0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CS43L22

CS43L22

  • 厂商:

    CIRRUS(凌云)

  • 封装:

  • 描述:

    CS43L22 - Low Power, Stereo DAC w/Headphone & Speaker Amps - Cirrus Logic

  • 数据手册
  • 价格&库存
CS43L22 数据手册
Confidential Draft 10/7/08 CS43L22 Low Power, Stereo DAC w/Headphone & Speaker Amps FEATURES 98 dB Dynamic Range (A-wtd) 88 dB THD+N Headphone Amplifier - GND Centered – No DC-Blocking Capacitors Required – Integrated Negative Voltage Regulator – 2 x 23 mW into Stereo 16 Ω @ 1.8 V – 2 x 44 mW into Stereo 16 Ω @ 2.5V Stereo Analog Input Passthrough Architecture – – – – – – Analog Input Mixing Analog Passthrough with Volume Control Bass & Treble Tone Control, De-Emphasis PCM Input w/Independent Vol Control Master Digital Volume Control and Limiter Soft-Ramp & Zero-Cross Transitions Class D Stereo/Mono Speaker Amplifier No External Filter Required High Stereo Output Power at 10% THD+N – – – 2 x 1.00 W into 8 Ω @ 5.0 V 2 x 550 mW into 8 Ω @ 3.7 V 2 x 230 mW into 8 Ω @ 2.5 V High Mono Output Power at 10% THD+N – – – 1 x 1.90 W into 4 Ω @ 5.0 V 1 x 1.00 W into 4 Ω @ 3.7 V 1 x 350 mW into 4 Ω @ 2.5 V Digital Signal Processing Engine Direct Battery Powered Operation – Battery Level Monitoring & Compensation Programmable Peak-Detect and Limiter Beep Generator w/Full Tone Control – Tone Selections Across Two Octaves – Separate Volume Control – Programmable On and Off Time Intervals – Continuous, Periodic, One-Shot Beep Selections +1.65 V to +3.47 V Interface Supply 81% Efficiency at 800 mW Phase-Aligned PWM Output Reduces Idle Channel Current Spread Spectrum Modulation Low Quiescent Current +1.60 V to +5.25 V Battery Battery Level Monitoring & Compensation Pulse-Width Modulator + + - Serial Audio Port Serial Audio Input Level Shifter Stereo/Mono Full-Bridge Speaker Outputs Left HP/Line Output Right HP/Line Output Class D Amps Digital Volume, Mono Mix, Limiter, Bass, Treble Adjust Multi-bit ∆Σ DAC Reset Control Port Beep Generator Ground-Centered Amps I²C Control Σ Summing Amplifiers Σ -VHP +VHP Speaker/HP Switch +1.65 V to +2.63 V Headphone Supply Charge Pump +1.65 V to +2.63 V Digital Supply 1234 1234 Left Inputs Right Inputs +1.65 V to +2.63 V Analog Supply http://www.cirrus.com Copyright © Cirrus Logic, Inc. 2008 (All Rights Reserved) OCT '08 DS792F1 Confidential Draft 10/7/08 System Features 12, 24, and 27 MHz Master Clock Support in Addition to Typical Audio Clock Rates High Performance 24-bit Converters – – Multi-bit Delta Sigma Architecture Very Low 64Fs Oversampling Clock Reduces Power Consumption Stereo Analog Passthrough: 10 mW @ 1.8 V Stereo Playback: 14 mW @ 1.8 V 1.8 V to 2.5 V Digital & Analog 1.6 V to 5 V Class D Amplifier 1.8 V to 2.5 V Headphone Amplifier 1.8 V to 3.3 V Interface Logic DAC, Passthrough Amplifier, Headphone Amplifier, Speaker Amplifier Master or Slave Operation Quarter-Speed Mode - (i.e. allows 8 kHz Fs while maintaining a flat noise floor up to 16 kHz) 4 kHz to 96 kHz Sample Rates CS43L22 General Description The CS43L22 is a highly integrated, low power stereo DAC with headphone and Class D speaker amplifiers. The CS43L22 offers many features suitable for low power, portable system applications. The DAC output path includes a digital signal processing engine with various fixed function controls. Tone Control provides bass and treble adjustment of four selectable corner frequencies. Digital Volume controls may be configured to change on soft ramp transitions while the analog controls can be configured to occur on every zero crossing. The DAC also includes de-emphasis, limiting functions and a BEEP generator delivering tones selectable across a range of two full octaves. The stereo headphone amplifier is powered from a separate positive supply and the integrated charge pump provides a negative supply. This allows a ground-centered analog output with a wide signal swing and eliminates the need for external DC-blocking capacitors. The Class D stereo speaker amplifier does not require an external filter and provides the high efficiency amplification required by power sensitive portable applications. The speaker amplifier may be powered directly from a battery while the internal DC supply monitoring and compensation provides a constant gain level as the battery’s voltage decays. The CS43L22 accommodates analog routing of the analog input signal directly to the headphone amplifier. This feature is useful in applications that utilize an FM tuner where audio recovered over-the-air must be transmitted to the headphone amplifier directly. In addition to its many features, the CS43L22 operates from a low voltage analog and digital core making it ideal for portable systems that require extremely low power consumption in a minimal amount of space. The CS43L22 is available in a 40-pin QFN package in Commercial (-40 to +85 °C) grade. The CS43L22 Customer Demonstration board is also available for device evaluation and implementation suggestions. Please refer to “Ordering Information” on page 67 for complete ordering information. Low Power Operation – – – – – – – Variable Power Supplies Power Down Management Flexible Clocking Options – – – I²C® Control Port Operation Headphone/Speaker Detection Input Pop and Click Suppression Pin-Compatible w/CS42L52 Applications PDA’s Personal Media Players Portable Game Consoles 2 DS792F1 Confidential Draft 10/7/08 TABLE OF CONTENTS CS43L22 1. PIN DESCRIPTIONS .............................................................................................................................. 7 1.1 I/O Pin Characteristics ..................................................................................................................... 8 2. TYPICAL CONNECTION DIAGRAM ..................................................................................................... 9 3. CHARACTERISTIC AND SPECIFICATIONS ...................................................................................... 10 RECOMMENDED OPERATING CONDITIONS .................................................................................. 10 ABSOLUTE MAXIMUM RATINGS ...................................................................................................... 10 ANALOG OUTPUT CHARACTERISTICS .......................................................................................... 11 ANALOG PASSTHROUGH CHARACTERISTICS .............................................................................. 12 PWM OUTPUT CHARACTERISTICS ................................................................................................. 13 HEADPHONE OUTPUT POWER CHARACTERISTICS ..................................................................... 14 LINE OUTPUT VOLTAGE LEVEL CHARACTERISTICS .................................................................... 15 COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ............................. 15 SWITCHING SPECIFICATIONS - SERIAL PORT .............................................................................. 17 SWITCHING SPECIFICATIONS - I²C CONTROL PORT .................................................................... 18 DC ELECTRICAL CHARACTERISTICS .............................................................................................. 19 DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS .................................................... 19 POWER CONSUMPTION ................................................................................................................... 20 4. APPLICATIONS ................................................................................................................................... 21 4.1 Overview ........................................................................................................................................ 21 4.1.1 Basic Architecture ................................................................................................................. 21 4.1.2 Line Inputs ............................................................................................................................. 21 4.1.3 Line & Headphone Outputs ................................................................................................... 21 4.1.4 Speaker Driver Outputs ......................................................................................................... 21 4.1.5 Fixed Function DSP Engine .................................................................................................. 21 4.1.6 Beep Generator ..................................................................................................................... 21 4.1.7 Power Management .............................................................................................................. 21 4.2 DSP Engine .................................................................................................................................. 22 4.2.1 Beep Generator ..................................................................................................................... 23 4.2.2 Limiter .................................................................................................................................... 23 4.3 Analog Passthrough ....................................................................................................................... 25 4.4 Analog Outputs .............................................................................................................................. 26 4.5 PWM Outputs ................................................................................................................................. 27 4.5.1 Mono Speaker Output Configuration ..................................................................................... 28 4.5.2 VP Battery Compensation ..................................................................................................... 28 4.5.2.1 Maintaining a Desired Output Level ........................................................................... 28 4.6 Serial Port Clocking ....................................................................................................................... 30 4.7 Digital Interface Formats ................................................................................................................ 31 4.7.1 DSP Mode ............................................................................................................................. 32 4.8 Initialization .................................................................................................................................... 32 4.9 Recommended Power-Up Sequence ............................................................................................ 32 4.10 Recommended Power-Down Sequence ...................................................................................... 32 4.11 Required Initialization Settings ..................................................................................................... 33 5. CONTROL PORT OPERATION ........................................................................................................... 34 5.0.1 I²C Control ............................................................................................................................. 34 5.0.2 Memory Address Pointer (MAP) ............................................................................................ 35 5.0.2.1 Map Increment (INCR) ............................................................................................... 35 6. REGISTER QUICK REFERENCE ........................................................................................................ 36 7. REGISTER DESCRIPTION .................................................................................................................. 38 7.1 Chip I.D. and Revision Register (Address 01h) (Read Only) ......................................................... 38 7.1.1 Chip I.D. (Read Only) ............................................................................................................ 38 7.1.2 Chip Revision (Read Only) .................................................................................................... 38 7.2 Power Control 1 (Address 02h) ...................................................................................................... 38 DS792F1 3 Confidential Draft 10/7/08 CS43L22 7.2.1 Power Down .......................................................................................................................... 38 7.3 Power Control 2 (Address 04h) ...................................................................................................... 39 7.3.1 Headphone Power Control .................................................................................................... 39 7.3.2 Speaker Power Control ......................................................................................................... 39 7.4 Clocking Control (Address 05h) ..................................................................................................... 39 7.4.1 Auto-Detect ........................................................................................................................... 39 7.4.2 Speed Mode .......................................................................................................................... 40 7.4.3 32kHz Sample Rate Group ................................................................................................... 40 7.4.4 27 MHz Video Clock .............................................................................................................. 40 7.4.5 Internal MCLK/LRCK Ratio ................................................................................................... 40 7.4.6 MCLK Divide By 2 ................................................................................................................. 41 7.5 Interface Control 1 (Address 06h) .................................................................................................. 41 7.5.1 Master/Slave Mode ............................................................................................................... 41 7.5.2 SCLK Polarity ........................................................................................................................ 41 7.5.3 DSP Mode ............................................................................................................................. 41 7.5.4 DAC Interface Format ........................................................................................................... 41 7.5.5 Audio Word Length ................................................................................................................ 42 7.6 Interface Control 2 (Address 07h) .................................................................................................. 42 7.6.1 SCLK equals MCLK .............................................................................................................. 