0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CS4349

CS4349

  • 厂商:

    CIRRUS(凌云)

  • 封装:

  • 描述:

    CS4349 - 192 kHz DAC w/ Volume Control and 1 Vrms @ 3.3 V - Cirrus Logic

  • 详情介绍
  • 数据手册
  • 价格&库存
CS4349 数据手册
CS4349 192 kHz DAC w/ Volume Control and 1 Vrms @ 3.3 V Features Advanced Multi-bit Delta-Sigma Architecture 101 dB Dynamic Range -91 dB THD+N at 5.0 V -84 dB THD+N at 3.3 V 24-Bit Conversion Supports Audio Sample Rates Up to 192 kHz Low-Latency Digital Filtering Single-Ended Analog Output Architecture Automatic Sample-Rate Range Detection Popguard® Technology for Control of Clicks and Pops – Hardware Popguard Disable for Fast Startups Supports All Standard Serial Audio Formats Including Time-Division Multiplexed (TDM) +3.3 V or +5.0 V Analog Supply +1.5 V to +5.0 V Logic Supplies for Serial Port +3.3 V to +5.0 V Control Port Interface Control Port Mode Features SPI™ and I²C® Modes ATAPI Mixing Mute Control for Individual Channels Digital Volume Control with Soft Ramp – 127.5 dB Attenuation – 1/2 dB Step Size – Zero Crossing Click-Free Transitions 3.3 V to 5 V 3.3 V to 5 V Level Translator Register/ Hardware Configuration Interpolation Filter with Volume Control Left Channel Output Hardware or I C/ SPI Control Data Reset 2 Multibit ΔΣ Modulator DAC Amp + Filter 1.5 V to 5 V Level Translator PCM Serial Interface Interpolation Filter with Volume Control Multibit ΔΣ Modulator DAC Amp + Filter Right Channel Output Serial Audio Input Internal Voltage Reference and Regulation External Mute Control Left and Right Mute Controls http://www.cirrus.com Copyright © Cirrus Logic, Inc. 2007 (All Rights Reserved) AUGUST '07 DS782F1 CS4349 Description The CS4349 is a complete stereo digital-to-analog system including digital interpolation, 5th-order multi-bit deltasigma digital-to-analog conversion, digital de-emphasis, volume control, channel mixing, and analog filtering. The advantages of this architecture include ideal linearity, no distortion mechanisms due to resistor matching errors, no linearity drift over time and temperature, tolerance to clock jitter, and a minimal set of external components. The CS4349 supports all standard digital audio interface formats, including TDM. The CS4349 is available in a 24-pin TSSOP package in both Commercial (-40° to +85°C) and Automotive grades (-40° to +105°C). The CDB4349 Customer Demonstration board is also available for device evaluation and implementation suggestions. Please refer to “Ordering Information” on page 40 for complete ordering information. These features are ideal for cost-sensitive, two-channel audio systems, including DVD players and recorders, settop boxes, digital TVs, mini-component systems, musical instruments and automotive audio systems. 2 DS782F1 CS4349 TABLE OF CONTENTS 1. PIN DESCRIPTION.................................................................................................................................. 6 2. CHARACTERISTICS AND SPECIFICATIONS....................................................................................... 8 RECOMMENDED OPERATING CONDITIONS .......................................................................................... 8 ABSOLUTE MAXIMUM RATINGS............................................................................................................... 8 DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CZZ) ................................................................... 9 DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DZZ) .................................................................. 10 COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 12 SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE.............................................................. 13 SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT.................................................... 14 SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT................................................... 15 DIGITAL CHARACTERISTICS .................................................................................................................. 16 POWER AND THERMAL CHARACTERISTICS........................................................................................ 16 3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 17 4. APPLICATIONS .................................................................................................................................... 18 4.1 Sample Rate Range and Oversampling Mode Detect................................................................... 18 4.1.1 Sample Rate Auto-Detect .................................................................................................... 18 4.2 System Clocking ............................................................................................................................ 18 4.3 Digital Interface Format ................................................................................................................. 19 4.3.1 Time-Division Multiplex (TDM) Mode ................................................................................... 20 4.4 De-Emphasis ................................................................................................................................. 21 4.5 Mute Control .................................................................................................................................. 21 4.6 Recommended Power-Up Sequence ............................................................................................ 21 4.6.1 Stand-Alone Mode ............................................................................................................... 21 4.6.2 Control Port Mode ................................................................................................................ 22 4.7 Popguard Transient Control .......................................................................................................... 22 4.7.1 Power-Up ............................................................................................................................. 22 4.7.2 Power-Down......................................................................................................................... 22 4.7.3 Discharge Time .................................................................................................................... 22 4.8 Analog Output and Filtering ........................................................................................................... 23 4.9 Grounding and Power Supply Arrangements ................................................................................ 23 4.9.1 Capacitor Placement............................................................................................................ 23 5. STAND-ALONE OPERATION............................................................................................................... 24 5.1 Serial Port Format Selection.......................................................................................................... 24 5.2 De-Emphasis Control .................................................................................................................... 24 5.3 Popguard Transient Control .......................................................................................................... 24 6. CONTROL PORT OPERATION ............................................................................................................ 25 6.1 MAP Auto Increment ..................................................................................................................... 25 6.2 I²C Mode ........................................................................................................................................ 25 6.2.1 I²C Write ............................................................................................................................... 25 6.2.2 I²C Read............................................................................................................................... 25 6.3 SPI Mode ....................................................................................................................................... 26 6.3.1 SPI Write .............................................................................................................................. 26 6.3.2 SPI Read.............................................................................................................................. 27 6.4 Memory Address Pointer (MAP) ................................................................................................... 27 6.4.1 INCR (Auto Map Increment Enable) .................................................................................... 27 6.4.2 MAP (Memory Address Pointer) .......................................................................................... 27 7. REGISTER QUICK REFERENCE ......................................................................................................... 