Confidential Draft 3/11/08
CS4334/5/8/9
8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
Features
Complete Stereo DAC System: Interpolation, D/A, Output Analog Filtering 24-Bit Conversion 96 dB Dynamic Range -88 dB THD+N Low Clock-Jitter Sensitivity Single +5 V Power Supply Filtered Line-Level Outputs On-Chip Digital De-emphasis Popguard® Technology Functionally Compatible with CS4330/31/33
Description
The CS4334 family members are complete, stereo digital-to-analog output systems including interpolation, 1-bit D/A conversion and output analog filtering in an 8-pin package. The CS4334/5/8/9 support all major audio data interface formats, and the individual devices differ only in the supported interface format. The CS4334 family is based on Delta-Sigma modulation, where the modulator output controls the reference voltage input to an ultra-linear analog low-pass filter. This architecture allows for infinite adjustment of sample rate between 2 kHz and 100 kHz simply by changing the master clock frequency. The CS4334 family contains on-chip digital de-emphasis, operates from a single +5V power supply, and requires minimal support circuitry. These features are ideal for set-top boxes, DVD players, SVCD players, and A/V receivers. ORDERING INFORMATION See “Ordering Information” on page 24
DEM/SCLK 2 LRCK SDATA 3 1 Serial Input Interface De-emphasis
AGND 6
VA 7
Voltage Reference
Interpolator
∆Σ Modulator
DAC
Analog Low-Pass Filter
8
AOUTL
Interpolator
∆Σ Modulator 4 MCLK
DAC
Analog Low-Pass Filter
5
AOUTR
http://www.cirrus.com
Copyright © Cirrus Logic, Inc. 2008 (All Rights Reserved)
March '08 DS248F5
Confidential Draft 3/11/08
TABLE OF CONTENTS
CS4334/5/8/9
1. TYPICAL CONNECTION DIAGRAM .................................................................................................... 4 2. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5 SPECIFIED OPERATING CONDITIONS .............................................................................................. 5 ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 5 ANALOG CHARACTERISTICS............................................................................................................. 6 POWER AND THERMAL CHARACTERISTICS ................................................................................... 8 DIGITAL INPUT CHARACTERISTICS .................................................................................................. 9 SWITCHING CHARACTERISTICS ..................................................................................................... 10 3. GENERAL DESCRIPTION ................................................................................................................. 12 3.1 Digital Interpolation Filter .............................................................................................................. 12 3.2 Delta-Sigma Modulator ................................................................................................................. 12 3.3 Switched-Capacitor DAC .............................................................................................................. 12 3.4 Analog Low-Pass Filter ................................................................................................................. 12 4. SYSTEM DESIGN ............................................................................................................................... 13 4.1 Master Clock ................................................................................................................................. 13 4.2 Serial Clock .................................................................................................................................. 13 4.2.1 External Serial Clock Mode ................................................................................................. 13 4.2.2 Internal Serial Clock Mode .................................................................................................. 13 4.3 De-Emphasis ................................................................................................................................ 14 4.4 Initialization and Power-Down ...................................................................................................... 14 4.5 Output Transient Control .............................................................................................................. 14 4.6 Grounding and Power Supply Decoupling .................................................................................... 15 4.7 Analog Output and Filtering .......................................................................................................... 15 4.8 Overall Base-Rate Frequency Response ..................................................................................... 18 4.9 Overall High-Rate Frequency Response ...................................................................................... 19 4.10 Base Rate Mode Performance Plots .......................................................................................... 20 4.11 High Rate Mode Performance Plots ........................................................................................... 21 5. PARAMETER DEFINITIONS ............................................................................................................... 22 6. REFERENCES ..................................................................................................................................... 22 7. PACKAGE DIMENSIONS ................................................................................................................... 23 8. ORDERING INFORMATION ............................................................................................................... 24 9. FUNCTIONAL COMPATIBILITY ......................................................................................................... 24 10. REVISION HISTORY ......................................................................................................................... 24
LIST OF FIGURES
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. 2 Recommended Connection Diagram ......................................................................................... 4 Output Test Load ....................................................................................................................... 8 Maximum Loading...................................................................................................................... 9 Power vs. Sample Rate ............................................................................................................. 9 External Serial Mode Input Timing........................................................................................... 11 Internal Serial Mode Input Timing ............................................................................................ 11 Internal Serial Clock Generation ............................................................................................. 11 System Block Diagram............................................................................................................. 12 De-Emphasis Curve (Fs = 44.1kHz) ........................................................................................ 14 CS4334 Data Format (I²S) ....................................................................................................... 15 CS4335 Data Format ............................................................................................................... 15 CS4338 Data Format ............................................................................................................... 16 CS4339 Data Format ............................................................................................................... 16 CS4334/5/8/9 Initialization and Power-Down Sequence ......................................................... 17 Stopband Rejection.................................................................................................................. 18 Transition Band........................................................................................................................ 18 Transition Band........................................................................................................................ 18 DS248F5
Confidential Draft 3/11/08
Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34.
