CS5101A
CS5102A
16-bit, 100 kSps / 20 kSps A/D Converters
Features
z
Description
The CS5101A and CS5102A are 16-bit monolithic
CMOS analog-to-digital converters (ADCs) capable of
100 kSps (5101A) and 20 kSps (5102A) throughput. The
CS5102A’s low power consumption of 44mW, coupled
with a power-down mode, makes it particularly suitable
for battery-powered operation.
Monolithic CMOS A/D Converters
– Inherent Sampling Architecture
– 2-channel Input Multiplexer
– Flexible Serial Output Port
z
On-chip self-calibration circuitry achieves nonlinearity of
±0.001% of FS and guarantees 16-bit, no missing codes
over the entire specified temperature range. Superior linearity also leads to 92 dB S/(N+D) with harmonics below
-100 dB. Offset and full-scale errors are minimized during the calibration cycle, eliminating the need for external
trimming.
Ultra-low Distortion
– S/(N+D): 92 dB
– TDH: 0.001%
z
Conversion Time
– CS5101A: 8µs
– CS5102A: 40 µs
z
The CS5101A and CS5102A each consist of a 2-channel input multiplexer, DAC, conversion and calibration
microcontroller, clock generator, comparator, and serial
communications port. The inherent sampling architecture of the device eliminates the need for an external
track-and-hold amplifier.
Linearity Error: ±0.001% FS
– Guaranteed No Missing Codes
z
Self-calibration Maintains Accuracy
The converters’ 16-bit data is output in serial form with
either binary or two’s complement coding. Three output
timing modes are available for easy interfacing to microcontrollers and shift registers. Unipolar and bipolar input
ranges are digitally selectable
– Accurate Over Time & Temperature
z
Low Power Consumption
– CS5101A: 320 mW
– CS5102A: 44 mW
ORDERING INFORMATION
See “Ordering Information” on page 38.
I
HOLD SLEEPRST STBY CODE BP/UP CRS/FIN TRK1 TRK2 SSH/SDLSDATA
12
CLKIN
XOUT
REFBUF
VREF
AIN1
AIN2
CH1/2
AGND
3
4
28
5
16
19
24
13
22
8
10
Calibration
SRAM
+
11
15
16-Bit Charge
Redistribution
DAC
+
Comparator
+
23
VA-
6
DGND
SCLK
Microcontroller
26
+
25
9
Control
21
20
17
14
Clock
Generator
VA+
http://www.cirrus.com
2
1
7
VD-
VD+
Copyright © Cirrus Logic, Inc. 2006
(All Rights Reserved)
27
18
TEST
SCKMOD
OUTMOD
JAN ‘06
DS45F6
CS5101A CS5102A
TABLE OF CONTENTS
1. CHARACTERISTICS & SPECIFICATIONS ............................................................................. 4
ANALOG CHARACTERISTICS, CS5101A............................................................................... 4
SWITCHING CHARACTERISTICS, CS5101A ......................................................................... 6
ANALOG CHARACTERISTICS, CS5102A............................................................................... 7
SWITCHING CHARACTERISTICS, CS5102A ......................................................................... 9
SWITCHING CHARACTERISTICS, ALL DEVICES ............................................................... 11
DIGITAL CHARACTERISTICS, ALL DEVICES...................................................................... 13
RECOMMENDED OPERATING CONDITIONS ..................................................................... 13
ABSOLUTE MAXIMUM RATINGS ......................................................................................... 14
2. OVERVIEW ............................................................................................................................. 15
3. THEORY OF OPERATION ..................................................................................................... 15
3.1 Calibration ........................................................................................................................ 16
4. FUNCTIONAL DESCRIPTION ............................................................................................... 17
4.1 Initiating Conversions ....................................................................................................... 17
4.2 Tracking the Input ............................................................................................................ 17
4.3 Master Clock .................................................................................................................... 18
4.4 Asynchronous Sampling Considerations ......................................................................... 18
4.5 Analog Input Range/Coding Format ................................................................................ 19
4.6 Output Mode Control ........................................................................................................ 19
4.6.1 Pipelined Data Transmission .............................................................................. 19
4.6.2 Register Burst Transmission (RBT) .................................................................... 20
4.6.3 Synchronous Self-clocking (SSC) ....................................................................... 20
4.6.4 Free Run (FRN) .................................................................................................. 20
5. SYSTEM DESIGN USING THE CS5101A & CS5102A ......................................................... 22
5.1 System Initialization ......................................................................................................... 22
5.2 Single-channel Operation ................................................................................................ 23
6. ANALOG CIRCUIT CONNECTIONS ...................................................................................... 23
6.1 Reference Considerations ............................................................................................... 23
6.2 Analog Input Connection ................................................................................................. 24
6.3 Sleep Mode Operation ..................................................................................................... 24
6.4 Grounding & Power Supply Decoupling ........................................................................... 25
7. CS5101A & CS5102A PERFORMANCE ............................................................................... 26
7.1 Differential Nonlinearity .................................................................................................... 26
7.2 FFT Tests and Windowing ............................................................................................... 28
7.3 Sampling Distortion .......................................................................................................... 30
7.4 Noise ................................................................................................................................ 31
7.5 Aperture Jitter .................................................................................................................. 31
7.6 Power Supply Rejection ................................................................................................... 32
