V ELEC NPb RAD CAP 33pF ±5% 50V C0G NPb 1206 CAP 330pF ±10% 50V C0G NPb 1206 CAP 4.7uF ±20% 25V X7R NPb 1206 CAP 100pF ±5% 50V C0G NPb 1206 CAP 2200pF ±10% 50V X7R NPb 1206 CAP 0.22uF ±20% 330V PLY FLM NPb TH DIODE RECT 800V 1A 200mA NPb DO-41 DIODE RECT 600V 4A ULT FST NPb SMC DIODE SS 75V 500mW NPb SOD80 FUSE 3.15A TLAG IEC NPb SHORT TR5 HTSNK W LOCK TAB .5" TO220 NPb NO POP ECO840 REQUIRES 1 SCREW, 300-00025-Z1, 1 WASHER, 30100013-Z1, 1 NUT, 302-00007-Z1 OR MOUNTING KIT 4880G AAVID 4W\ 1 2 0 0 1 2 1 0 1 1 0 1 1 1 1 1 1 5HIHUHQFH 'HVLJQDWRU BR1 C1 C2 C3 C4 C5 C6 C14 C7 C8 C9 C10 C11 C12 C13 D1 D2 D4 F2 HS1 0)* MICRO COMMERCIAL CO MURATA EPCOS EPCOS PANASONIC NICHICON KEMET KEMET TDK KEMET KEMET EPCOS DIODES INC ON SEMICONDUCTOR DIODES INC LITTLE FUSE AAVID THERMALLOY 0)* 31 GBU4J-BP DEBB33D222KA2B B32923C3224M B32922C3474M ECQE6334KF UVZ2E470MHD C1206C330J5GAC C1206C331K5GAC C3216X7R1E475M C1206C101J5GAC C1206C222K5RAC B32912B3224M 1N4006G-T MURS360T3G LL4148 37213150411 6021PBG HDR 2x1 ML .1" 062BD ST GLD NPb TH CON 3POS TERM BLK 5.08mm SPR NPb RA CON 2POS TERM BLK 5.08mm SPR NPb RA WIRE 24 AWG SOLID PVC INS BLK NPb XFMR 5mH 1:1 1500Vrms 4PIN NPb TH XFMR 380uH 10% .265O NPb TH IND 1mH 1.3A ±15% TOR VERT NPb TH IND 1mH 1.3A ±15% TOR VERT NPb TH XFMR 5mH 1:1 1500Vrms 4PIN NPb TH XFMR COMMON MODE CHOKE 1.3 A TH NPb SPCR STANDOFF 4-40 THR .500"L NPb 2 2 1 6.000 1 1 1 0 0 0 4 J1 J3 J5 J6 J7 JMP1 JMP2 JMP3 JMP4 W2 L1 L2 L3 L4 L5 L6 L7 MH1 MH2 MH3 MH4 SAMTEC WEIDMULLER WEIDMULLER ALPHA WIRE COMPANY PREMIER MAGNETICS RENCO BOURNS BOURNS PREMIER MAGNETICS RENCO KEYSTONE TSW-102-07-G-S 1716030000 1716020000 3050/1 BK005 TSD-2796 RLCS-1005 2124-V-RC 2124-V-RC TSD-2796 RL-4400-2-4.00 2203 SEE ASSY DWG FOR LENGTH NO POP NO POP NO POP REQUIRES SCREW 4-40X5X16" PH STEEL 300-00025Z1 NO POP NO POP NO POP NO POP ECO840 ADD LENGTH TO BOM QUANTITY IN INCHES ADD LENGTH TO BOM QUANTITY IN INCHES INCLUDES ALL MOUNTING HARDWARE SCREWS FOR STANDOFFS ECO805/826/840 ECO805/826/840 ECO805/826/840 TRAN MOSFT nCH 11A 600V NPb TO220FP RES 24.9 OHM 1/4W ±1% NPb 1206 FILM RES 100 OHM 1/4W ±1% NPb 1206 FILM RES 1k OHM 1/4W ±1% NPb 1206 FILM RES 0 OHM 1/4W NPb 1206 FILM RES 17.8K OHM 1/4W ±1% NPb 1206 RES 20K OHM 1/4W ±1% NPb 1206 FILM RES 0.1 OHM 2W ±1% WW NPb AXL RES 0.1 OHM 2W ±1% WW NPb AXL RES 1.15M OHM 1/4W ±1% NPb 1206 RES 1k OHM 1/4W ±1% NPb 1206 FILM RES 1.78K OHM 1/4W ±1% NPb 1206 RES 0.24 OHM 1W ±1% NPb 2512 RES 100K 1W ±5% MTL FLM NPb AXL VARISTOR 470V RMS 14MM NPb RAD CON TEST PT .1"CTR TIN PLAT NPb BLK IC CRUS LPWR FACTOR CORR NPb SOIC8 WIRE 28/1 AWG, KYNAR MOD, 500FT WIRE 16AWG SOLID PVC INS BLK NPb HTSNK TO220 MOUNTING KIT NPb SCREW 4-40X5/16" PH MACH SS NPb PCB CDB1601-120W-Z-NPb ASSY DWG CDB1601-120W-Z-NPb SCHEM CDB1601-120W-Z-NPb LBL SUBASSY PRODUCT ID AND REV 1 1 1 0 2 1 1 0 1 6 1 1 0 2 0 7 1 2.000 4.000 1 4 1 REF REF 1 Q4 R1 R2 R3 R4 R6 R5 R7 R8 R9 R10 R11 R12 R13 R15 R16 R14 R17 R18 R22 R19 R20 RV1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 U1 W1 