CS4334/5/8/9
Passband Ripple...................................................................................................................... 18 Stopband Rejection.................................................................................................................. 19 Transition Band........................................................................................................................ 19 Transition Band........................................................................................................................ 19 Passband Ripple...................................................................................................................... 19 0 dBFS FFT (BRM) .................................................................................................................. 20 -60 dBFS FFT (BRM).............................................................................................................. 20 Idle Channel Noise FFT (BRM)................................................................................................ 20 Twin Tone IMD FFT (BRM)...................................................................................................... 20 THD+N vs. Amplitude (BRM) ................................................................................................... 20 THD+N vs. Frequency (BRM) .................................................................................................. 20 0 dBFS FFT (HRM).................................................................................................................. 21 -60 dBFS FFT (HRM).............................................................................................................. 21 Idle Channel Noise FFT (HRM) ............................................................................................... 21 Twin Tone IMD FFT (HRM) ..................................................................................................... 21 THD+N vs. Amplitude (HRM)................................................................................................... 21 THD+N vs. Frequency (HRM)................................................................................................. 21
LIST OF TABLES
Table 1. Common Clock Frequencies ...................................................................................................... 13
PIN DESCRIPTIONS
SERIAL DATA INPUT DE-EMPHASIS / SCLK LEFT / RIGHT CLOCK MASTER CLOCK
SDATA DEM/SCLK LRCK MCLK
1 2 3 4
8 7 6 5
AOUTL VA AGND AOUTR
ANALOG LEFT CHANNEL OUTPUT ANALOG POWER ANALOG GROUND ANALOG RIGHT CHANNEL OUTPUT
No.
1 2 3 4 5 6 7 8
Pin Name
SDATA DEM/SCLK LRCK MCLK AOUTR AGND VA AOUTL
I/O
I I I I O I I O
Pin Function and Description
Serial Audio Data Input - Two’s complement MSB-first serial data is input on this pin. The data is clocked into the CS4334/5/8/9 via internal or external SCLK, and the channel is determined by LRCK. De-Emphasis/External Serial Clock Input - Used for de-emphasis filter control or external serial clock input. Left/Right Clock - Determines which channel is currently being input on the Audio Serial Data Input pin, SDATA. Master Clock - Frequency must be 256x, 384x, or 512x the input sample rate in BRM and either 128x or 192x the input sample rate in HRM. Analog Right Channel Output - Typically 3.5 Vp-p for a full-scale input signal. Analog Ground - Analog ground reference is 0V. Analog Power - Analog power supply is nominally +5 V. Analog Left Channel Output - Typically 3.5 Vp-p for a full-scale input signal.
DS248F5
3
Confidential Draft 3/11/08 1. TYPICAL CONNECTION DIAGRAM
CS4334/5/8/9
+5V + 7 VA 0.1 µF 1 µF
1 Audio Data Processor 2 3
SDATA 8 DEM /SCLK LRCK AOUTL 267 k Ω
3.3 µF + 10 k Ω
560 Ω Left Audio Output C RL
CS4334 CS4335 CS4338 CS4339 3.3 µF 5 AOUTR External Clock 4 MCLK 267 k Ω + 10 k Ω C Right Audio Output RL 560 Ω
AG ND 6
C=
R L + 560 4 π Fs(R L560)
Figure 1. Recommended Connection Diagram
4
DS248F5
Confidential Draft 3/11/08 2. CHARACTERISTICS AND SPECIFICATIONS
CS4334/5/8/9
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at nominal supply voltages and TA = 25°C.)
