CS485xx
CS485xx Family Data Sheet
Differentiating from the legacy Cirrus multi-standard, multi-channel
decoders, this new CS485xx family is still based on the same
high-performance 32-bit fixed point Digital Signal Processor core
but instead is equipped with much less memory, tailoring it for more
cost-effective applications associated with multi-channel and
virtual-channel sound enhancements. Target applications are:
Features
Cost-effective, High-performance 32-bit DSP
300,000,000 MAC/S (multiply accumulates per second)
Dual MAC cycles per clock
72-bit accumulators are the most accurate in the industry
24k x 32 SRAM, 2k blocks - assignable to data or program
Internal ROM contains a variety of configurable sound
enhancement feature sets
8-channel internal DMA
Internal watch-dog DSP lock-up prevention
DSP Tool Set w/ Private Keys for Protecting Customer IP
Configurable Serial Audio Inputs/Outputs
Digital Televisions
Multimedia Peripherals
iPod® Docking Stations
Automotive Head Units
Automotive Outboard Amplifiers
HD-DVD™ and Blu-ray Disc® DVD Receivers
PC Speakers
There are also a wide variety of licensable DSP codes available
today as seen by the following examples:
Configurable for all input/output types
Maximum 32-bit @ 192 kHz
Supports 32-bit audio sample I/O between DSP chips
TDM input modes (multiple channels on same line)
192 kHz SPDIF transmitter
Multi-channel DSD direct stream digital SACD input
Supports Two Different Input Fs Sample Rates
Output can be master or slave
Cirrus also has developed, or is developing their own royalty-free
versions of popular features sets like Cirrus Bass Manager, Cirrus
Dynamic Volume Leveler, Cirrus Original Multichannel Surround,
Cirrus Virtual Speaker & Cirrus 3D-Audio.
Dual processing path capability
Input supports dual domain slave clocking
Hardware assist time sampling for sample rate conversion
Integrated Clock Manager/PLL
The CS485xx family is programmed using the Cirrus proprietary
DSP Composer™ GUI development tool. Processing chains may be
designed using a drag-and-drop interface to place/utilize functional
macro audio DSP primitives. The end result is a software image that
is down-loaded to the DSP via serial host or serial boot modes.
Can operate from external crystal, external oscillator
Input Fs Auto Detection
Host & Boot via Serial Interface
See Section 6 for ordering information.
Configurable GPIOs and External Interrupt Input
1.8V Core and a 3.3V I/O that is tolerant to 5V input
Low-power Mode
“Energy Star® Ready” in low-power mode, 268 µW in standby
Serial
Control 1
GPIO
12 Ch. Audio In /
6 Ch. SACD In
Watchdog
D
M
A
32-bit
DSP
S/PDIF
Debug
P
X
TMR1
TMR2
Y
12 Ch PCM
Audio Out
PLL
CS485xx Block Diagram
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved)
DS734F5
OCT '11
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change
without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information,
including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property
of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other
intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for
use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general
distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS
SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES
NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR
PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS
THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS,
EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR
ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, DSP Composer, and Cirrus Framework are trademarks of Cirrus Logic, Inc. All other brand and product names in this
document may be trademarks or service marks of their respective owners.
Dolby, Dolby Digitaol, Dolby Headphone, Virtual Speaker, and Pro Logic are registered trademarks of Dolby Laboratories, Inc. Supply of an implementation of Dolby
Technology does not convey a license nor imply a right under any patent, or any other industrial or Intellectual Property Right of Dolby Laboratories, to use the Implementation
in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.
DTS and DTS Neo:6 are registered trademarks of Digital Theater Systems, Inc. It is hereby notified that a third-party license from DTS is necessary to distribute software of
DTS in any finished end-user or ready-to-use final product.
SRS, Circle Surround and Trusurround XT are registered trademarks of SRS Labs, Inc. Circle Surround II is a trademark of SRS Labs, Inc. The Circle Surround technology
is incorporated under license from SRS Labs, Inc. The Circle Surround technology rights incorporated in the CS485xx are owned by SRS Labs, a U.S. Corporation and
licensed to Cirrus Logic, Inc. Purchaser of CS485xx must sign a license for use of the chip and display of the SRS Labs trademarks. Any products incorporating the CS485xx
must be sent to SRS Labs for review. The Circle Surround technology is protected under US and foreign patents issued and/or pending. Circle Surround, SRS and (O) symbol
are trademarks of SRS Labs, Inc. in the United States and selected foreign countries. Neither the purchase of the CS485xx, nor the corresponding sale of audio enhancement
equipment conveys the right to sell commercialized recordings made with any SRS technology/solution. SRS Labs requires all set makers to comply with all rules and
regulations as outlined in the SRS Trademark Usage Manual.
SPI is a trademark of Motorola, Inc.
I²C is a trademark of Philips Semiconductor.
iPod is a registered trademark of Apple Computer, Inc.
HD DVD is a trademark of DVD Format/Logo Licensing Corporation.
Blu-Ray Disc is a registered trademark of SONY KABUSHIKI KAISHA CORPORATION.
Energy Star is a registered trademark of the Environmental Protection Agency, a federal agency of the United States government.