42 7.6.2 Speaker/Headphone Switch Invert ........................................................................................ 42 7.7 Passthrough x Select: PassA (Address 08h), PassB (Address 09h) ............................................. 43 7.7.1 Passthrough Input Channel Mapping .................................................................................... 43 7.8 Analog ZC and SR Settings (Address 0Ah) ................................................................................... 43 7.8.1 Ch. x Analog Soft Ramp ........................................................................................................ 43 7.8.2 Ch. x Analog Zero Cross ....................................................................................................... 43 7.9 Passthrough Gang Control (Address 0Ch) .................................................................................... 43 7.9.1 Passthrough Channel B=A gang Control .............................................................................. 43 7.10 Playback Control 1 (Address 0Dh) ............................................................................................... 44 7.10.1 Headphone Analog Gain ..................................................................................................... 44 7.10.2 Playback Volume Setting B=A ............................................................................................ 44 7.10.3 Invert PCM Signal Polarity .................................................................................................. 44 7.10.4 Master Playback Mute ......................................................................................................... 44 7.11 Miscellaneous Controls (Address 0Eh) ........................................................................................ 45 7.11.1 Passthrough Analog ............................................................................................................ 45 7.11.2 Passthrough Mute ............................................................................................................... 45 7.11.3 Freeze Registers ................................................................................................................. 45 7.11.4 HP/Speaker De-Emphasis .................................................................................................. 45 7.11.5 Digital Soft Ramp ................................................................................................................ 45 7.11.6 Digital Zero Cross ................................................................................................................ 46 7.12 Playback Control 2 (Address 0Fh) ............................................................................................... 46 7.12.1 Headphone Mute ................................................................................................................. 46 7.12.2 Speaker Mute ...................................................................................................................... 46 7.12.3 Speaker Volume Setting B=A .............................................................................................. 46 7.12.4 Speaker Channel Swap ....................................................................................................... 46 7.12.5 Speaker MONO Control ...................................................................................................... 47 7.12.6 Speaker Mute 50/50 Control ............................................................................................... 47 7.13 Passthrough x Volume: PASSAVOL (Address 14h) & PASSBVOL (Address 15h) .................... 47 7.13.1 Passthrough x Volume ........................................................................................................ 47 7.14 PCMx Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh) ................................................... 48 7.14.1 PCM Channel x Mute .......................................................................................................... 48 7.14.2 PCM Channel x Volume ...................................................................................................... 48 7.15 Beep Frequency & On Time (Address 1Ch) ................................................................................ 48 7.15.1 Beep Frequency .................................................................................................................. 48 7.15.2 Beep On Time ..................................................................................................................... 49 4 DS792F1 Confidential Draft 10/7/08 CS43L22 7.16 Beep Volume & Off Time (Address 1Dh) ..................................................................................... 49 7.16.1 Beep Off Time ..................................................................................................................... 49 7.16.2 Beep Volume ....................................................................................................................... 50 7.17 Beep & Tone Configuration (Address 1Eh) .................................................................................. 50 7.17.1 Beep Configuration .............................................................................................................. 50 7.17.2 Beep Mix Disable ................................................................................................................ 50 7.17.3 Treble Corner Frequency .................................................................................................... 51 7.17.4 Bass Corner Frequency ...................................................................................................... 51 7.17.5 Tone Control Enable ........................................................................................................... 51 7.18 Tone Control (Address 1Fh) ........................................................................................................ 51 7.18.1 Treble Gain .......................................................................................................................... 51 7.18.2 Bass Gain ............................................................................................................................ 52 7.19 Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h) ....................................... 52 7.19.1 Master Volume Control ........................................................................................................ 52 7.20 Headphone Volume Control: HPA (Address 22h) & HPB (Address 23h) .................................... 52 7.20.1 Headphone Volume Control ................................................................................................ 52 7.21 Speaker Volume Control: SPKA (Address 24h) & SPKB (Address 25h) ..................................... 53 7.21.1 Speaker Volume Control ..................................................................................................... 53 7.22 PCM Channel Swap (Address 26h) ............................................................................................. 53 7.22.1 PCM Channel Swap ............................................................................................................ 53 7.23 Limiter Control 1, Min/Max Thresholds (Address 27h) ................................................................. 54 7.23.1 Limiter Maximum Threshold ................................................................................................ 54 7.23.2 Limiter Cushion Threshold .................................................................................................. 54 7.23.3 Limiter Soft Ramp Disable ................................................................................................... 54 7.23.4 Limiter Zero Cross Disable .................................................................................................. 55 7.24 Limiter Control 2, Release Rate (Address 28h) ........................................................................... 55 7.24.1 Peak Detect and Limiter ...................................................................................................... 55 7.24.2 Peak Signal Limit All Channels ........................................................................................... 55 7.24.3 Limiter Release Rate ........................................................................................................... 55 7.25 Limiter Attack Rate (Address 29h) ............................................................................................... 56 7.25.1 Limiter Attack Rate .............................................................................................................. 56 7.26 Status (Address 2Eh) (Read Only) .............................................................................................. 56 7.26.1 Serial Port Clock Error (Read Only) .................................................................................... 56 7.26.2 DSP Engine Overflow (Read Only) ..................................................................................... 56 7.26.3 PCMx Overflow (Read Only) ............................................................................................... 57 7.27 Battery Compensation (Address 2Fh) .......................................................................................... 57 7.27.1 Battery Compensation ......................................................................................................... 57 7.27.2 VP Monitor ........................................................................................................................... 57 7.27.3 VP Reference ...................................................................................................................... 58 7.28 VP Battery Level (Address 30h) (Read Only) .............................................................................. 58 7.28.1 VP Voltage Level (Read Only) ............................................................................................ 58 7.29 Speaker Status (Address 31h) (Read Only) ................................................................................ 58 7.29.1 Speaker Current Load Status (Read Only) ......................................................................... 58 7.29.2 SPKR/HP Pin Status (Read Only) ....................................................................................... 59 7.30 Charge Pump Frequency (Address 34h) ..................................................................................... 59 7.30.1 Charge Pump Frequency .................................................................................................... 59 8. ANALOG PERFORMANCE PLOTS .................................................................................................... 60 8.1 Headphone THD+N versus Output Power Plots ............................................................................ 60 9. EXAMPLE SYSTEM CLOCK FREQUENCIES .................................................................................... 62 9.1 Auto Detect Enabled ................................................................................................................... 62 9.2 Auto Detect Disabled ................................................................................................................... 62 10. PCB LAYOUT CONSIDERATIONS ................................................................................................... 63 10.1 Power Supply, Grounding ............................................................................................................ 63 10.2 QFN Thermal Pad ........................................................................................................................ 63 DS792F1 5 Confidential Draft 10/7/08 CS43L22 11. DIGITAL FILTER PLOTS ................................................................................................................... 64 12. PARAMETER DEFINITIONS .............................................................................................................. 65 13. PACKAGE DIMENSIONS .................................................................................................................. 66 THERMAL CHARACTERISTICS ......................................................................................................... 66 14. ORDERING INFORMATION .............................................................................................................. 67 15. REFERENCES .................................................................................................................................... 67 16. REVISION HISTORY .......................................................................................................................... 67 LIST OF FIGURES Figure 1. Typical Connection Diagram ........................................................................................................ 9 Figure 2. Headphone Output Test Load .................................................................................................... 15 Figure 3. Serial Audio Interface Timing ..................................................................................................... 17 Figure 4. Control Port Timing - I²C ............................................................................................................ 18 Figure 5. DSP Engine Signal Flow ............................................................................................................ 22 Figure 6. Beep Configuration Options ....................................................................................................... 23 Figure 7. Peak Detect & Limiter ................................................................................................................ 24 Figure 8. Analog Passthrough Signal Flow ............................................................................................... 25 Figure 9. Analog Outputs .......................................................................................................................... 26 Figure 10. PWM Output Stage .................................................................................................................. 27 Figure 11. Battery Compensation ............................................................................................................. 29 Figure 12. I²S Format ................................................................................................................................ 31 Figure 13. Left-Justified Format ................................................................................................................ 31 Figure 14. Right-Justified Format\ ............................................................................................................. 31 Figure 15. DSP Mode Format) .................................................................................................................. 