SPECIFIED OPERATING CONDITIONS
(AGND = 0V; all voltages with respect to ground.) Parameters
DC Power Supply Ambient Operating Temperature (Power Applied) -KSZ -DSZ
Symbol
VA TA
Min
4.75 -10 -40
Nom
5.0 -
Max
5.5 +70 +85
Units
V °C °C
ABSOLUTE MAXIMUM RATINGS
(AGND = 0V; all voltages with respect to ground.) Parameters
DC Power Supply Input Current, Any Pin Except Supplies Digital Input Voltage Ambient Operating Temperature (power applied) Storage Temperature
Symbol
VA Iin VIND TA Tstg
Min
-0.3 -0.3 -55 -65
Max
6.0 ±10 VA+0.4 125 150
Units
V mA V °C °C
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.
DS248F5
5
Confidential Draft 3/11/08 ANALOG CHARACTERISTICS
CS4334/5/8/9
(Full-Scale Output Sine Wave, 997 Hz; Test load RL = 10 kΩ, CL = 10 pF (see Figure 2). Fs for Base-Rate Mode = 48 kHz, Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Fs for High-Rate Mode = 96 kHz, Measurement Bandwidth 10 Hz to 40 kHz, unless otherwise specified.) Base-Rate Mode Parameter Dynamic Performance for CS4334/5/8/9-KSZ
Dynamic Range (Note 1) 18 to 24-Bit unweighted A-Weighted 16-Bit unweighted A-Weighted 88 91 86 89 93 96 91 94 91 89 90 96 88 94 dB dB dB dB
High-Rate Mode Min Typ Max Unit
Symbol
Min
Typ
Max
Total Harmonic Distortion + Noise (Note 1) THD+N 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB Interchannel Isolation Dynamic Range (1 kHz) (Note 1) 18 to 24-Bit unweighted A-Weighted 16-Bit unweighted A-Weighted
-
-88 -73 -33 -86 -71 -31 94
-83 -68 -28 -81 -66 -26 -
-
-88 -70 -30 -86 -68 -28 95
-83 -65 -25 -81 -63 -23 -
dB dB dB dB dB dB dB
Dynamic Performance for CS4334/5/8/9-DSZ
85 88 83 86 93 96 91 94 88 86 90 96 88 94 dB dB dB dB
Total Harmonic Distortion + Noise (Note 1) THD+N 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB Interchannel Isolation (1 kHz)
-
-88 -73 -33 -86 -71 -31 94
-82 -65 -25 -70 -63 -23 -
-
-88 -70 -30 -86 -68 -28 95
-82 -62 -22 -80 -60 -20 -
dB dB dB dB dB dB dB
Notes: 1. One-half LSB of triangular PDF dither added to data.
6
DS248F5
Confidential Draft 3/11/08 ANALOG CHARACTERISTICS (Continued)
Base-Rate Mode Parameter Symbol Min Typ Max Combined Digital and On-chip Analog Filter Response (Note 2)
Passband (Note 3) to -0.05 dB corner to -0.1 dB corner to -3 dB corner
CS4334/5/8/9
High-Rate Mode Min Typ Max Unit
0 0 -.01 .5465
9/Fs ±0.36/Fs -
.4780 .4996 +.08 ±.08 +1.5/+0 +.05/-.25 -.2/-.4
0 0 -.05 .5770 55 -
4/Fs ±1.39/Fs ±0.23/Fs (Note 5)
.4650 .4982 +.2 ±.2 -
Fs Fs Fs dB dB Fs dB s s s dB dB dB
Frequency Response 10 Hz to 20 kHz Passband Ripple StopBand StopBand Attenuation Group Delay Passband Group Delay Deviation De-emphasis Error 0 - 40 kHz 0 - 20 kHz Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz (Note 4) tgd
50 -
Parameters DC Accuracy
Interchannel Gain Mismatch Gain Error Gain Drift
Symbol
Min
3.25 -
Typ
0.1 ±5 100 3.5 2.2 3 100
Max
0.4 3.75 -
Units
dB % ppm/°C Vpp VDC kΩ pF
Analog Output
Full Scale Output Voltage Quiescent Voltage Max AC-Load Resistance Max Load Capacitance VQ RL CL
(Note 6) (Note 6)
Notes: 2. Filter response is not tested but is guaranteed by design. 3. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 15-22) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 4. For Base-Rate Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs. For High-Rate Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs. 5. De-emphasis is not available in High-Rate Mode. 6. Refer to Figure 3.