8. PIN DESCRIPTIONS .............................................................................................................. 33
8.1 Power Supply Connections .............................................................................................. 33
8.2 Oscillator .......................................................................................................................... 34
8.3 Digital Inputs .................................................................................................................... 34
8.4 Analog Inputs ................................................................................................................... 35
8.5 Digital Outputs ................................................................................................................. 35
8.6 Analog Outputs ................................................................................................................ 35
8.7 Miscellaneous .................................................................................................................. 35
9. PARAMETER DEFINITIONS .................................................................................................. 36
10. PACKAGE DIMENSIONS ..................................................................................................... 37
11. ORDERING INFORMATION ................................................................................................ 38
12. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION .......................... 38
13. REVISIONS .......................................................................................................................... 39
2
DS45F6
CS5101A CS5102A
LIST OF FIGURES
Figure 1. Reset, Calibration, and Control Timing .......................................................................... 10
Figure 2. Serial Communication Timing ........................................................................................ 12
Figure 3. Coarse Charge Input Buffers & Charge Redistribution DAC.......................................... 15
Figure 4. Coarse/Fine Charge Control .......................................................................................... 18
Figure 5. Pipelined Data Transmission (PDT) Mode Timing ......................................................... 20
Figure 6. Register Burst Transmission (RBT) Mode Timing.......................................................... 21
Figure 7. Synchronous Self-clocking (SSC) Mode Timing ............................................................ 21
Figure 8. Free Run (FRN) Mode Timing........................................................................................ 21
Figure 9. CS5101A/CS5102A System Connection Diagram......................................................... 22
Figure 10. Power-up Reset Circuit ................................................................................................ 23
Figure 11. Reference Connections................................................................................................ 24
Figure 12. Charge Settling Time ................................................................................................... 24
Figure 13. CS5101A DNL Plot - Ambient Temperature at 25 °C .................................................. 27
Figure 14. CS5101A DNL Plot - Ambient Temperature at 138 °C ................................................ 27
Figure 15. CS5102A DNL Plot - Ambient Temperature at 25 °C .................................................. 27
Figure 16. CS5102A DNL Plot - Ambient Temperature at 138 °C ................................................ 27
Figure 17. CS5101A DNL Error Distribution.................................................................................. 28
Figure 18. CS5102A DNL Error Distribution.................................................................................. 28
Figure 19. CS5101A FFT (SSC Mode, 1-Channel)....................................................................... 29
Figure 20. CS5101A FFT (SSC Mode, 1-Channel)....................................................................... 29
Figure 21. CS5102A FFT (SSC Mode, 1-Channel)....................................................................... 29
Figure 22. CS5102A FFT (SSC Mode, 1-Channle)....................................................................... 29
Figure 23. CS5101A Histogram Plot of 8192 Conversion Inputs .................................................. 31
Figure 24. CS5102A Histogram Plot of 8192 Conversion Inputs .................................................. 31
Figure 25. Power Supply Rejection ............................................................................................... 32
Figure 26. CS5101A & CS5102A 28-pin PLCC Pinout ................................................................. 33
Figure 27. 28-Pin PLCC Mechanical Drawing............................................................................... 37
LIST OF TABLES
Table 1. Output Coding ................................................................................................................. 19
Table 2. Output Mode Control ....................................................................................................... 19
DS45F6
3
CS5101A CS5102A
1. CHARACTERISTICS & SPECIFICATIONS
ANALOG CHARACTERISTICS, CS5101A
(TA = TMIN to TMAX; VA+, VD+ = 5V; VA-, VD- = -5V; VREF = 4.5V; Full-scale Input sine wave, 1 kHz; CLKIN = 8 MHz; fs =
100 kSps; Bipolar Mode; FRN Mode; AIN1 and AIN2 tied together, each channel tested separately; Analog Source Impedance
= 50 Ω with 1000 pF to AGND unless otherwise specified)
CS5101A-J
Parameter*
Min
Specified Temperature Range
Typ
CS5101A-B
Max
Min
0 to +70
Typ
Max
-40 to +85
Unit
ºC
Accuracy
Linearity Error
-J
(Note 1)
-B
Drift (Note 2)
Differential Linearity
(Note 3)
-
0.002 0.003
0.001 0.002
±¼
-
-
0.002 0.003
0.001 0.002
±¼
-
%FS
%FS
∆LSB
16
-
-
16
-
-
Bits
Full-scale Error
-J
(Note 1)
-B
Drift (Note 2)
-
±1
±1
±1
±4
±3
-
-
±1
±1
±1
±4
±3
-
LSB
LSB
∆LSB
Unipolar Offset
-J
(Note 1)
-B
Drift (Note 2)
-
±2
±2
±1
±5
±4
-
-
±2
±2
±1
±5
±4
-
LSB
LSB
∆LSB
Bipolar Offset
-J
(Note 1)
-B
Drift (Note 2)
-
±2
±2
±1
±5
±3
-
-
±2
±2
±2
±5
±3
-
LSB
LSB
∆LSB
Bipolar Negative Full-scale Error
-J
(Note 1)
-B
Drift (Note 2)
-
±1
±1
±1
±4
±3
-
-
±1
±1
±1
±4
±3
-
LSB
LSB
∆LSB
-J
-B
-J
-B
96
98
85
85
100
102
88
91
-
96
98
85
85
100
102
88
91
-
dB
dB
dB
dB
-J
-B
-
0.002
0.001
-
-
0.002
0.001
-
%
%
87
90
-
90
92
30
32
-
87
90
-
90
92
30
32
-
dB
dB
dB
dB
-
35
70
-
-
35
70
-
µVrms
µVrms
Dynamic Performance (Bipolar Mode)
Peak Harmonic or Spurious Noise
1-kHz Input
12-kHz Input
Total Harmonic Distortion
Signal-to-Noise Ratio
0 dB Input
-60 dB Input
(Note 1)
(Note 1)
-J
-B
-J
-B
Noise
(Note 4)
Unipolar Mode
Bipolar Mode
Notes: 1. Applies after calibration at any temperature within the specified temperature range.