32 Figure 16. Control Port Timing, I²C Write .................................................................................................. 34 Figure 17. Control Port Timing, I²C Read .................................................................................................. 34 Figure 18. THD+N vs. Output Power per Channel at 1.8 V (16 Ω load) ................................................... 60 Figure 19. THD+N vs. Output Power per Channel at 2.5 V (16 Ω load) ................................................... 60 Figure 20. THD+N vs. Output Power per Channel at 1.8 V (32 Ω load) ................................................... 61 Figure 21. THD+N vs. Output Power per Channel at 2.5 V (32 Ω load) ................................................... 61 Figure 22. Passband Ripple ...................................................................................................................... 64 Figure 23. Stopband .................................................................................................................................. 64 Figure 24. DAC Transition Band ............................................................................................................... 64 Figure 25. Transition Band (Detail) ........................................................................................................... 64 6 DS792F1 Confidential Draft 10/7/08 1. PIN DESCRIPTIONS RESET SPKR/HP CS43L22 MCLK LRCK SDIN SCLK DGND 35 TSTO VD 34 40 38 39 37 36 33 VL 32 31 SDA SCL AD0 SPKR_OUTA+ VP SPKR_OUTASPKR_OUTB+ VP SPKR_OUTB-VHPFILT 1 2 3 4 5 6 7 8 9 10 12 14 16 17 18 19 11 13 15 20 30 29 28 27 AIN1B AIN1A AFILTB AFILTA AIN2B AIN2A AIN3B AIN3A AIN4B AIN4A GND/Thermal Pad 26 25 Top-Down (Through-Package) View 40-Pin QFN Package 24 23 22 21 HP/LINE_OUTA AGND HP/LINE_OUTB FLYN FILT+ VQ VA Pin Name SDA SCL AD0 SPKR_OUTA+ SPKR_OUTASPKR_OUTB+ SPKR_OUTBVP -VHPFILT FLYN FLYP +VHP HP/LINE_OUTB, A VA # 1 2 3 4 6 7 9 5 8 10 Pin Description Serial Control Data (Input/Output) - SDA is a data I/O in I²C Mode. Serial Control Port Clock (Input) - Serial clock for the serial control port. Address Bit 0 (I²C) (Input) - AD0 is a chip address pin in I²C Mode; PWM Speaker Output (Output) - Full-bridge amplified PWM speaker outputs. Power for PWM Drivers (Input) - Power supply for the PWM output driver stages. Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge pump that provides the negative rail for the headphone/line amplifiers. 11 Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s flying capacitor. 12 Charge Pump Cap Positive Node (Output) - Positive node for the inverting charge pump’s flying capacitor. 13 Positive Analog Power for Headphone (Input) - Positive voltage rail and power for the internal headphone amplifiers and inverting charge pump. 14,15 Headphone/Line Audio Output (Output) - Stereo headphone or line level analog outputs. 16 Analog Power (Input) - Positive power for the internal analog section. DS792F1 TSTO +VHP FLYP 7 Confidential Draft 10/7/08 AGND FILT+ VQ TSTO AIN4A,B AIN3A,B AIN2A,B AIN1A,B AFILTA,AFILTB SPKR/HP RESET VL VD DGND MCLK SCLK SDIN LRCK GND/Thermal Pad 17 18 19 20,36 CS43L22 Analog Ground (Input) - Ground reference for the internal analog section. Positive Voltage Reference (Output) - Filter connection for the internal sampling circuits. Quiescent Voltage (Output) - Filter connection for the internal quiescent voltage. Test Out (Output) - This pin is an output used for test purposes only and must be left “floating” (no connection external to the pin). 21,22 23,24 Line-Level Analog Inputs (Input) - Single-ended stereo line-level analog inputs. 25,26 29,30 27,28 Anti-alias Filter Connection (Output) - Anti-alias filter connection for analog passthrough mode. 31 Speaker/Headphone Switch (Input) - Powers down the left and/or right channel of the speaker and/or headphone outputs. 32 Reset (Input) - The device enters a low power mode when this pin is driven low. 33 Digital Interface Power (Input) - Determines the required signal level for the serial audio interface and host control port. 34 Digital Power (Input) - Positive power for the internal digital section. 35 Digital Ground (Input) - Ground reference for the internal digital section. 37 Master Clock (Input) - Clock source for the delta-sigma modulators. 38 Serial Clock (Input/Output) - Serial clock for the serial audio interface. 39 Serial Audio Data Input (Input) - Input for two’s complement serial audio data. 40 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio data line. Ground reference for PWM power FETs and charge pump; thermal relief pad for optimized heat dissipation. 1.1 I/O Pin Characteristics Input and output levels and associated power supply voltage are shown in the table below. Logic levels should not exceed the corresponding power supply voltage. Power Supply VL Pin Name RESET SCL SDA MCLK LRCK SCLK SDIN SPKR/HP SPKR_OUTA+ SPKR_OUTASPKR_OUTB+ SPKR_OUTB- I/O Input Input Input/ Output Input Input/ Output Input/ Output Input Input Output Output Output Output Internal Connections Weak Pullup (~1 MΩ) Weak Pullup (~1 MΩ) - Driver 1.65 V - 3.47 V, CMOS/Open Drain 1.65 V - 3.47 V, CMOS 1.65 V - 3.47 V, CMOS 1.6 V - 5.25 V Power MOSFET 1.6 V - 5.25 V Power MOSFET 1.6 V - 5.25 V Power MOSFET 1.6 V - 5.25 V Power MOSFET Receiver 1.65 V - 3.47 V, with Hysteresis 1.65 V - 3.47 V, with Hysteresis 1.65 V - 3.47 V, with Hysteresis 1.65 V - 3.47 V 1.65 V - 3.47 V 1.65 V - 3.47 V 1.65 V - 3.47 V 1.65 V - 2.63 V - VA VP 8 DS792F1 Confidential Draft 10/7/08 2. TYPICAL CONNECTION DIAGRAM +1.8 V to +2.5 V 1 µF 0.1 µF 0.1 µF 0.1 µF 1 µF See Note 4 CS43L22 +1.8 V to +2.5 V VD VA +VHP 47 kΩ Line Level Out Left & Right 0.022 µF Note 1 1 µF ** FLYP FLYN HP/LINE_OUTB HP/LINE_OUTA 51.1 Ω 51.1 Ω 0.022 µF Headphone Out Left & Right Note 2 -VHPFILT 1 µF ** SPKR/HP CS43L22 VP 0.1 µF 10 µF +1.6 V to Stereo Speakers +5 V SPKR_OUTA+ SPKR_OUTAVP 0.1 µF AD0 MCLK SCLK LRCK Digital Audio Processor SDIN RESET SCL SDA SPKR_OUTB+ SPKR_OUTB- AIN1A 100 Ω ** 1 µF Left 1 100 kΩ 100 kΩ Analog Input 1 Right 1 AIN1B 100 Ω ** 1 µF AIN2A 100 Ω 2 kΩ 2 kΩ ** 1 µF 100 kΩ 100 kΩ 1 µF Left 2 Analog Input 2 Right 2 +1.8 V to +3.3 V 0.1 µF VL AIN2B 100 Ω ** AIN3A 100 Ω ** 1 µF 100 kΩ 100 kΩ 1 µF Left 3 Analog Input 3 Right 3 AIN3B Notes: 1. Recommended values for the default charge pump switching frequency. The required capacitance follows an inverse relationship with the charge pump’s switching frequency. When increasing the switching frequency, the capacitance may decrease; when lowering the switching frequency, the capacitance must increase. 2. Larger capacitance reduces the ripple on the internal amplifier’s supply. This may reduce the distortion at higher output power levels. 3. Additional bulk capacitance may be added to improve PSRR at low frequencies. 4. Series resistance in the path of the power supplies must be avoided. Any voltage drop on VHP will directly impact the negative charge pump supply (-VHPFILT) and clip the audio output. 100 Ω ** AIN4A 100 Ω ** 1 µF 100 kΩ 100 kΩ 1 µF Left 4 Analog Input 4 Right 4 AIN4B 100 Ω ** Note 3 AGND TSTO TSTO AFILTA AFILTB VQ FILT+ DGND * Capacitors must be C0G or equivalent ** Low ESR, X7R/X5R dielectric capacitors. * 150 pF * 150 pF 1 µF 10 µF Figure 1. Typical Connection Diagram DS792F1 9 Confidential Draft 10/7/08 3. CHARACTERISTIC AND SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS AGND=DGND=0 V, all voltages with respect to ground. CS43L22 Parameters DC Power Supply Analog Headphone Amplifier Speaker Amplifier Digital Serial/Control Port Interface Ambient Temperature Symbol VA +VHP VP VD VL TA Min 1.65 1.65 1.60 1.65 1.65 -40 Max 2.63 2.63 5.25 2.63 3.47 +85 Units V V V V V °C Commercial ABSOLUTE MAXIMUM RATINGS AGND = DGND = 0 V; all voltages with respect to ground. Parameters DC Power Supply Analog Speaker Digital Serial/Control Port Interface (Note 1) (Note 2) (Note 2) (Note 2) Symbol VA, VHP VP VD VL Iin VIN VIN VIN Min -0.3 -0.3 -0.3 -0.3 AGND-0.7 AGND-0.3 -VHP - 0.3 -0.3 -50 -65 Max 3.0 5.5 3.0 4.0 ±10 VA+0.7 VA+0.3 +VHP + 0.3 VL+ 0.3 +115 +150 Units V V V V mA V Input Current Analog Input Voltage External Voltage Applied to Analog Input External Voltage Applied to Analog Output External Voltage Applied to Digital Input Ambient Operating Temperature (power applied) Storage Temperature V V V °C °C VIND TA Tstg WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Notes: 1. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up. 2. The maximum over/under voltage is limited by the input current. 10 DS792F1 Confidential Draft 10/7/08 ANALOG OUTPUT CHARACTERISTICS CS43L22 Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA; TA = +25°C; Sample Frequency = 48 kHz; Measurement bandwidth is 20 Hz to 20 kHz; Test load RL = 10 kΩ, CL = 10 pF for the line output (see Figure 2); Test load RL = 16 Ω, CL = 10 pF (see Figure 2) for the headphone output; HP_GAIN[2:0] = 011. Parameters (Note 3) RL = 1 0 k Ω Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit A-weighted unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB VA = 2.5 V Min Typ Max VA = 1.8 V Min Typ Max Unit 92 89 - 98 95 96 93 -86 -75 -35 -86 -73 -33 -80 -29 - 89 86 - 95 92 93 90 -88 -72 -32 -88 -70 -30 -82 -26 - dB dB dB dB dB dB dB dB dB dB 16-Bit RL = 1 6 Ω Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit A-weighted unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB 92 89 98 95 96 93 -75 -75 -35 -75 -73 -33 -69 -29 89 86 95 92 93 90 -75 -72 -32 -75 -70 -30 -69 -26 dB dB dB dB dB dB dB dB dB dB 16-Bit Other Characteristics for RL = 16 Ω or 10 kΩ Output Parameters Modulation Index (MI) 0.6787 0.6787 V/V (Note 4) Analog Gain Multiplier (G) 0.6047 0.6047 V/V Full-scale Output Voltage (2•G•MI•VA) (Note 4) Refer to Table “Headphone Output Power CharacterisVpp tics” on page 14 Full-scale Output Power (Note 4) Refer to Table “Headphone Output Power Characteristics” on page 14 Interchannel Isolation (1 kHz) 16 Ω 80 80 dB 10 kΩ 95 93 dB Speaker Amp to HP Amp Isolation 80 80 dB Interchannel Gain Mismatch 0.1 0.25 0.1 0.25 dB Gain Drift ±100 ±100 ppm/°C AC-Load Resistance (RL) (Note 5) 16 16 Ω Load Capacitance (CL) (Note 5) 150 150 pF 3. One-half LSB of triangular PDF dither is added to data. 4. Full-scale output voltage and power is determined by the gain setting, G, in register “Headphone Analog Gain” on page 44. High gain settings at certain VA and VHP supply levels may cause clipping when the audio signal approaches full-scale, maximum power output, as shown in Figures 18 - 21 on page 61. DS792F1 11 Confidential Draft 10/7/08 CS43L22 5. See Figure 2. RL and CL reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp's stability and signal integrity. In this circuit topology, CL will effectively move the band-limiting pole of the amp in the output stage. Increasing this value beyond the recommended 150 pF can cause the internal op-amp to become unstable. ANALOG PASSTHROUGH CHARACTERISTICS Test Conditions (unless otherwise specified): Input sine wave (relative to full-scale): 1 kHz through passive input filter; Passthrough Amplifier and HP/Line Gain = 0 dB; All Supplies = VA; TA = +25°C; Sample Frequency = 48 kHz; Measurement Bandwidth is 20 Hz to 20 kHz. Parameters Analog In to HP/Line Amp RL = 10 kΩ Dynamic Range Total Harmonic Distortion + Noise A-weighted unweighted -1 dBFS -20 dBFS -60 dBFS Min VA = 2.5 V Typ Max Min VA = 1.8 V Typ Max Unit Full-scale Input Voltage Full-scale Output Voltage Passband Ripple RL = 16 Ω Dynamic Range Total Harmonic Distortion + Noise A-weighted unweighted -1 dBFS -20 dBFS -60 dBFS - -96 -93 -70 -73 -33 0.91•VA 0.84•VA 0/-0.3 -96 -93 -70 -73 -33 0.91•VA 0.84•VA 32 0/-0.3 - - -94 -91 -70 -71 -31 0.91•VA 0.84•VA 0/-0.3 -94 -91 -70 -71 -31 0.91•VA 0.84•VA 17 0/-0.3 - dB dB dB dB dB Vpp Vpp dB dB dB dB dB dB Vpp Vpp mW dB Full-scale Input Voltage Full-scale Output Voltage Output Power Passband Ripple 12 DS792F1 Confidential Draft 10/7/08 PWM OUTPUT CHARACTERISTICS CS43L22 Test conditions (unless otherwise specified): Input test signal is a full scale 997 Hz signal; MCLK = 12.2880 MHz; Measurement Bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 8 Ω for stereo full-bridge, RL = 4 Ω for mono parallel full-bridge; VD = VL = VA = VHP = 1.8V; PWM Modulation Index of 0.85; PWM Switch Rate = 384 kHz. Parameters (Note 7) VP = 5.0 V Power Output per Channel Stereo Full-Bridge Mono Parallel Full-Bridge Symbol PO Conditions Min Typ Max Units THD+N < 10% THD+N < 1% THD+N < 10% THD+N < 1% PO = 0 dBFS = 0.8W PO = -3 dBFS = 0.75 W PO = 0 dBFS = 1.5 W PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted PO THD+N < 10% THD+N < 1% THD+N < 10% THD+N < 1% PO = 0 dBFS = 0.43 W PO = -3 dBFS = 0.41 W PO = 0 dBFS = 0.81 W PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted PO THD+N < 10% THD+N < 1% THD+N < 10% THD+N < 1% PO = 0 dBFS = 0.18 W PO = -3 dBFS = 0.17 W PO = 0 dBFS = 0.35 W PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted PO = -60 dBFS, A-Weighted PO = -60 dBFS, Unweighted VP = 5.0V, Id = 0.5 A VP = 3.7V, Id = 0.5 A - 1.00 0.80 1.90 1.50 0.52 0.10 0.50 91 88 91 88 - Wrms Wrms Wrms Wrms % % % dB dB dB dB Total Harmonic Distortion + Noise THD+N Stereo Full-Bridge Mono Parallel Full-Bridge Dynamic Range Stereo Full-Bridge Mono Parallel Full-Bridge VP = 3.7 V Power Output per Channel Stereo Full-Bridge Mono Parallel Full-Bridge Total Harmonic Distortion + Noise THD+N Stereo Full-Bridge Mono Parallel Full-Bridge Dynamic Range Stereo Full-Bridge Mono Parallel Full-Bridge VP =2.5 V Power Output per Channel Stereo Full-Bridge Mono Parallel Full-Bridge Total Harmonic Distortion + Noise THD+N Stereo Full-Bridge Mono Parallel Full-Bridge Dynamic Range Stereo Full-Bridge Mono Parallel Full-Bridge MOSFET On Resistance MOSFET On Resistance RDS(ON) RDS(ON) DR DR DR - 0.55 0.45 1.00 0.84 0.54 0.09 0.45 91 88 95 92 - Wrms Wrms Wrms Wrms % % % dB dB dB dB - 0.23 0.19 0.44 0.35 0.50 0.08 0.43 91 88 94 91 600 640 - Wrms Wrms Wrms Wrms % % % dB dB dB dB mΩ mΩ DS792F1 13 Confidential Draft 10/7/08 Parameters (Note 7) MOSFET On Resistance Efficiency Output Operating Peak Current VP Input Current During Reset CS43L22 Min - Symbol RDS(ON) η IPC IVP Conditions VP = 2.5V, Id = 0.5 A VP = 5.0 V, PO = 2 x 0.8 W, RL = 8Ω RESET, pin 32, is held low Typ 760 81 0.8 Max 1.5 5.0 Units mΩ % A µA 6. The PWM driver should be used in captive speaker systems only. 7. Optimal PWM performance is achieved when MCLK > 12 MHz. HEADPHONE OUTPUT POWER CHARACTERISTICS Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; Sample Frequency = 48 kHz; Measurement Bandwidth is 20 Hz to 20 kHz; Test load RL = 16 Ω, CL = 10 pF (see Figure 2); “Required Initialization Settings” on page 33 written on power up. Parameters Min AOUTx Power Into RL = 16 Ω HP_GAIN[2:0] 000 001 010 011 (default) 100 101 Analog Gain (G) 0.3959 0.4571 0.5111 0.6047 0.7099 0.8399 VHP 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V - VA = 2.5V Typ Max Min VA = 1.8V Typ Unit Max 110 111 1.0000 1.1430 7 7 10 10 12 12 17 17 23 23 (Note 4) See Figure 18 on page 60 32 (Note 4, 8) See Figures 18 and 19 on page 60 14 14 19 19 23 23 (Note 8) 32 (Note 8) 44 - mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms mWrms 14 DS792F1 Confidential Draft 10/7/08 CS43L22 8. VHP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the DAC may not achieve the full THD+N performance at full-scale output voltage and power. AOUTx 51 Ω 0.022 µF AGND C L R L Figure 2. Headphone Output Test Load LINE OUTPUT VOLTAGE LEVEL CHARACTERISTICS Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 10 kΩ, CL = 10 pF (see Figure 2); “Required Initialization Settings” on page 33 written on power up. Parameters Min AOUTx Voltage Into RL = 10 kΩ HP_GAIN[2:0] 000 001 010 011 (default) 100 101 110 111 Analog Gain (G) 0.3959 0.4571 0.5111 0.6047 0.7099 0.8399 1.0000 1.1430 VHP 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.8 V 2.5 V 1.95 - VA = 2.5V Typ Max Min VA = 1.8V Typ Unit Max 1.34 1.34 1.55 1.55 1.73 1.73 2.05 2.05 2.41 2.41 2.85 2.85 3.39 3.39 (See (Note 8) 3.88 2.15 - 1.41 - 0.97 0.97 1.12 1.12 1.25 1.25 1.48 1.48 1.73 1.73 2.05 2.05 2.44 2.44 2.79 2.79 1.55 - Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp Vpp COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE Parameters (Note 9) Frequency Response 10 Hz to 20 kHz Passband StopBand to -0.05 dB corner to -3 dB corner Min -0.01 0 0 0.5465 Typ - Max +0.08 0.4780 0.4996 - Unit dB Fs Fs Fs DS792F1 15 Confidential Draft 10/7/08 Parameters (Note 9) StopBand Attenuation (Note 10) Group Delay De-emphasis Error Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz CS43L22 Min 50 - Typ 9/Fs - Max +1.5/+0 +0.05/-0.25 -0.2/-0.4 Unit dB s dB dB dB 9. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 22 and 25 on page 64) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 10. Measurement Bandwidth is from Stopband to 3 Fs. 16 DS792F1 Confidential Draft 10/7/08 SWITCHING SPECIFICATIONS - SERIAL PORT Inputs: Logic 0 = DGND; Logic 1 = VL. CS43L22 Parameters RESET pin Low Pulse Width MCLK Frequency (Note 12) MCLK Duty Cycle (Note 11) Symbol Min 1 Max - Units ms MHz % kHz % Hz % ns ns ns Hz % MHz Hz Hz % ns ns (See “Serial Port Clocking” on page 30) 45 55 Fs (See “Serial Port Clocking” on page 30) 45 55 64•Fs 45 55 40 20 20 (See “Serial Port Clocking” on page 30) 45 55 12.0000 68•Fs 64•Fs 45 55 20 20 - Slave Mode Sample Rate (LRCK) LRCK Duty Cycle SCLK Frequency SCLK Duty Cycle LRCK Setup Time Before SCLK Rising Edge SDIN Setup Time Before SCLK Rising Edge SDIN Hold Time After SCLK Rising Edge 1/tP ts(LK-SK) ts(SD-SK) th Fs Master Mode Sample Rate (LRCK) LRCK Duty Cycle SCLK Frequency SCLK=MCLK mode MCLK=12.0000 MHz all other modes 1/tP 1/tP 1/tP ts(SD-SK) th SCLK Duty Cycle SDIN Setup Time Before SCLK Rising Edge SDIN Hold Time After SCLK Rising Edge 11. After powering up the CS43L22, RESET should be held low after the power supplies and clocks are settled. 12. See “Example System Clock Frequencies” on page 62 for typical MCLK frequencies. // LRCK ts(LK-SK) // // // ts(SD-SK) // MSB // th MSB-1 tP SCLK SDIN Figure 3. Serial Audio Interface Timing DS792F1 17 Confidential Draft 10/7/08 SWITCHING SPECIFICATIONS - I²C CONTROL PORT Inputs: Logic 0 = DGND; Logic 1 = V; SDA CL = 30 pF. CS43L22 Parameters SCL Clock Frequency Symbol fscl tirs tbuf thdst tlow thigh tsust (Note 13) thdd tsud trc tfc tsusp tack Min 550 4.7 4.0 4.7 4.0 4.7 0 250 4.7 300 Max 100 1 300 1000 Unit kHz ns µs µs µs µs µs µs ns µs ns µs ns RESET Rising Edge to Start Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling SDA Setup time to SCL Rising Rise Time of SCL and SDA Fall Time SCL and SDA Setup Time for Stop Condition Acknowledge Delay from SCL Falling 13. Data must be held for sufficient time to bridge the transition time, tfc, of SCL. RESET t irs Stop SDA t buf SCL Repeated Start Start Stop t hdst t high t hdst tf t susp t low t hdd t sud t sust tr Figure 4. Control Port Timing - I²C 18 DS792F1 Confidential Draft 10/7/08 DC ELECTRICAL CHARACTERISTICS AGND = 0 V; all voltages with respect to ground. CS43L22 Parameters VQ Characteristics Nominal Voltage Output Impedance DC Current Source/Sink Power Supply Rejection Ratio Characteristics PSRR @ 1 kHz (Note 14) PSRR @ 60 Hz (Note 14) PSRR @ 217 Hz DAC (HP & Line Amps) DAC (HP & Line Amps) Full-Bridge PWM Outputs Min - Typ 0.5•VA 23 60 60 56 Max 1 - Units V kΩ µA dB dB dB 14. Valid with the recommended capacitor values on FILT+ and VQ. Increasing the capacitance will also increase the PSRR. DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS Parameters (Note 15) Input Leakage Current Input Capacitance 1.8 V - 3.3 V Logic High-Level Output Voltage (IOH = -100 µA) Low-Level Output Voltage (IOL = 100 µA) High-Level Input Voltage VL = 1.65 V VL = 1.8 V VL = 2.0 V VL > 2.0 V VOH VOL VIH VL - 0.2 0.85•VL 0.77•VL 0.68•VL 0.65•VL 0.2 0.30•VL V V V V V V V Symbol Iin Min - Max ±10 10 Units µA pF Low-Level Input Voltage VIL 15. See “I/O Pin Characteristics” on page 8 for serial and control port power rails. DS792F1 19 Confidential Draft 10/7/08 POWER CONSUMPTION See (Note 16) Operation Register Settings 02h 04h Typical Current (mA) CS43L22 PDN_SPKB[1:0] PDN_SPKA[1:0] PDN_HPB[1:0] PDN_HPA[1:0] iVHP iVA iVD iVL VL=3.3V (Note 19) iVP VP=3.7V PDN[7:0] Total Power (mWrms) V 1 2 3 4 5 6 7 Off (Note 17) Standby (Note 18) Stereo Passthrough to Headphone Mono Playback to Headphone Stereo Playback to Headphone Mono Playback to Speaker Stereo Playback to Speaker x 0x9F x x x x 0x9E 10 10 0x9E 10 11 0x9E 10 10 0x9E 11 0x9E 11 11 11 1.8 2.5 x x 1.8 2.5 11 11 1.8 2.5 11 11 1.8 2.5 11 11 1.8 2.5 10 10 1.8 2.5 10 10 1.8 2.5 x x 0.00 0.00 0.00 0.00 2.79 3.18 1.59 2.07 2.77 3.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.91 2.14 1.99 2.62 2.00 2.63 0.20 0.22 0.20 0.22 0.00 0.00 0.01 0.02 1.06 1.81 2.72 4.27 2.91 4.28 4.42 6.77 4.38 6.80 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.02 0.05 10.39 17.85 11.36 22.43 13.84 25.48 12.05 21.21 11.98 21.28 16. Unless otherwise noted, test conditions are as follows: All zeros input, Slave Mode, sample rate = 48 kHz; No load. Digital (VD) and logic (VL) supply current will vary depending on speed mode and master/slave operation.“Required Initialization Settings” on page 33 written on power up. 17. RESET pin 25 held LO, all clocks and data lines are held LO. 18. RESET pin 25 held HI, all clocks and data lines are held HI. 19. VL current will slightly increase in Master Mode. 20 DS792F1 Confidential Draft 10/7/08 4. APPLICATIONS 4.1 4.1.1 Overview Basic Architecture CS43L22 The CS43L22 is a highly integrated, low power, 24-bit audio DAC comprised of a Digital Signal Processing Engine, headphone amplifiers, a digital PWM modulator and two full-bridge power back-ends. Other features include battery level monitoring and compensation and temperature monitoring. The DAC is designed using multi-bit delta-sigma techniques and operates at an oversampling ratio of 128Fs, where Fs is equal to the system sample rate. The PWM modulator operates at a fixed frequency of 384 kHz. The power MOSFETs are configured for either stereo full-bridge or mono parallel full bridge output. The DAC operates in one of four sample rate speed modes: Quarter, Half, Single and Double. It accepts and is capable of generating serial port clocks (SCLK, LRCK) derived from an input Master Clock (MCLK). 4.1.2 Line Inputs 4 pairs of stereo analog inputs are provided for applications that require analog passthrough directly to the HP/Line amplifiers. This analog input portion allows selection from and configuration of multiple combinations of these stereo sources. 4.1.3 Line & Headphone Outputs The analog output portion of the CS43L22 includes a headphone amplifier capable of driving headphone and line-level loads. An on-chip charge pump creates a negative headphone supply allowing a full-scale output swing centered around ground. This eliminates the need for large DC-Blocking capacitors and allows the amplifier to deliver more power to headphone loads at lower supply voltages. 4.1.4 Speaker Driver Outputs The Class D power amplifiers drive 8 Ω (stereo) and 4 Ω (mono) speakers directly, without the need for an external filter. The power MOSFETS are powered directly from a battery eliminating the efficiency loss associated with an external regulator. Battery level monitoring and compensation maintains a steady output as battery levels fall. A temperature monitor continually measures the die temperature and registers when predefined thresholds are exceeded. NOTE: The CS43L22 should only be used in captive speaker systems where the outputs are permanently tied to the speaker terminals. 4.1.5 Fixed Function DSP Engine The fixed-function digital signal processing engine processes the PCM serial input data. Independent volume control, left/right channel swaps, mono mixes, tone control and limiting functions also comprise the DSP engine. 4.1.6 Beep Generator The beep generator delivers tones at select frequencies across approximately two octave major scales. With independent volume control, beeps may be configured to occur continuously, periodically, or at single time intervals. 4.1.7 Power Management Two control registers provide independent power-down control of the DAC, Headphone and Speaker output blocks in the CS43L22 allowing operation in select applications with minimal power consumption. DS792F1 21 Confidential Draft 10/7/08 4.2 DSP Engine Fixed Function DSP MSTAVOL[7:0] MSTBVOL[7:0] +12dB/-102dB 0.5dB steps LIMARATE[7:0] LIMRRATE[7:0] LMAX[2:0] CUSH[2:0] LIMSRDIS LIMZCDIS LIMIT CS43L22 Chnl Vol. Settings PCMAMUTE PCMBMUTE PCMAVOL[6:0] PCMBVOL[6:0] +12dB/-51.5dB 0.5dB steps PCMASWAP[1:0] PCMBSWAP[1:0] Limiter PWM Modulator Peak Detect PCM Serial Interface Demph DEEMPH VOL Channel Swap Σ VOL VOL Bass/ Treble/ Control TC_EN BASS_CF[1:0] TREB_CF[1:0] BASS[3:0] TREB[3:0] +12.0dB/-10.5dB 1.5dB steps INV_PCMA INV_PCMB BPVOL[4:0] OFFTIME[2:0] ONTIME[3:0] FREQ[3:0] BEEP[1:0] BEEPMIXDIS 0dB/-50dB 2.0dB steps MSTAMUTE MSTBMUTE DIGSFT DIGZC PLYBCKB=A DAC Beep Generator Figure 5. DSP Engine Signal Flow Referenced Control DSP DEEMPH ............................. PCMxMUTE ........................ PCMxVOL[6:0] .................... INV_PCMx........................... PCMxSWAP[1:0] ................. MSTxVOL[7:0]..................... MSTxMUTE......................... DIGSFT ............................... DIGZC ................................. PLYBCKB=A........................ TC_EN................................. BASS_CF[1:0] ..................... TREB_CF[1:0] ..................... BASS[3:0]............................ TREB[3:0]............................ LIMIT ................................... LIMSRDIS ........................... LIMZCDIS............................ LMAX[2:0]............................ CUSH[2:0] ........................... LIMARATE[7:0].................... LIMRRATE[7:0] ................... Register Location “HP/Speaker De-Emphasis” on page 45 “PCM Channel x Mute” on page 48 “PCM Channel x Volume” on page 48 “Invert PCM Signal Polarity” on page 44 “PCM Channel Swap” on page 53 “Master Volume Control” on page 52 “Master Playback Mute” on page 44 “Digital Soft Ramp” on page 45 “Digital Zero Cross” on page 46 “Playback Volume Setting B=A” on page 44 “Tone Control Enable” on page 51 “Bass Corner Frequency” on page 51 “Treble Corner Frequency” on page 51 “Bass Gain” on page 52 “Treble Gain” on page 51 “Peak Detect and Limiter” on page 55 “Limiter Soft Ramp Disable” on page 54 “Limiter Zero Cross Disable” on page 55 “Limiter Maximum Threshold” on page 54 “Limiter Cushion Threshold” on page 54 “Limiter Attack Rate” on page 56 “Limiter Release Rate” on page 55 22 DS792F1 Confidential Draft 10/7/08 4.2.1 Beep Generator CS43L22 The Beep Generator generates audio frequencies across approximately two octave major scales. It offers three modes of operation: Continuous, multiple and single (one-shot) beeps. Sixteen on and eight off times are available. Note: The Beep is generated before the limiter and may affect desired limiting performance. If the limiter function is used, it may be required to set the beep volume sufficiently below the threshold to prevent the peak detect from triggering. Since the master volume control, MSTxVOL[7:0], will affect the beep volume, DAC volume may alternatively be controlled using the PCMxVOL[6:0] bits. BEEP[1:0] = '11' CONTINUOUS BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) and remains on until BEEP is cleared. BEEP[1:0] = '10' MULTI-BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) for the duration of ONTIME and turns off for the duration of OFFTIME. On and off cycles are repeated until BEEP is cleared. SINGLE-BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) for the duration of ONTIME. BEEP must be cleared and set for additional beeps. BEEP[1:0] = '01' BPVOL[4:0] ... FREQ[3:0] ONTIME[3:0] OFFTIME[2:0] Figure 6. Beep Configuration Options Referenced Control MSTxVOL[7:0]..................... PCMxVOL[6:0] .................... OFFTIME[2:0] ..................... ONTIME[3:0] ....................... FREQ[3:0] ........................... BEEP[1:0]............................ BEEPMIXDIS ...................... BPVOL[4:0] ......................... Register Location “Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h)” on page 52 “PCMx Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh)” on page 48 “Beep Off Time” on page 49 “Beep On Time” on page 49 “Beep Frequency” on page 48 “Beep Configuration” on page 50 “Beep Mix Disable” on page 50 “Beep Volume” on page 50 4.2.2 Limiter When enabled, the limiter monitors the digital input signal before the DAC and PWM modulators, detects when levels exceed the maximum threshold settings and lowers the master volume at a programmable attack rate below the maximum threshold. When the input signal level falls below the maximum threshold, the AOUT volume returns to its original level set in the Master Volume Control register at a programmable release rate. Attack and release rates are affected by the DAC soft ramp/zero cross settings and sample rate, Fs. Limiter soft ramp and zero cross dependency may be independently enabled/disabled. Notes: 1. Recommended settings: Best limiting performance may be realized with the fastest attack and slowest release setting with soft ramp enabled in the control registers. The MIN bits allow the user to set a threshold slightly below the maximum threshold for hysteresis control - this cushions the sound as the limiter attacks and releases. 2. The Limiter maintains the output signal between the CUSH and MAX thresholds. As the digital input signal level changes, the level-controlled output may not always be the same but will always fall within DS792F1 23 Confidential Draft 10/7/08 the thresholds. Referenced Control Register Location CS43L22 Limiter Controls ................... “Limiter Control 2, Release Rate (Address 28h)” on page 55, “Limiter Attack Rate (Address 29h)” on page 56 Master Volume Control........ “Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h)” on page 52 In p u t M A X [2 :0 ] L im ite r A T T A C K /R E L E A S E S O U N D C U S H IO N V o lu m e O u tp u t (a fte r L im ite r) C U S H [2 :0 ] M A X [2 :0 ] A R A T E [5 :0 ] R R A T E [5 :0 ] Figure 7. Peak Detect & Limiter 24 DS792F1 Confidential Draft 10/7/08 4.3 Analog Passthrough CS43L22 The CS43L22 accommodates analog routing of the analog input signal directly to the headphone amplifiers by using the PASSTHRUx mux. This feature is useful in applications that utilize an FM tuner where audio recovered over-the-air must be transmitted to the headphone amplifier directly. This analog passthrough path reduces power consumption and is immune to modulator switching noise that could interfere with some tuners. Four analog input channels can be chosen or summed by using the PASSxSEL bits as shown in Figure 8 to provide input to the CS43L22 when in analog passthrough mode. A pair of passthrough amplifiers can be used to mute and apply gain to the input signals. PASSASEL[4:1] ANLGSFTA ANLGGZCA PASSB=A PASSAMUTE PASSAVOL[7:0] +12dB/-60dB 0.5 dB steps PASSTHRUA DAC A Output AIN1A AIN2A AIN3A AIN4A Σ Analog Passthru Amplifiers ANALOG PASS THRU TO HEADPHONE AMPLIFIER MUX AIN4B AIN3B AIN2B AIN1B Σ ANLGSFTB ANLGGZCB PASSB=A PASSBMUTE PASSBVOL[7:0] +12dB/-60dB 0.5 dB steps DAC B Output PASSBSEL[4:1] PASSTHRUB Figure 8. Analog Passthrough Signal Flow Referenced Control Analog Front End PASSB=A ........................... ANLGSFTx .......................... ANLGZCx ............................ PASSxSEL4,3,2,1 ............... PASSxMUTE........................ PASSxVOL[7:0].................... PASSTHRUx......................... Register Location “Passthrough Channel B=A gang Control” on page 43 “Ch. x Analog Soft Ramp” on page 43 “Ch. x Analog Zero Cross” on page 43 “Passthrough Input Channel Mapping” on page 43 “Passthrough Mute” on page 45 “Passthrough x Volume” on page 47 “Passthrough Analog” on page 45 DS792F1 25 Confidential Draft 10/7/08 4.4 Analog Outputs PDN_HPA[1:0] PDN_HPB[1:0] HPAMUTE HPBMUTE HPA_VOL[7:0] HPB_VOL[7:0] +0dB/-102dB 0.5dB steps HPGAIN[2:0] CS43L22 from DSP Engine A VOL DAC HP/Line Outputs B Analog Passthru Input Signal VOL PASSTHRUA PASSTHRUB PASSAMUTE PASSBMUTE PASSAVOL[7:0] PASSBVOL[70] +12dB/-60dB 0.5dB steps Charge Pump CHGFREQ[3:0] Figure 9. Analog Outputs Referenced Control Analog Output HPxMUTE ........................... HPxVOL[7:0] ....................... PDN_HPx[1:0] ..................... HPGAIN[2:0]........................ PASSTHRUx ....................... PASSxMUTE ....................... PASSxVOL[7:0] ................... CHGFREQ .......................... Register Location “Headphone Mute” on page 46 “Headphone Volume Control” on page 52 “Headphone Power Control” on page 39 “Headphone Analog Gain” on page 44 “Passthrough Analog” on page 45 “Passthrough Mute” on page 45 “Passthrough x Volume” on page 47 “Charge Pump Frequency” on page 59 26 DS792F1 Confidential Draft 10/7/08 4.5 PWM Outputs Note: CS43L22 The PWM speaker amplifiers should not be used in the 384x MCLK modes (18.4320 and 16.9344 MHz). SPKAMUTE SPKBMUTE MUTE50/50 SPKMONO SPKSWAP SPKB=A SPKAVOL[7:0] SPKBVOL[7:0] +0dB/-102dB 0.5dB steps BATTCMP VPREF[3:0] VPLVL[7:0] Battery Compensation from DSP Engine VOL PWM Modulator Gate Drive +A +B Speaker Outputs PDN_SPKA[1:0] PDN_SPKB[1:0] Short Circuit SPKASHRT SPKBSHRT Figure 10. PWM Output Stage Referenced Control PWM Control SPKxMUTE ......................... MUTE50/50 ......................... SPKMONO .......................... SPKxVOL[7:0] ..................... SPKSWAP........................... SPKB=A .............................. BATTCMP ........................... VPREF[3:0] ......................... VPLVL[7:0] .......................... PDN_SPKx[1:0]................... SPKxSHRT.......................... Register Location “Speaker Mute” on page 46 “Speaker Mute 50/50 Control” on page 47 “Speaker MONO Control” on page 47 “Speaker Volume Control” on page 53 “Speaker Channel Swap” on page 46 “Speaker Volume Setting B=A” on page 46 “Battery Compensation” on page 57 “VP Reference” on page 58 “VP Voltage Level (Read Only)” on page 58 “Speaker Power Control” on page 39 “Speaker Current Load Status (Read Only)” on page 58 DS792F1 27 Confidential Draft 10/7/08 4.5.1 Mono Speaker Output Configuration CS43L22 The CS43L22 accommodates a stereo as well as a mono speaker output configuration. In mono mode the output drivers of each channel are connected in parallel to deliver maximum power to a 4 ohm speaker. Refer to the table below for pin mapping in mono configuration. Pin 4 6 7 9 Referenced Control Speaker Output SPKMONO=0 SPKMONO=1 SPKSWAP=0 SPKSWAP=1 SPKSWAP=0 SPKSWAP=1 SPKOUTA+ SPKOUTB+ SPKOUTA+ SPKOUTB+ SPKOUTASPKOUTBSPKOUTA+ SPKOUTB+ SPKOUTB+ SPKOUTA+ SPKOUTASPKOUTBSPKOUTBSPKOUTASPKOUTASPKOUTBRegister Location SPKMONO.......................... “Speaker MONO Control” on page 47 SPKSWAP........................... “Speaker Channel Swap” on page 46 4.5.2 VP Battery Compensation The CS43L22 provides the option to maintain a desired power output level, independent of the VP supply. When enabled, this feature works by monitoring the voltage on the VP supply and reducing the attenuation on the speaker outputs when VP voltage levels fall. Note: The internal ADC that monitors the VP supply operates from the VA supply. Calculations are based on typical VA levels of 1.8 V and 2.5 V using the VPREF bits. 4.5.2.1 Maintaining a Desired Output Level Using SPKxVOL, the speaker output level must first be attenuated by the decibel equivalent of the expected VP supply range (MAX relative to MIN). The CS43L22 then gradually reduces the attenuation as the VP supply drops from it’s maximum level, maintaining a nearly constant power output. Compensation Example 1 (VP Battery supply ranges from 4.5 V to 3.0 V) 1. Set speaker attenuation (SPKxVOL) to -3.5 dB. The VP supply changes ~3.5 dB. 2. Set the reference VP supply (VPREF) to 4.5 V. 3. Enable battery compensation (BATTCMP). The CS43L22 automatically adjusts the output level as the battery discharges. Compensation Example 2 (VP Battery supply ranges from 5.0 V to 1.6 V) 1. Set speaker attenuation (SPKxVOL) to -10 dB. The VP supply changes ~9.9 dB. 2. Set the reference VP supply (VPREF) to 5.0 V. 3. Enable battery compensation (BATTCMP). The CS43L22 automatically adjusts the output level as the battery discharges. Refer to Figure 11 on page 29. In this example, the VP supply changes over a wide range, illustrating the accuracy of the CS43L22’s battery compensation. 28 DS792F1 Confidential Draft 10/7/08 -6 -8 CS43L22 Battery Compensated PWM Output Level Uncompensated PWM Output Level PWM Output Level (dB) -10 -12 -14 -16 -18 -20 -22 -24 4.9 4.6 4.3 4 3.7 3.4 3.1 2.8 2.5 2.2 1.9 1.6 VP Supply (V) Figure 11. Battery Compensation Referenced Control VPREF ................................ SPKxVOL ............................ Register Location “VP Reference” on page 58 “Speaker Volume Control” on page 53 DS792F1 29 Confidential Draft 10/7/08 4.6 Serial Port Clocking CS43L22 The CS43L22 serial audio interface port operates either as a slave or master, determined by the M/S bit. It accepts externally generated clocks in Slave Mode and will generate synchronous clocks derived from an input master clock (MCLK) in Master Mode. Refer to the tables below for the required setting in register 05h and 06h associated with a given MCLK and sample rate. Referenced Control Register Location M/S.................................... “Master/Slave Mode” on page 41 Register 05h...................... “Clocking Control (Address 05h)” on page 39 Register 06h...................... “Interface Control 1 (Address 06h)” on page 41 MCLK (MHz) 12.2880 11.2896 18.4320 (Slave Mode ONLY) 16.9344 (Slave Mode ONLY) 12.0000 24.0000 Sample Rate, Fs (kHz) 8.0000 12.0000 16.0000 24.0000 32.0000 48.0000 96.0000 11.0250 22.0500 44.1000 88.2000 8.0000 12.0000 16.0000 24.0000 32.0000 48.0000 96.0000 *8.0182... 11.0250 22.0500 44.1000 88.2000 8.0000 *11.0294... 12.0000 16.0000 *22.0588... 24.0000 32.0000 *44.1176... 48.0000 *88.2353... 96.0000 8.0000 *11.0294... 12.0000 16.0000 *22.0588... 24.0000 32.0000 *44.1176... 48.0000 *88.2353... 96.0000 SPEED[1:0] (AUTO=’0’b) 11 11 10 10 01 01 00 11 10 01 00 11 11 10 10 01 01 00 11 11 10 01 00 11 11 11 10 10 10 01 01 01 00 00 11 11 11 10 10 10 01 01 01 00 00 32kGROUP 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 VIDEOCLK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RATIO[1:0] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 00 00 00 00 01 11 01 01 11 01 01 11 01 11 01 01 11 01 01 11 01 01 11 01 11 01 MCLKDIV2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 30 DS792F1 Confidential Draft 10/7/08 MCLK (MHz) Sample Rate, Fs (kHz) 8.0000 12.0000 24.0000 32.0000 *44.1176... 48.0000 *11.0294... *22.0588... 16.0000 SPEED[1:0] (AUTO=’0’b) 11 11 10 01 01 01 11 10 10 32kGROUP 1 0 0 1 0 0 0 0 1 VIDEOCLK 1 1 1 1 1 1 1 1 1 RATIO[1:0] 01 01 01 01 11 01 11 11 01 CS43L22 MCLKDIV2 0 0 0 0 0 0 0 0 0 27.0000 Note: *The marked sample rate values are not exact representations of the actual frame clock frequency They have been truncated to 4 decimal places. The exact value can be calculated by dividing the MCLK being used by the desired MCLK/LRCK ratio. Table 1. Serial Port Clocking 4.7 Digital Interface Formats The serial port operates in standard I²S, Left-Justified, Right-Justified, or DSP Mode digital interface formats with varying bit depths from 16 to 24. Data is clocked into the DAC on the rising edge of SCLK. LRCK SCLK SDIN MSB L eft C h a n n e l R ig ht C h a n n el LSB AOUTA MSB AOUTB LS B MSB Figure 12. I²S Format LRCK SCLK MSB Left Channel Right Channel LSB AOUTA MSB AOUTB LSB SDIN MSB Figure 13. Left-Justified Format LRCK SCLK SDIN MSB AO UTA Audio W ord Length (AW L) L e ft C h a n n e l R ig h t C h a n n e l LSB MSB AO UTB LS B Figure 14. Right-Justified Format\ DS792F1 31 Confidential Draft 10/7/08 4.7.1 DSP Mode CS43L22 In DSP Mode, the LRCK acts as a frame sync for 2 data-packed words (left and right channel) input on SDIN. The MSB is input on the first SCLK rising edge after the frame sync rising edge. The right channel immediately follows the left channel. 1/fs LRCK SCLK SDIN L SB MSB L eft C h a n n el HP/LINE OUTA Audio Word Length (AWL) LS B M SB R ig ht C h a n n el HP/LINE OUTB LSB M SB Figure 15. DSP Mode Format) 4.8 Initialization The CS43L22 enters a Power-Down state upon initial power-up. The interpolation and decimation filters, delta-sigma and PWM modulators and control port registers are reset. The internal voltage reference, and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down state until the RESET pin is brought high. The control port is accessible once RESET is high and the desired register settings can be loaded per the interface descriptions in the “Register Description” on page 38. Once MCLK is valid, the quiescent voltage, VQ, and the internal voltage reference, FILT+, will begin powering up to normal operation. The charge pump slowly powers up and charges the capacitors. Power is then applied to the headphone amplifiers and switched-capacitor filters, and the analog/digital outputs enter a muted state. Once LRCK is valid, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio and normal operation begins. 4.9 Recommended Power-Up Sequence 1. Hold RESET low until the power supplies are stable. 2. Bring RESET high. 3. The default state of the “Power Ctl. 1” register (0x02) is 0x01. Load the desired register settings while keeping the “Power Ctl 1” register set to 0x01. 4. Load the required initialization settings listed in Section 4.11. 5. Apply MCLK at the appropriate frequency, as discussed in Section 4.6. SCLK may be applied or set to master at any time; LRCK may only be applied or set to master while the PDN bit is set to 1. 6. Set the “Power Ctl 1” register (0x02) to 0x9E. 7. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to prevent power glitch related issues. 4.10 Recommended Power-Down Sequence To minimize audible pops when turning off or placing the DAC in standby, 1. Mute the DAC’s and PWM outputs. 2. Disable soft ramp and zero cross volume transitions. 3. Set the “Power Ctl 1” register (0x02) to 0x9F. 32 DS792F1 Confidential Draft 10/7/08 CS43L22 4. Wait at least 100 µs. The device will be fully powered down after this 100 µs delay. Prior to the removal of the master clock (MCLK), this delay of at least 100 µs must be implemented after step 3 to avoid premature disruption of the DAC’s power down sequence. A disruption in the device’s power down sequence (i.e. removing the MCLK signal before this 100 µs delay) has consequences on both the headphone and PWM speaker amplifiers: The charge pump may stop abruptly, causing the headphone amplifiers to drive the outputs up to the +VHP supply. Also, the last state of each ‘+’ and ‘-’ PWM output terminal before the premature removal of MCLK could randomly be held at either VP or AGND. When this event occurs, it is possible for each PWM terminal to output opposing potentials, creating a DC source into the speaker voice coil. The disruption of the device’s power down sequence may also cause clicks and pops on the output of the DAC’s as the modulator holds the last output level before the MCLK signal was removed. 5. MCLK may be removed at this time. 6. To achieve the lowest operating quiescent current, bring RESET low. All control port registers will be reset to their default state. 4.11 Required Initialization Settings Various sections in the device must be adjusted by implementing the initialization settings shown below after power-up sequence step 3. All performance and power consumption measurements were taken with the following settings: 1. Write 0x99 to register 0x00. 2. Write 0x80 to register 0x47. 3. Write ‘1’b to bit 7 in register 0x32. 4. Write ‘0’b to bit 7 in register 0x32. 5. Write 0x00 to register 0x00. DS792F1 33 Confidential Draft 10/7/08 5. CONTROL PORT OPERATION CS43L22 The control port is used to access the registers allowing the CS43L22 to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect to the audio sample rates. However, to avoid potential interference problems, the control port pins should remain static if no operation is required. The control port operates using an I²C interface with the CS43L22 acting as a slave device. 5.0.1 I²C Control SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. The signal timings for a read and write cycle are shown in Figure 16 and Figure 17. A Start condition is defined as a falling transition of SDA while the clock is high. A Stop condition is defined as a rising transition of SDA while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the CS43L22 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low for a write). The upper 7 bits of the address field are fixed at 1001010. To communicate with the CS43L22, the chip address field, which is the first byte sent to the CS43L22, should match 1001010. The eighth bit of the address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP), which selects the register to be read or written. If the operation is a read, the contents of the register pointed to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes of consecutive registers. Each byte is separated by an acknowledge bit. The ACK bit is output from the CS43L22 after each input byte is read and is input to the CS43L22 from the microcontroller after each transmitted byte. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) MAP BYTE INCR DATA 1 0 7 6 1 0 7 DATA +1 6 1 0 7 DATA +n 6 1 0 SDA 1 0 0 1 0 1 0 0 6 5 4 3 2 ACK START ACK ACK ACK STOP Figure 16. Control Port Timing, I²C Write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) MAP BYTE INCR STOP 1 0 1 CHIP ADDRESS (READ) 0 0 1 0 101 DATA 7 0 DATA +1 7 0 DATA + n 7 0 SDA START 1 0 0 1 0100 6 5 4 3 2 ACK ACK START ACK ACK NO ACK STOP Figure 17. Control Port Timing, I²C Read Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown in Figure 17, the write operation is aborted after the acknowledge for the MAP byte by sending a stop condition. The following pseudocode illustrates an aborted write operation followed by a read operation. Send start condition. Send 10010100 (chip address & write operation). Receive acknowledge bit. 34 DS792F1 Confidential Draft 10/7/08 Send MAP byte, auto-increment off. Receive acknowledge bit. Send stop condition, aborting write. Send start condition. Send 10010101 (chip address & read operation). Receive acknowledge bit. Receive byte, contents of selected register. Send acknowledge bit. Send stop condition. CS43L22 Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each byte is separated by an acknowledge bit. 5.0.2 Memory Address Pointer (MAP) The MAP byte comes after the address byte and selects the register to be read or written. Refer to the pseudo code above for implementation details. 5.0.2.1 Map Increment (INCR) The device has MAP auto-increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads. If INCR is set to 1, MAP will auto-increment after each byte is read or written, allowing block reads or writes of successive registers. DS792F1 35 Confidential Draft 10/7/08 6. REGISTER QUICK REFERENCE Default values are shown below the bit names. All “Reserved” bits must maintain their default value. I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read) Adr. Function 7 6 5 4 01h ID CHIPID4 CHIPID3 CHIPID2 CHIPID1 p 38 1 1 1 0 02h Power Ctl 1 PDN7 PDN6 PDN5 PDN4 p 38 0 0 0 0 03h Reserved Reserved Reserved Reserved Reserved 0 0 0 0 04h Power Ctl 2 PDN_HPB1 PDN_HPB0 PDN_HPA1 PDN_HPA0 p 39 0 0 0 0 05h Clocking Ctl AUTO SPEED1 SPEED0 32kGROUP p 39 1 0 1 0 06h Interface Ctl 1 M/S INV_SCLK Reserved DSP p 41 0 0 0 0 07h Interface Ctl 2 Reserved SCLK=MCLK Reserved Reserved p 42 0 0 0 0 08h Passthrough A Reserved Reserved Reserved Reserved p 43 Select 1 0 0 0 09h Passthrough B Reserved Reserved Reserved Reserved p 43 Select 1 0 0 0 0Ah Analog ZC and Reserved Reserved Reserved Reserved p 43 SR Settings 1 0 1 0 0Bh Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0Ch Passthrough PASSB=A Reserved Reserved Reserved p 43 Gang Control 0 0 0 0 0Dh Playback Ctl 1 HPGAIN2 HPGAIN1 HPGAIN0 PLYBCKB=A p 44 0 1 1 0 0Eh Misc. Ctl PASSTHRUB PASSTHRUA PASSBMUTE PASSAMUTE p 45 0 0 0 0 0Fh Playback Ctl 2 HPBMUTE HPAMUTE SPKBMUTE SPKAMUTE p 46 0 0 0 0 10h- Reserved Reserved Reserved Reserved Reserved 13h 0 0 0 0 14h Passthrough A PASSAVOL7 PASSAVOL6 PASSAVOL5 PASSAVOL4 p 47 Vol 0 0 0 0 15h Passthrough B PASSBVOL7 PASSBVOL6 PASSBVOL5 PASSBVOL4 p 47 Vol 0 0 0 0 16h- Reserved Reserved Reserved Reserved Reserved 17h 0 0 0 0 18h- Reserved Reserved Reserved Reserved Reserved 19h 1 0 0 0 1Ah PCMA Vol PCMAMUTE PCMAVOL6 PCMAVOL5 PCMAVOL4 p 48 0 0 0 0 1Bh PCMB Vol PCMBMUTE PCMBVOL6 PCMBVOL5 PCMBVOL4 p 48 0 0 0 0 1Ch BEEP Freq, FREQ3 FREQ2 FREQ1 FREQ0 p 48 On Time 0 0 0 0 1Dh BEEP Vol, OFFTIME2 OFFTIME1 OFFTIME0 BPVOL4 p 49 Off Time 0 0 0 0 1Eh BEEP, BEEP1 BEEP0 BEEPMIXDIS TREB_CF1 p 50 Tone Cfg. 0 0 0 0 1Fh Tone Ctl TREB3 TREB2 TREB1 TREB0 p 51 1 0 0 0 3 CHIPID0 0 PDN3 0 Reserved 0 PDN_SPKB1 0 VIDEOCLK 0 DACDIF1 0 INV_SWCH 0 PASSASEL4 0 PASSBSEL4 0 ANLGSFTB 0 Reserved 0 Reserved 0 INV_PCMB 0 FREEZE 0 SPKB=A 0 Reserved 0 PASSAVOL3 0 PASSBVOL3 0 Reserved 0 Reserved 0 PCMAVOL3 0 PCMBVOL3 0 ONTIME3 0 BPVOL3 0 TREB_CF0 0 BASS3 1 2 REVID2 x PDN2 0 Reserved 1 PDN_SPKB0 1 RATIO1 0 DACDIF0 0 Reserved 0 PASSASEL3 0 PASSBSEL3 0 ANLGZCB 1 Reserved 0 Reserved 0 INV_PCMA 0 DEEMPH 0 SPKSWAP Reserved 0 PASSAVOL2 0 PASSBVOL2 0 Reserved 0 Reserved 0 PCMAVOL2 0 PCMBVOL2 0 ONTIME2 0 BPVOL2 0 BASS_CF1 0 BASS2 0 CS43L22 1 REVID1 x PDN1 0 Reserved 1 PDN_SPKA1 0 RATIO0 0 AWL1 0 Reserved 0 PASSASEL2 0 PASSBSEL2 0 ANLGSFTA 0 Reserved 0 Reserved 0 MSTBMUTE 0 DIGSFT 1 SPKMONO 0 Reserved 0 PASSAVOL1 0 PASSBVOL1 0 Reserved 0 Reserved 0 PCMAVOL1 0 PCMBVOL1 0 ONTIME1 0 BPVOL1 0 BASS_CF0 0 BASS1 0 0 REVID0 x PDN0 1 Reserved 1 PDN_SPKA0 1 MCLKDIV2 0 AWL0 0 Reserved 0 PASSASEL1 1 PASSBSEL1 1 ANLGZCA 1 Reserved 0 Reserved 0 MSTAMUTE 0 DIGZC 0 MUTE50/50 0 Reserved 0 PASSAVOL0 0 PASSBVOL0 0 Reserved 0 Reserved 0 PCMAVOL0 0 PCMBVOL0 0 ONTIME0 0 BPVOL0 0 TC_EN 0 BASS0 0 36 DS792F1 Confidential Draft 10/7/08 CS43L22 0 MSTAVOL0 0 MSTBVOL0 0 HPAVOL0 0 HPBVOL0 0 SPKAVOL0 0 SPKBVOL0 0 Reserved 0 LIMZCDIS 0 LIMRRATE0 1 LIMARATE0 0 Reserved 0 Reserved 1 Reserved 0 Reserved 0 VPREF0 0 VPLVL0 0 Reserved 0 Reserved 1 Reserved 0 Reserved 1 I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read) Adr. Function 7 6 5 4 3 2 1 20h Master A Vol MSTAVOL7 MSTAVOL6 MSTAVOL5 MSTAVOL4 MSTAVOL3 MSTAVOL2 MSTAVOL1 p 52 0 0 0 0 0 0 0 21h Master B Vol MSTBVOL7 MSTBVOL6 MSTBVOL5 MSTBVOL4 MSTBVOL3 MSTBVOL2 MSTBVOL1 p 52 0 0 0 0 0 0 0 22h Headphone A HPAVOL7 HPAVOL6 HPAVOL5 HPAVOL4 HPAVOL3 HPAVOL2 HPAVOL1 p 52 Volume 0 0 0 0 0 0 0 23h Headphone B HPBVOL7 HPBVOL6 HPBVOL5 HPBVOL4 HPBVOL3 HPBVOL2 HPBVOL1 p 52 Volume 0 0 0 0 0 0 0 24h Speaker A SPKAVOL7 SPKAVOL6 SPKAVOL5 SPKAVOL4 SPKAVOL3 SPKAVOL2 SPKAVOL1 p 53 Volume 0 0 0 0 0 0 0 25h Speaker B SPKBVOL7 SPKBVOL6 SPKBVOL5 SPKBVOL4 SPKBVOL3 SPKBVOL2 SPKBVOL1 p 53 Volume 0 0 0 0 0 0 0 26h Channel Mixer PCMASWP1 PCMASWP0 PCMBSWP1 PCMBSWP0 Reserved Reserved Reserved p 53 & Swap 0 0 0 0 0 0 0 27h Limit Ctl 1, LMAX2 LMAX1 LMAX0 CUSH2 CUSH1 CUSH0 LIMSRDIS p 54 Thresholds 0 0 0 0 0 0 0 28h Limit Ctl 2, LIMIT LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3 LIMRRATE2 LIMRRATE1 p 55 Release Rate 0 1 1 1 1 1 1 29h Limiter Attack Reserved Reserved LIMARATE5 LIMARATE4 LIMARATE3 LIMARATE2 LIMARATE1 p 56 Rate 0 0 0 0 0 0 0 2Ah Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0 0 0 2Bh Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 0 1 1 1 1 1 2Ch- Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 2Dh 0 0 0 0 0 0 0 2Eh Overflow & Reserved SPCLKERR DSPBOVFL DSPAOVFL PCMAOVFL PCMBOVFL Reserved p 56 Clock Status 0 0 0 0 0 0 0 2Fh Battery ComBATTCMP VPMONITOR Reserved Reserved VPREF3 VPREF2 VPREF1 p 57 pensation 0 0 0 0 0 0 0 30h VP Battery VPLVL7 VPLVL6 VPLVL5 VPLVL4 VPLVL3 VPLVL2 VPLVL1 p 58 Level 0 0 0 0 0 0 0 31h Speaker Status Reserved Reserved SPKASHRT SPKBSHRT SPKR/HP Reserved Reserved p 58 0 0 0 0 0 0 0 32h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 0 1 1 1 0 1 33h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0 0 0 34h Charge Pump CHGFREQ3 CHGFREQ2 CHGFREQ1 CHGFREQ0 Reserved Reserved Reserved p 59 Frequency 0 1 0 1 1 1 1 DS792F1 37 Confidential Draft 10/7/08 7. REGISTER DESCRIPTION CS43L22 All registers are read/write except for the chip I.D. and Revision Register and Interrupt Status Register which are read only. See the following bit definition tables for bit assignment information. The default state of each bit after a power-up sequence or reset is shown as shaded in the table. All “Reserved” bits must maintain their default value. 7.1 Chip I.D. and Revision Register (Address 01h) (Read Only) 6 CHIPID3 5 CHIPID2 4 CHIPID1 3 CHIPID0 2 REVID2 1 REVID1 0 REVID0 7 CHIPID4 7.1.1 Chip I.D. (Read Only) I.D. code for the CS43L22. CHIPID[4:0] 11100 Device CS43L22 7.1.2 Chip Revision (Read Only) CS43L22 revision level. REVID[2:0] 000 001 010 011 Revision Level A0 A1 B0 B1 7.2 Power Control 1 (Address 02h) 7 PDN7 6 PDN6 5 PDN5 4 PDN4 3 PDN3 2 PDN2 1 PDN1 0 PDN0 7.2.1 Power Down Configures the power state of the CS43L22. PDN[7:0] 0000 0001 1001 1110 1001 1111 Status Powered Down - same as setting 1001 1111 Powered Up Powered Down - same as setting 0000 0001 Note: 1. All states of PDN[7:0] not shown in the table are reserved. 38 DS792F1 Confidential Draft 10/7/08 7.3 Power Control 2 (Address 04h) 6 PDN_HPB0 5 PDN_HPA1 4 PDN_HPA0 3 PDN_SPKB1 2 PDN_SPKB0 1 PDN_SPKA1 CS43L22 0 PDN_SPKA0 7 PDN_HPB1 7.3.1 Headphone Power Control Configures how the SPK/HP_SW pin, 6, controls the power for the headphone amplifier. PDN_HPx[1:0] 00 01 10 11 Headphone Status Headphone channel is ON when the SPK/HP_SW pin, 6, is LO. Headphone channel is OFF when the SPK/HP_SW pin, 6, is HI. Headphone channel is ON when the SPK/HP_SW pin, 6, is HI. Headphone channel is OFF when the SPK/HP_SW pin, 6, is LO. Headphone channel is always ON. Headphone channel is always OFF. 7.3.2 Speaker Power Control Configures how the SPK/HP_SW pin, 6, controls the power for the speaker amplifier. PDN_SPKx[1:0] 00 01 10 11 Speaker Status Speaker channel is ON when the SPK/HP_SW pin, 6, is LO. Speaker channel is OFF when the SPK/HP_SW pin, 6, is HI. Speaker channel is ON when the SPK/HP_SW pin, 6, is HI. Speaker channel is OFF when the SPK/HP_SW pin, 6, is LO. Speaker channel is always ON. Speaker channel is always OFF. 7.4 Clocking Control (Address 05h) 7 AUTO 6 SPEED1 5 SPEED0 4 32k_GROUP 3 VIDEOCLK 2 RATIO1 1 RATIO0 0 MCLKDIV2 7.4.1 Auto-Detect Configures the auto-detect circuitry for detecting the speed mode of the CS43L22 when operating as a slave. AUTO 0 1 Application: Auto-detection of Speed Mode Disabled Enabled “Serial Port Clocking” on page 30 Notes: 1. The SPEED[1:0] bits are ignored and speed is determined by the MCLK/LRCK ratio. 2. When AUTO is disabled and the CS43L22 operates in Master Mode, the MCLKDIV2 bit is ignored. 3. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit (“32kHz Sample Rate Group” on page 40) and/or the VIDEOCLK bit (“27 MHz Video Clock” on page 40) and RATIO[1:0] bits (“Internal MCLK/LRCK Ratio” on page 40). Low sample rates may also affect dynamic range performance in the typical audio band. Refer to the referenced application for more information. DS792F1 39 Confidential Draft 10/7/08 7.4.2 Speed Mode CS43L22 Configures the speed mode of the DAC in Slave Mode and sets the appropriate MCLK divide ratio for LRCK and SCLK in Master Mode. SPEED[1:0] 00 01 10 11 Application: Slave Mode Serial Port Speed Double-Speed Mode (DSM - 50 kHz -100 kHz Fs) Single-Speed Mode (SSM - 4 kHz -50 kHz Fs) Half-Speed Mode (HSM - 12.5kHz -25 kHz Fs) Quarter-Speed Mode (QSM - 4 kHz -12.5 kHz Fs) “Serial Port Clocking” on page 30 Master Mode MCLK/LRCK Ratio 512 256 128 128 SCLK/LRCK Ratio 64 64 64 64 Notes: 1. Slave/Master Mode is determined by the M/S bit in “Master/Slave Mode” on page 41. 2. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit (“32kHz Sample Rate Group” on page 40) and/or the VIDEOCLK bit (“27 MHz Video Clock” on page 40) and RATIO[1:0] bits (“Internal MCLK/LRCK Ratio” on page 40). Low sample rates may also affect dynamic range performance in the typical audio band. Refer to the referenced application for more information. 3. These bits are ignored when the AUTO bit (“Auto-Detect” on page 39) is enabled. 7.4.3 32kHz Sample Rate Group Specifies whether or not the input/output sample rate is 8 kHz, 16 kHz or 32 kHz. 32kGROUP 0 1 Application: 8 kHz, 16 kHz or 32 kHz sample rate? No Yes “Serial Port Clocking” on page 30 7.4.4 27 MHz Video Clock Specifies whether or not the external MCLK frequency is 27 MHz VIDEOCLK 0 1 Application: 27 MHz MCLK? No Yes “Serial Port Clocking” on page 30 7.4.5 Internal MCLK/LRCK Ratio Configures the internal MCLK/LRCK ratio. RATIO[1:0] 00 01 10 11 Application: Internal MCLK Cycles per LRCK 128 125 132 136 “Serial Port Clocking” on page 30 SCLK/LRCK Ratio in Master Mode 64 62 66 68 40 DS792F1 Confidential Draft 10/7/08 7.4.6 MCLK Divide By 2 Divides the input MCLK by 2 prior to all internal circuitry. MCLKDIV2 0 1 Application: MCLK signal into DAC No divide Divided by 2 “Serial Port Clocking” on page 30 CS43L22 Note: In Slave Mode, this bit is ignored when the AUTO bit (“Auto-Detect” on page 39) is disabled. 7.5 Interface Control 1 (Address 06h) 7 M/S 6 INV_SCLK 5 Reserved 4 DSP 3 DACDIF1 2 DACDIF0 1 AWL1 0 AWL0 7.5.1 Master/Slave Mode Configures the serial port I/O clocking. M/S 0 1 Serial Port Clocks Slave (input ONLY) Master (output ONLY) 7.5.2 SCLK Polarity Configures the polarity of the SCLK signal. INV_SCLK 0 1 SCLK Polarity Not Inverted Inverted 7.5.3 DSP Mode Configures a data-packed interface format for the DAC. DSP 0 1 Application: DSP Mode Disabled Enabled “DSP Mode” on page 32 Notes: 1. Select the audio word length using the AWL[1:0] bits (“Audio Word Length” on page 42). 2. The interface format for the DAC must be set to “Left-Justified” when DSP Mode is enabled. 7.5.4 DAC Interface Format Configures the digital interface format for data on SDIN. DACDIF[1:0] 00 01 10 11 Application: DAC Interface Format Left Justified, up to 24-bit data I²S, up to 24-bit data Right Justified Reserved “Digital Interface Formats” on page 31 Note: Select the audio word length for Right Justified using the AWL[1:0] bits (“Audio Word Length” on page 42). DS792F1 41 Confidential Draft 10/7/08 7.5.5 Audio Word Length Configures the audio sample word length used for the data into SDIN. AWL[1:0] 00 01 10 11 Application: Audio Word Length DSP Mode 32-bit data 24-bit data 20-bit data 16-bit data “DSP Mode” on page 32 Right Justified 24-bit data 20-bit data 18-bit data 16-bit data CS43L22 Note: When the internal MCLK/LRCK ratio is set to 125 in Master Mode, the 32-bit data width option for DSP Mode is not valid unless SCLK=MCLK. 7.6 Interface Control 2 (Address 07h) 6 SCLK=MCLK 5 Reserved 4 Reserved 3 INV_SWCH 2 Reserved 1 Reserved 0 Reserved 7 Reserved 7.6.1 SCLK equals MCLK Configures the SCLK signal source for Master Mode. SCLK=MCLK 0 1 Output SCLK Re-timed signal, synchronously derived from MCLK Non-retimed, MCLK signal Note: This bit is only valid for MCLK = 12.0000 MHz. 7.6.2 Speaker/Headphone Switch Invert Determines the control signal polarity of the SPK/HP_SW pin. INV_SWCH 0 1 SPK/HP_SW pin 6 Control Not inverted Inverted 42 DS792F1 Confidential Draft 10/7/08 7.7 Passthrough x Select: PassA (Address 08h), PassB (Address 09h) 6 Reserved 5 Reserved 4 Reserved CS43L22 7 Reserved 3 2 1 0 PASSASEL4 PASSASEL3 PASSASEL2 PASSASEL1 7.7.1 Passthrough Input Channel Mapping Selects one or sums/mixes the analog input signal into the passthrough Amplifier. Each bit of the PASSx_SEL[4:1] word corresponds to individual channels (i.e. PASSx_SEL1 selects AIN1x, PASSx_SEL2 selects AIN2x, etc.). PASSxSEL[4:1] 00000 00001 00010 00100 01000 Application: Selected Input to Passthrough Channelx No inputs selected AIN1x AIN2x AIN3x AIN4x “Analog Passthrough” on page 25 Note: Table does not show all possible combinations. 