DS248F5
7
Confidential Draft 3/11/08 POWER AND THERMAL CHARACTERISTICS
Parameters Power Supplies
Power Supply Current Power Dissipation normal operation power-down state (Note 7) normal operation power-down (1 kHz) IA IA 15 40 75 0.2 110 79
CS4334/5/8/9
Symbol
Min
Typ
Max
19 104 -
Units
mA µA mW mW °C/Watt dB
Package Thermal Resistance Power Supply Rejection Ratio
θJA PSRR
Notes: 7. Refer to Figure 4. Max Power Dissipation is measured at VA=5.5V.
10 µF AOUTx R C V out L L
AGND
Figure 2. Output Test Load
8
DS248F5
Confidential Draft 3/11/08
CS4334/5/8/9
125 Capacitive Load -- C L (pF) 100
75 70 Power (mW) 65
HR
M BR
75 50 25 Safe Operating Region
M
60 55 50 30 40 50 60 70 80 Sample Rate (kHz) 90 100
2.5 3
5
10
15
20
Resistive Load -- RL (kΩ )
Figure 3. Maximum Loading
Figure 4. Power vs. Sample Rate
DIGITAL INPUT CHARACTERISTICS
Parameters
High-Level Input Voltage Low-Level Input Voltage Input Leakage Current Input Capacitance
Symbol
VIH VIL Iin
Min
2.0 -
Typ
8
Max
0.8 ±10 -
Units
V V µA pF
(Note 8)
Notes: 8. Iin for CS433X LRCK is ±20µA max.
DS248F5
9
Confidential Draft 3/11/08 SWITCHING CHARACTERISTICS
Parameters
Input Sample Rate MCLK Pulse Width High MCLK Pulse Width Low MCLK Pulse Width High MCLK Pulse Width Low MCLK Pulse Width High MCLK Pulse Width Low MCLK/LRCK = 512 MCLK/LRCK = 512 MCLK / LRCK = 384 or 192 MCLK / LRCK = 384 or 192 MCLK / LRCK = 256 or 128 MCLK / LRCK = 256 or 128
CS4334/5/8/9
Symbol
Fs
Min
2 10 10 21 21 31 31 40
Typ
50 50 -
Max
100 1000 1000 1000 1000 1000 1000 60 -
Units
kHz ns ns ns ns ns ns % ns ns ns ns ns ns ns ns % ns µs
External SCLK Mode
LRCK Duty Cycle (External SCLK only) SCLK Pulse Width Low SCLK Pulse Width High SCLK Period MCLK / LRCK = 512, 256 or 384 SCLK Period MCLK / LRCK = 128 or 192 SCLK rising to LRCK edge delay SCLK rising to LRCK edge setup time SDATA valid to SCLK rising setup time SCLK rising to SDATA hold time Base-Rate Mode High-Rate Mode tsclkl tsclkh tsclkw tsclkw tslrd tslrs tsdlrs tsdh (Note 9) (Note 10) tsclkw tsclkr SCLK rising to LRCK edge tsdlrs tsdh 20 20
1 --------------------( 128 ) Fs 1 -----------------( 64 ) Fs
20 20 20 20 1 ---------------SCLK
Internal SCLK Mode
LRCK Duty Cycle (Internal SCLK only) SCLK Period
tsclkw ----------------2 1 --------------------- + 10 ( 512 ) Fs 1 --------------------- + 15 ( 512 ) Fs
-
-
ns ns
SDATA valid to SCLK rising setup time SCLK rising to SDATA hold time MCLK / LRCK = 512, 256 or 128 SCLK rising to SDATA hold time MCLK / LRCK = 384 or 192
tsdh
1 --------------------- + 15 ( 384 ) Fs
-
-
ns
Notes: 9. In Internal SCLK Mode, the Duty Cycle must be 50% +/− 1/2 MCLK Period. 10. The SCLK / LRCK ratio may be either 32, 48, or 64. This ratio depends on part type and MCLK/LRCK ratio. (See figures Figures 10-13)
10
DS248F5
Confidential Draft 3/11/08
CS4334/5/8/9
LRCK t slrd t slrs t sclkl t sclkh
SCLK t sdlrs
SDATA
t sdh
Figure 5. External Serial Mode Input Timing
LR C K
t s clkr
S D A TA t sclkw t sdlrs *IN TE R N AL S C L K t sdh
Figure 6. Internal Serial Mode Input Timing The SCLK pulses shown are internal to the CS4334/5/8/9.
