0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CS5342-CZZ

CS5342-CZZ

  • 厂商:

    CIRRUS(凌云)

  • 封装:

    TSSOP16

  • 描述:

    ADC, Audio 24 bit 192k Serial 16-TSSOP

  • 数据手册
  • 价格&库存
CS5342-CZZ 数据手册
CS5342 105 dB, 192 kHz, Multi-bit Audio A/D Converter Features Advanced Multi-bit Delta-Sigma Architecture 24-bit Conversion Supports All Audio Sample Rates Including 192 kHz 105 dB Dynamic Range at 5 V -98 dB THD+N 90 mW Power Consumption High-Pass Filter to Remove DC Offsets Analog/Digital Core Supplies from 3.3 V to 5 V Supports Logic Levels between 2.5 V and 5 V Low-Latency Digital Filter Auto-detect Mode Selection in Slave Mode Auto-Detect MCLK Divider Supports 384x MCLK/LRCK Ratios General Description The CS5342 is a complete analog-to-digital converter for digital audio systems. It performs sampling, analogto-digital conversion and anti-alias filtering, generating 24-bit values for both left and right inputs in serial form at sample rates up to 200 kHz per channel. The CS5342 uses a 5th-order, multi-bit Delta-Sigma modulator followed by digital filtering and decimation, which removes the need for an external anti-alias filter. The CS5342 is available in a 16-pin TSSOP package in Commercial grade (-10° to 70° C). The CDB5342 Customer Demonstration board is also available for device evaluation and implementation suggestions. Please refer to “Ordering Information” on page 21 for complete ordering information. The CS5342 is ideal for audio systems requiring wide dynamic range, negligible distortion and low noise, such as set-top boxes, DVD-karaoke players, DVD recorders, A/V receivers, and automotive applications. VA 3.3 V to 5 V VD 3.3 V to 5 V VL 2.5 V to 5 V Single-Ended Analog Input AINL Switch-Cap ADC High-Pass Filter Low-Latency Digital Filters Auto-detect MCLK Divider ÷1.5 Master Clock FILT+ Serial Port VQ Internal Reference Voltages Slave Mode Auto-detect SCLK LRCK SDOUT M0 M1 Single-Ended Analog Input AINR Switch-Cap ADC High-Pass Filter Low-Latency Digital Filters Mode Configuration Reset http://www.cirrus.com Copyright © Cirrus Logic, Inc. 2006 (All Rights Reserved) APRIL '06 DS608F1 CS5342 TABLE OF CONTENTS 1. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 4 SPECIFIED OPERATING CONDITIONS ............................................................................................... 4 ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 4 ANALOG CHARACTERISTICS (CS5342-CZZ) ..................................................................................... 5 DIGITAL FILTER CHARACTERISTICS ................................................................................................. 6 DC ELECTRICAL CHARACTERISTICS ................................................................................................ 9 DIGITAL CHARACTERISTICS ............................................................................................................... 9 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT ............................................................... 10 2. PIN DESCRIPTION .............................................................................................................................. 12 3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 13 4. APPLICATIONS ................................................................................................................................... 14 4.1 Single-, Double-, and Quad-Speed Modes ..................................................................................... 14 4.2 Operation as Either a Clock Master or Slave ................................................................................. 14 4.2.1 Operation as a Clock Master ................................................................................................. 15 4.2.2 Operation as a Clock Slave ................................................................................................... 15 4.2.3 Master Clock ......................................................................................................................... 16 4.3 Serial Audio Interface ..................................................................................................................... 16 4.4 Power-Up Sequence ...................................................................................................................... 17 4.5 Analog Connections ....................................................................................................................... 17 4.6 Grounding and Power Supply Decoupling ...................................................................................... 17 4.7 Synchronization of Multiple Devices ............................................................................................... 17 4.8 Capacitor Size on the Reference Pin (FILT+) ................................................................................ 17 5. PARAMETER DEFINITIONS ................................................................................................................ 19 6. PACKAGE DIMENSIONS ................................................................................................................... 20 THERMAL CHARACTERISTICS .......................................................................................................... 20 7. ORDERING INFORMATION ................................................................................................................ 21 8. REVISION HISTORY ............................................................................................................................ 21 LIST OF FIGURES Figure 1.Single-Speed Stopband Rejection ................................................................................................ 7 Figure 2.Single-Speed Stopband Rejection (detail) .................................................................................... 7 Figure 3.Single-Speed Transition Band (detail) .......................................................................................... 