DS734F5
2
TABLE OF CONTENTS
1 Documentation Strategy ........................................................................................................................................... 1-5
2 Overview ..................................................................................................................................................................... 2-5
2.1 Licensing ............................................................................................................................................................ 2-5
3 Code Overlays ............................................................................................................................................................ 3-6
4 Hardware Functional Description ............................................................................................................................ 4-7
4.1 DSP Core ........................................................................................................................................................... 4-7
4.1.1 DSP Memory ............................................................................................................................................. 4-7
4.1.2 DMA Controller .......................................................................................................................................... 4-7
4.2 On-chip DSP Peripherals ................................................................................................................................... 4-7
4.2.1 Digital Audio Input Port (DAI) .................................................................................................................... 4-7
4.2.2 Digital Audio Output Port (DAO) ................................................................................................................ 4-8
4.2.3 Serial Control Port (I2C™ or SPI™) ............................................................................................................ 4-8
4.2.4 GPIO ......................................................................................................................................................... 4-8
4.2.5 PLL-based Clock Generator ...................................................................................................................... 4-8
4.2.6 Hardware Watchdog Timer ....................................................................................................................... 4-8
4.3 DSP I/O Description ........................................................................................................................................... 4-8
4.3.1 Multiplexed Pins ........................................................................................................................................ 4-8
4.3.2 Termination Requirements ........................................................................................................................ 4-8
4.3.3 Pads .......................................................................................................................................................... 4-9
4.4 Application Code Security .................................................................................................................................. 4-9
5 Characteristics and Specifications .......................................................................................................................... 5-9
5.1 Absolute Maximum Ratings ................................................................................................................................ 5-9
5.2 Recommended Operations Conditions ............................................................................................................... 5-9
5.3 Digital DC Characteristics ................................................................................................................................... 5-9
5.4 Power Supply Characteristics ........................................................................................................................... 5-10
5.5 Thermal Data (48-pin LQFP) ............................................................................................................................ 5-10
5.6 Switching Characteristics—RESET .................................................................................................................. 5-11
5.7 Switching Characteristics—XTI ........................................................................................................................ 5-11
5.8 Switching Characteristics—Internal Clock ........................................................................................................ 5-11
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode ..................................................................... 5-12
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode ................................................................. 5-13
5.11 Switching Characteristics—Serial Control Port–I2C Slave Mode ................................................................... 5-13
5.12 Switching Characteristics—Serial Control Port–I2C Master Mode ................................................................. 5-14
5.13 Switching Characteristics—Digital Audio Slave Input Port ............................................................................. 5-15
5.14 Switching Characteristics—DSD Slave Input Port .......................................................................................... 5-15
5.15 Switching Characteristics—Digital Audio Output (DAO) Port ......................................................................... 5-16
6 Ordering Information ............................................................................................................................................... 6-18
7 Environmental, Manufacturing, and Handling Information ................................................................................. 7-18
8 Device Pinout Diagrams .......................................................................................................................................... 8-19
8.1 CS48520, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-19
8.2 CS48540, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-20
8.3 CS48560, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-21
9 Package Mechanical Drawings ............................................................................................................................... 9-22
9.1 48-pin LQFP Package Drawing ........................................................................................................................ 9-22
10 Revision History .................................................................................................................................................. 10-23
3
DS734F5
LIST OF FIGURES
Figure 5-1. RESET Timing ...................................................................................................................................... 5-11
Figure 5-2. XTI Timing............................................................................................................................................. 5-11
Figure 5-3. Serial Control Port–SPI Slave Mode Timing ......................................................................................... 5-12
Figure 5-4. Serial Control Port–SPI Master Mode Timing ....................................................................................... 5-13
Figure 5-5. Serial Control Port–I2C Slave Mode Timing.......................................................................................... 5-14
Figure 5-6. Serial Control Port–I2C Master Mode Timing........................................................................................ 5-15
Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram...................................................................................... 5-15
Figure 5-8. Direct Stream Digital–Serial Audio Input Timing ................................................................................... 5-15
Figure 5-9. Digital Audio Output Port Timing, Master Mode.................................................................................... 5-17
Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK) ......................................... 5-17
Figure 8-1. CS48520, 48-pin LQFP Pinout.............................................................................................................. 8-19
Figure 8-2. CS48540, 48-pin LQFP Pinout.............................................................................................................. 8-20
Figure 8-3. CS48560, 48-pin LQFP......................................................................................................................... 8-21
Figure 9-1. 48-pin LQFP Package Drawing............................................................................................................. 8-22
LIST OF TABLES
Table 1-1. CS485xx Family Related Documentation................................................................................................. 1-5
Table 3-1. Device and Firmware Selection Guide ..................................................................................................... 3-6
Table 5-1. Master Mode (Output A1 Mode)............................................................................................................. 5-16
Table 5-2. Slave Mode (Output A0 Mode)............................................................................................................... 5-17
Table 6-1. Ordering Information .............................................................................................................................. 6-18
Table 7-1. Environmental, Manufacturing, and Handling Information ..................................................................... 7-18
4
DS734F5
1 Documentation Strategy
1 Documentation Strategy
The CS485xx Family Data Sheet describes the CS485xx family of multichannel audio processors. This document should
be used in conjunction with the following documents when evaluating or designing a system around the CS485xx family
of processors.
Table 1-1. CS485xx Family Related Documentation
Document Name
CS485xx Family Data Sheet
CS485xx Family Hardware User’s Manual
AN298–CS485xx Family Firmware User’s Manual
DSP Composer User’s Manual
Description
This document
Includes detailed system design information including Typical Connection Diagrams,
Boot-Procedures, Pin Descriptions, etc.
Includes detailed firmware design information including signal processing flow
diagrams and control API information
Includes detailed configuration and usage information for the GUI development tool.
The scope of the CS485xx Family Data Sheet is primarily the hardware specifications of the CS485xx family of devices.
This includes hardware functionality, characteristic data, pinout, and packaging information.
The intended audience for the CS485xx Family Data Sheet is the system PCB designer, MCU programmer, and the quality
control engineer.
2 Overview
The CS485xx DSP Family is designed to provide high-performance post-processing and mixing of digital audio. The dual
clock domain provided on the PCM inputs allows for the mixing of audio streams with different sampling frequencies. The
low-power standby preserves battery life for applications which are always on, but not necessarily processing audio, such
as automotive audio systems.