7.8 Analog ZC and SR Settings (Address 0Ah) 6 Reserved 5 Reserved 4 Reserved 3 ANLGSFTB 2 ANLGZCB 1 ANLGSFTA 0 ANLGZCA 7 Reserved 7.8.1 Ch. x Analog Soft Ramp Configures an incremental volume ramp from the current level to the new level at the specified rate. ANLGSFTx 0 1 Ramp Rate: Volume Changes Do not occur with a soft ramp Occur with a soft ramp 1/2 dB every 16 LRCK cycles Affected Analog Volume Controls PASSxVOL[7:0] (“Passthrough x Volume” on page 47) 7.8.2 Ch. x Analog Zero Cross Configures when the signal level changes occur for the analog volume controls. ANLGZCx 0 1 Volume Changes Do not occur on a zero crossing Occur on a zero crossing Affected Analog Volume Controls PASSxVOL[7:0] (“Passthrough x Volume” on page 47) Note: If the signal does not encounter a zero crossing, the requested volume change will occur after a timeout period of 1024 sample periods (approximately 10.7 ms at 48 kHz sample rate). 7.9 Passthrough Gang Control (Address 0Ch) 6 Reserved 5 Reserved 4 Reserved 3 Reserved 2 Reserved 1 Reserved 0 Reserved 7 PASSB=A 7.9.1 Passthrough Channel B=A gang Control Configures independent or ganged control of the passthrough channel settings. Mute is not affected. PASSB=A 0 1 Single Volume Control Disabled Enabled DS792F1 43 Confidential Draft 10/7/08 7.10 Playback Control 1 (Address 0Dh) 6 HPGAIN1 5 HPGAIN0 4 PLYBCKB=A 3 INV_PCMB 2 INV_PCMA 1 MSTBMUTE CS43L22 0 MSTAMUTE 7 HPGAIN2 7.10.1 Headphone Analog Gain Selects the gain multiplier for the headphone/line outputs. HPGAIN[2:0] 000 001 010 011 100 101 110 111 Headphone/Line Gain Setting (G) 0.3959 0.4571 0.5111 0.6047 0.7099 0.8399 1.000 1.1430 Note: Refer to “Headphone Output Power Characteristics” on page 14 and “Headphone Output Power Characteristics” on page 14. 7.10.2 Playback Volume Setting B=A Configures independent or ganged volume control of all playback channels. Mute is not affected. PLYBCKB=A 0 1 Single Volume Control for all Playback Channels Disabled Enabled 7.10.3 Invert PCM Signal Polarity Configures the polarity of the digital input signal. INV_PCMx 0 1 PCM Signal Polarity Not Inverted Inverted 7.10.4 Master Playback Mute Configures a digital mute on the master volume control for channel x. MSTxMUTE 0 1 Master Mute Not Inverted Inverted Note: The muting function is affected by the DIGSFT (“Digital Soft Ramp” on page 45) and DIGZC (“Digital Zero Cross” on page 46) bits. 44 DS792F1 Confidential Draft 10/7/08 7.11 Miscellaneous Controls (Address 0Eh) 3 FREEZE 2 DEEMPH 1 DIGSFT CS43L22 0 DIGZC 7 6 5 4 PASSTHRUB PASSTHRUA PASSBMUTE PASSAMUTE 7.11.1 Passthrough Analog Configures an analog passthrough from the analog inputs to the headphone/line outputs. PASSTHRUx 0 1 Analog In Routed to HP/Line Output Disabled Enabled 7.11.2 Passthrough Mute Configures an analog mute on the channel x analog in to analog out passthrough. PASSxMUTE 0 1 Passthrough Mute Disabled Enabled 7.11.3 Freeze Registers Configures a hold on all register settings. FREEZE 0 1 Control Port Status Register changes take effect immediately Modifications may be made to all control port registers without the changes taking effect until after the FREEZE is disabled. 7.11.4 HP/Speaker De-Emphasis Configures a 15µs/50µs digital de-emphasis filter response on the headphone/line and speaker outputs. DEEMPHASIS 0 1 Control Port Status Disabled Enabled 7.11.5 Digital Soft Ramp Configures an incremental volume ramp from the current level to the new level at the specified rate. DIGSFT 0 Volume Changes Affected Digital Volume Controls Does not occur with a soft ramp MSTxMUTE (“Master Playback Mute” on page 44), HPxMUTE, SPKxMUTE (“Playback Control 2 (Address 0Fh)” on page 46), PCMxMUTE, PCMxVOL[7:0] (“PCM Channel x Volume” on page 48), MSTxVOL[7:0] (“Master Volume Control” on page 52), Occurs with a soft ramp HPxVOL[7:0] (“Headphone Volume Control” on page 52), SPKxVOL[7:0] (“Speaker Volume Control” on page 53), 1/8 dB every LRCK cycle 1 Ramp Rate: DS792F1 45 Confidential Draft 10/7/08 7.11.6 Digital Zero Cross Configures when the signal level changes occur for the digital volume controls. DIGZC 0 Volume Changes Do not occur on a zero crossing Occur on a zero crossing Affected Digital Volume Controls CS43L22 1 MSTxMUTE (“Master Playback Mute” on page 44), HPxMUTE, SPKxMUTE (“Playback Control 2 (Address 0Fh)” on page 46), PCMxMUTE, PCMxVOL[7:0] (“PCM Channel x Volume” on page 48), MSTxVOL[7:0] (“Master Volume Control” on page 52), HPxVOL[7:0] (“Headphone Volume Control” on page 52), SPKxVOL[7:0] (“Speaker Volume Control” on page 53), Notes: 1. If the signal does not encounter a zero crossing, the requested volume change will occur after a timeout period between 1024 and 2048 sample periods (21.3 ms to 42.7 ms at 48 kHz sample rate). 2. The zero cross function is independently monitored and implemented for each channel. 3. The DIS_LIMSFT bit (“Limiter Soft Ramp Disable” on page 54) is ignored when zero cross is enabled. 7.12 Playback Control 2 (Address 0Fh) 6 HPAMUTE 5 SPKBMUTE 4 SPKAMUTE 3 SPKB=A 2 SPKSWAP 1 SPKMONO 0 MUTE50/50 7 HPBMUTE 7.12.1 Headphone Mute Configures a digital mute on headphone channel x. HPxMUTE 0 1 Headphone Mute Disabled Enabled 7.12.2 Speaker Mute Configures a digital mute on speaker channel x. SPKxMUTE 0 1 Speaker Mute Disabled Enabled 7.12.3 Speaker Volume Setting B=A Configures independent or ganged volume control of the speaker volume. Mute is not affected. SPKB=A 0 1 Single Volume Control for the Speaker Channel Disabled Enabled 7.12.4 Speaker Channel Swap Configures a channel swap on the speaker channels. SPKSWAP 0 1 Application: Speaker Output Channel A Channel B “Mono Speaker Output Configuration” on page 28 46 DS792F1 Confidential Draft 10/7/08 7.12.5 Speaker MONO Control Configures a parallel full bridge output for the speaker channels. SPKMONO 0 1 Application: Parallel Full Bridge Output Disabled Enabled “Mono Speaker Output Configuration” on page 28 CS43L22 7.12.6 Speaker Mute 50/50 Control Configures how the speaker channels mute. MUTE50/50 0 1 Speaker Mute 50/50 Disabled; The PWM amplifiers outputs modulated silence when SPKxMUTE is enabled. Enabled; The PWM amplifiers switch at an exact 50%-duty-cycle signal (not modulated) when SPKxMUTE is enabled. 7.13 Passthrough x Volume: PASSAVOL (Address 14h) & PASSBVOL (Address 15h) 6 PASSxVOL6 5 PASSxVOL5 4 PASSxVOL4 3 PASSxVOL3 2 PASSxVOL2 1 PASSxVOL1 0 PASSxVOL0 7 PASSxVOL7 7.13.1 Passthrough x Volume Sets the volume/gain of the analog input signal routed to the headphone/line output. PASSxVOL[7:0] 0111 1111 ... 0001 1000 ... 0000 0001 0000 0000 11111 1111 ... 1000 1000 ... 1000 0000 Step Size: Application: Gain 12 dB ... 12 dB ... +0.5 dB 0 dB -0.5 dB ... -60.0 dB ... -60.0 dB 0.5 dB (approximate) “Passthrough Analog” on page 45 Notes: 1. This register is ignored when the PASSTHRUx bit (“Passthrough Analog” on page 45) is disabled. 2. The step size may deviate from 0.5 dB at settings below -40 dB. Code settings 0x95, 0xA1, 0xAD and 0xB9 are not guaranteed to be monotonic. DS792F1 47 Confidential Draft 10/7/08 7.14 PCMx Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh) 6 PCMxVOL6 5 PCMxVOL5 4 PCMxVOL4 3 PCMxVOL3 2 PCMxVOL2 1 PCMxVOL1 CS43L22 0 PCMxVOL0 7 PCMxMUTE 7.14.1 PCM Channel x Mute Configures a digital mute on the PCM data from the serial data input (SDIN) to the DSP. PCMxMUTE 0 1 PCM Mute Disabled Enabled 7.14.2 PCM Channel x Volume Sets the volume/gain of the PCM data from the serial data input (SDIN) to the DSP. PCMxVOL[6:0] 001 1000 ... 000 0001 000 0000 111 1111 ... 001 1001 Step Size: Volume +12.0 dB ... +0.5 dB 0 dB -0.5 dB ... -51.5 dB 0.5 dB 7.15 Beep Frequency & On Time (Address 1Ch) 6 FREQ2 5 FREQ1 4 FREQ0 3 ONTIME3 2 ONTIME2 1 ONTIME1 0 ONTIME0 7 FREQ3 7.15.1 Beep Frequency Sets the frequency of the beep signal. FREQ[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Application: Frequency (Fs = 12, 24, 48 or 96 kHz) 260.87 Hz 521.74 Hz 585.37 Hz 666.67 Hz 705.88 Hz 774.19 Hz 888.89 Hz 1000.00 Hz 1043.48 Hz 1200.00 Hz 1333.33 Hz 1411.76 Hz 1600.00 Hz 1714.29 Hz 2000.00 Hz 2181.82 Hz “Beep Generator” on page 23 Pitch C4 C5 D5 E5 F5 G5 A5 B5 C6 D6 E6 F6 G6 A6 B6 C7 48 DS792F1 Confidential Draft 10/7/08 Notes: 1. This setting must not change when BEEP is enabled. CS43L22 2. Beep frequency will scale directly with sample rate, Fs, but is fixed at the nominal Fs within each speed mode. 7.15.2 Beep On Time Sets the on duration of the beep signal. ONTIME[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Application: On Time (Fs = 12, 24, 48 or 96 kHz) ~86 ms ~430 ms ~780 ms ~1.20 s ~1.50 s ~1.80 s ~2.20 s ~2.50 s ~2.80 s ~3.20 s ~3.50 s ~3.80 s ~4.20 s ~4.50 s ~4.80 s ~5.20 s “Beep Generator” on page 23 Notes: 1. This setting must not change when BEEP is enabled. 2. Beep on time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed mode. 7.16 Beep Volume & Off Time (Address 1Dh) 6 OFFTIME1 5 OFFTIME0 4 BPVOL4 3 BPVOL3 2 BPVOL2 1 BPVOL1 0 BPVOL0 7 OFFTIME2 7.16.1 Beep Off Time Sets the off duration of the beep signal. OFFTIME[2:0] 000 001 010 011 100 101 110 111 Application: Off Time (Fs = 48 or 96 kHz) ~1.23 s ~2.58 s ~3.90 s ~5.20 s ~6.60 s ~8.05 s ~9.35 s ~10.80 s “Beep Generator” on page 23 DS792F1 49 Confidential Draft 10/7/08 Notes: 1. This setting must not change when BEEP is enabled. CS43L22 2. Beep off time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed mode. 7.16.2 Beep Volume Sets the volume of the beep signal. BEEPVOL[4:0] 00110 ··· 00000 11111 11110 ··· 00111 Step Size: Application: Gain +6.0 dB ··· -6 dB -8 dB -10 dB ··· -56 dB 2 dB “Beep Generator” on page 23 Note: This setting must not change when BEEP is enabled. 7.17 Beep & Tone Configuration (Address 1Eh) 6 BEEP0 5 BEEPMIXDIS 4 TREBCF1 3 TREBCF0 2 BASSCF1 1 BASSCF0 0 TCEN 7 BEEP1 7.17.1 Beep Configuration Configures a beep mixed with the HP/Line and SPK output. BEEP[1:0] 00 01 10 11 Application: Beep Occurrence Off Single Multiple Continuous “Beep Generator” on page 23 Notes: 1. When used in analog pass through mode, the output alternates between the signal from the Passthrough Amplifier and the beep signal. The beep signal does not mix with the analog signal from the Passthrough Amplifier. 2. Re-engaging the beep before it has completed its initial cycle will cause the beep signal to remain ON for the maximum ONTIME duration. 7.17.2 Beep Mix Disable Configures how the beep mixes with the serial data input. BEEPMIXDIS 0 1 Application: Beep Output to HP/Line and Speaker Mix Enabled; The beep signal mixes with the digital signal from the serial data input. Mix Disabled; The output alternates between the signal from the serial data input and the beep signal. The beep signal does not mix with the digital signal from the serial data input. “Beep Generator” on page 23 Note: 50 This setting must not change when BEEP is enabled. DS792F1 Confidential Draft 10/7/08 7.17.3 Treble Corner Frequency Sets the corner frequency (-3 dB point) for the treble shelving filter. TREBCF[1:0] 00 01 10 11 Treble Corner Frequency Setting 5 kHz 7 kHz 10 kHz 15 kHz CS43L22 7.17.4 Bass Corner Frequency Sets the corner frequency (-3 dB point) for the bass shelving filter. BASSCF[1:0] 00 01 10 11 Bass Corner Frequency Setting 50 Hz 100 Hz 200 Hz 250 Hz 7.17.5 Tone Control Enable Configures the treble and bass activation. TCEN 0 1 Application: Bass and Treble Control Disabled Enabled “Beep Generator” on page 23 7.18 Tone Control (Address 1Fh) 6 TREB2 5 TREB1 4 TREB0 3 BASS3 2 BASS2 1 BASS1 0 BASS0 7 TREB3 7.18.1 Treble Gain Sets the gain of the treble shelving filter. TREB[3:0] 0000 ··· 0111 1000 1001 ··· 1111 Step Size: Gain Setting +12.0 dB ··· +1.5 dB 0 dB -1.5 dB ··· -10.5 dB 1.5 dB DS792F1 51 Confidential Draft 10/7/08 7.18.2 Bass Gain Sets the gain of the bass shelving filter. TREB[3:0] 0000 ··· 0111 1000 1001 ··· 1111 Step Size: Gain Setting +12.0 dB ··· +1.5 dB 0 dB -1.5 dB ··· -10.5 dB 1.5 dB CS43L22 7.19 Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h) 6 MSTxVOL6 5 MSTxVOL5 4 MSTxVOL4 3 MSTxVOL3 2 MSTxVOL2 1 MSTxVOL1 0 MSTxVOL0 7 MSTxVOL7 7.19.1 Master Volume Control Sets the volume of the signal out the DSP. MSTxVOL[7:0] 0001 1000 ··· 0000 0000 1111 1111 1111 1110 ··· 0011 0100 ··· 0001 1001 Step Size: Master Volume +12.0 dB ··· 0 dB -0.5 dB -1.0 dB ··· -102 dB ··· -102 dB 0.5 dB 7.20 Headphone Volume Control: HPA (Address 22h) & HPB (Address 23h) 6 HPxVOL6 5 HPxVOL5 4 HPxVOL4 3 HPxVOL3 2 HPxVOL2 1 HPxVOL1 0 HPxVOL0 7 HPxVOL7 7.20.1 Headphone Volume Control Sets the volume of the signal out the DAC. HPxVOL[7:0] 0000 0000 1111 1111 1111 1110 ··· 0011 0100 ··· 0000 0001 Step Size: Headphone Volume 0 dB -0.5 dB -1.0 dB ··· -96.0 dB ··· Muted 0.5 dB 52 DS792F1 Confidential Draft 10/7/08 7.21 Speaker Volume Control: SPKA (Address 24h) & SPKB (Address 25h) 6 SPKxVOL6 5 SPKxVOL5 4 SPKxVOL4 3 SPKxVOL3 2 SPKxVOL2 1 SPKxVOL1 CS43L22 0 SPKxVOL0 7 SPKxVOL7 7.21.1 Speaker Volume Control Sets the volume of the signal out the PWM modulator. SPKxVOL[7:0] 0000 0000 1111 1111 1111 1110 ··· 0100 0000 ··· 0000 0001 Step Size: Speaker Volume 0 dB -0.5 dB -1.0 dB ··· -96.0 dB ··· Muted 0.5 dB Note: The maximum step size error is +/-0.15 dB. 7.22 PCM Channel Swap (Address 26h) 6 PCMASWP0 5 PCMBSWP1 4 PCMBSWP0 3 Reserved 2 Reserved 1 Reserved 0 Reserved 7 PCMASWP1 7.22.1 PCM Channel Swap Configures a mix/swap of the PCM data to the headphone/line or speaker outputs. PCMxSWP[1:0] 00 01 10 11 PCM to HP/LINEOUTA Left (Left + Right)/2 Right PCM to HP/LINEOUTB Right (Left + Right)/2 Left DS792F1 53 Confidential Draft 10/7/08 7.23 Limiter Control 1, Min/Max Thresholds (Address 27h) 6 LMAX1 5 LMAX0 4 CUSH2 3 CUSH1 2 CUSH0 1 LIMSRDIS CS43L22 0 LIMZCDIS 7 LMAX2 7.23.1 Limiter Maximum Threshold Sets the maximum level, below full scale, at which to limit and attenuate the output signal at the attack rate (LIMARATE - “Limiter Release Rate” on page 55). LMAX[2:0] 000 001 010 011 100 101 110 111 Application: Threshold Setting 0 dB -3 dB -6 dB -9 dB -12 dB -18 dB -24 dB -30 dB “Limiter” on page 23 Note: Bass, Treble and digital gain settings that boost the signal beyond the maximum threshold may trigger an attack. 7.23.2 Limiter Cushion Threshold Sets the minimum level at which to disengage the Limiter’s attenuation at the release rate (LIMRRATE “Limiter Release Rate” on page 55) until levels lie between the LMAX and CUSH thresholds. CUSH[2:0] 000 001 010 011 100 101 110 111 Application: Threshold Setting 0 dB -3 dB -6 dB -9 dB -12 dB -18 dB -24 dB -30 dB “Limiter” on page 23 Note: This setting is usually set slightly below the LMAX threshold. 7.23.3 Limiter Soft Ramp Disable Configures an override of the digital soft ramp setting. LIMSRDIS 0 1 Application: Limiter Soft Ramp Disable OFF; Limiter Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 45) setting ON; Limiter volume changes take effect in one step, regardless of the DIGSFT setting. “Limiter” on page 23 Note: This bit is ignored when the DIGZC (“Digital Zero Cross” on page 46) is enabled. 