W3 XHS1 XMH1MXMH2 XMH3 XMH4 ST MICROELECTRONICS DALE DALE DALE DALE DALE DALE VISHAY VISHAY DALE DALE DALE PANASONIC XICON EPCOS KEYSTONE CIRRUS LOGIC SQUIRES ALPHA WIRE COMPANY AAVID THERMALLOY BUILDING FASTENERS CIRRUS LOGIC CIRRUS LOGIC CIRRUS LOGIC CIRRUS LOGIC STF13NM60N CRCW120624R9FKEA CRCW1206100RFKEA CRCW12061K00FKEA CRCW12060000Z0EA CRCW120617K8FKEA CRCW120620K0FKEA G003R1000FE7080 G003R1000FE7080 CRCW12061M15FKEA CRCW12061K00FKEA CRCW12061K78FKEA ERJ1TRQFR24U 294-100K-RC S14K300 5001 CS1601-FSZ/A2 L 500 UL1422 28/1 BLU 3057/1 BK005 4880G PMSSS 440 0031 PH 240-00466-Z1 603-00466-Z1 600-00466-Z1 422-00013-01
3. BILL OF MATERIALS
&,5586 /2*,& &'%:B5HYB&
,WHP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
&LUUXV 31 070-00157-Z1 011-00042-Z1 011-00055-Z1 011-00040-Z1 013-00034-Z1 012-00186-Z1 001-05280-Z1 001-05783-Z1 001-10233-Z1 001-05542-Z1 001-06276-Z1 011-00064-Z1 070-00132-Z1 070-00166-Z1 070-00001-Z1 180-00022-Z1 311-00019-Z1
5HY A A A A A A A A A A A A A A A A A
18 19 20 21 22 23 24 25 26 27 28
115-00014-Z1 110-00301-Z1 110-00302-Z1 080-00013-Z1 050-00039-Z1 050-00050-Z1 040-00127-Z1 040-00127-Z1 050-00039-Z1 050-00047-Z1 304-00004-Z1
A A A A A A A A A A A
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
071-00107-Z1 020-06337-Z1 020-02502-Z1 020-02616-Z1 020-02273-Z1 020-06390-Z1 020-06310-Z1 030-00091-Z1 030-00091-Z1 020-06356-Z1 020-02616-Z1 020-06391-Z1 020-06372-Z1 030-00080-Z1 036-00015-Z1 110-00045-Z1 065-00331-Z3 080-00002-01 080-00040-Z1 311-00025-Z1 300-00025-Z1 240-00466-Z1 603-00466-Z1 600-00466-Z1 422-00013-01
A A A A A A A A A A A A A A A A A2 A A A A C C C C
CDB1601-120W
5
6 Figure 3. Solder Mask (Bottom) Figure 4. Solder Mask (Top) Figure 5. Silkscreen (Top)
4. BOARD LAYOUT
CDB1601-120W
DS931DB3
DS931DB3 Figure 6. Circuit Routing (Bottom) Figure 7. Solder Paste Mask (Bottom)
CDB1601-120W
Figure 8. Silkscreen (Bottom)
7
CDB1601-120W
5. TYPICAL PERFORMANCE PLOTS
100 95
277V 230V 120V
90 85 80 75
Efficiency (%)
70 65 60 55
50
10
20
30
40
50
60
70
80
90
100
110
120
Output Power (Watts)
Figure 9. Efficiency vs. Output Power
1.00 120V 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 230V
277V
Power Factor
20
30
40
50
60
70
80
90
100
110
120
Output Power (Watts)
Figure 10. Power Factor vs. Output Power
8
DS931DB3
CDB1601-120W
50 45 40 35 30
THD (%)
25 20 15 230V 10 5 0 120V 277V
10
20
30
40
50
60
70
80
90
100
110
120
Output Power (Watts)
Figure 11. THD vs. Output Power
470 468 466 464 462
Vlink (V)
277V 460 120V 458 456 454 452 450 230V
0
10
20
30
40
50
60
70
80
90
100
110
120
Output Power (Watts)
Figure 12. VLink Voltage vs. Output Power
DS931DB3
9
CDB1601-120W
Figure 13. Steady State Waveforms — 120 VAC
Figure 14. Steady State Waveforms — 230 VAC
10
DS931DB3
CDB1601-120W
Figure 15. Steady State Waveforms — 277 VAC
DS931DB3
11
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 16. Switching Frequency Profile at Peak of AC Line Voltage — 120 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 17. Switching Frequency Profile at Peak of AC Line Voltage — 120 VAC (cont.)