There are three devices comprising the CS485xx family. The CS48520, CS48540 and CS48560 are differentiated by the
number of inputs and outputs available. All DSPs support dual input clock domains and dual audio processing paths. All
DSPs are available in a 48-pin QFP package. Refer to Table 3-1 for the input, output, firmware features of each device.
2.1 Licensing
Licenses are required for all of the third party audio processing algorithms listed in Section 3. Contact your local
Cirrus Logic Sales representative for more information.
5
DS734F5
3 Code Overlays
3 Code Overlays
The suite of software available for the CS485xx family consists of an operating system (OS) and a library of overlays. The
overlays have been divided into three main groups called Matrix-processors, Virtualizer-processors, and Post-processors.
All software components are defined below:
1. OS/Kernel—Encompasses all non-audio processing tasks, including loading data from external memory,
processing host messages, calling audio-processing subroutines, error concealment, etc.
2. Matrix-processor—Any Module that performs a matrix decode on PCM data to produce more output channels
than input channels (2n channels). Examples are Dolby ProLogic IIx and DTS Neo:6. Generally speaking, these
modules increase the number of valid channels in the audio I/O buffer.
3. Virtualizer-processor—Any module that encodes PCM data into fewer output channels than input channels (n2
channels) with the effect of providing “phantom” speakers to represent the physical audio channels that were
eliminated. Examples are Dolby Headphone® and Dolby Virtual Speaker®. Generally speaking, these modules
reduce the number of valid channels in the audio I/O buffer.
4. Post-processors—Any module that processes audio I/O buffer PCM data in-place after the matrix- or
virtualizer-processors. Examples are bass management, audio manager, tone control, EQ, delay,
customer-specific effects, etc.
The bulk of each overlay is stored in ROM within the CS485xx, but a small image is required to configure the overlays and
boot the DSP. This small image can either be stored in an external serial FLASH/EEPROM, or downloaded via a host
controller through the SPI™/I2C™ serial port.
The overlay structure reduces the time required to reconfigure the DSP when a processing change is requested. Each
overlay can be reloaded independently without disturbing the other overlays. For example, when a new matrix-processor
is selected, the OS, virtualizer-, and post-processors do not need to be reloaded — only the new matrix-processor (the
same is true for the other overlays).
Table 3-1 lists the firmware available based on device selection. Refer AN298, CS485xx Firmware User’s
Manual for the latest listing of application codes and Cirrus Framework™ modules available.
Table 3-1. Device and Firmware Selection Guide
Device
Suggested Application
CS48520-CQZ Digital TV, portable audio docking station, portable DVD, DVD mini/
receiver, multimedia PC speakers
CS48540-CQZ CS48520 features plus 8-channel car audio, DVD receiver
CS48540-DQZ
CS48560-CQZ CS48540 features plus 12-channel car audio, high-end digital TV, dual
CS48560-DQZ source/dual zone SACD
6
Channel Count Input/Output
Up to 4-channel in/4-channel out
Package
48-pin QFP
Up to 8-channel in/8-channel out
48-pin QFP
Up to 12-channel in/12-channel out
48-pin QFP
DS734F5
4 Hardware Functional Description
4 Hardware Functional Description
4.1 DSP Core
The CS485xx family DSPs are single-core DSP with separate X and Y data and P code memory spaces. The DSP core
is a high-performance, 32-bit, user-programmable, fixed-point DSP that is capable of performing two
multiply-and-accumulate (MAC) operations per clock cycle. The DSP core has eight 72-bit accumulators, four X- and four
Y-data registers, and 12 index registers.
The DSP core is coupled to a flexible DMA engine. The DMA engine can move data between peripherals such as the serial
control port (SCP), digital audio input (DAI) and digital audio output (DAO), or any DSP core memory, all without the
intervention of the DSP. The DMA engine off loads data move instructions from the DSP core, leaving more MIPS available
for signal processing instructions.
CS485xx family functionality is controlled by application codes that are stored in on-board ROM or downloaded to the
CS485xx from a host controller or external serial FLASH/EEPROM.
Users can develop their applications using DSP Composer to create the processing chain and then compile the image into
a series of commands that are sent to the CS485xx through the SCP. The processing application can either load modules
(matrix-processors, virtualizers, post-processors) from the DSPs on-board ROM, or custom firmware can be downloaded
through the SCP.
The CS485xx is suitable for a variety of audio post-processing applications such as automotive head-ends, automotive
amplifiers, and boom boxes.
4.1.1
DSP Memory
The DSP core has its own on-chip data and program RAM and ROM and does not require external memory for
post-processing applications.
The Y-RAM and P-RAM share a single block of memory that can be configured to make Y and P equal in size, or more
memory can be allocated for Y-RAM in 2kword blocks.
4.1.2
DMA Controller
The powerful 8-channel DMA controller can move data between 8 on-chip resources. Each resource has its own arbiter:
X, Y, and P RAMs/ROMs and the peripheral bus. Modulo and linear addressing modes are supported, with flexible start
address and increment controls. The service intervals for each DMA channel, as well as up to 6 interrupt events, are
programmable.
4.2 On-chip DSP Peripherals
4.2.1
Digital Audio Input Port (DAI)
Each version of the CS485xx supports a different number of input channels. Refer to Table 3-1 for more details.
The DAI port supports a wide variety of data input formats at sample rates (Fs) as high as 192 kHz. The port is capable of
accepting PCM or DSD formats. Up to 32-bit word lengths are supported. DSD is supported and internally converted to
PCM before processing. The DAI also supports a time division multiplexed (TDM) one-line data mode, that packs PCM
audio on a single data line (the total number possible depends on the ratio of SCLK to LRCLK and the version of chip. For
example on the CS48520 only 4 ch of PCM are supported in one line mode and on the CS48560 up to 8 channels are
supported.).