2. Total drift over specified temperature range after calibration at power-up, at 25º C.
3.
4.
Minimum resolution for which no missing codes is guaranteed over the specified temperature range.
Wideband noise aliased into the baseband, referred to the input.
* Refer to Parameter Definitions (immediately following the pin descriptions at the end of this data sheet.
4
DS45F6
CS5101A CS5102A
ANALOG CHARACTERISTICS, CS5101A (Continued)
CS5101A-J
Parameter*
Symbol
Specified Temperature Range
Min
-
Typ
CS5101A-B
Max
Min
0 to +70
Typ
Max
-40 to +85
Unit
ºC
Analog Input
Aperture Time
-
-
25
-
-
25
-
ns
Aperture Jitter
-
-
100
-
-
100
-
ps
-
-
320
200
425
265
-
320
200
425
265
pF
pF
tc
-
-
8.12
-
-
8.12
µs
ta
-
-
1.88
-
-
1.88
µs
ftp
100
-
-
100
-
-
kSps
I A+
I AID+
ID-
-
21
-21
11
-11
28
-28
15
-15
-
21
-21
11
-11
28
-28
15
-15
mA
mA
mA
mA
(Note 9, Note 10)
(SLEEP High)
(SLEEP Low)
Pdo
Pds
-
320
1
430
-
-
320
1
430
-
mW
mW
Power Supply Rejection
(Note 11)
Positive Supplies
Negative Supplies
PSR
PSR
-
84
84
-
-
84
84
-
dB
dB
Input Capacitance
(Note 5)
Unipolar Mode
Bipolar Mode
Conversion and Throughput
Conversion Time
(Note 6)
Acquisition Time
(Note 7)
Throughput
(Note 8)
Power Supplies
Power Supply Current
(SLEEP High)
Power Consumption
(Note 9)
Positive Analog
Negative Analog
Positive Digital
Negative Digital
Notes: 5. Applies only in the track mode. When converting or calibrating, input capacitance will not exceed 30 pF.
6.
7.
8.
9.
10.
11.
DS45F6
Conversion time scales directly to the master clock speed. The times shown are for synchronous, internal loopback
(FRN) mode) with 8.0 MHz CLKIN. In PDT, RBT, and SSC modes, asynchronous delay between the falling edge
of HOLD and the start of conversion may add to the apparent conversion time. This delay will not exceed 1.5
master clock cycles + 10 ns. In PDT, RBT, and SSC modes, CLKIN can be increased as long as the HOLD sample
rate is 100 kHz max.
The CS5101A requires 6 clock cycles of coarse charge, followed by a minimum of 1.125 µs of fine charge. FRN
mode allows 9 cycles for fine charge which provides for the minimum 1.125 µs with an 8MHz clock, however; in
PDT, RBT, or SSC modes and at clock frequencies of 8 MHz or less, fine charge may be less than 9 clock cycles.
This reflects the typical specification (6 clock cycles + 1.125 µs).
Throughput is the sum of the acquisition and conversion times. It will vary in accordance with conditions affecting
acquisition and conversion times, as described above.
All outputs unloaded. All inputs at VD+ or DGND.
Power consumption in the sleep mode applies with no master clock applied (CLKIN held high or low).
With 300 mV p-p, 1-kHz ripple applied to each supply separately in the bipolar mode. Rejection improves by 6 dB
in the unipolar mode to 90 dB. Figure 25 shows a plot of typical power supply rejection versus frequency.
5
CS5101A CS5102A
SWITCHING CHARACTERISTICS, CS5101A
(TA = TMIN to TMAX; VA+, VD+ = 5V ±10%; VA-, VD- = -5V ±10%; Inputs: Logic 0 = 0V, Logic 1 = VD+; CL = 50 pF).
Parameter
Symbol
Min
Typ
Max
Unit
tclk
108
-
10,000
ns
CLKIN Low Time
tclkl
37.5
-
-
ns
CLKIN High Time
tclkh
37.5
-
-
ns
fxtal
2.0
-
9.216
MHz
-
-
2
-
ms
RST Pulse Width
trst
150
-
-
ns
RST to STBY falling
tdrrs
-
100
-
ns
RST Rising to STBY Rising
tcal
-
11,528,160
-
tclk
CLKIN Period
Crystal Frequency
SLEEP Rising to Oscillator Stable
(Note 12)
(Note 13)
CH1/2 Edge to TRK1, TRK2 Rising
(Note 14)
tdrsh1
-
80
-
ns
CH1/2 Edge to TRK1, TRK2 Falling
(Note 14)
tdfsh4
-
-
68tclk+260
ns
HOLD to SSH Falling
(Note 15)
tdfsh2
-
60
-
ns
HOLD to TRK1, TRK2 Falling
(Note 15)
tdfsh1
66tclk
-
68tclk+260
ns
HOLD to TRK1, TRK2, SSH Rising
(Note 15)
tdrsh
-
120
-
ns
HOLD Pulse Width
(Note 16)
thold
1tclk+20
-
63tclk
ns
HOLD to CH1/2 Edge
(Note 15)
tdhlri
15
-
64tclk
ns
HOLD Falling to CLKIN Falling
(Note 16)
thcf
95
-
1tclk+10
ns
Notes: 12. External loading capacitors are required to allow the crystal to oscillate. Maximum crystal frequency is 8.0 MHz in
FRN mode (100 kSps).
13.
With an 8.0 MHz crystal, two 10 pF loading capacitors and a 10 MΩ parallel resistor (see Figure 9).