28 8. REGISTER DESCRIPTION ................................................................................................................... 29 8.1 Device and Revision ID - Register 01h.......................................................................................... 29 8.2 Mode Control - Register 02h ......................................................................................................... 29 8.2.1 Digital Interface Format (DIF[2:0]) Bits 6-4 .......................................................................... 29 8.2.2 De-Emphasis Control (DEM[1:0]) Bits 3-2 ........................................................................... 30 DS782F1 3 CS4349 8.2.3 Functional Mode (FM[1:0]) Bits 1-0...................................................................................... 30 8.3 Volume Mixing and Inversion Control - Register 03h .................................................................... 30 8.3.1 Channel A Volume = Channel B Volume (VOLB=A) Bit 7 ................................................... 30 8.3.2 Invert Signal Polarity (INVERT_A) Bit 6 ............................................................................... 30 8.3.3 Invert Signal Polarity (INVERT_B) Bit 5 ............................................................................... 31 8.3.4 ATAPI Channel Mixing and Muting (ATAPI[3:0]) Bits 3-0 .................................................... 31 8.4 Mute Control - Register 04h ......................................................................................................... 32 8.4.1 Auto-Mute (AMUTE) Bit 7 .................................................................................................... 32 8.4.2 AMUTEC = BMUTEC (MUTEC A=B) Bit 5 .......................................................................... 32 8.4.3 Channel A Mute (MUTE_A) Bit 4 & Channel B Mute (MUTE_B) Bit 3................................. 32 8.5 Channel A & B Volume Control - Register 05h & 06h ................................................................... 33 8.6 Ramp and Filter Control - Register 07h ......................................................................................... 33 8.6.1 Soft Ramp and Zero Cross Control (SZC[1:0]) Bits 7-6 ....................................................... 33 8.6.2 Soft Volume Ramp-Up After Error (RMP_UP) Bit 5 ............................................................. 34 8.6.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) Bit 4........................................... 34 8.6.4 Interpolation Filter Select (FILT_SEL) Bit 2.......................................................................... 34 8.7 Misc. Control - Register 08h .......................................................................................................... 35 8.7.1 Power Down (PDN) Bit 7...................................................................................................... 35 8.7.2 Freeze Controls (FREEZE) Bit 5.......................................................................................... 35 8.7.3 Popguard Enable (POPG_EN) Bit 4 .................................................................................... 35 9. FILTER PLOTS .................................................................................................................................. 36 10. PARAMETER DEFINITIONS............................................................................................................... 38 11. PACKAGE DIMENSIONS ................................................................................................................... 39 THERMAL CHARACTERISTICS ............................................................................................................... 39 12. ORDERING INFORMATION ............................................................................................................... 40 13. REVISION HISTORY .......................................................................................................................... 40 4 DS782F1 CS4349 LIST OF FIGURES Figure 1. Output Test Load ........................................................................................................................ 11 Figure 2. Maximum Loading....................................................................................................................... 11 Figure 3. THD+N vs Output Amplitude for VA = 5.0 V ............................................................................... 11 Figure 4. THD+N vs Output Amplitude for VA = 3.3 V ............................................................................... 11 Figure 5. THD+N vs Output Amplitude for VA = 3.14 V ............................................................................. 11 Figure 6. Serial Port Timing, Non-TDM Mode............................................................................................ 14 Figure 7. Serial Port Timing, TDM Mode.................................................................................................... 14 Figure 8. Control Port Timing - I²C Format................................................................................................. 14 Figure 9. Control Port Timing - SPI Mode .................................................................................................. 15 Figure 10. Typical Connection Diagram..................................................................................................... 17 Figure 11. Left-Justified up to 24-Bit Data.................................................................................................. 19 Figure 12. I²S, up to 24-Bit Data ................................................................................................................ 19 Figure 13. Right-Justified Data................................................................................................................... 19 Figure 14. TDM Mode Connection Diagram .............................................................................................. 20 Figure 15. TDM Mode Timing .................................................................................................................... 20 Figure 16. De-Emphasis Curve.................................................................................................................. 21 Figure 17. Passive Single-Ended Output Filter .......................................................................................... 23 Figure 18. Control Port Timing, I²C Mode .................................................................................................. 26 Figure 19. Control Port Timing, SPI Mode ................................................................................................. 27 Figure 20. De-Emphasis Curve.................................................................................................................. 30 Figure 21. ATAPI Block Diagram ............................................................................................................... 31 Figure 22. Stopband Rejection (fast), all Modes ........................................................................................ 36 Figure 23. Stopband Rejection (slow), all Modes....................................................................................... 36 Figure 24. Single-Speed (fast) Passband Detail ........................................................................................ 36 Figure 25. Single-Speed (slow) Passband Detail....................................................................................... 36 Figure 26. Double-Speed (fast) Passband Detail....................................................................................... 36 Figure 27. Double-Speed (slow) Passband Detail ..................................................................................... 36 Figure 28. Quad-Speed (fast) Passband Detail ......................................................................................... 37 Figure 29. Quad-Speed (slow) Passband Detail........................................................................................ 37 LIST OF TABLES Table 1. CS4349 Auto-Detect .................................................................................................................... 18 Table 2. Digital Interface Format - Stand-Alone Mode............................................................................... 24 Table 3. Digital Interface Formats .............................................................................................................. 29 Table 4. ATAPI Decode ............................................................................................................................. 31 Table 5. Example Digital Volume Settings ................................................................................................. 