The port has two independent slave-only clock domains. Each data input can be independently assigned to a clock
domain. The sample rate of the input clock domains can be determined automatically by the DSP, off-loading the task of
monitoring the SPDIF receiver from the host. A time-stamping feature allows the input data to be sample-rate converted
via software.
7
DS734F5
4.3 DSP I/O Description
4.2.2
Digital Audio Output Port (DAO)
Each version of the CS485xx supports a different number of output channels. Refer to Table 3-1 for more details.
DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high as 192 kHz. The port
can be configured as an independent clock domain mastered by the DSP, or as a clock slave if an external MCLK or SCLK/
LRCLK source is available. One of the serial audio pins can be re-configured as a S/PDIF transmitter that drives a biphase
encoded S/PDIF signal (data with embedded clock on a single line).
The DAO also supports a time division multiplexed (TDM) one-line data mode, that packs multiple channels of PCM audio
on a single data line.
4.2.3
Serial Control Port (I2C™ or SPI™)
The on-chip serial control port is capable of operating as master or slave in either SPI™ or I2C™ modes. Master/
Slave operation is chosen by mode select pins when the CS485xx comes out of Reset. The serial clock pin can
support frequencies as high as 25 MHz in SPI mode (SPI clock speed must always be ≤ (Fdclk/2)). The CS485xx
serial control port also includes a pin for flow control of the communications interface (SCP_BSY) and a pin to
indicate when the DSP has a message for the host (SCP_IRQ).
4.2.4
GPIO
Many of the CS485xx peripheral pins are multiplexed with GPIO. Each GPIO can be configured as an output, an input, or
an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge, active-low, or active-high.
4.2.5
PLL-based Clock Generator
The low-jitter PLL generates integer or fractional multiples of a reference frequency which are used to clock the DSP core
and peripherals. Through a second PLL divider chain, a dependent clock domain can be output on the DAO port for driving
audio converters. The CS485xx defaults to running from the external reference frequency and is switched to use the PLL
output after overlays have been loaded and configured, either through master boot from an external FLASH or through
host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered output frequency ratio is
selectable between 1:1 (default) or 2:1.
4.2.6
Hardware Watchdog Timer
The CS485xx has an integrated watchdog timer that acts as a “health” monitor for the DSP. The watchdog timer must be
reset by the DSP before the counter expires, or the entire chip is reset. This peripheral ensures that the CS485xx will reset
itself in the event of a temporary system failure. In stand-alone mode (that is, no host MCU), the DSP will reboot from
external FLASH. In slave mode (that is, host MCU present) a GPIO will be used to signal the host that the watchdog has
expired and the DSP should be rebooted and re-configured.
4.3 DSP I/O Description
4.3.1
Multiplexed Pins
Many of the CS485xx family pins are multi-functional. For details on pin functionality, refer to the CS485xx Hardware
User’s Manual.
4.3.2
Termination Requirements
Open-drain pins on the CS485xx must be pulled high for proper operation. Refer to the CS485xx Hardware User’s Manual
to identify which pins are open-drain and what value of pull-up resistor is required for proper operation.
Mode select pins in the CS485xx family are used to select the boot mode upon the rising edge from reset. A detailed
explanation of termination requirements for each communication mode select pin can be found in the CS485xx Hardware
User’s Manual.
8
DS734F5
4.4 Application Code Security
4.3.3
Pads
The CS485xx I/Os operate from the 3.3 V supply and are 5 V tolerant.
4.4 Application Code Security
The external program code may be encrypted by the programmer to protect any intellectual property it may contain. A
secret, customer-specific key is used to encrypt the program code that is to be stored external to the device. Contact your
local Cirrus representative for details.
5 Characteristics and Specifications
Note:
All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and temperature.
All data sheet typical parameters are measured under the following conditions: T = 25° C, CL = 20 pF,
VDD = VDDA = 1.8 V, VDDIO = 3.3 V, GNDD = GNDIO = GNDA = 0 V.
5.1 Absolute Maximum Ratings
(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
Parameter
DC power supplies:
Symbol
Min
Max
Unit
VDD
–0.3
2.0
V
PLL supply
VDDA
–0.3
3.6
V
I/O supply
VDDIO
–0.3
3.6
V
—
—
0.3
V
Core supply
|VDDA–VDDIO|
Input pin current, any pin except supplies
Iin
—
±10
mA
Input voltage on PLL_REF_RES
Vfilt
–0.3
3.6
V
Input voltage on I/O pins
Vinio
–0.3
5.0
V
Storage temperature
Tstg
–65
150
°C
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not
guaranteed at these extremes.
5.2 Recommended Operations Conditions
(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
Parameter
DC power supplies:
Symbol
Min
Typ
Max
Unit
Core supply
VDD
1.71
1.8
1.89
V
PLL supply
VDDA
3.13
3.3
3.46
V
I/O supply
VDDIO
3.13
3.3
3.46
V
—
—
0
—
V
TA
—
—
—
°C
|VDDA–VDDIO|
Ambient operating temperature
Note:
–CQZ
—
0
—
+70
—
–DQZ
—
–40
—
+85
—
It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply.
5.3 Digital DC Characteristics
(Measurements performed under static conditions.)