14.
These timings are for FRN mode.
SSH only works correctly if HOLD falling edge is within +15 to +30 ns of CH1/2 edge or if CH1/2 edge occurs after
HOLD rises to 64tclk after HOLD has fallen. These timings are for PDT and RBT modes.
16. When HOLD goes low, the analog sample is captured immediately. To start conversion, HOLD must be latched
by a falling edge of CLLKIN. Conversion will begin on the next rising edge of CLKIN after HOLD is latched. If HOLD
is operated synchronous to CLKIN, the HOLD pulse width may be as narrow as 150 ns for all CLKIN frequencies
if CLKIN falls 95 ns after HOLD falls. This ensures that the HOLD pulse will meet the minimum specification for thcf.
15.
6
DS45F6
CS5101A CS5102A
ANALOG CHARACTERISTICS, CS5102A
(TA = TMIN to TMAX; VA+, VD+ = 5V; VA-, VD- = -5V; VREF = 4.5V; Full-scale Input Sine Wave, 200 Hz; CLKIN = 1.6 MHz;
fs = 20 kSps; Bipolar Mode; FRN Mode; AIN1 and AIN2 tied together, each channel tested separately; Analog Source
Impedance = 50 Ω with 1000 pF to AGND unless otherwise specified)
CS5102A-J
Parameter*
Min
Specified Temperature Range
Typ
CS5102A-B
Max
Min
0 to +70
Typ
Max
-40 to +85
Unit
ºC
Accuracy
Linearity Error
-J
(Note 1)
-B
Drift (Note 2)
Differential Linearity
(Note 3)
-
0.002 0.003
0.001 0.0015
±¼
-
-
0.002 0.003
0.001 0.0015
±¼
-
%FS
%FS
∆LSB
16
-
-
16
-
-
Bits
Full-scale Error
-J
(Note 1)
-B
Drift (Note 2)
-
±2
±2
±1
±4
±3
-
-
±2
±2
±1
±4
±3
-
LSB
LSB
∆LSB
Unipolar Offset
-J
(Note 1)
-B
Drift (Note 2)
-
±1
±1
±1
±4
±3
-
-
±1
±1
±1
±4
±3
-
LSB
LSB
∆LSB
Bipolar Offset
-J
(Note 1)
-B
Drift (Note 2)
-
±1
±1
±1
±4
±3
-
-
±1
±1
±2
±4
±3
-
LSB
LSB
∆LSB
Bipolar Negative Full-scale Error
-J
(Note 1)
-B
Drift (Note 2)
-
±2
±2
±1
±4
±3
-
-
±2
±2
±2
±4
±3
-
LSB
LSB
∆LSB
-J
-B
96
98
100
102
-
96
98
100
102
-
dB
dB
-J
-B
-
0.002
0.001
-
-
0.002
0.001
-
%
%
87
90
-
90
92
30
32
-
87
90
-
90
92
30
32
-
dB
dB
dB
dB
-
35
70
-
-
35
70
-
µVrms
µVrms
Dynamic Performance (Bipolar Mode)
Peak Harmonic or Spurious Noise
Total Harmonic Distortion
Signal-to-Noise Ratio
0 dB Input
-60 dB Input
(Note 1)
(Note 1)
-J
-B
-J
-B
Noise
(Note 4)
Unipolar Mode
Bipolar Mode
* Refer to Parameter Definitions (immediately following the pin descriptions at the end of this data sheet.
DS45F6
7
CS5101A CS5102A
ANALOG CHARACTERISTICS, CS5102A (Continued)
CS5102A-J
Parameter*
Symbol
Specified Temperature Range
Min
-
Typ
CS5102-B
Max
Min
0 to +70
Typ
Max
-40 to +85
Unit
ºC
Analog Input
Aperture Time
-
-
30
-
-
30
-
ns
Aperture Jitter
-
-
100
-
-
100
-
ps
-
-
320
200
425
265
-
320
200
425
265
pF
pF
Input Capacitance
(Note 5)
Unipolar Mode
Bipolar Mode
Conversion and Throughput
Conversion Time
(Note 17)
tc
-
-
40.625
-
-
40.625
µs
Acquisition Time
(Note 18)
ta
-
-
9.375
-
-
9.375
µs
Throughput
(Note 19)
ftp
20
-
-
20
-
-
kSps
I A+
I AID+
ID-
-
2.4
-2.4
2.5
-1.5
3.5
-3.5
3.5
-2.5
-
2.4
-2.4
2.5
-1.5
3.5
-3.5
3.5
-2.5
mA
mA
mA
mA
(Note 10, Note 20)
(SLEEP High)
(SLEEP Low)
Pdo
Pds
-
44
1
65
-
-
44
1
65
-
mW
mW
Power Supply Rejection
(Note 21)
Positive Supplies
Negative Supplies
PSR
PSR
-
84
84
-
-
84
84
-
dB
dB
Power Supplies
Power Supply Current
(SLEEP High)
Power Consumption
(Note 20)
Positive Analog
Negative Analog
Positive Digital
Negative Digital
Notes: 17. Conversion time scales directly to the master clock speed. The times shown are for synchronous, internal loopback
(FRN) mode. In PDT, RBT, and SSC modes, asynchronous delay between the falling edge of HOLD and the start
of conversion may add to the apparent conversion time. This delay will not exceed 1 master clock cycle + 140 ns.
The CS5102A requires 6 clock cycles of coarse charge, followed by a minimum of 5.625 µs of fine charge. FRN
mode allows 9 cycles for fine charge which provides for the minimum 5.625 µs with a 1.6 MHz clock, however; in
PDT, RBT, or SSC modes and at clock frequencies of less than 1.6 MHz, fine charge may be less than 9 clock
cycles.