12
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 18. Switching Frequency Profile at Trough of AC Line Voltage —120 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 19. Switching Frequency Profile at Trough of AC Line Voltage — 120 VAC (cont.)
DS931DB3
13
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 20. Switching Frequency Profile at Peak of AC Line Voltage — 230 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 21. Switching Frequency Profile at Peak of AC Line Voltage — 230 VAC (cont.)
14
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 22. Switching Frequency Profile at Trough of AC Line Voltage — 230 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 23. Switching Frequency Profile at Trough of AC Line Voltage — 230 VAC (cont.)
DS931DB3
15
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 24. Switching Frequency Profile at Peak of AC Line Voltage — 277 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 25. Switching Frequency Profile at Peak of AC Line Voltage — 277 VAC (cont.)
16
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 26. Switching Frequency Profile at Trough of AC Line Voltage — 277 VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 27. Switching Frequency Profile at Trough of AC Line Voltage — 277 VAC (cont.)
DS931DB3
17
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 28. Transient — 15W to 115W Load at 10W/μs, Vin = 120VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 29. Transient — 15W to 115W Load at 10W/μs, Vin = 120VAC (cont.)
18
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 30. Transient — 15W to 115W Load at 10W/μs, Vin = 230VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 31. Transient — 15W to 115W Load at 10W/μs, Vin = 230VAC (cont.)
DS931DB3
19
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 32. Transient — 15W to 115W Load at 10W/μs, Vin = 277VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 33. Transient — 15W to 115W Load at 10W/μs, Vin = 277VAC (cont.)
20
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 34. Transient — 115W to Zero Load at 10W/μs, Vin = 120VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 35. Transient — 115W to Zero Load at 10W/μs, Vin = 120VAC (cont.)
DS931DB3
21
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 36. Transient — 115W to Zero Load at 10W/μs, Vin = 230VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 37. Transient — 115W to Zero Load at 10W/μs, Vin = 230VAC (cont.)
22
DS931DB3
CDB1601-120W
Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current
Figure 38. Transient — 115W to Zero Load at 10W/μs, Vin = 277VAC
Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD
Figure 39. Transient — 115W to Zero Load at 10W/μs, Vin = 277VAC (cont.)
DS931DB3
23
CDB1601-120W
6. REVISION HISTORY
Revision DB1 DB2 DB3 Date FEB 2011 FEB 2011 MAR 2011 Initial Release. Minor BOM change. Updated BOM & Layers to rev C. Changes
24
DS931DB3