9
DS734F5
5.4 Power Supply Characteristics
Parameter
Symbol
Min
Typ
Max
Unit
VIH
2.0
—
—
V
VIL
—
—
0.8
V
VILXTI
—
—
0.6
V
High-level input voltage
Low-level input voltage, except XTI
Low-level input voltage, XTI
Input hysteresis
Vhys
—
0.4
—
V
High-level output voltage (IO = –2 mA), except XTI
VOH
VDDIO*0.9
—
—
V
Low-level output voltage (IO = 2 mA), except XTI
VOL
—
—
VDDIO*0.1
V
Input leakage XTI
ILXTI
—
—
5
µA
Input leakage current (all digital pins with internal pull-up resistors enabled)
ILEAK
—
—
70
µA
Min
Typ
Max
Unit
VDD: Core and I/O operating1
—
203
—
mA
VDDA: PLL operating
—
8
—
mA
VDDIO: With most ports operating
—
27
—
mA
Total Operational Power Dissipation:
—
480
—
mW
VDD: Core and I/O not clocked
—
100
—
µA
VDDA: PLL halted
—
1
—
µA
VDDIO: All connected I/O pins 3-stated by other ICs in system
—
50
—
µA
Total Standby Power Dissipation
—
348
—
µW
5.4 Power Supply Characteristics
(Measurements performed under operating conditions)
Parameter
Operational Power Supply Current:
Standby Power Supply Current:
1.Dependent on application firmware and DSP clock speed.
5.5 Thermal Data (48-pin LQFP)
Parameter
Junction Temperature
Symbol
Min
Typ
Max
Unit
Tj
—
—
125
°C
θja
—
63.5
—
°C/Watt
—
54
—
—
0.70
—
—
0.64
—
Thermal Resistance (Junction to Ambient)
Two-layer board1
Four-layer board2
Thermal Resistance (Junction to Top of Package)
Two-layer board3
Four-layer board4
ψ jt
°C/Watt
1.Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers.
2.Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers and 0.5
oz. copper covering 90 % of the internal power plane and ground plane layers.
3.To calculate the die temperature for a given power dissipation
Tj = Ambient Temperature + [(Power Dissipation in Watts)*θja]
4.To calculate the case temperature for a given power dissipation
Tc = Tj – [(Power Dissipation in Watts)*ψ jt]
10
DS734F5
5.6 Switching Characteristics—RESET
5.6 Switching Characteristics—RESET
Parameter
Symbol
RESET# minimum pulse width low
Min
Max
Unit
Trstl
1
—
ms
Trst2z
—
100
ns
Configuration pins setup before RESET# high
Trstsu
50
—
ns
Configuration pins hold after RESET# high
Trsthld
20
—
ns
All bidirectional pins high-Z after RESET# low
RESET#
HS[3:0]
All Bidirectional
Pins
Trstsu Trsthld
Trst2z
Trstl
Figure 5-1. RESET Timing
5.7 Switching Characteristics—XTI
Parameter
External Crystal operating
frequency1
Symbol
Min
Max
Unit
Fxtal
11.2896
27
MHz
XTI period
Tclki
33.3
100
ns
XTI high time
Tclkih
13.3
—
ns
XTI low time
Tclkil
13.3
—
ns
CL
10
18
pF
ESR
—
50
Ω
External Crystal Load Capacitance (parallel resonant)2
External Crystal Equivalent Series Resistance
1.Part characterized with the following crystal frequency values: 11.2896, 12.288, 18.432, 24.576, & 27 MH.z
2.CL refers to the total load capacitance as specified by the crystal manufacturer. Crystals that require a CL outside this range should be avoided. The
crystal oscillator circuit design should follow the crystal manufacturer’s recommendation for load capacitor selection.
XTI
t clkih
t clkil
Tclki
Figure 5-2. XTI Timing
5.8 Switching Characteristics—Internal Clock
Parameter
Internal DCLK
Symbol
frequency1
Fdclk
CS4852x-CQZ
CS4854x-CQZ
CS4856x-CQZ
CS4854x-DQZ
CS4856x-DQZ
11
Min
Max
Unit
—
—
MHz
Fxtal
Fxtal
Fxtal
Fxtal
Fxtal
150
150
150
150
150
DS734F5
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode
Parameter
Internal DCLK period1
Symbol
Min
Max
Unit
DCLKP
—
—
ns
6.7
6.7
6.7
6.7
6.7
1/Fxtal
1/Fxtal
1/Fxtal
1/Fxtal
1/Fxtal
CS4852x-CQZ
CS4854x-CQZ
CS4856x-CQZ
CS4854x-DQZ
CS4856x-DQZ
1.After initial power-on reset, Fdclk = Fxtal. After initial kick-start commands, the PLL is locked to max Fdclk and remains locked until the next power-on
reset.
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode
Parameter
Symbol
Min
Typical
Max
Units
SCP_CLK frequency1
fspisck
—
—
25
MHz
SCP_CS# falling to SCP_CLK rising
tspicss
24
—
—
ns
SCP_CLK low time
tspickl
20
—
—
ns
SCP_CLK high time
tspickh
20
—
—
ns
Setup time SCP_MOSI input
tspidsu
5
—
—
ns
Hold time SCP_MOSI input
tspidh
5
—
—
ns
SCP_CLK low to SCP_MISO output valid
tspidov
—
—
11
ns
SCP_CLK falling to SCP_IRQ# rising
tspiirqh
—
—
20
ns
SCP_CS# rising to SCP_IRQ# falling
tspiirql
0
—
—
ns
SCP_CLK low to SCP_CS# rising
tspicsh
24
—
—
ns
SCP_CS# rising to SCP_MISO output high-Z
tspicsdz
—
20
—
ns
SCP_CLK rising to SCP_BSY# falling
tspicbsyl
—
3*DCLKP+20
—
ns
1.The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of
the input data buffer. At boot the maximum speed is Fxtal/3.