33 DS782F1 5 CS4349 1. PIN DESCRIPTION DIF2(AD1/CDOUT) DEM(AD0/CS) DIF0(SDA/CDIN) DIF1(SCL/CCLK) VLC VD_FILT GND POPGUARD(TSTO) VLS SCLK SDIN LRCK 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 RST TSTO AOUTB BMUTEC VQ GND VA VBIAS AMUTEC AOUTA TSTO TSTO Pin Name VLC VD_FILT GND VLS SCLK SDIN LRCK TSTO TSTO AOUTA AOUTB AMUTEC BMUTEC VBIAS VA VQ RST # 5 6 9 10 11 12 13 14 23 15 22 16 21 17 18 20 24 Pin Description Control Interface Power (Input) - Positive power for the hardware/software control interface Regulator Voltage (Output) - Filter connection for internal voltage regulator Serial Audio Interface Power (Input) - Positive power for the serial audio interface Serial Clock (Input) - Serial bit-clock for the serial audio interface Serial Audio Data Input (Input) - Input for two’s complement serial audio data Left/Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio data line Test Output (Output) - This pin needs to be floating and not connected to any trace or plane. Test Output (Output) - These pins need to be floating and not connected to any trace or plane. Analog Outputs (Output) - The full-scale output level is specified in “DAC Analog Characteristics Commercial (-CZZ)” on page 9. Mute Control (Output) - Control signals for optional mute circuit Positive Voltage Reference (Output) - Positive reference voltage for the internal DAC Analog Power (Input) - Positive power supply for the analog section Quiescent Voltage (Output) - Filter connection for internal quiescent voltage Reset (Input) - When pulled low, device will power down and reset all internal registers to their default settings. 7, 19 Ground (Input) - Ground reference 6 DS782F1 CS4349 Control Port Definitions AD1/CDOUT AD0/CS SDA/CDIN SCL/CCLK TSTO DIF0 DIF1 DIF2 DEM POPGUARD 1 2 3 4 8 3 4 1 2 8 Address Bit 1 / Serial Control Data Out (I/O) - Chip address bit 1 in I²C Mode or data output in SPI Mode Address Bit 0 / Chip Select (Input) - Chip address bit 0 in I²C Mode or Chip Select in SPI Mode Serial Control Data In (I/O) - Input/Output for I²C data. Input for SPI data Serial Control Port Clock (Input) - Serial clock for the control port interface Test Output (Output) - This pin needs to be floating and not connected to any trace or plane. Stand-Alone Definitions Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock, Serial Clock, and Serial Audio Data De-emphasis (Input) - Selects the standard 15 μs/50 μs digital de-emphasis filter response for 44.1 kHz sample rates Popguard Disable (Input/Output) - At RST this pin is an input to disable PopGuard when pulled high; Otherwise leave floating. After RST is released this pin becomes TSTO. DS782F1 7 CS4349 2. CHARACTERISTICS AND SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS GND = 0 V; all voltages with respect to ground. Parameters DC Power Supply Analog power Serial Audio Interface power Control Interface power Ambient Operating Temperature (Power Applied) Commercial (-CZZ) Automotive (-DZZ) Symbol VA VA VLS VLC TA TA Min 4.75 3.14 1.35 3.14 -40 -40 Typ 5.0 3.3 3.3 3.3 - Max 5.25 3.46 5.25 5.25 +85 +105 Units V V V V °C °C ABSOLUTE MAXIMUM RATINGS GND = 0 V; all voltages with respect to ground.(Note 1) Parameters DC Power Supply Analog power Serial Audio Interface power Control Interface power Input Current (Note 2) Digital Input Voltage Serial Audio Interface Control Interface Ambient Operating Temperature (power applied) Storage Temperature Symbol VA VLS VLC Iin VIN-LS VIN-LC TA Tstg Min -0.3 -0.3 -0.3 -0.3 -0.3 -55 -65 Max 6.0 6.0 6.0 ±10 VLS+ 0.4 VLC+ 0.4 125 150 Units V V V mA V V °C °C Notes: 1. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 2. Any pin except supplies. 8 DS782F1 CS4349 DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CZZ) Test conditions (unless otherwise specified): VLS = VLC = 3.3 V; TA = 25° C; input test signal is a 997 Hz sine wave; Valid with the recommended capacitor values on VFILT, VQ, and VBIAS and output circuit as shown in the typical connection diagram in Figure 10 and Figure 17; Fs = 48 kHz, 96 kHz, and 192 kHz; measurement bandwidth 10 Hz to 20 kHz. Parameter VA = 5.0 V Dynamic Range (Note 3) 24-bit 16-bit A-Weighted unweighted A-Weighted unweighted 0 dB -20 dB -60 dB THD+N 0 dB -20 dB -60 dB 98 95 98 95 2.70 VQ IOUTmax IQmax (Note 4) (Note 4) RL CL ZOUT 101 98 95 92 -91 -78 -38 -90 -72 -32 101 98 95 92 -86 -91 -78 -38 -83 -72 -32 100 0.1 -400 2.78 0.5•VA 10 100 3 100 100 -85 -35 -79 -35 0.25 2.97 dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB ppm/°C Vpp VDC μA μA kΩ pF Ω Symbol Min Typ Max Unit Total Harmonic Distortion + Noise (Note 3) 24-bit 16-bit VA = 3.3 V Dynamic Range (Note 3) 24-bit 16-bit A-Weighted unweighted A-Weighted unweighted 0 dB -2 dB -20 dB THD+N -60 dB 0 dB -20 dB -60 dB (1 kHz) Total Harmonic Distortion + Noise (Note 3) 24-bit 16-bit VA = 5.0 to 3.3 V Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Gain Drift Analog Output Full Scale Output Voltage Quiescent Voltage Max DC Current draw from an AOUT pin Max Current draw from VQ Max AC-Load Resistance Max Load Capacitance Output Impedance Notes: 3. One-half LSB of triangular PDF dither is added to data. See Figure 3, Figure 4, and Figure 5 for details on THD+N performance. 4. RL and CL represent the minimum resistance and maximum capacitance required for the CS4349’s internal op-amp to remain stable. See Figure 1 and Figure 2 for more details. DS782F1 9 CS4349 DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DZZ) Test conditions (unless otherwise specified): VLS = 1.35 V to 5.25 V, VLC = 3.14 V to 5.25 V, TA = -40° C to 85° C, input test signal is a 997 Hz sine wave; Valid with the recommended capacitor values on VFILT, VQ, and VBIAS and output circuit as shown in the typical connection diagram in Figure 10and Figure 17; Fs = 48 kHz, 96 kHz, and 192 kHz; measurement bandwidth 10 Hz to 20 kHz. Parameter VA = 4.75 V to 5.25 V Dynamic Range (Note 3) 24-bit 16-bit A-Weighted unweighted A-Weighted unweighted 0 dB -20 dB -60 dB THD+N 0 dB -20 dB -60 dB 95 92 95 91 2.63 VQ IOUTmax IQmax (Note 4) (Note 4) RL CL ZOUT 101 98 95 92 -91 -78 -38 -90 -72 -32 101 98 95 92 -81 -91 -78 -38 -83 -72 -32 100 0.1 -400 2.78 0.5•VA 10 100 3 100 100 -85 -32 -50 -31 0.25 3.05 dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB Symbol Min Typ Max Unit Total Harmonic Distortion + Noise (Note 3) 24-bit 16-bit VA = 3.14 V to 3.46 V Dynamic Range (Note 3) 24-bit 16-bit A-Weighted unweighted A-Weighted unweighted 0 dB -2 dB -20 dB THD+N -60 dB 0 dB -20 dB -60 dB (1 kHz) Total Harmonic Distortion + Noise (Note 3) 24-bit 16-bit VA = 3.14 to 5.25 V Interchannel Isolation dB dB ppm/°C Vpp VDC μA μA kΩ pF Ω DC Accuracy Interchannel Gain Mismatch Gain Drift Analog Output Full Scale Output Voltage Quiescent Voltage Max DC Current draw from an AOUT pin Max Current draw from VQ Max AC-Load Resistance Max Load Capacitance Output Impedance 10 DS782F1 CS4349 125 Capacitive Load -- C L (pF) 100 75 50 25 Safe Operating Region CS4349 AOUTx + 3.3 µF + Analog Output RL CL GND 2.5 3 5 10 15 20 Resistive Load -- RL (kΩ ) Figure 1. Output Test Load Figure 2. Maximum Loading Figures 3 through 5 show typical THD+N performance for CS4349 devices that exhibit the maximum full scale output voltages as specified in the DAC Analog Characteristics tables (see page 9 and 10). With decreasing VA, THD+N performance is increasingly affected by the full scale output voltage and temperature, with higher full scale output voltage and lower temperatures corresponding to lower THD+N performance. -30 TA = -40° C TA = 25° C TA = 85° C -30 -40 -50 THD+N (dB) -40 -50 THD+N (dB) -60 -70 -80 -90 -100 0 TA = -40° C TA = 25° C TA = 85° C -60 -70 -80 -90 -100 0 -0.5 -1 -1.5 -2 Output Amplitude(dB) -2.5 -3 -0.5 -1 -1.5 -2 Output Amplitude(dB) -2.5 -3 Figure 3. THD+N vs Output Amplitude for VA = 5.0 V Figure 4. THD+N vs Output Amplitude for VA = 3.3 V -30 -40 -50 THD+N (dB) -60 -70 -80 -90 -100 0 TA = -40° C TA = 25° C TA = 85° C -0.5 -1 -1.5 -2 Output Amplitude(dB) -2.5 -3 Figure 5. THD+N vs Output Amplitude for VA = 3.14 V DS782F1 11 CS4349 COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs. Amplitude vs. Frequency plots of this data are available in the “Filter Plots” on page 36. Parameter Fast Roll-Off Passband (Note 5) -0.01 dB corner (Single Speed) -0.1 dB corner (Double Speed) -0.2 dB corner (Quad Speed) -3 dB corner (All Speed Modes) Frequency Response 10 Hz to 20 kHz StopBand Stop-Band Attenuation (Note 6) Total Group Delay (Fs = Output Sample Rate) Intra-channel Phase Deviation Inter-channel Phase Deviation De-emphasis Error (Note 7) (Relative to 1 kHz) Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz Single Speed Double Speed, Quad Speed 0 0 0 0 -0.01 -0.02 0.547 102 0 0 0 0 -0.01 -0.02 .583 64 Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz 9.4/Fs 6.5/Fs .454 .42 .27 .499 +0.01 +0.02 ±0.56/Fs 0 ±0.23 ±0.14 ±0.09 0.417 .37 .27 .499 +0.01 +0.02 ±0.14/Fs 0 ±0.23 ±0.14 ±0.09 Fs Fs Fs Fs dB dB Fs dB s s s dB dB dB Fs Fs Fs Fs dB dB Fs dB s s s dB dB dB Min Typ Max Unit Slow Roll-Off (Note 8) Passband (Note 5) -0.01 dB corner (Single Speed) -0.1 dB corner (Double Speed) -0.2 dB corner (Quad Speed) -3 dB corner (All Speed Modes) Frequency Response 10 Hz to 20 kHz StopBand Stop-Band Attenuation (Note 6) Total Group Delay (Fs = Output Sample Rate) Intra-channel Phase Deviation Inter-channel Phase Deviation De-emphasis Error (Note 7) (Relative to 1 kHz) Single Speed Double Speed, Quad Speed Notes: 5. Response is clock dependent. 