LRCK
MCLK
1 *INTERNAL SCLK N 2 N
SDATA
Figure 7. Internal Serial Clock Generation * The SCLK pulses shown are internal to the CS4334/5/8/9. N equals MCLK divided by SCLK
DS248F5
11
Confidential Draft 3/11/08 3. GENERAL DESCRIPTION
CS4334/5/8/9
The CS4334 family of devices offers a complete stereo digital-to-analog system including digital interpolation, fourth-order delta-sigma digital-to-analog conversion, digital de-emphasis and analog filtering, as shown in Figure 8. This architecture provides a high tolerance to clock jitter. The primary purpose of using delta-sigma modulation techniques is to avoid the limitations of resistive laser trimmed digital-to-analog converter architectures by using an inherently linear 1-bit digital-to-analog converter. The advantages of a 1-bit digital-to-analog converter include: ideal differential linearity, no distortion mechanisms due to resistor matching errors and no linearity drift over time and temperature due to variations in resistor values. The CS4334 family of devices supports two modes of operation. The devices operate in Base Rate Mode (BRM) when MCLK/LRCK is 256, 384 or 512 and in High Rate Mode (HRM) when MCLK/LRCK is 128 or 192. High Rate Mode allows input sample rates up to 100 kHz.
3.1
Digital Interpolation Filter
The digital interpolation filter increases the sample rate, Fs, by a factor of 4 and is followed by a 32× digital sample-and-hold (16× in HRM). This filter eliminates images of the baseband audio signal which exist at multiples of the input sample rate. The resulting frequency spectrum has images of the input signal at multiples of 4 Fs. These images are easily removed by the on-chip analog low-pass filter and a simple external analog filter (see Figure 1).
3.2
Delta-Sigma Modulator
The interpolation filter is followed by a fourth order delta-sigma modulator which converts the interpolation filter output into 1-bit data at a rate of 128 Fs in BRM (or 64 Fs in HRM).
3.3
Switched-Capacitor DAC
The delta-sigma modulator is followed by a digital-to-analog converter which translates the 1-bit data into a series of charge packets. The magnitude of the charge in each packet is determined by sampling of a voltage reference onto a switched capacitor, where the polarity of each packet is controlled by the 1-bit data. This technique greatly reduces the sensitivity to clock jitter and provides low-pass filtering of the output.
3.4
Analog Low-Pass Filter
The final signal stage consists of a continuous-time low-pass filter which serves to smooth the output and attenuate out-of-band noise.
Digital Input
Interpolator
Delta-Sigma Modulator
DAC
Analog Low-Pass Filter
Analog Output
Figure 8. System Block Diagram
12
DS248F5
Confidential Draft 3/11/08 4. SYSTEM DESIGN
CS4334/5/8/9
The CS4334 family accepts data at standard audio sample rates including 48, 44.1 and 32 kHz in BRM and 96, 88.2 and 64 kHz in HRM. Audio data is input via the serial data input pin (SDATA). The Left/Right Clock (LRCK) defines the channel and delineation of data, and the Serial Clock (SCLK) clocks audio data into the input data buffer. The CS4334/5/8/9 differ in serial data formats as shown in Figures 10-13.
4.1
Master Clock
MCLK must be either 256x, 384x or 512x the desired input sample rate in BRM and either 128x or 192x the desired input sample rate in HRM. The LRCK frequency is equal to Fs, the frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio is detected automatically during the initialization sequence by counting the number of MCLK transitions during a single LRCK period. Internal dividers are set to generate the proper clocks. Table 1 illustrates several standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but MCLK, LRCK and SCLK must be synchronous. MCLK (MHz) LRCK (kHz) 32 44.1 48 64 88.2 96 HRM BRM 128x 192x 256x 384x 512x 4.0960 6.1440 8.1920 12.2880 16.3840 5.6448 8.4672 11.2896 16.9344 22.5792 6.1440 9.2160 12.2880 18.4320 24.5760 8.1920 12.2880 11.2896 16.9344 12.2880 18.4320 Table 1. Common Clock Frequencies
4.2
Serial Clock
The serial clock controls the shifting of data into the input data buffers. The CS4334 family supports both external and internal serial clock generation modes. Refer to Figures 10-13 for data formats.