tspicss
SCP_CS#
tspickl
0
1
2
6
7
0
A0
R/W
MSB
5
6
7
tspicsh
SCP_CLK
fspisck
SCP_MOSI
tspickh
A6
A5
LSB
tspidsu
tspidh
SCP_MISO
tspidov
tspicsdz
MSB
LSB
tspiirqh
tspiirql
SCP_IRQ#
tspibsyl
SCP_BSY#
Figure 5-3. Serial Control Port–SPI Slave Mode Timing
12
DS734F5
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode
Parameter
Symbol Min
Typical
Max
Units
SCP_CLK frequency1
fspisck
—
—
Fxtal/22
MHz
SCP_CS# falling to SCP_CLK rising3
tspicss
—
11*DCLKP + (SCP_CLK PERIOD)/2
—
ns
SCP_CLK low time
tspickl
20
—
—
ns
SCP_CLK high time
tspickh
20
—
—
ns
Setup time SCP_MISO input
tspidsu
13
—
—
ns
Hold time SCP_MISO input
tspidh
5
—
—
ns
SCP_CLK low to SCP_MOSI output valid
tspidov
—
—
8
ns
ns
SCP_CLK low to SCP_CS# falling
tspicsl
7
—
—
SCP_CLK low to SCP_CS# rising
tspicsh
—
11*DCLKP + (SCP_CLK PERIOD)/2
—
ns
Bus free time between active SCP_CS#
tspicsx
—
3*DCLKP
—
ns
SCP_CLK falling to SCP_MOSI output high-Z
tspidz
—
—
20
ns
1.The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
communication port may be limited by the firmware application.
2.See Section 5.7.
3.SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter.
tspicsx
tspicss
EE_CS#
tspickl
tspicsl
1
0
2
6
7
0
A0
R/W
MSB
5
7
6
tspicsh
SCP_CLK
fspisck
SCP_MISO
tspickh
A6
A5
LSB
tspidsu
tspidh
tspidov
SCP_MOSI
tspidz
MSB
LSB
Figure 5-4. Serial Control Port–SPI Master Mode Timing
5.11 Switching Characteristics—Serial Control Port–I2C Slave Mode
Parameter
SCP_CLK
frequency1
SCP_CLK low time
SCP_CLK high time
Symbol Min
Typical
Max
Units
fiicck
—
—
400
kHz
tiicckl
1.25
—
—
µs
tiicckh
1.25
—
—
µs
tiicckcmd
1.25
—
—
µs
START condition to SCP_CLK falling
tiicstscl
1.25
—
—
µs
SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition
SCP_CLK falling to STOP condition
tiicstp
2.5
—
—
µs
Bus free time between STOP and START conditions
tiicbft
3
—
—
µs
Setup time SCP_SDA input valid to SCP_CLK rising
tiicsu
100
—
—
ns
Hold time SCP_SDA input after SCP_CLK falling
tiich
20
—
—
ns
13
DS734F5
5.12 Switching Characteristics—Serial Control Port–I2C Master Mode
Parameter
Symbol Min
Typical
Max
Units
—
18
ns
—
—
3*DCLKP + 40
ns
—
3*DCLKP + 20
—
ns
—
3*DCLKP + 20
—
ns
SCP_CLK low to SCP_SDA out valid
tiicdov
—
SCP_CLK falling to SCP_IRQ# rising
tiicirqh
NAK condition to SCP_IRQ# low
tiicirql
SCP_CLK rising to SCB_BSY# low
tiicbsyl
1.The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of
the input data buffer.
tiicckcmd
tiicckl
0
1
tiicr
6
tiicf
7
8
tiicckcmd
0
1
6
7
8
SCP_CLK
tiicstscl
SCP_SDA
tiicckh
A6
tiicdov
A0
R/W
tiicstp
fiicck
ACK
MSB
ACK
LSB
tiicirqh
tiicsu
tiicbft
tiicirql
tiich
SCP_IRQ#
tiiccbsyl
SCP_BSY#
Figure 5-5. Serial Control Port–I2C Slave Mode Timing
5.12 Switching Characteristics—Serial Control Port–I2C Master Mode
Parameter
SCP_CLK
frequency1
Symbol
Min
Max
Units
fiicck
—
400
kHz
SCP_CLK low time
tiicckl
1.25
—
µs
SCP_CLK high time
tiicckh
1.25
—
µs
SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition
tiicckcmd
1.25
—
µs
START condition to SCP_CLK falling
tiicstscl
1.25
—
µs
SCP_CLK falling to STOP condition
tiicstp
2.5
—
µs
Bus free time between STOP and START conditions
tiicbft
3
—
µs
Setup time SCP_SDA input valid to SCP_CLK rising
tiicsu
100
—
ns
tiich
20
—
ns
tiicdov
—
18
ns
Hold time SCP_SDA input after SCP_CLK falling
SCP_CLK low to SCP_SDA out valid
1.The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
communication port may be limited by the firmware application.
14
DS734F5
5.13 Switching Characteristics—Digital Audio Slave Input Port
tiicckcmd
tiicckl
0
1
tiicr
6
tiicf
7
tiicckcmd
8
0
1
6
7
8
SCP_CLK
tiicstscl
tiicckh
A6
SCP_SDA
tiicsu
tiicdov
A0
R/W
tiicstp
fiicck
ACK
MSB
tiicbft
ACK
LSB
tiich
Figure 5-6. Serial Control Port–I2C Master Mode Timing
5.13 Switching Characteristics—Digital Audio Slave Input Port
Parameter
Symbol
Min
Tdaiclkp
—
Setup time DAI_DATAn
Hold time DAI_DATAn
DAI_SCLK period
DAI_SCLK duty cycle
Max
Unit
40
—
ns
45
55
%
tdaidsu
10
—
ns
tdaidh
5
—
ns
DAI_SCLK
tdaidsu
tdaidh
DAI_DATAn
Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram
5.14 Switching Characteristics—DSD Slave Input Port
Symbol
Min
Typ
Max
Unit
DSD_SCLK Pulse Width Low
Parameter
tsclkl
78
—
—
ns
DSD_SCLK Pulse Width High
tsclkh
78
—
—
ns
—
1.024
—
3.2
MHz
DSD_A/B valid to DSD_SCLK rising setup time
tsdlrs
20
—
—
ns
DSD_SCLK rising to DSD_A or DSD_B hold time
tsdh
20
—
—
ns
DSD_SCLK Frequency (64x Oversampled)
Figure 5-8. Direct Stream Digital–Serial Audio Input Timing
15
DS734F5
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
Parameter
Symbol
DAO_MCLK period
DAO_MCLK duty cycle
DAO_SCLK period for Master or Slave
mode1
DAO_SCLK duty cycle for Master or Slave mode1
Min
Max
Unit
Tdaomclk
40
—
ns
—
45
55
%
Tdaosclk
40
—
ns
—
40
60
%
1.Master mode timing specifications are characterized, not production tested.