6. The Measurement Bandwidth is from stopband to 3 Fs. 7. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in StandAlone Mode. 8. Slow Roll-off interpolation filter is only available in Control Port Mode. 12 DS782F1 CS4349 SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE Inputs: Logic 0 = GND; Logic 1 = VLS; CL = 20 pF. Parameters RMCK Output Frequency (Note ) RMCK Output Duty Cycle Input Sample Rate Single-Speed Mode Double-Speed Mode Quad-Speed Mode LRCK Duty Cycle (Non-TDM Mode) SDIN Setup Time Before SCLK Rising Edge SDIN Hold Time After SCLK Rising Edge SCLK Frequency SCLK High Time SCLK Low Time Non-TDM Mode (refer to Figure 6) LRCK Edge to SCLK Rising Edge SCLK Rising Edge to LRCK Edge TDM Mode (refer to Figure 7) LRCK High Time SCLK Rising to LRCK Falling Edge LRCK Rising Edge to SCLK Rising Edge SCLK Frequency SCLK High Time SCLK Low Time Non-TDM Mode (refer to Figure 6) LRCK Edge to SCLK Rising Edge SCLK Rising Edge to LRCK Edge TDM Mode (refer to Figure 7) LRCK High Time SCLK Rising to LRCK Falling Edge LRCK Rising Edge to SCLK Rising Edge tlrckh tfsh tfss 25 8 1 ns ns ns tlcks tlckd 16 1 ns ns tsckh tsckl tlrckh tfsh tfss 6 3 1 11 11 27.7 ns ns ns MHz ns ns tlcks tlckd 11 1 ns ns tsckh tsckl tds tdh Fs Symbol Min 7.680 45 30 60 120 40 1 1 6 6 Max 55.3 55 54 108 216 60 55.3 - Units MHz % kHz % ns ns MHz ns ns 3.14 V ≤ VA ≤ 5.25 V and 1.35 V ≤ VLS ≤ 5.25 V 4.75 V ≤ VA ≤ 5.25 V and 3.14 V ≤ VLS ≤ 5.25 V 3.14 V ≤ VA < 4.75 V or 1.35 V ≤ VLS < 3.14 V DS782F1 13 CS4349 . tlrckh LRCK (input) tlckd SCLK (input) tlcks tsckh tsckl LRCK (Input) tfss tfsh tsckh tsckl SCLK (Input) tds SDIN (input) tdh MSB MSB-1 SDIN (Input) tds tdh MSB MSB-1 Figure 6. Serial Port Timing, Non-TDM Mode Figure 7. Serial Port Timing, TDM Mode SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT Inputs: Logic 0 = GND; Logic 1 = VLC; CL = 20 pF. Parameter SCL Clock Frequency RST Rising Edge to Start Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 9) SDA Setup time to SCL Rising Rise Time of SCL and SDA Fall Time SCL and SDA Setup Time for Stop Condition Acknowledge Delay from SCL Falling Symbol fscl tirs tbuf thdst tlow thigh tsust thdd tsud trc, trc tfc, tfc tsusp tack Min 500 4.7 4.0 4.7 4.0 4.7 0 250 4.7 300 Max 100 1 300 1000 Unit kHz ns µs µs µs µs µs µs ns µs ns µs ns Note: 9. Data must be held for sufficient time to bridge the transition time, tfc, of SCL. RST t Stop irs Sta rt R e p e a te d Sta rt t rd t fd Stop SDA t buf t hdst t high t hdst t fc t susp SCL t t t sud t ack t sust t rc lo w hdd Figure 8. Control Port Timing - I²C Format 14 DS782F1 CS4349 SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT Inputs: Logic 0 = GND; Logic 1 = VLC; CL = 20 pF. Parameter CCLK Clock Frequency RST Rising Edge to CS Falling CCLK Edge to CS Falling (Note 10) CS High Time Between Transmissions CS Falling to CCLK Edge CCLK Low Time CCLK High Time CDIN to CCLK Rising Setup Time CCLK Rising to DATA Hold Time (Note 11) Rise Time of CCLK and CDIN (Note 12) Fall Time of CCLK and CDIN (Note 12) Transition Time from CCLK to CDOUT Valid (Note 13) Time from CS rising to CDOUT High-Z Symbol fsclk tsrs tspi tcsh tcss tscl tsch tdsu tdh tr2 tf2 tscdov tcscdo Min 500 500 1.0 20 66 66 40 15 - Max 6 100 100 100 100 Unit MHz ns ns µs ns ns ns ns ns ns ns ns ns Notes: 10. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times. 11. Data must be held for sufficient time to bridge the transition time of CCLK. 12. For FSCK < 1 MHz. 13. CDOUT should not be sampled during this time. RST t srs CS t spi t css CCLK t r2 CDIN t scl t sch t csh t f2 t dsu t dh CDOUT Hi-Impedance t scdov t scdov t cscdo Figure 9. Control Port Timing - SPI Mode DS782F1 15 CS4349 DIGITAL CHARACTERISTICS Parameters High-Level Input Voltage VLC or VLS = 5.0 V VLC or VLS = 3.3 V VLS = 2.5 V High-Level Input Voltage VLS = 1.5 V VLC or VLS = 5.0 V VLC or VLS = 3.3 V VLS = 2.5 V VLS = 1.5 V Input Leakage Current Input Capacitance Maximum MUTEC Drive Current MUTEC High-Level Output Voltage MUTEC Low-Level Output Voltage Symbol VIH VIH VIH VIH VIL VIL VIL VIL Iin Min 0.7•VL 2.0 1.7 0.75•VL - Typ 8 2 VA 0 Max 0.35•VL 0.8 0.7 0.25•VL ±10 - Units V V V V V V V V μA pF mA V V VOH VOL POWER AND THERMAL CHARACTERISTICS Parameters Power Supply Current - Normal Operation (Note 14) VA= 5.0 V VA= 3.3 V VLS = VLC =5.0 V (Note 15) VLS = VLC =3.3 V (Note 15) VLS = VLC = 5.0 V (Note 15) VLS = VLC = 3.3 V (Note 15) Power Supply Current - Power-Down State (Note 16) VA, VLS, VLC Power Dissipation - Normal Operation (Note 14) VA = VLC= VLS = 5.0 V VA = VLC= VLS = 3.3 V Power Dissipation - Power-Down State (Note 16) VA = VLC= VLS = 5.0 V VA = VLC= VLS = 3.3 V Power Supply Rejection Ratio (Note 17) (1 kHz) (60 Hz) Ipd 100 230 132 0.5 0.33 60 50 290 171 μA mW mW mW mW dB dB Symbol IA IA ILS ILS ILC ILC Min - Typ 28 24 4 2 14 14 Max 34 29 6 5 18 18 Units mA mA mA mA mA mA PSRR PSRR Notes: 14. Current consumption increases with increasing Fs within the range of a speed mode. Variance between speed modes is small. Typ and Max values are based on Fs = 48 kHz. 15. ILC measured with no external loading on pin 2 (SDA). 16. Power-down mode is defined as RST pin = Low with all clock and data lines held static. 17. Valid with the recommended capacitor values on VFILT, VQ, and VBIAS+ as shown in the typical connection diagram in Figure 10. 16 DS782F1 CS4349 3. TYPICAL CONNECTION DIAGRAM +3.3 V 0.1 µF *Optional for PopGuard Disable VLS *47 kΩ 18 VA + 10 µF + 10 µF VBIAS+ 17 8 POPGUARD(TSTO) VD_FILT Digital Audio Source 12 LRCK 10 SCLK 11 SDIN 6 0.1 µF + 10 µF +1.5 V to +3.3 V 0.1 µF 9 VLS AMUTEC 16 CS4349 5 VLC AOUTA+ 15 Single-ended Output Filter AOUTA +3.3 V 0.1 µF BMUTEC 21 AOUTB+ 22 Single-ended Output Filter AOUTB 24 RST µ C/ Mode Configuration 4 DIF1(SCL/CCLK) 3 DIF0(SDA/CDIN) 2 DEM(AD0/CS) 1 DIF2(AD1/CDOUT) GN D GN D VQ 20 + 3.3 µF TSTO 13 TSTO 14 TSTO 23 N.C. N.C. N.C. 7 19 Figure 10. Typical Connection Diagram DS782F1 17 CS4349 4. APPLICATIONS 4.1 Sample Rate Range and Oversampling Mode Detect The device operates in one of three oversampling modes based on the input sample rate. In Control Port Mode, the allowed sample rate range in each mode will depend on how the FM[1:0] bits are configured. In Stand-Alone Mode, the sample rate range will be according to Table 1. 4.1.1 Sample Rate Auto-Detect The Auto-Detect feature is enabled by default. In this state, the CS4349 will auto-detect the correct mode when the input sample rate (Fs), defined by the LRCK frequency, falls within one of the ranges shown in Table 1. Sample rates outside the specified range for each mode are not supported when Auto-Detect is enabled. Input Sample Rate (Fs) 30 kHz - 54 kHz 60 kHz - 108 kHz 120 kHz - 216 kHz Table 1. CS4349 Auto-Detect Mode Single-Speed Mode Double-Speed Mode Quad-Speed Mode In Control Port Mode, the Auto-Detect feature can be disabled by the Functional Mode (FM[1:0]) bits in the control port register 02h. In this state, the CS4349 will not auto-detect the correct mode based on the input sample rate (Fs). The operational mode must then be set manually according to one of the ranges referred to in Section 8.2.3. Sample rates outside the specified range for each mode are not supported. In Stand-Alone Mode, it is not possible to disable auto-detect of sample rates. 4.2 System Clocking The device requires external generation of the left/right (LRCK) and serial (SCLK) clocks. The left/right clock, defined also as the input sample rate (Fs). Refer to Section 4.3 for the required SCLK-to-LRCK timing associated with the selected digital interface format, and “Switching Specifications - Serial Audio Interface” on page 13 for the maximum allowed clock frequencies. 