54 DS792F1 Confidential Draft 10/7/08 7.23.4 Limiter Zero Cross Disable Configures an override of the digital zero cross setting. LIMZCDIS 0 1 Application: Limiter Zero Cross Disable OFF; Limiter Attack Rate is dictated by the DIGZC (“Digital Zero Cross” on page 46) setting ON; Limiter volume changes take effect in one step, regardless of the DIGZC setting. “Limiter” on page 23 CS43L22 7.24 Limiter Control 2, Release Rate (Address 28h) 6 LIMIT_ALL 5 LIMRRATE5 4 LIMRRATE4 3 LIMRRATE3 2 LIMRRATE2 1 LIMRRATE1 0 LIMRRATE0 7 LIMIT 7.24.1 Peak Detect and Limiter Configures the peak detect and limiter circuitry. LIMIT 0 1 Application: Limiter Status Disabled Enabled “Limiter” on page 23 7.24.2 Peak Signal Limit All Channels Sets how channels are attenuated when the limiter is enabled. LIMIT_ALL Limiter action: Apply the necessary attenuation on a specific channel only when the signal amplitude on that specific channel rises above LMAX. Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below CUSH. Apply the necessary attenuation on BOTH channels when the signal amplitude on any ONE channel rises above LMAX. Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below CUSH. “Limiter” on page 23 0 1 Application: 7.24.3 Limiter Release Rate Sets the rate at which the limiter releases the digital attenuation from levels below the CUSH[2:0] threshold (“Limiter Cushion Threshold” on page 54) and returns the analog output level to the MSTxVOL[7:0] (“Master Volume Control” on page 52) setting. LIMRRATE[5:0] 00 0000 ··· 11 1111 Application: Release Time Fastest Release ··· Slowest Release “Limiter” on page 23 Note: The limiter release rate is user-selectable but is also a function of the sampling frequency, Fs, and the DIGSFT (“Digital Soft Ramp” on page 45) and DIGZC (“Digital Zero Cross” on page 46) setting. DS792F1 55 Confidential Draft 10/7/08 7.25 Limiter Attack Rate (Address 29h) 6 Reserved 5 LIMARATE5 4 LIMARATE4 3 LIMARATE3 2 LIMARATE2 1 LIMARATE1 CS43L22 0 LIMARATE0 7 Reserved 7.25.1 Limiter Attack Rate Sets the rate at which the limiter applies digital attenuation from levels above the MAX[2:0] threshold (“Limiter Maximum Threshold” on page 54). LIMARATE[5:0] 00 0000 ··· 11 1111 Application: Attack Time Fastest Attack ··· Slowest Attack “Limiter” on page 23 Note: The limiter attack rate is user-selectable but is also a function of the sampling frequency, Fs, and the DIGSFT (“Digital Soft Ramp” on page 45) and DIGZC (“Digital Zero Cross” on page 46) setting unless the respective disable bit (“Limiter Soft Ramp Disable” on page 54 or “Limiter Zero Cross Disable” on page 55) is enabled. 7.26 Status (Address 2Eh) (Read Only) For all bits in this register, a “1” means the associated error condition has occurred at least once since the register was last read. A”0” means the associated error condition has NOT occurred since the last reading of the register. Reading the register resets all bits to 0. 7 Reserved 6 SPCLKERR 5 DSPAOVFL 4 DSPBOVFL 3 PCMAOVFL 2 PCMBOVFL 1 Reserved 0 Reserved 7.26.1 Serial Port Clock Error (Read Only) Indicates the status of the MCLK to LRCK ratio. SPCLKERR 0 1 Application: Serial Port Clock Status: MCLK/LRCK ratio is valid. MCLK/LRCK ratio is not valid. “Serial Port Clocking” on page 30 Note: nizes. On initial power up and application of clocks, this bit will report ‘1’b as the serial port re-synchro- 7.26.2 DSP Engine Overflow (Read Only) Indicates the over-range status in the DSP data path. DSPxOVFL 0 1 Application: DSP Overflow Status: No digital clipping has occurred in the data path after the DSP. Digital clipping has occurred in the data path after the DSP. “DSP Engine” on page 22 56 DS792F1 Confidential Draft 10/7/08 7.26.3 PCMx Overflow (Read Only) Indicates the over-range status in the PCM data path. PCMxOVFL 0 1 Application: PCM Overflow Status: CS43L22 No digital clipping has occurred in the data path of the PCM (“PCM Channel x Volume” on page 48) of the DSP. Digital clipping has occurred in the data path of the PCM of the DSP. “DSP Engine” on page 22 7.27 Battery Compensation (Address 2Fh) 6 VPMONITOR 5 Reserved 4 Reserved 3 VPREF3 2 VPREF2 1 VPREF1 0 VPREF0 7 BATTCMP 7.27.1 Battery Compensation Configures automatic adjustment of the speaker volume when VP deviates from VPREF[3:0]. BATTCMP 0 1 Application: Automatic Battery Compensation Disabled Enabled “Maintaining a Desired Output Level” on page 28 7.27.2 VP Monitor Configures the internal ADC that monitors the VP voltage level. VPMONITOR 0 1 VP ADC Status Disabled Enabled Notes: 1. The internal ADC that monitors the VP supply is enabled automatically when BATTCMP is enabled, regardless of the VPMONITOR setting. Conversely, when BATTCMP is disabled, the ADC may be enabled by enabling VPMONITOR; this provides a convenient battery monitor without enabling battery compensation. 2. When enabled, VPMONITOR remains enabled regardless of the PDN bit setting. DS792F1 57 Confidential Draft 10/7/08 7.27.3 VP Reference Sets the desired VP reference used for battery compensation. VPREF[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Application: Desired VP used to calculate the required attenuation on the speaker output: (for VA = 1.8 V) 1.5 V 2.0 V 2.5 V 3.0 V 3.5 V 4.0 V 4.5 V 5.0 V (for VA = 2.5 V) 1.5 V 2.0 V 2.5 V 3.0 V 3.5 V 4.0 V 4.5 V 5.0 V “VP Battery Compensation” on page 28 CS43L22 7.28 VP Battery Level (Address 30h) (Read Only) 6 VPLVL6 5 VPLVL5 4 VPLVL4 3 VPLVL3 2 VPLVL2 1 VPLVL1 0 VPLVL0 7 VPLVL7 7.28.1 VP Voltage Level (Read Only) Indicates the unsigned VP voltage level. VPLVL[7:0] ... 0101 1110 ... 0111 0010 ... Formula: VP Voltage = (Binary representation of VPLVL[7:0]) * VA / 63.3 3.7 V (for VA = 2.0 V); apply formula using actual VA voltage to calculate VP voltage. 3.0 V (for VA = 2.0 V); apply formula using actual VA voltage to calculate VP voltage. VP Voltage 7.29 Speaker Status (Address 31h) (Read Only) 6 Reserved 5 SPKASHRT 4 SPKBSHRT 3 SPKR/HP 2 Reserved 1 Reserved 0 Reserved 7 Reserved 7.29.1 Speaker Current Load Status (Read Only) Indicates whether or not any of the speaker outputs is shorted to ground. SPKxSHRT 0 1 Speaker Output Load No overload detected Overload detected 58 DS792F1 Confidential Draft 10/7/08 7.29.2 SPKR/HP Pin Status (Read Only) Indicates the status of the SPKR/HP pin. SPKR/HP 0 1 Pin State Pulled Low Pulled High CS43L22 7.30 Charge Pump Frequency (Address 34h) 6 CHGFREQ2 5 CHGFREQ1 4 CHGFREQ0 3 Reserved 2 Reserved 1 Reserved 0 Reserved 7 CHGFREQ3 7.30.1 Charge Pump Frequency Sets the charge pump frequency on FLYN and FLYP. CHGFREQ[3:0] 0000 ... 0101 ... 1111 Formula: 15 Frequency = (64xFs)/(N+2) 5 N 0 Note: The headphone output THD+N performance may be affected. DS792F1 59 Confidential Draft 10/7/08 8. ANALOG PERFORMANCE PLOTS 8.1 Headphone THD+N versus Output Power Plots CS43L22 Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave; measurement bandwidth is 10 Hz to 20 kHz; Fs = 48 kHz. -10 G = 0.6047 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 VHP = VA = 1.8 V G = 0.7099 G = 0.8399 G = 1.0000 G = 1.1430 Legend d B r A NOTE: Graph shows the output power per channel (i.e. Output Power = 23 mW into single 16 Ω and 46 mW into stereo 16 Ω with THD+N = 75 dB). 10m 20m 30m 40m W 50m 60m 70m 80m Figure 18. THD+N vs. Output Power per Channel at 1.8 V (16 Ω load) -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 G = 0.6047 VHP = VA = 2.5 V G = 0.7099 G = 0.8399 G = 1.0000 G = 1.1430 Legend d B r A NOTE: Graph shows the output power per channel (i.e. Output Power = 44 mW into single 16 Ω and 88 mW into stereo 16 Ω with THD+N = 75 dB). 10m 20m 30m 40m W 50m 60m 70m 80m Figure 19. THD+N vs. Output Power per Channel at 2.5 V (16 Ω load) 60 DS792F1 Confidential Draft 10/7/08 CS43L22 G = 0.6047 G = 0.7099 G = 0.8399 G = 1.0000 VHP = VA = 1.8 V -20 -30 -35 -40 -45 G = 1.1430 Legend -50 -55 d B r A -65 -60 -70 -75 NOTE: Graph shows the output power per channel (i.e. Output Power = 22 mW into single 32 Ω and 44 mW into stereo 32 Ω with THD+N = 75 dB). -80 -85 -90 -95 -100 0 6m 12m 18m 24m 30m W 36m 42m 48m 54m 60m Figure 20. THD+N vs. Output Power per Channel at 1.8 V (32 Ω load) -20 VHP = VA = 2.5 V -25 -30 G = 0.6047 G = 0.7099 G = 0.8399 -35 G = 1.0000 -40 -45 G = 1.1430 Legend -50 -55 d B r A -65 -60 -70 -75 -80 NOTE: Graph shows the output power per channel (i.e. Output Power = 42 mW into single 32 Ω and 84 mW into stereo 32 Ω with THD+N = 75 dB). -85 -90 -95 -100 0 5m 10m 15m 20m 25m 30m W 35m 40m 45m 50m 55m 60m Figure 21. THD+N vs. Output Power per Channel at 2.5 V (32 Ω load) DS792F1 61 Confidential Draft 10/7/08 9. EXAMPLE SYSTEM CLOCK FREQUENCIES 9.1 Auto Detect Enabled Sample Rate LRCK (kHz) 8 11.025 12 CS43L22 *The”MCLKDIV2” bit must be enabled. 1024x 8.1920 11.2896 12.2880 MCLK (MHz) 1536x 2048x* 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 3072x* 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 16 22.05 24 512x 8.1920 11.2896 12.2880 MCLK (MHz) 768x 1024x* 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 1536x* 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 32 44.1 48 256x 8.1920 11.2896 12.2880 MCLK (MHz) 384x 512x* 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 768x* 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 64 88.2 96 128x 8.1920 11.2896 12.2880 MCLK (MHz) 192x 256x* 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 384x* 24.5760 33.8688 36.8640 9.2 Auto Detect Disabled Sample Rate LRCK (kHz) 8 11.025 12 512x 6.1440 768x 6.1440 8.4672 9.2160 MCLK (MHz) 1024x 1536x 8.1920 11.2896 12.2880 12.2880 16.9344 18.4320 2048x 16.3840 22.5792 24.5760 3072x 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 16 22.05 24 256x 6.1440 384x 6.1440 8.4672 9.2160 512x 8.1920 11.2896 12.2880 MCLK (MHz) 768x 12.2880 16.9344 18.4320 1024x 16.3840 22.5792 24.5760 1536x 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 32 44.1 48 256x 8.1920 11.2896 12.2880 MCLK (MHz) 384x 512x 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 768x 24.5760 33.8688 36.8640 Sample Rate LRCK (kHz) 64 88.2 96 128x 8.1920 11.2896 12.2880 MCLK (MHz) 192x 256x 12.2880 16.9344 18.4320 16.3840 22.5792 24.5760 384x 24.5760 33.8688 36.8640 62 DS792F1 Confidential Draft 10/7/08 10.PCB LAYOUT CONSIDERATIONS 10.1 Power Supply, Grounding CS43L22 As with any high-resolution converter, the CS43L22 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 1 on page 9 shows the recommended power arrangements, with VA and VHP connected to clean supplies VD, which powers the digital circuitry, may be run from the system logic supply. Alternatively, VD may be powered from the analog supply via a ferrite bead. In this case, no additional devices should be powered from VD. Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling capacitors are recommended. Decoupling capacitors should be as close to the pins of the CS43L22 as possible. The low value ceramic capacitor should be closest to the pin and should be mounted on the same side of the board as the CS43L22 to minimize inductance effects. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from AGND. The CDB43L22 evaluation board demonstrates the optimum layout and power supply arrangements. 10.2 QFN Thermal Pad The CS43L22 is available in a compact QFN package. The underside of the QFN package reveals a large metal pad that serves as a thermal relief to provide for maximum heat dissipation. This pad must mate with an equally dimensioned copper pad on the PCB and must be electrically connected to ground. A series of vias should be used to connect this copper pad to one or more larger ground planes on other PCB layers. In split ground systems, it is recommended that this thermal pad be connected to AGND for best performance. The CS43L22 evaluation board demonstrates the optimum thermal pad and via configuration. DS792F1 63 Confidential Draft 10/7/08 11.DIGITAL FILTER PLOTS CS43L22 Figure 22. Passband Ripple Figure 23. Stopband Figure 24. DAC Transition Band Figure 25. Transition Band (Detail) 64 DS792F1 Confidential Draft 10/7/08 12.PARAMETER DEFINITIONS Dynamic Range CS43L22 The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified band width made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified band width (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channel pairs. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channel pairs. Units in decibels. Gain Drift The change in gain value with temperature. Units in ppm/°C. DS792F1 65 Confidential Draft 10/7/08 13.PACKAGE DIMENSIONS 40L QFN (6 X 6 mm BODY) PACKAGE DRAWING D 2.00REF CS43L22 b e PIN #1CORNER 2.00REF PIN #1IDENTIFIER ∅0.50±0.10 LASER MARKING E E2 A1 A L D2 DIM A A1 b D D2 E E2 e L MIN -0.0000 0.0071 0.1594 0.1594 0.0118 INCHES NOM --0.0091 0.2362 BSC 0.1614 0.2362 BSC 0.1614 0.0197 BSC 0.0157 MAX 0.0394 0.0020 0.0110 0.1634 0.1634 0.0197 MIN -0.00 0.18 4.05 4.05 0.30 MILLIMETERS NOM --0.23 6.00 BSC 4.10 6.00 BSC 4.10 0.50 BSC 0.40 NOTE MAX 1.00 0.05 0.28 4.15 4.15 0.50 1 1 1,2 1 1 1 1 1 1 JEDEC #: MO-220 Controlling Dimension is Millimeters. 1. Dimensioning and tolerance per ASME Y 14.5M-1995. 2. Dimensioning lead width applies to the plated terminal and is measured between 0.20 mm and 0.25 mm from the terminal tip. THERMAL CHARACTERISTICS Parameter Junction to Ambient Thermal Impedance 2 Layer Board 4 Layer Board Symbol θJA θJA Min - Typ 44 19 Max - Units °C/Watt °C/Watt 66 DS792F1 Confidential Draft 10/7/08 14.ORDERING INFORMATION Product Description Package Pb-Free 40L-QFN Yes No CS43L22 Grade Temp Range Container Rail Order # CS43L22-CNZ Low-Power Stereo DAC CS43L22 w/HP and Speaker Amps for Portable Apps CS43L22 Evaluation CDB43L22 Board Commercial -40 to +85° C - Tape & Reel CS43L22-CNZR CDB43L22 15.REFERENCES 1. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000. http://www.semiconductors.philips.com 16.REVISION HISTORY Revision PP1 F1 Initial Release Removed the Thermal Error Detection and Thermal Foldback Feature Added “Internal Connections” to table in “I/O Pin Characteristics” on page 8. Added and updated absolute maximum parameters in “Absolute Maximum Ratings” on page 10 Corrected AFILTx capacitor to 150 pF in “Typical Connection Diagram” on page 9. Updated VIH specification for VL = 1.8 V in “Digital Interface Specifications & Characteristics” on page 19. Lowered the VP Current Consumption in “Power Consumption” on page 20. Updated “PWM Outputs” on page 27 to exclude support of a 384x MCLK to LRCK ratio. Updated “Serial Port Clocking” on page 30 to exclude master mode support when the MCLK signal equals 18.4320 MHz or 16.9344 MHz. Updated “Recommended Power-Up Sequence” on page 32. Updated “Recommended Power-Down Sequence” on page 32. Added “Required Initialization Settings” on page 33. Updated the default settings in bits 7 and 6 of register 29h to ‘0’b. Updated the PASSB=A, PLYBCKB=A and SPKRB=A descriptions in “Passthrough Channel B=A gang Control” on page 43, “Playback Volume Setting B=A” on page 44, and “Speaker Volume Setting B=A” on page 46. Corrected BEEP volume settings to reflect level relative to DAC’s full scale in “Beep Volume” on page 50. Added note in “Speaker Volume Control” on page 53 Added note 2 in “VP Monitor” on page 57. Changes DS792F1 67 Confidential Draft 10/7/08 CS43L22 Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. I²C is a registered trademark of Philips Semiconductor. 68 DS792F1
CS43L22 价格&库存

很抱歉,暂时无法提供与“CS43L22”相匹配的价格&库存,您可以联系我们找货

免费人工找货