4.2.1
External Serial Clock Mode
The CS4334 family will enter the External Serial Clock Mode when 16 low to high transitions are detected on the DEM/SCLK pin during any phase of the LRCK period. When this mode is enabled, the Internal Serial Clock Mode and de-emphasis filter cannot be accessed. The CS4334 family will switch to Internal Serial Clock Mode if no low to high transitions are detected on the DEM/SCLK pin for 2 consecutive frames of LRCK. Refer to Figure 14.
4.2.2
Internal Serial Clock Mode
In the Internal Serial Clock Mode, the serial clock is internally derived and synchronous with MCLK and LRCK. The SCLK/LRCK frequency ratio is either 32, 48, or 64 depending upon data format. Operation in this mode is identical to operation with an external serial clock synchronized with LRCK. This mode allows access to the digital de-emphasis function. Refer to Figures 10 - 14 for details.
DS248F5
13
Confidential Draft 3/11/08
4.3 De-Emphasis
CS4334/5/8/9
The CS4334 family includes on-chip digital de-emphasis. Figure 9 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs. The de-emphasis filter is active (inactive) if the DEM/SCLK pin is low (high) for 5 consecutive falling edges of LRCK. This function is available only in the internal serial clock mode.
Gain dB T1=50 µs 0dB
T2 = 15 µs
-10dB
F1 3.183 kHz
F2 Frequency 10.61 kHz
Figure 9. De-Emphasis Curve (Fs = 44.1kHz)
4.4
Initialization and Power-Down
The Initialization and Power-Down sequence flow chart is shown in Figure 14. The CS4334 family enters the Power-Down State upon initial power-up. The interpolation filters and delta-sigma modulators are reset, and the internal voltage reference, one-bit digital-to-analog converters and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down mode until MCLK and LRCK are present. Once MCLK and LRCK are detected, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio. Power is then applied to the internal voltage reference. Finally, power is applied to the D/A converters and switched-capacitor filters, and the analog outputs will ramp to the quiescent voltage, VQ.
4.5
Output Transient Control
The CS4334 family uses Popguard® technology to minimize the effects of output transients during powerup and power-down. This technique eliminates the audio transients commonly produced by single-ended single-supply converters when it is implemented with external DC-blocking capacitors connected in series with the audio outputs. To make best use of this feature, it is necessary to understand its operation. When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to AGND. After a short delay of approximately 1000 sample periods, each output begins to ramp towards its quiescent voltage, VQ. Approximately 10,000 sample cycles later, the outputs reach VQ and audio output begins. This gradual voltage ramping allows time for the external DC-blocking capacitor to charge to VQ, effectively blocking the quiescent DC voltage. To prevent transients at power-down, the device must first enter its power-down state. This is accomplished by removing MCLK or LRCK. When this occurs, audio output ceases and the internal output buffers are disconnected from AOUTL and AOUTR. A soft-start current sink is substituted in place of AOUTL and AOUTR which allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to the device may be turned off, and the system is ready for the next power-on. To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge before turning off the power or exiting the power-down state. If full discharge does not occur, a transient will occur when the audio outputs are initially clamped to AGND. The time that the device must remain in the power-
14
DS248F5
Confidential Draft 3/11/08
CS4334/5/8/9
down state is related to the value of the DC-blocking capacitance. For example, with a 3.3 µF capacitor, the time that the device must remain in the power-down state will be approximately 0.4 seconds.
4.6
Grounding and Power Supply Decoupling
As with any high resolution converter, the CS4334 family requires careful attention to power supply and grounding arrangements to optimize performance. Figure 1 shows the recommended power arrangement with VA connected to a clean +5V supply. For best performance, decoupling capacitors should be located as close to the device package as possible with the smallest capacitor closest.
4.7
Analog Output and Filtering
The analog filter present in the CS4334 family is a switched-capacitor filter followed by a continuous time low pass filter. Its response, combined with that of the digital interpolator, is given in Figures 15 - 22.