18 DS782F1 CS4349 4.3 Digital Interface Format The device will accept audio samples in 1 of 8 digital interface formats, as shown in Table 2 on page 24 for Stand-Alone Mode and Table 3 on page 29 for Control Port Mode. The desired serial audio interface format is selected via the DIF[2:0] bits in Control Port Mode (see Section 8.2.1), or the DIF[2:0] pins in Stand-Alone Mode (see Section 5.1). For illustrations of the required relationship between LRCK, SCLK and SDIN, see Figures 11-13. For all formats, SDIN is valid on the rising edge of SCLK. For more information about serial audio formats, refer to the Cirrus Logic Application Note AN282, The 2-Channel Serial Audio Interface: A Tutorial, available at www.cirrus.com. LRCK Left Channel Right Channel SCLK SDIN MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 11. Left-Justified up to 24-Bit Data LRCK Left Channel Right Channel SCLK SDIN MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 12. I²S, up to 24-Bit Data LRCK Left Channel Right Channel SCLK SDIN LSB MSB -1 -2 -3 -4 -5 +7 +6 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 -5 +7 +6 +5 +4 +3 +2 +1 LSB Figure 13. Right-Justified Data DS782F1 19 CS4349 4.3.1 Time-Division Multiplex (TDM) Mode Four TDM interface modes are available that allow the CS4349 to input stereo PCM data in one of 4 time “slots”. Figure 14 shows the serial port connections necessary to input 8-channel TDM data into four CS4349 devices and the corresponding DIF[2:0] pin or register-bit settings required for each CS4349. Figure 15 shows the TDM data format for each of the four CS4349 devices shown in Figure 14. . CS43491 DIF[2:0] = 100 CS43492 DIF[2:0] = 101 CS43493 DIF[2:0] = 110 CS43494 DIF[2:0] = 111 LRCK SCLK SDIN ILRCK ISCLK SDIN LRCK SCLK SDIN LRCK SCLK SDIN LRCK SCLK TDM_OUT TDM Source Figure 14. TDM Mode Connection Diagram 256 clks LRCK SCLK SDIN1 MSB Slot 1, ch A 32 clks MSB Slot 1, ch B 32 clks MSB Slot 2, ch A 32 clks MSB Slot 2, ch B 32 clks MSB Slot 3, ch A 32 clks MSB Slot 3, ch B 32 clks MSB Slot 4, ch A 32 clks MSB Slot 4, ch B 32 clks Data MSB LSB zero Figure 15. TDM Mode Timing 20 DS782F1 CS4349 4.4 De-Emphasis The device includes on-chip digital de-emphasis. Figure 16 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve scales proportionally with changes in sample rate, Fs. Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 16. De-Emphasis Curve Note: De-emphasis is only available in Single-Speed Mode. 4.5 Mute Control The mute control pins (AMUTEC and BMUTEC) go active during power-up initialization, reset, muting (see Section 8.4.3), and loss of LRCK. These pins are intended to be used as control for external mute circuits to prevent the clicks and pops that can occur in any single-ended single-supply system. Use of the mute control function is not mandatory but recommended for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle-channel noise and signal-to-noise ratios which are only limited by the external mute circuit. 4.6 4.6.1 Recommended Power-Up Sequence Stand-Alone Mode 1. Hold RST low until the power supplies and configuration pins are stable, and the serial and left/right clocks are fixed to the appropriate frequencies, as discussed in Section 4.2. In this state, the control port registers are reset to their default settings, VQ will remain low, and VBIAS will be connected to VA. 2. Bring RST high. The device will remain in a low power state with VQ low for approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). 3. The device will then initiate the power up sequence which lasts approximately 50 µs when the Popguard is disabled. If the Popguard is enabled, see Section 4.7 for a complete description of power-up timing. DS782F1 21 CS4349 4.6.2 Control Port Mode 1. Hold RST low until the power supply is stable and the left/right clock is fixed to the appropriate frequency, as discussed in Section 4.2. In this state, the control port is reset to its default settings, VQ will remain low, and VBIAS will be connected to VA. 2. Bring RST high. The device will remain in a low-power state with VQ low. 3. Perform a control port write to a valid register prior to the completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be loaded while keeping the PDN bit set to 1. 4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs when the Popguard is disabled. If the Popguard is enabled, see Section 4.7 for a complete description of power-up timing. 4.7 Popguard Transient Control The CS4349 uses a novel technique to minimize the effects of output transients during power-up and powerdown. This technology, when used with external DC-blocking capacitors in series with the audio outputs, minimizes the audio transients commonly produced by single-ended single-supply converters. It is activated inside the DAC when the RST pin is toggled and requires no other external control, aside from choosing the appropriate DC-blocking capacitors. 4.7.1 Power-Up When the device is initially powered-up, the audio outputs, AOUTA and AOUTB, are clamped to GND. Following a delay of approximately 1000 sample periods, each output begins to ramp toward the quiescent voltage. Approximately 10,000 LRCK cycles later, the outputs reach VQ and audio output begins. This gradual voltage ramping allows time for the external DC-blocking capacitors to charge to the quiescent voltage, minimizing audible power-up transients. 4.7.2 Power-Down To prevent audible transients at power-down, the device must first enter its power-down state. When this occurs, audio output ceases and the internal output buffers are disconnected from AOUTA and AOUTB. In their place, a soft-start current sink is substituted that allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to the device may be turned off, and the system is ready for the next power-on. 4.7.3 Discharge Time To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge before turning on the power or exiting the power-down state. If full discharge does not occur, a transient will occur when the audio outputs are initially clamped to GND. The time that the device must remain in the power-down state is related to the value of the DC-blocking capacitance and the output load. For example, with a 3.3 µF capacitor, the minimum power-down time will be approximately 0.4 seconds. 22 DS782F1 CS4349 4.8 Analog Output and Filtering The CS4349 requires a simple single-ended passive output design as shown in Figure 17. CS4349 3.3 µF AOUTx + + 560 Ω Analog Output 2200 pF 10 kΩ GND * See section 4.9 for ground connection details Figure 17. Passive Single-Ended Output Filter 4.9 Grounding and Power Supply Arrangements As with any high-resolution converter, the CS4349 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 10 shows the recommended power arrangements, with VA, VLC, and VLS connected to clean supplies. The use of split analog and digital ground planes is not recommended. However, if planes are split between digital ground and analog ground the GND pins of the CS4349 should be connected to the analog ground plane. All signals, especially clocks, should be kept away from the VBIAS, VFILT, and VQ pins in order to avoid unwanted coupling into the DAC. 4.9.1 Capacitor Placement Decoupling capacitors should be placed as close to the DAC as possible, with the low-value ceramic capacitor being the closest. To further minimize impedance, these capacitors should be located on the same layer as the DAC. If desired, all supply pins may be connected to the same supply, but a decoupling capacitor should still be placed on each supply pin. Note: All decoupling capacitors should be referenced to GND. The CDB4349 evaluation board demonstrates the optimum layout and power supply arrangements. DS782F1 23 CS4349 5. STAND-ALONE OPERATION 5.1 Serial Port Format Selection The desired serial audio format is selected with the DIF2, DIF1 and DIF0 pins. For an explanation of the required relationship between the LRCK, SCLK and SDIN, see Figures 11-13. For all formats, SDIN is valid on the rising edge of SCLK. TDM Mode requires the selection of which stereo pair time “slot” is used to output data as shown in Table 2 and Figure 15. DIF2 0 0 0 0 1 1 1 1 DIF1 0 0 1 1 0 0 1 1 DIF0 0 1 0 1 0 1 0 1 DESCRIPTION Left-Justified, up to 24-bit data I²S, up to 24-bit data Right-Justified, 16-bit data Right-Justified, 24-bit data TDM slot 0 TDM slot 1 TDM slot 2 TDM slot 3 FORMAT 0 1 2 3 4 5 6 7 FIGURE 12 11 13 13 15 15 15 15 Table 2. Digital Interface Format - Stand-Alone Mode 5.2 De-Emphasis Control When pulled to VLC, the DEM pin activates the 44.1 kHz de-emphasis filter. When pulled to GND, the DEM pin turns off the de-emphasis filter. 5.3 Popguard Transient Control In Stand-Alone Mode, Popguard is enabled by default. Popguard can be defeated in Stand-Alone Mode by placing a 47 kΩ resistor between POPGUARD(TSTO) and VLS. 24 DS782F1 CS4349 6. CONTROL PORT OPERATION The control port is used to load all the internal register settings (see ”Register Description” on page 29). The operation of the control port may be completely asynchronous with the audio sample rate. However, to avoid potential interference problems, the control port pins should remain static if no operation is required. The control port can operate in I²C or SPI mode. 6.1 MAP Auto Increment The device has a MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for consecutive writes or reads. If INCR is set to 1, MAP will auto increment after each byte is read or written, allowing block reads or writes of consecutive registers. 6.2 I²C Mode In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial control port clock, SCL (see Figure 18 for the clock to data relationship). There is no CS pin. AD1 and AD0 enable the user to alter the chip address (10010[AD1][AD0][R/W]) and should be tied to VLC or GND as required before powering-up the device. SPI Mode will be selected if the device ever detects a high-to-low transition on the AD0/CS pin after power-up. 6.2.1 I²C Write To write to the device, follow the procedure below while adhering to the control port Switching Specifications in ”Switching Characteristics - Control Port - I²C Format” on page 14. 