19. Throughput is the sum of the acquisition and conversion times. It will vary in accordance with conditions affecting
acquisition and conversion times, as described above.
20. All outputs unloaded. All inputs at VD+ or DGND. See table below for power dissipation versus clock frequency.
21. With 300 mV p-p, 1-kHz ripple applied to each supply separately in the bipolar mode. Rejection improves by 6 dB
in the unipolar mode to 90 dB. Figure 25 shows a plot of typical power supply rejection versus frequency.
18.
8
Typical Power (mW)
CLKIN (MHz)
34
0.8
37
1.0
39
1.2
41
1.4
44
1.6
DS45F6
CS5101A CS5102A
SWITCHING CHARACTERISTICS, CS5102A
(TA = TMIN to TMAX; VA+, VD+ = 5V ±10%; VA-, VD- = -5V ±10%; Inputs: Logic 0 = 0V, Logic 1 = VD+; CL = 50 pF).
Parameter
Symbol
Min
Typ
Max
Unit
tclk
0.5
-
10
µs
CLKIN Low Time
tclkl
200
-
-
ns
CLKIN High Time
tclkh
200
-
-
ns
fxtal
0.9
1.6
2.0
MHz
-
-
20
-
ms
RST Pulse Width
trst
150
-
-
ns
RST to STBY falling
tdrrs
-
100
-
ns
RST Rising to STBY Rising
tcal
-
2,882,040
-
tclk
CLKIN Period
Crystal Frequency
SLEEP Rising to Oscillator Stable
(Note 22)
(Note 22, Note 23)
(Note 24)
CH1/2 Edge to TRK1, TRK2 Rising
(Note 25)
tdrsh1
-
80
-
ns
CH1/2 Edge to TRK1, TRK2 Falling
(Note 25)
tdfsh4
-
-
68tclk+260
ns
HOLD to SSH Falling
(Note 26)
tdfsh2
-
60
-
ns
HOLD to TRK1, TRK2 Falling
(Note 26)
tdfsh1
66tclk
-
68tclk+260
ns
HOLD to TRK1, TRK2, SSH Rising
(Note 26)
tdrsh
-
120
-
ns
HOLD Pulse Width
(Note 27)
thold
1tclk+20
-
63tclk
ns
HOLD to CH1/2 Edge
(Note 26)
tdhlri
15
-
64tclk
ns
HOLD Falling to CLKIN Falling
(Note 27)
thcf
55
-
1tclk+10
ns
Notes: 22. Minimum CLKIN period is 0.625 ms in FRN mode (20 kSps).
23.
External loading capacitors are required to allow the crystal to oscillate. Maximum crystal frequency is 1.6 MHz in
FRN mode (20 kSps).
24.
With a 2.0 MHz crystal, two 33 pF loading capacitors and a 10 MΩ parallel resistor (see Figure 9).
25.
These timings are for FRN mode.
26.
SSH only works correctly if HOLD falling edge is within +15 to +30 ns of CH1/2 edge or if CH1/2 edge occurs after
HOLD rises to 64tclk after HOLD has fallen. These timings are for PDT and RBT modes.
27.
When HOLD goes low, the analog sample is captured immediately. To start conversion, HOLD must be latched
by a falling edge of CLLKIN. Conversion will begin on the next rising edge of CLKIN after HOLD is latched. If HOLD
is operated synchronous to CLKIN, the HOLD pulse width may be as narrow as 150 ns for all CLKIN frequencies
if CLKIN falls 55 ns after HOLD falls. This ensures that the HOLD pulse will meet the minimum specification for thcf.
DS45F6
9
CS5101A CS5102A
t rst
RST
t ca l
STBY
t drrs
Reset and Calibration Timing
HO LD
C H 1 /2
S S H /S D L
t dfsh2
t drsh 1
T R K 1,T R K 2
T R K 1,T R K 2
t dfsh4
t drsh
S S H ,T R K 1 ,T R K 2
T R K 1,T R K 2
a. FRN Mode
t dfsh1
b. PDT, RBT Mode
Control Output Timing
th c f
C H 1 /2
t d h lri
C LK IN
HOLD
H OLD
t ho ld
Channel Selection Timing
Start Conversion Timing
Figure 1. Reset, Calibration, and Control Timing
10
DS45F6
CS5101A CS5102A
SWITCHING CHARACTERISTICS, ALL DEVICES
(TA = TMIN to TMAX; VA+, VD+ = 5V ±10%; VA-, VD- = -5V ±10%; Inputs: Logic 0 = 0V, Logic 1 = VD+; CL = 50 pF).
Parameter
Symbol
Min
Typ
Max
Unit
SCLK Input Pulse Period
tsclk
200
-
-
ns
SCLK Input Pulse Width Low
tsclkl
50
-
-
ns
SCLK Input Pulse Width High
tsclkh
50
-
-
ns
SCLK Input Falling to SDATA Valid
tdss
-
100
150
ns
PDT Mode
tdhs
-
140
230
ns
(Note 28)
tdts
-
65
125
ns
SCLK Output Pulse Width Low
tslkl
-
2tclk
-
tclk
SCLK Output Pulse Width High
tslkh
-
2tclk
-
tclk
SDATA Valid Before Rising SCLK
tss
2tclk-100
-
-
ns
SDATA Valid After RIsing SCLK
tsh
2tclk-100
-
-
ns
SDL Falling to 1st Rising SCLK
trsclk
66tclk
2tclk
68tclk+260
ns
PDT & RBT Modes
HOLD Falling to SDATA Valid
TRK1, TRK2 Falling to SDATA Valid
FRN & SSC Modes
Last Rising SCLK to SDL Rising
CS5101A
CS5102A
trsdl
trsdl
-
2tclk
2tclk
2tclk+165
2tclk+200
ns
HOLD Falling to 1st Falling SCLK
CS5101A
CS5102A
thfs
thfs
6tclk
6tclk
-
8tclk+165
8tclk+200
ns
tdhlri
-
7tclk
64tclk
tclk
CH1/2 Edge to 1st Falling SCLK
Notes: 28. Only valid for TRK1, TRK2 falling when SCLK is low. If SCLK is high when TRK1, TRK2 falls, then SDATA is
valid tdss time after the next falling SCLK.