LR C K SCLK
Le ft C ha n nel
R ig h t C ha n nel
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Internal SCLK Mode I²S, 16-Bit data and INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128 I²S, Up to 24-Bit data and INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
External SCLK Mode I²S, up to 24-Bit Data Data Valid on Rising Edge of SCLK
Figure 10. CS4334 Data Format (I²S)
LR C K SCLK
Le ft C ha n nel
R ig h t C ha n nel
SDATA
M SB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LS B
M SB -1 -2 -3 -4
+5 +4 +3 +2 +1 LS B
Internal SCLK Mode Left Justified, up to 24-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
External SCLK Mode Left Justified, up to 24-Bit Data Data Valid on Rising Edge of SCLK
Figure 11. CS4335 Data Format
DS248F5
15
Confidential Draft 3/11/08
CS4334/5/8/9
LR CK
L e ft C h a nn e l
R ig ht C h a n ne l
SCLK
SDATA
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
32 clocks
Internal SCLK Mode Right Justified, 16-Bit Data INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
External SCLK Mode Right Justified, 16-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 32 Cycles per LRCK Period
Figure 12. CS4338 Data Format
LR C K L e ft C h a n n e l R ig h t C h a n n e l
SCLK
SDATA
1
0
17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
32 clocks
Internal SCLK Mode Right Justified, 18-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
External SCLK Mode Right Justified, 18-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 36 Cycles per LRCK Period
Figure 13. CS4339 Data Format
16
DS248F5
Confidential Draft 3/11/08
CS4334/5/8/9
Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequence
DS248F5
17
Confidential Draft 3/11/08
4.8 Overall Base-Rate Frequency Response
CS4334/5/8/9
Figure 15. Stopband Rejection
Figure 16. Transition Band
Figure 17. Transition Band
Figure 18. Passband Ripple
18
DS248F5
Confidential Draft 3/11/08
4.9 Overall High-Rate Frequency Response
CS4334/5/8/9
Figure 19. Stopband Rejection
Figure 20. Transition Band
Figure 21. Transition Band
Figure 22. Passband Ripple
DS248F5
19
Confidential Draft 3/11/08
4.10 Base Rate Mode Performance Plots
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
CS4334/5/8/9
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
dBr A dBr A
d B r A
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
10k 10k 10k Hz Hz Hz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k 18k
20k 20k 20k
dBr A dBr A
d B r A
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140
20k
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
10k 10k 10k Hz Hz Hz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k 18k
20k 20k 20k
(16k FFT of a 1 kHz input signal)
(16k FFT of a 1 kHz input signal)
Figure 23. 0 dBFS FFT (BRM)
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30
-40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90 -100
Figure 24. -60 dBFS FFT (BRM)
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50
dBr A dBr A
dBr A dBr A
d B r A
d B r A
-60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
-100 -100 -110 -110 -110
-120 -120 -120 -130 -130 -130 -140 -140 -140
-1 00 -100 -100 -1 10 -110 -110 -1 20 -120 -120 -1 30 -130 -130
2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k 20k 20k 20k
-1 40 -140 -140
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
10k 10k 10k Hz Hz Hz
12 k 12k 12k
1 4k 14k 14k
16k 16k 16k
18 k 18k
18k
20k 20k
20k
(16k FFT with no input signal)
(16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals)
Figure 25. Idle Channel Noise FFT (BRM)
Figure 26. Twin Tone IMD FFT (BRM)
-60 -60
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40
-70 -70
dBr A
dBr AA dBr
d B r A
d B r A
-80 -80
-50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
-90 -90
-100 -100
-100 -100 -100
-110 -110 -60 -60
-50 -50
-40 -40
-30 -30
dBFS dBFS
-20 -20
-10 -10
+0 +0
-110 -11020 -110 20 20
50 50 50
100 100
100
200 200 200
500 500 500 Hz Hz Hz
1k 1k 1k
2k 2k 2k
5k 5k 5k
10k 10k 10k
20k 20k 20k
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 27. THD+N vs. Amplitude (BRM)
Figure 28. THD+N vs. Frequency (BRM)
All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain System Two Cascade.