1. Initiate a START condition to the I²C bus followed by the address byte. The upper five bits must be 10010. The sixth and seventh bit must match the settings of the AD1 and AD0 pins respectively, and the eighth must be 0 (the eighth bit of the address byte is the R/W bit). 2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This byte points to the register to be written. 3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by the MAP. 4. If the INCR bit (see Section 6.1) is set to 1, repeat the previous step until all the desired registers are written, then initiate a STOP condition to the bus. 5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate a repeated START condition and follow the procedure detailed from step 1. If no further writes to other registers are desired, initiate a STOP condition to the bus. 6.2.2 I²C Read To read from the device, follow the procedure below while adhering to the control port switching specifications in ”Switching Characteristics - Control Port - I²C Format” on page 14. 1. Initiate a START condition to the I²C bus followed by the address byte. The upper 5 bits must be 10010. The sixth and seventh bits must match the setting of the AD1 and AD0 pins, respectively, and the eighth must be 1. The eighth bit of the address byte is the R/W bit. 2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register pointed to by the MAP. The MAP register will contain the address of the last register written to the DS782F1 25 CS4349 MAP or the default address (see Section 6.4.2) if an I²C read is the first operation performed on the device. 3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK. 4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Continue providing a clock and issue an ACK after each byte until all the desired registers are read; then initiate a STOP condition to the bus. 5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write instructions, followed by step 1 of the I²C Read section. If no further reads from other registers are desired, initiate a STOP condition to the bus. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27 28 SCL CHIP ADDRESS MAP BYTE INC 6 ACK START 5 4 3 2 1 0 ACK 7 DATA 6 1 0 7 DATA +1 6 1 0 7 DATA +n 6 1 0 SDA 1 0 0 1 0 AD1 AD0 R/W ACK ACK STOP Figure 18. Control Port Timing, I²C Mode 6.3 SPI Mode In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK (see Figure 19 for the clock to data relationship). There are no AD0 or AD1 pins. Pin CS is the chip select signal and is used to control SPI writes to the control port. When the device detects a high-to-low transition on the AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the rising edge of CCLK. 6.3.1 SPI Write To write to the device, follow the procedure below while adhering to the control port switching specifications in ”Switching Characteristics - Control Port - SPI Format” on page 15. 1. Bring CS low. 2. The address byte on the CDIN pin must then be 10011110 (R/W = 0). 3. Write to the memory address pointer, MAP. This byte points to the register to be written. 4. Write the desired data to the register pointed to by the MAP. 5. If the INCR bit (see Section 6.1) is set to 1, repeat the previous step until all the desired registers are written, then bring CS high. 6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring CS high, and follow the procedure detailed from step 1. If no further writes to other registers are desired, bring CS high 26 DS782F1 CS4349 6.3.2 SPI Read To read from the device, follow the procedure below while adhering to the values specified in ”Switching Characteristics - Control Port - SPI Format” on page 15. 1. Bring CS low. 2. The address byte on the CDIN pin must then be 10011111 (R/W = 1). 3. CDOUT pin will then output the data from the register pointed to by the MAP, which is set during the SPI write operation. 4. If the INCR bit (see Section 6.1) is set to 1, keep CS low and continue providing clocks on CCLK to read from multiple consecutive registers. Bring CS high when reading is complete. 5. If the INCR bit is set to 0 and further SPI reads from other registers are desired, it is necessary to bring CS high, and follow the procedure detailed from step 1. If no further reads from other registers are desired, bring CS high. CS CCLK C H IP ADDRESS CDIN 1001111 R/W MAP MSB b y te 1 CDOUT High Impedance DATA LSB b y te n MSB LSB MSB LSB C H IP ADDRESS 1001111 R/W MAP = Memory Address Pointer, 8 bits, MSB first Figure 19. Control Port Timing, SPI Mode 6.4 Memory Address Pointer (MAP) 7 INCR 0 6 Reserved 0 5 Reserved 0 4 Reserved 0 3 MAP3 0 2 MAP2 0 1 MAP1 0 0 MAP0 0 6.4.1 INCR (Auto Map Increment Enable) Default = ‘0’ 0 - Disabled 1 - Enabled 6.4.2 MAP (Memory Address Pointer) Default = ‘0000’ DS782F1 27 CS4349 7. REGISTER QUICK REFERENCE Addr 1h 2h 3h Function default Mode Control default Volume, Mixing, and Inversion Control default 7 1 Reserved 0 VOLB=A 6 1 DIF2 0 INVERTA 5 1 DIF1 0 INVERTB 4 1 DIF0 0 Reserved 3 DeviceID0 DEM1 0 ATAPI3 2 RevID2 DEM0 0 ATAPI2 1 RevID1 FM1 0 ATAPI1 0 RevID0 FM0 0 ATAPI0 Device and RevID DeviceID4 DeviceID3 DeviceID2 DeviceID1 0 AMUTE 1 VOL7 0 VOL7 0 SZC1 1 PDN 0 0 Reserved 0 VOL6 0 VOL6 0 SZC0 0 Reserved 0 0 MUTEC A=B 0 VOL5 0 VOL5 0 RMP_UP 1 FREEZE 0 0 MUTE_A 0 VOL4 0 VOL4 0 RMP_DN 1 POPG_EN 1 1 MUTE_B 0 VOL3 0 VOL3 0 Reserved 0 Reserved 1 0 Reserved 0 VOL2 0 VOL2 0 FILT_SEL 0 Reserved 1 0 Reserved 0 VOL1 0 VOL1 0 Reserved 0 Reserved 0 1 Reserved 1 VOL0 0 VOL0 0 Reserved 1 Reserved 0 4h Mute Control default 5h Channel A Volume Control default Channel B Volume Control default Ramp and Filter Control default Misc. Control default 6h 7h 8h 28 DS782F1 CS4349 8. REGISTER DESCRIPTION ** All register access is R/W unless specified otherwise** 8.1 Device and Revision ID - Register 01h 6 Device3 1 5 Device2 1 4 Device1 1 3 Device0 2 Rev2 1 Rev1 0 Rev0 - 7 Device4 1 Function: This register is Read-Only. It is decoded as follows: Rev A B C2 Register 01h contents 1111,0000 1111,0001 1111,1111 8.2 Mode Control - Register 02h 6 DIF2 0 5 DIF1 0 4 DIF0 0 3 DEM1 0 2 DEM0 0 1 FM1 0 0 FM0 0 7 Reserved 0 8.2.1 Digital Interface Format (DIF[2:0]) Bits 6-4 Function: These bits select the interface format for the serial audio input. The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital Interface Format and the options are detailed in Figures 11-13. DIF2 0 0 0 0 1 1 1 1 DIF1 0 0 1 1 0 0 1 1 DIF0 0 1 0 1 0 1 0 1 Description Left-Justified, up to 24-bit data I²S, up to 24-bit data Right-Justified, 16-bit data Right-Justified, 24-bit data TDM slot 0 TDM slot 1 TDM slot 2 TDM slot 3 Table 3. Digital Interface Formats Format 0 (Default) 1 2 3 4 5 6 7 Figure 11 12 13 13 15 15 15 15 DS782F1 29 CS4349 8.2.2 De-Emphasis Control (DEM[1:0]) Bits 3-2 Default = 0 00 - No De-emphasis 01 - 44.1 kHz De-emphasis 10 - 48 kHz De-emphasis 11 - 32 kHz De-emphasis Function: Selects the appropriate digital filter to maintain the standard 15 μs/50 μs digital de-emphasis filter response at 32, 44.1 or 48 kHz sample rates. (See Figure 20) Note: Mode De-emphasis is only available in Single-Speed Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 20. De-Emphasis Curve 8.2.3 Functional Mode (FM[1:0]) Bits 1-0 Default = 00 00 - Auto speed mode detect 01 - Single-Speed Mode (30 to 54 kHz sample rates) 10 - Double-Speed Mode (50 to 108 kHz sample rates) 11 - Quad-Speed Mode (100 to 216 kHz sample rates) Function: Selects the required range of input sample rates or auto speed mode. 8.3 Volume Mixing and Inversion Control - Register 03h 6 INVERT_A 0 5 INVERT_B 0 4 Reserved 0 3 ATAPI3 1 2 ATAPI2 0 1 ATAPI1 0 0 ATAPI0 1 7 VOLB=A 0 8.3.1 Channel A Volume = Channel B Volume (VOLB=A) Bit 7 Function: When set to 0 (default), the AOUTA and AOUTB volume levels are independently controlled by the A and the B Channel Volume Control Bytes. When set to 1, the volume on both AOUTA and AOUTB are determined by the A Channel Attenuation and Volume Control Bytes, and the B Channel Bytes are ignored. 8.3.2 Invert Signal Polarity (INVERT_A) Bit 6 Function: When set to 1, this bit inverts the signal polarity of channel A. When set to 0 (default), this function is disabled. This function is only available for Left Justified, Right Justified 16, and Right Justified 24 data formats. 30 DS782F1 CS4349 8.3.3 Invert Signal Polarity (INVERT_B) Bit 5 Function: When set to 1, this bit inverts the signal polarity of channel B. When set to 0 (default), this function is disabled. This function is only available for Left Justified, Right Justified 16, and Right Justified 24 data formats. 