DS45F6
11
CS5101A CS5102A
H O LD
t h fs
t chfs
C H 1 /2
S S H /S D L
t rsclk
t sclkl
t sc lkh
t slkl
t slkh
t rsd l
t d ss
SCLK
S C LK
t d ss
t sclk
t ss
SDATA
SDATA
a. SCLK Input (PDT & RBT Modes)
t sh
MSB
LSB
b. SCLK Output (FRN & SSC Modes)
Serial Data Timing
HOLD
T R K 1, T R K 2
t dhs
SDATA
MSB
t d ts
SDATA
SCLK
SCLK
a. Pipelined Data Transmission (PDT)
MSB
M S B -1
t dss
b. Register Burst Transmission (RBT)
Data Transmission Timing
Figure 2. Serial Communication Timing
12
DS45F6
CS5101A CS5102A
DIGITAL CHARACTERISTICS, ALL DEVICES
(TA = TMIN to TMAX; VA+, VD+ = 5V ±10%; VA-, VD- = -5V ±10%
Parameter
Symbol
Min
Typ
Max
Unit
VMR
2.0
-
-
V
High-level Input Voltage
VIH
2.0
-
-
V
Low-level Input Voltage
VIL
-
-
0.8
V
(Note 30)
VOH
(VD+) -1.0
-
-
V
Iout = 1.6 mA
VOL
-
-
0.4
V
Iin
-
-
10
µA
Cout
-
9
-
pF
Calibration Memory Retention
Power Supply Voltage VA+ and VD+
(Note 29)
High-level Output Voltage
Low-level Output Voltage (except XOUT)
Input Leakage Current
Digital Output Pin Capacitance
29.
VA- and VD- can be any value from 0 to +5V for memory retention. Neither VA- nor VD- should be allowed to go
positive. AIN1, AIN2, or VREF must not be greater than VA+ or VD+. This parameter is guaranteed by
characterization.
30. IOUT = -100 µA. This specification guarantees TTL compatibility (VOH = 2.4V @ IOUT = -40 µA).
RECOMMENDED OPERATING CONDITIONS
(AGND, DGND = 0V, see Note 31)
Parameter
Symbol
Min
Typ
Max
Unit
VD+
VDVA+
VA-
4.5
-4.5
4.5
-4.5
5.0
-5.0
5.0
-5.0
VA+
-5.5
5.5
-5.5
V
V
V
V
VREF
2.5
4.5
(VA+)-0.5
V
VAIN
VAIN
AGND
-VREF
-
VREF
VREF
V
V
DC Power Supplies:
Positive Digital
Negative Digital
Positive Analog
Negative Analog
Analog Reference Voltage
DC Power Supplies:
(Note 32)
Unipolar
Bipolar
31.
32.
DS45F6
All voltages with respect to ground.
The CS5101A and CS5102A can accept input voltages up to the analog supplies (VA+ and VA-). They will produce
an output of all 1s for input above VREF and all 0s for inputs below AGND in unipolar mode, and -VREF in bipolar
mode, with binary coding (CODE = low).
13
CS5101A CS5102A
ABSOLUTE MAXIMUM RATINGS
(AGND, DGND = 0V, all voltages with respect to ground.)
Parameter
Symbol
Min
Typ
Max
Unit
VD+
VDVA+
VA-
-0.3
0.3
-0.3
0.3
-
6.0
-6.0
6.0
-6.0
V
V
V
V
IIN
-
-
±10
mA
VINA
(VA-) - 0.3
-
(VA+) + 0.3
V
VIND
-0.3
-
(VA+) + 0.3
V
Ambient Operating Temperature
TA
-55
-
125
°C
Storage Temperature
Tstg
-65
-
150
°C
DC Power Supplies:
(Note 33)
Positive Digital
Negative Digital
Positive Analog
Negative Analog
Input Current, Any Pin Except Supplies
Analog Input Voltage
(Note 34)
(AIN and VREF pins)
Digital Input Voltage
Notes: 33. In addition, VD+ must not be greater than (VA+) + 0.3 V.
34.
Transient currents of up to 100 mA will not cause SCR latch-up
WARNING: Operation beyond these limits may result in permanent damage to the device.
14
DS45F6
CS5101A CS5102A
2.
OVERVIEW
The CS5101A and CS5102A are 2-channel, 16-bit
A/D converters. The devices include an inherent
sample/hold and an on-chip analog switch for 2channel operation. Both channels can thus be
sampled and converted at rates up to 50 kSps
each (CS5101A) or 10 kSps each (CS5102A). Alternatively, each of the devices can be operated as
a single channel ADC operating at 100 kSps
(CS5101A) or 20 kSps (CS5102A).
Both the CS5101A and CS5102A can be configured to accept either unipolar or bipolar input ranges, and data is output serially in either binary or 2's
complement coding. The devices can be configured in 3 different output modes, as well as an internal, synchronous loopback mode. The
CS5101A and CS5102A provide coarse
charge/fine charge control, to allow accurate tracking of high-slew signals.