20
DS248F5
Confidential Draft 3/11/08
4.11
+ +0 +00 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
CS4334/5/8/9
High Rate Mode Performance Plots
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
dBr A dBr A
d B r A
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140
dBr A A dBr
d B r A
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
(16k FFT of a 1 kHz input signal)
10k 10k 10k Hz Hz Hz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k 18k
20k 20k 20k
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
(16k FFT of a 1 kHz input signal)
10k 10k 10k Hz Hz Hz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k 18k
20k 20k 20k
Figure 29. 0 dBFS FFT (HRM)
A u d io P re c is io n
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
Figure 30. -60 dBFS FFT (HRM)
D - A C C IF I MD v s A MP L ITUD E 0 8 /0 5 /9 9 1 1 :1 1 :3 6
+0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50
dBr A A dBr
d B r A
dBr A dBr A
d B r A
-60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140
-100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130
2k 2k
2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
10k 10k 10k Hz Hz Hz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k 18k
20k 20k 20k
-140 -140 -140
2k 2k 2k
4k 4k 4k
6k 6k 6k
8k 8k 8k
10k 10k 10k Hz HzHz
12k 12k 12k
14k 14k 14k
16k 16k 16k
18k 18k
18k
20k 20k
20k
(16k FFT with no input signal)
(16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals)
Figure 31. Idle Channel Noise FFT (HRM)
Figure 32. Twin Tone IMD FFT (HRM)
-60 -60
+0 +0
-10 -10 -10
-70 -70
-20 -20 -20 -30 -30 -30
dBr AA dBr
dBr A
d B r A
-80
-80
d B r A
-40 -40 -40 -50 -50 -50 -60 -60 -60 -70 -70 -70
-90 -90
-80 -80 -80
-100 -100
-90 -90 -90 -100 -100 -100
-110 -110-60 -60
-50 -50
-40 -40
-30 -30 dBFS dBFS
-20 -20
-10 -10
+0 +0
-110 -110 -110
20 20 20
50 50
100 100 100
200 200
500 500 Hz Hz Hz
1k 1k
2k 2k
5k 5k
10k 10k
20k 20k 20k
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 33. THD+N vs. Amplitude (HRM)
Figure 34. THD+N vs. Frequency (HRM)
All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain System Two Cascade.
DS248F5
21
Confidential Draft 3/11/08 5. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
CS4334/5/8/9
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10Hz to 20kHz), including distortion components. Expressed in decibels. Dynamic Range The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES171991, and the Electronic Industries Association of Japan, EIAJ CP-307. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full-scale analog output for a full-scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C.
6. REFERENCES
1. "How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters" by Steven Harris. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992. 2. CDB4334/5/8/9 Evaluation Board Datasheet
22
DS248F5
Confidential Draft 3/11/08 7. PACKAGE DIMENSIONS
CS4334/5/8/9
8L SOIC (150 MIL BODY) PACKAGE DRAWING
E
H
1 b c
D SEATING PLANE e A1
A L
∝
INCHES DIM A A1 b c D E e H L MIN 0.053 0.004 0.013 0.007 0.189 0.150 0.040 0.228 0.016 0° MAX 0.069 0.010 0.020 0.010 0.197 0.157 0.060 0.244 0.050 8° JEDEC # : MS-012
∝
MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.33 0.51 0.19 0.25 4.80 5.00 3.80 4.00 1.02 1.52 5.80 6.20 0.40 1.27 0° 8°
DS248F5
23
Confidential Draft 3/11/08 8. ORDERING INFORMATION
Model
CS4334-KSZ CS4335-KSZ CS4338-KSZ CS4339-KSZ CS4334-DSZ CS4335-DSZ CS4338-DSZ CS4339-DSZ
CS4334/5/8/9
Temperature
-10 to +70 °C -10 to +70 °C -10 to +70 °C -10 to +70 °C -40 to +85 °C -40 to +85 °C -40 to +85 °C -40 to +85 °C
Package
8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free
Serial Interface
16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode 16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode
9. FUNCTIONAL COMPATIBILITY
CS4330-KS ⇒ CS4339-KSZ CS4331-KS ⇒ CS4334-KSZ CS4333-KS ⇒ CS4338-KSZ CS4330-BS ⇒ CS4339-DSZ CS4331-BS ⇒ CS4334-DSZ CS4333-BS ⇒ CS4338-DSZ
10.REVISION HISTORY
Revision
F3 F4 F5
Changes
Removed CS4335-BS and CS4339-BS from the Ordering Information section. Removed CS4334-BS & CS4349-BS and updated all other packages to lead-free. Functional compatibility was updated to reflect that of the new lead-free packages. Corrected “B” to “b” and “C” to “c” to match drawing in “Package Dimensions” on page 23 Updated legal text
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, the Cirrus Logic logo designs and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
24
DS248F5