8.3.4 ATAPI Channel Mixing and Muting (ATAPI[3:0]) Bits 3-0 Default = 1001 - AOUTA = aL, AOUTB = bR (Stereo) Function: The CS4349 implements the channel mixing functions of the ATAPI CD-ROM specification. Refer to Table 4 and Figure 21 for additional information. Left Channel Audio Data A Channel Volume Control MUTE AoutA Σ Σ Right Channel Audio Data B Channel Volume Control MUTE AoutB Figure 21. ATAPI Block Diagram ATAPI_A1 ATAPI_A0 ATAPI_B1 ATAPI_B0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 AOUTA MUTE MUTE MUTE MUTE aR aR aR aR AOUTB MUTE bR bL b[(L+R)/2] MUTE bR bL b[(L+R)/2] Table 4. ATAPI Decode DS782F1 31 CS4349 ATAPI_A1 ATAPI_A0 ATAPI_B1 ATAPI_B0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 AOUTA aL aL aL aL a[(L+R)/2] a[(L+R)/2] a[(L+R)/2] a[(L+R)/2] AOUTB MUTE bR bL b[(L+R)/2] MUTE bR bL b[(L+R)/2] Table 4. ATAPI Decode 8.4 Mute Control - Register 04h 6 Reserved 0 5 MUTEC A=B 0 4 MUTE_A 0 3 MUTE_B 0 2 Reserved 0 1 Reserved 0 0 Reserved 0 7 AMUTE 1 8.4.1 Auto-Mute (AMUTE) Bit 7 Function: When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is done independently for each channel. The quiescent voltage on the output will be retained, and the Mute Control pin will go active during the mute period. When set to 0, this function is disabled 8.4.2 AMUTEC = BMUTEC (MUTEC A=B) Bit 5 Function: When set to 0 (default), the AMUTEC and BMUTEC pins operate independently. When set to 1, the individual controls for AMUTEC and BMUTEC are internally connected through an AND gate prior to the output pins. Therefore, the external AMUTEC and BMUTEC pins go active only when the requirements for both AMUTEC and BMUTEC are valid. 8.4.3 Channel A Mute (MUTE_A) Bit 4 & Channel B Mute (MUTE_B) Bit 3 Function: When set to 1, the Digital-to-Analog converter output will mute. The quiescent voltage on the output will be retained. The muting function is effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register. The corresponding MUTEC pin will go active following any ramping due to the soft and zero cross function. When set to 0 (default), this function is disabled. 32 DS782F1 CS4349 8.5 Channel A & B Volume Control - Register 05h & 06h 7 VOL7 0 6 VOL6 0 5 VOL5 0 4 VOL4 0 3 VOL3 0 2 VOL2 0 1 VOL1 0 0 VOL0 0 Digital Volume Control (VOL[7:0]) Bits 7-0 Default = 00h (0 dB) Function: The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments from 0 to -127.5 dB. Volume settings are decoded as shown in Table 5. The volume changes are implemented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. The actual attenuation is determined by taking the decimal value of the volume register and multiplying by 6.02/12. Binary Code 00000000 00000001 00000110 11111111 Decimal Value 0 1 6 255 Volume Setting 0 dB -0.5 dB -3.0 dB -127.5 dB Table 5. Example Digital Volume Settings 8.6 Ramp and Filter Control - Register 07h 7 SZC1 1 6 SZC0 0 5 RMP_UP 1 4 RMP_DN 1 3 Reserved 0 2 FILT_SEL 0 1 Reserved 0 0 Reserved 1 8.6.1 Soft Ramp and Zero Cross Control (SZC[1:0]) Bits 7-6 Default = 10 SZC1 SZC0 0 0 1 1 0 1 0 1 Description Immediate Change Zero Cross Soft Ramp Soft Ramp on Zero Crossings Function: Immediate Change When Immediate Change is selected all level changes will take effect immediately in one step. Zero Cross Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. Soft Ramp PCM Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. DS782F1 33 CS4349 Soft Ramp and Zero Cross Soft Ramp and Zero Cross Enable dictate that signal level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. 8.6.2 Soft Volume Ramp-Up After Error (RMP_UP) Bit 5 Function: When set to 1 (default), an un-mute will be performed after executing a filter mode change, after LRCK is lost, and after changing the Functional Mode. This un-mute is affected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register. When set to 0, an immediate un-mute is performed in these instances. Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit. 8.6.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) Bit 4 Function: When set to 1 (default), a mute will be performed prior to executing a filter mode change. This mute is affected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register. When set to 0, an immediate mute is performed prior to executing a filter mode change. Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit. 8.6.4 Interpolation Filter Select (FILT_SEL) Bit 2 Function: When set to 0 (default), the Interpolation Filter has a fast roll-off. When set to 1, the Interpolation Filter has a slow roll-off. The specifications for each filter can be found in the ”Combined Interpolation & On-Chip Analog Filter Response” on page 12, and response plots can be found in Figures 24 through 29. 34 DS782F1 CS4349 8.7 Misc. Control - Register 08h 7 PDN 0 6 Reserved 0 5 FREEZE 0 4 POPG_EN 1 3 Reserved 1 2 Reserved 1 1 Reserved 0 0 Reserved 0 8.7.1 Power Down (PDN) Bit 7 Function: When set to 1, the entire device enters a low-power state, and the contents of the control registers is retained. The power-down bit defaults to ‘0’ on power-up. 8.7.2 Freeze Controls (FREEZE) Bit 5 Function: When set to 1, this function allows modifications to be made to the registers without the changes taking effect until FREEZE is set back to 0. To make multiple changes in the Control Port registers take effect simultaneously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit. When set to 0 (default), register changes take effect immediately. 8.7.3 Popguard Enable (POPG_EN) Bit 4 Function: When set to 1, (default) the Device initiates a ramping function as outlined in Section 4.7 on page 22. When set to 0, the outputs step to VQ upon release of PDN. DS782F1 35 CS4349 9. FILTER PLOTS 0 0 20 20 Amplitude (dB) Amplitude (dB) 40 40 60 60 80 80 100 100 120 120 0.4 0.5 0.6 0.7 0.8 Frequency(normalized to Fs) 0.9 1 0.4 0.5 0.6 0.7 0.8 Frequency(normalized to Fs) 0.9 1 Figure 22. Stopband Rejection (fast), all Modes 0.02 Figure 23. Stopband Rejection (slow), all Modes 0.02 0.015 0.015 0.01 0.01 0.005 Amplitude (dB) 0.005 Amplitude (dB) 0 0 0.005 0.005 0.01 0.01 0.015 0.015 0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.5 0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.5 Figure 24. Single-Speed (fast) Passband Detail 0.5 Figure 25. Single-Speed (slow) Passband Detail 0.5 0.4 0.4 0.3 0.3 0.2 0.2 Amplitude (dB) Amplitude (dB) 0.1 0.1 0 0 −0.1 −0.1 −0.2 −0.2 −0.3 −0.3 −0.4 −0.4 −0.5 −0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 Figure 26. Double-Speed (fast) Passband Detail Figure 27. Double-Speed (slow) Passband Detail 36 DS782F1 CS4349 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 Amplitude (dB) 0 Amplitude (dB) 0 0.05 0.1 0.15 0.2 Frequency (normalized to Fs) 0.25 0.3 0.1 0.1 0 −0.1 −0.1 −0.2 −0.2 −0.3 −0.3 −0.4 −0.4 −0.5 −0.5 0 0.05 0.1 0.15 0.2 Frequency (normalized to Fs) 0.25 0.3 Figure 28. Quad-Speed (fast) Passband Detail Figure 29. Quad-Speed (slow) Passband Detail DS782F1 37 CS4349 10.PARAMETER DEFINITIONS Total Harmonic Distortion + Noise (THD+N) The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Dynamic Range The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES171991, and the Electronic Industries Association of Japan, EIAJ CP-307. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Drift The change in gain value with temperature. Units in ppm/°C. Intra-Channel Phase Deviation The deviation from linear phase within a given channel. Inter-Channel Phase Deviation The difference in phase between channels. 38 DS782F1 CS4349 11.PACKAGE DIMENSIONS 24L TSSOP (4.4 mm BODY) PACKAGE DRAWING N D E11 A2 A1 SEATING PLANE A E b2 SIDE VIEW 123 ∝ L e END VIEW TOP VIEW INCHES DIM A A1 A2 b D E E1 e L µ MILLIMETERS MAX 0.043 0.006 0.037 0.012 0.311 0.256 0.177 -0.028 8° NOTE MAX 1.10 0.15 0.95 0.30 7.90 6.50 4.50 -0.70 8° 1 2,3 1 MIN -0.002 0.03346 0.00748 0.303 0.248 0.169 -0.020 0° NOM -0.004 0.0354 0.0096 0.307 0.2519 0.1732 0.026 BSC 0.024 4° MIN -0.05 0.85 0.19 7.70 6.30 4.30 -0.50 0° NOM --0.90 0.245 7.80 6.40 4.40 0.65 BSC 0.60 4° JEDEC #: MO-153 Controlling Dimension is Millimeters. 1. D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side. 2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition. 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips. THERMAL CHARACTERISTICS Parameters Package Thermal Resistance Single-Layer PCB Multi-Layer PCB Symbol θJA Min - Typ 70 105 Max - Units °C/Watt DS782F1 39 CS4349 12.ORDERING INFORMATION Product Description 192 kHz Stereo DAC with 1 Vrms Single Ended Output Package Pb-Free Grade Temp Range Container Rail Tape and Reel Rail Tape and Reel - Order# Commercial -40° to +85°C 24-TSSOP YES Automotive -40° to +105°C - CS4349-CZZ CS4349-CZZR CS4349-DZZ CS4349-DZZR CDB4349 CS4349 CDB4349 Evaluation Board for CS4349 13.REVISION HISTORY Release Changes Updated “DAC Analog Characteristics - Commercial (-CZZ)” on page 9. Updated “DAC Analog Characteristics - Automotive (-DZZ)” on page 10. Added Figure 3, Figure 4, and Figure 5 on page 11. Updated “Switching Specifications - Serial Audio Interface” on page 13. Updated “Digital Characteristics” on page 16. F1 Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. I²C is a registered trademark of Philips Semiconductor SPI is a trademark of Motorola, Inc. 40 DS782F1
CS4349
1. 物料型号: - 型号为CS4349,是一款由Cirrus Logic生产的192 kHz立体声DAC,具有1Vrms单端输出。