Table 5-1. Master Mode (Output A1 Mode)1,2
Parameter
DAO_SCLK delay from DAO_MCLK rising edge, DAO_MCLK as an input
DAO_LRCLK delay from DAO_SCLK transition, respectively3
DAO_SCLK delay from DAO_LRCLK transition, respectively3
DAO1_DATA[3:0], DAO2_DATA[1:0] delay from DAO_SCLK transition3
Symbol
tdaomsck
tdaomstlr
tdaomlrts
tdaomdv
Min
—
—
—
—
Max
19
8
8
10
Unit
ns
ns
ns
ns
1.Master mode timing specifications are characterized, not production tested.
2.Master mode is defined as the CS48xx driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce DAO_SCLK, DAO_
LRCLK.
3.This timing parameter is defined from the non-active edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the data is valid.
tdaomclk
DAO_MCLK
tdaomsck
DAO_SCLK
DAOn_DATAn
tdaomstlr
DAO_LRCLK
Note:
In these diagrams, Falling edge is the inactive edge of DAO_SCLK.
Figure 5-9. Digital Audio Output Port Timing, Master Mode
16
DS734F5
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
Table 5-2. Slave Mode (Output A0 Mode)1
Parameter
DAO_SCLK active edge to DAO_LRCLK transition
DAO_LRCLK transition to DAO_SCLK active edge
DAO_Dx delay from DAO_SCLK inactive edge
Symbol
tdaosstlr
tdaoslrts
tdaosdv
Min
10
10
—
Max
—
—
11
Unit
ns
ns
ns
1.Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.
tdaosclk
t daosstlr
DAO_LRCLK
DAO_LRCLK
DAO_SCLK
DAO_SCLK
t daosclk
tdaoslrts
DAOn_DATAn
t daosdv
Note:
In these diagrams, Falling edge is the inactive edge of DAO_SCLK.
Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK)
17
DS734F5
6 Ordering Information
6 Ordering Information
The CS485xx family part number is CS485NI-XYZR where:
•
N–Product Number Variant
•
I–ROM ID Number
•
X–Product Grade
•
Y–Package Type
•
Z–Lead (Pb) Free
•
R–Tape and Reel Packaging
Table 6-1. Ordering Information
Part No.
CS48520-CQZ
CS48540-CQZ
CS48540-DQZ
CS48560-CQZ
CS48560-DQZ
Note:
Grade
Commercial
Commercial
Automotive
Commercial
Automotive
Temp. Range
0 to +70° C
0 to +70° C
–40 to +85° C
0 to +70° C
–40 to +85° C
Package
48-pin LQFP
Contact the factory for availability of the automotive grade package.
7 Environmental, Manufacturing, and Handling Information
Table 7-1. Environmental, Manufacturing, and Handling Information
Model Number
Peak Reflow Temp
CS48520-CQZ
CS48540-CQZ
CS48540-DQZ
CS48560-CQZ
CS48560-DQZ
260° C
MSL Rating1
3
Max Floor Life
7 days
1.MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.
18
DS734F5
8 Device Pinout Diagrams
8 Device Pinout Diagrams
GPIO4, HS2
GPIO18, DAO_MCLK
26
25
GNDIO3
30
GPIO3, HS1
GPIO6, DAO2 _DATA0, HS3
31
27
GPIO7, HS4
32
VDD2
GND4
33
28
GPIO9, SCP_MOSI
34
GPIO5, XMTA
GPIO10, SCP__MISO / SDA
35
29
GPIO11, SCP_CLK
36
8.1 CS48520, 48-pin LQFP Pinout Diagram
VDDIO3
37
24
VDDIO2
GPIO8, SCP_CS#
38
23
DAO_SCLK
GPOI12, SCP_IRQ#
39
22
GNDIO4
40
21
DAO_LRCLK
GPIO13, SCP_BSY#, EE_CS#
41
20
DAO1_DATA0, HS0
VDD3
42
XTAL_OUT
CS48520
19
48-Pin LQFP
43
GND3
GNDIO2
18
GPIO15, DAI2_SCLK
11
12
VDDIO1
GND2
GPIO0
GPIO1
10
13
GPIO16, DAI1_DATA0
48
9
VDDA (3.3V)
8
GPIO2
DAI1_SCLK
14
7
47
GNDIO1
PLL_REF_RES
6
GPIO17, DAI2_DATA0
DAI1_LRCLK
15
5
46
DBCK
GNDA
4
VDD1
GND1
16
3
45
DBDA
XTO
2
GPIO14, DAI2_LRCLK
RESET#
17
1
44
TEST
XTI
Figure 8-1. CS48520, 48-pin LQFP Pinout
19
DS734F5
8.2 CS48540, 48-pin LQFP Pinout Diagram
GPIO18, DAO_MCLK
GPIO5, XMTA
29
25
GNDIO3
30
GPIO4, DAO1_ DATA2, HS2
GPIO6, DAO2_DATA0, HS3
31
26
GPIO7, HS4
32
GPIO3, DAO1_ DATA1, HS1
GND4
33
27
GPIO9, SCP_MOSI
34
VDD2
GPIO10, SCP__MISO / SDA
35
28
GPIO11, SCP_CLK
36
8.2 CS48540, 48-pin LQFP Pinout Diagram
VDDIO3
37
24