3.
THEORY OF OPERATION
The CS5101A and CS5102A implement the successive approximation algorithm using a charge
redistribution architecture. Instead of the traditional
resistor network, the DAC is an array of binaryweighted capacitors. All capacitors in the array
share a common node at the comparator's input.
As shown in Figure 3, their other terminals are capable of being connected to AGND, VREF, or AIN
(1 or 2). When the device is not calibrating or converting, all capacitors are tied to AIN. Switch S1 is
closed and the charge on the array, tracks the input signal.
When the conversion command is issued, switch
S1 opens. This traps the charge on the comparator
side of the capacitor array and creates a floating
node at the comparator's input. The conversion algorithm operates on this fixed charge, and the signal at the analog input pin is ignored. In effect, the
entire DAC capacitor array serves as analog memory during conversion much like the hold capacitor
in a sample/hold amplifier.
The conversion consists of manipulating the free
plates of the capacitor array to VREF and AGND to
form a capacitive divider. Since the charge at the
floating node remains fixed, the voltage at that
point depends on the proportion of capacitance
tied to VREF versus AGND. The successive approximation algorithm is used to find the proportion
of capacitance, which when connected to the reference will drive the voltage at the floating node to
zero. That binary fraction of capacitance represents the converter's digital output.
Fine
A IN
+
-
C o arse
Fine
VREF
+
-
C o a rse
C
Bit 15
MSB
C /2
C /4
Bit 14
C /3 2 ,7 6 8
C /3 2 ,7 6 8
Bit 13
Bit 0
LSB
Dum m y
S1
+
Fine
AGND
+
-
C to t
= C + C /2 + C /4 + C /8 + ... C /3 2 ,7 68
C o a rse
Figure 3. Coarse Charge Input Buffers & Charge Redistribution DAC
DS45F6
15
CS5101A CS5102A
3.1
Calibration
The ability of the CS5101A or the CS5102A to convert accurately to 16-bits clearly depends on the
accuracy of its comparator and DAC. Each device
utilizes an “auto-zeroing” scheme to null errors introduced by the comparator. All offsets are stored
on the capacitor array while in the track mode and
are effectively subtracted from the input signal
when a conversion is initiated. Auto-zeroing enhances power supply rejection at frequencies well
below the conversion rate.
To achieve 16-bit accuracy from the DAC, the
CS5101A and CS5102A use a novel self-calibra-
16
tion scheme. Each bit capacitor shown in Figure 3
actually consists of several capacitors in parallel
which can be manipulated to adjust the overall bit
weight. An on-chip microcontroller precisely adjusts each capacitor with a resolution of 18 bits.
The CS5101A and CS5102A should be reset upon
power-up, thus initiating a calibration cycle. The
device then stores its calibration coefficients in onchip SRAM. When the CS5101A and CS5102A are
in power-down mode (SLEEP low), they retain the
calibration coefficients in memory, and need not be
recalibrated when normal operation is resumed.
DS45F6
CS5101A CS5102A
4. FUNCTIONAL DESCRIPTION
Monolithic design and inherent sampling architecture make the CS5101A and CS5102A extremely
easy to use.
4.1
Initiating Conversions
A falling transition on the HOLD pin places the input in the hold mode and initiates a conversion cycle. The charge is trapped on the capacitor array
the instant HOLD goes low. The device will complete conversion of the sample within 66 master
clock cycles, then automatically return to the track
mode. After allowing a short time for acquisition,
the device will be ready for another conversion.
In contrast to systems with separate track-andholds and A/D converters, a sampling clock can
simply be connected to the HOLD input. The duty
cycle of this clock is not critical. The HOLD input is
latched internally by the master clock, so it need
only remain low for 1/fclk + 20 ns, but no longer
than the minimum conversion time minus two master clocks or an additional conversion cycle will be
initiated with inadequate time for acquisition. In
Free Run mode, SCKMOD = OUTMOD = 0, the
device will convert at a rate of CLKIN/80, and the
HOLD input is ignored.
As with any high-resolution A-to-D system, it is recommended that sampling is synchronized to the
master system clock in order to minimize the effects of clock feed through. However, the
CS5101A and CS5102A may be operated entirely
asynchronous to the master clock if necessary.
4.2
Tracking the Input
Upon completing a conversion cycle the CS5101A
and CS5102A immediately return to the track
mode. The CH1/2 pin directly controls the input
switch, and therefore directly determines which
channel will be tracked. Ideally, the CH1/2 pin
should be switched during the conversion cycle,
thereby nullifying the input mux switching time, and
guaranteeing a stable input at the start of acquisition. If, however, the CH1/2 control is changed during the acquisition phase, adequate coarse charge
and fine charge time must be allowed before initiating conversion.
When the CS5101A or the CS5102A enters tracking mode, it uses an internal input buffer amplifier
DS45F6
to provide the bulk of the charge on the capacitor
array (coarse-charge), thereby reducing the current load on the external analog circuitry. Coarsecharge is internally initiated for 6 clock cycles at the
end of every conversion. The buffer amplifier is
then bypassed, and the capacitor array is directly
connected to the input. This is referred to as finecharge, during which the charge on the array is allowed to accurately settle to the input voltage (see
Figure 12).
With a full-scale input step, the coarse-charge input buffer of the CS5101A will charge the capacitor
array within 1% in 650 ns. The converter timing allows 6 clock cycles for coarse charge settling time.