2. 器件简介: - CS4349是一个完整的立体声数字模拟转换系统,包括数字插值、5阶多比特ΔΣ数字模拟转换、数字去加重、音量控制、通道混合和模拟滤波。该架构的优势包括理想的线性度、没有由于电阻匹配误差引起的失真机制、随时间和温度变化的线性度漂移小、对时钟抖动的容忍度以及最少的外部组件需求。

3. 引脚分配: - AD1/CDOUT (1):地址位1/串行控制数据输出(I/O)- 在IPC模式下为芯片地址位1,或在SPI模式下为数据输出。 - AD0/CS (2):地址位0/芯片选择(输入)- 在I2C模式下为芯片地址位0,或在SPI模式下为芯片选择。 - SDA/CDIN (3):串行控制数据输入(I/O)- IC数据的输入/输出。SPI数据的输入。 - SCL/CCLK (4):串行控制端口时钟(输入)- 控制端口接口的串行时钟。

4. 参数特性: - 动态范围(24-bit A加权):98至101分贝。 - 总谐波失真加噪声(24-bit):-91至-85分贝。 - 电源供应电流(正常操作):当VA=5.0V时,28至34毫安。

5. 功能详解: - CS4349支持所有标准的数字音频接口格式,包括TDM。 - CS4349在电源开启和关闭时使用Popguard技术减少输出瞬态,与外部DC阻断电容器结合使用,以最小化单端单电源转换器产生的音频瞬态。 - 控制端口用于加载所有内部寄存器设置,可以独立于音频采样率操作。

6. 应用信息: - CS4349可用于商业(-40°C至+85°C)和汽车级(-40°C至+105°C)。 - 提供CDB4349客户演示板用于设备评估和实施建议。

7. 封装信息: - CS4349提供24引脚TSSOP封装,符合JEDEC标准MO-153。 - 封装的热阻特性:单层PCB为70°C/Watt,多层PCB为105°C/Watt。
CS4349 价格&库存

很抱歉,暂时无法提供与“CS4349”相匹配的价格&库存,您可以联系我们找货

免费人工找货