VDDIO2
GPIO8, SCP_CS#
38
23
DAO_SCLK
GPOI12, SCP_IRQ#
39
22
GNDIO4
40
21
DAO_LRCLK
GPIO13, SCP_BSY#, EE_CS#
41
20
DAO1_DATA0, HS0
VDD3
42
XTAL_OUT
CS48540
19
48-Pin LQFP
43
GND3
GNDIO2
18
GPIO15, DAI2_SCLK
11
12
VDDIO1
GND2
GPIO0, DAI1_DATA1
GPIO1, DAI1_DATA2
10
13
GPIO16, DAI1_DATA0
48
9
VDDA (3.3V)
8
GPIO2
DAI1_SCLK
14
7
47
GNDIO1
PLL_REF_RES
6
GPIO17, DAI2_DATA0
DAI1_LRCLK
15
5
46
DBCK
GNDA
4
VDD1
GND1
16
3
45
DBDA
XTO
2
GPIO14, DAI2_LRCLK
RESET#
17
1
44
TEST
XTI
Figure 8-2. CS48540, 48-pin LQFP Pinout
20
DS734F5
8.3 CS48560, 48-pin LQFP Pinout Diagram
GPIO4, DAO1_ DATA2, HS2
GPIO18, DAO_MCLK
26
25
GNDIO3
30
GPIO3, DAO1_ DATA1, HS1
GPIO6, DAO2 _DATA0, HS3
31
27
GPIO7, DAO2_D ATA1, HS4
32
VDD2
GND4
33
28
GPIO9, SCP_MOSI
34
GPIO5, DAO1_DATA3, X MTA
GPIO10, SCP__MISO / SDA
35
29
GPIO11, SCP_CLK
36
8.3 CS48560, 48-pin LQFP Pinout Diagram
VDDIO3
37
24
VDDIO2
GPIO8, SCP_CS#
38
23
DAO_SCLK
GPOI12, SCP_IRQ#
39
22
GNDIO4
40
21
DAO_LRCLK
GPIO13, SCP_BSY#, EE_CS#
41
20
DAO1_DATA0, HS0
VDD3
42
XTAL_OUT
CS48560
19
48-Pin LQFP
43
GND3
GNDIO2
18
GPIO15, DAI2_SCLK
11
12
VDDIO1
GND2
GPIO0, DAI1_DATA1, TM1, DSD1
GPIO1, DAI1_DATA2, TM2, DSD2
10
13
GPIO16, DAI1_DATA0, TM0, DSD0
48
9
VDDA (3.3V)
8
GPIO2, DAI1_DATA3, TM3, DSD3
DAI1_SCLK, DSD-CLK
14
7
47
GNDIO1
PLL_REF_RES
6
GPIO17, DAI2_DATA0, DSD4
DAI1_LRCLK, DAI1_DATA4, DSD5
15
5
46
DBCK
GNDA
4
VDD1
GND1
16
3
45
DBDA
XTO
2
GPIO14, DAI2_LRCLK
RESET#
17
1
44
TEST
XTI
Figure 8-3. CS48560, 48-pin LQFP
21
DS734F5
9 Package Mechanical Drawings
9 Package Mechanical Drawings
9.1 48-pin LQFP Package Drawing
48 LD LQFP (7 x 7 x 1.4 mm body)
A
A1
A2
b
D
D1
e
E
E1
theta
L
L1
Number of Leads
48
MIN
NOM
MAX
1.60
0.05
0.15
1.35
1.40
1.45
0.17
0.22
0.27
9.00 BSC
7.00 BSC
0.50 BSC
9.00 BSC
7.00 BSC
0
7
0.45
0.60
0.75
1.00 REF
NOTES:
1) Reference document: JEDEC MS-026
2) All dimensions are in millimeters and controlling dimension is in millimeters.
3) D1 and E1 do not include mold flash which is 0.25 mm max. per side.A1
4) Dimension b does not include a total allowable dambar protrusion of 0.08 mm max.
Figure 9-1. 48-pin LQFP Package Drawing
22
DS734F5
10 Revision History
10 Revision History
Revision
Changes
A1
July, 2006
Advance release.
A2
July, 2006
Updated pinout definition for pins 26 and 27. Updated typical power numbers.
A3
December 5, 2006
PP1
March 12, 2007
PP2
23
Date
Updated sections 2.0, 4.21, 5.8, Table 3, Table 4, to show new device numbering scheme. Updated
sections 8.1, 8.2, 8.3.
Preliminary Release
December 18, 2007 Changed title of data sheet from CS48500 Data Sheet to CS485xx Family Data Sheet to cover all CS485xx
family products. Updated Standby Power specification in Section 5.4. Updated DAO timing specifications
and timing diagrams in Section 5.15.
F1
April 21, 2007
Removed DSD Phase Modulation Mode from Section 5.14. Removed reference to MCLK in Section 5.14.
Redefined Master mode clock speed for SCP_CLK in Section 5.10. Redefined DC leakage
characterization data in Section 5.3. Added typical crystal frequency values in Table Footnote 1 under
Section 5.7. Modified Footnote 1 under Section 5.9. Modified power supply characteristics in Section 5.4,
F2
July 14, 2008
Added reference to support for time division multiplexed (TDM) one-line data mode for DAO port in
Section 4.2.2.
F3
February 16, 2009
F4
June 29, 2011
Updated Section 5.10; changed Tspidsu value to 13 ns.
F5
October, 2011
Updated Section 5.15 DAO output slave mode specifications.
Updated Section 5.5, adding Junction Temperature specification.
DS734F5