When the CS5101A switches to fine-charge mode,
its slew rate is somewhat reduced. In fine-charge,
the CS5101A can slew at 2 V/µs in unipolar mode.
In bipolar mode, only half the capacitor array is
connected to the analog input, so the CS5101A
can slew at 4V/µs.
With a full-scale input step, the coarse-charge input buffer of the CS5102A will charge the capacitor
array within 1% in 3.75 µs. The converter timing allows 6 clock cycles for coarse charge settling time.
When in fine-charge mode, the CS5102A can slew
at 0.4 V/µs in unipolar mode; and at 0.8 V/µs in bipolar mode.
Acquisition of fast slewing signals can be hastened
if the voltage change occurs during or immediately
following the conversion cycle. For instance, in
multiple channel applications (using either the device's internal channel selector or an external
MUX), channel selection should occur while the
CS5101A or the CS5102A is converting. Multiplexer switching and settling time is thereby removed
from the overall throughput equation.
If the input signal changes drastically during the
acquisition period (such as changing the signal
source), the device should be in coarse-charge for
an adequate period following the change. The
CS5101A and CS5102A can be forced into coarsecharge by bringing CRS/FIN high. The buffer amplifier is engaged when CRS/FIN is high, and may
be switched in any number of times during tracking. If CRS/FIN is held low, the CS5101A and
CS5102A will only coarse-charge for the first 6
clock cycles following a conversion, and will stay in
17
CS5101A CS5102A
fine-charge until HOLD goes low. To get an accurate sample using the CS5101A, at least 750 ns of
coarse-charge, followed by 1.125 µs of fine-charge
is required before initiating a conversion. If coarse
charge is not invoked, then up to 25 µs should be
allowed after a step change input for proper acquisition. To get an accurate sample using the
CS5102A, at least 3.75 µs of coarse-charge, fol-
lowed by 5.625 µs of fine-charge is required before
initiating a conversion (see Figure 4). If coarse
charge is not invoked, then up to 125 µs should be
allowed after a step change input for proper acquisition. The CRS/FIN pin must be low prior to HOLD
becoming active and be held low during conversion.
C L K IN
M in: 750 ns*
3.75 µ s**
C R S /F IN
6 clk
In te rn al
S tatus
TR K 1 or
TR K2
C onv.
C o arse
M in : 1 .1 2 5 µ s*
5 .62 5 µ s**
F in e C hg.
C o arse
Fine C hg.
C on v.
2 clk
HOLD
* A pplies to 5101A
** A pplies to 51 02A
Figure 4. Coarse/Fine Charge Control
4.3
Master Clock
The CS5101A and CS5102A can operate either
from an externally-supplied master clock, or from
their own crystal oscillator (with a crystal). To enable the internal crystal oscillator, simply tie a crystal across the XOUT and CLKIN pins and add 2
capacitors and a resistor, as shown on the system
connection diagram in Figure 9.
Calibration and conversion times directly scale to
the master clock frequency. The CS5101A can operate with clock or crystal frequencies up to 9.216
MHz (8.0 MHz in FRN mode). This allows maximum throughput of up to 50 kSps per channel in
dual-channel operation, or 100 kSps in a singlechannel configuration. The CS5102A can operate
with clock or crystal frequencies up to 2.0 MHz (1.6
MHz in FRN mode). This allows maximum
throughput of up to 10 kSps per channel in dualchannel operation, or 20 kSps in a single channel
configuration. For 16-bit performance a 1.6 MHz
clock is recommended. This 1.6 MHz clock yields
a maximum throughput of 20 kSps in a singlechannel configuration.
18
4.4
Asynchronous Sampling
Considerations
When HOLD goes low, the analog sample is captured immediately. The HOLD signal is latched by
the next falling edge of CLKIN, and conversion
then starts on the subsequent rising edge. If HOLD
is asynchronous to CLKIN, then there will be a 1.5CLKIN-cycle uncertainty as to when conversion
starts. Considering the CS5101A with an 8 MHz
CLKIN, with a 100 kHz HOLD signal, then this 1.5CLKIN uncertainty will result in a 1.5-CLKIN-period
possible reduction in fine charge time for the next
conversion.
This reduced fine charge time will be less than the
minimum specification. If the CLKIN frequency is
increased slightly (for example, to 8.192 MHz) then
sufficient fine charge time will always occur. The
maximum frequency for CLKIN is specified at
9.216 MHz. It is recommended that for asynchronous operation at 100 kSps, CLKIN should be between 8.192 MHz and 9.216 MHz.
DS45F6
CS5101A CS5102A
4.5
Analog Input Range/Coding Format
The reference voltage directly defines the input
voltage range in both the unipolar and bipolar configurations. In the unipolar configuration
(BP/UP low), the first code transition occurs
0.5 LSB above AGND, and the final code transition
occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first code transition oc-
curs 0.5 LSB above -VREF and the last transition
occurs 1.5 LSBs below +VREF. The CS5101A and
CS5102A can output data in either 2's complement, or binary format. If the CODE pin is high, the
output is in 2's complement format with a range of
-32,768 to +32,767. If the CODE pin is low, the output is in binary format with a range of 0 to +65,535.
See Table 1 for output coding.
Table 1. Output Coding
Offset
Binary
Two’s
Complement
Bipolar Input Voltage
>(VREF-1.5 LSB)
FFFF
7FFF
>(VREF-1.5 LSB)
VREF-1.5 LSB
FFFF
FFFE
7FFF
7FFE
VREF-1.5 LSB
(VREF/2)-0.5 LSB
8000
7FFF
0000
FFFF
-0.5 LSB
+0.5 LSB
0001
0000
8001
8000
-VREF+0.5 LSB