7 Figure 4.Single-Speed Passband Ripple .................................................................................................... 7 Figure 5.Double-Speed Stopband Rejection ............................................................................................... 7 Figure 6.Double-Speed Stopband Rejection (detail) ................................................................................... 7 Figure 7.Double-Speed Transition Band (detail) ......................................................................................... 8 Figure 8.Double-Speed Passband Ripple ................................................................................................... 8 Figure 9.Quad-Speed Stopband Rejection ................................................................................................. 8 Figure 10.Quad-Speed Stopband Rejection (detail) ................................................................................... 8 Figure 11.Quad-Speed Transition Band (detail) ......................................................................................... 8 Figure 12.Quad-Speed Passband Ripple ................................................................................................... 8 Figure 13.Master Mode, Left-Justified SAI ................................................................................................ 11 Figure 14.Slave Mode, Left-Justified SAI .................................................................................................. 11 Figure 15.Master Mode, I²S SAI ................................................................................................................ 11 Figure 16.Slave Mode, I²S SAI .................................................................................................................. 11 Figure 17.Typical Connection Diagram ..................................................................................................... 13 Figure 18.CS5342 Master Mode Clocking ................................................................................................ 15 Figure 19.Left-Justified Serial Audio Interface .......................................................................................... 16 Figure 20.I²S Serial Audio Interface .......................................................................................................... 16 Figure 21.CS5342 Recommended Analog Input Buffer ............................................................................ 17 Figure 22.CS5342 THD+N versus Frequency .......................................................................................... 18 2 DS608F1 CS5342 LIST OF TABLES Table 1. Speed Modes and the Associated Output Sample Rates (Fs) .................................................... 14 Table 2. CS5342 Mode Control ................................................................................................................. 14 Table 3. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates ...................................... 16 DS608F1 3 CS5342 1. CHARACTERISTICS AND SPECIFICATIONS (All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at typical supply voltages and TA = 25°C.) SPECIFIED OPERATING CONDITIONS (GND = 0 V, all voltages with respect to 0 V.) Parameter Power Supplies (Note 2, 3) Analog Digital Logic Commercial (-CZZ) Symbol VA VD VL TAC Min 3.1 3.1 2.38 -10 Typ (Note 1) 3.3 3.3 - Max 5.25 5.25 5.25 70 Unit V V V °C Ambient Operating Temperature Notes: 1. This part is specified at typical analog voltages of 3.3 V and 5.0 V. See “Analog Characteristics (CS5342-CZZ)” on page 5 for details. 2. In Quad-Speed Slave Mode, the CS5342 is only specified for operation with VA and VD at 5 V, ±5%. ABSOLUTE MAXIMUM RATINGS (GND = 0 V, All voltages with respect to ground.) (Note 3) Parameter DC Power Supplies: Analog Logic Digital (Note 4) (Note 5) (Note 5) Symbol VA VL VD Iin VIN VIND TA Tstg Min -0.3 -0.3 -0.3 -10 GND-0.7 -0.7 -50 -65 Max +6.0 +6.0 +6.0 +10 VA+0.7 VL+0.7 +95 +150 Units V V V mA V V °C °C Input Current Analog Input Voltage Digital Input Voltage Ambient Operating Temperature (Power Applied) Storage Temperature 3. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 4. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SRC latch-up. 5. The maximum over/under voltage is limited by the input current. 4 DS608F1 CS5342 ANALOG CHARACTERISTICS (CS5342-CZZ) Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz. Dynamic Performance for Commercial Grade Single-Speed Mode Dynamic Range Total Harmonic Distortion + Noise VA = 5 V Min 99 96 VA = 3.3 V Max -92 - Fs = 48 kHz A-weighted unweighted (Note 6) -1 dB -20 dB -60 dB Symbol Typ 105 102 -98 -82 -42 Min 96 93 - Typ 102 99 -95 -79 -39 Max -89 - Unit dB dB dB dB dB THD+N - Double-Speed Mode Dynamic Range Fs = 96 kHz Symbol Min 99 96 - Typ 105 102 99 Max - Min 96 93 - Typ 102 99 96 Max - Unit dB dB dB A-weighted unweighted 40 kHz bandwidth unweighted (Note 6) -1 dB -20 dB -60 dB -1 dB THD+N Total Harmonic Distortion + Noise 40 kHz bandwidth - -98 -82 -42 -95 -92 - - -95 -79 -39 -87 -89 - dB dB dB dB Quad-Speed Mode Dynamic Range Fs = 192 kHz Symbol Min 99 96 - Typ 105 102 99 Max - Min 96 93 - Typ 102 99 96 Max - Unit dB dB dB A-weighted unweighted 40 kHz bandwidth unweighted (Note 6) -1 dB -20 dB -60 dB -1 dB THD+N Total Harmonic Distortion + Noise 40 kHz bandwidth - -98 -82 -42 -95 -92 - - -95 -79 -39 -87 -89 - dB dB dB dB Dynamic Performance All Modes Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Gain Error Gain Drift Analog Input Characteristics Full-Scale Input Voltage Input Impedance Min - Typ 90 Max - Unit dB -3 - 0.1 - +3 - dB % ppm/°C ±100 0.56*VA - 0.54*VA 18 0.58*VA - Vpp kΩ 6. Referred to the typical full-scale input voltage. DS608F1 5 CS5342 DIGITAL FILTER CHARACTERISTICS Parameter (Note 7) Single-Speed Mode Passband Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd (-0.1 dB) 0 -0.1 0.5688 70 0 -0.1 0.5604 69 tgd 0 -0.1 0.5000 60 tgd (Note 7) (Note 7) 12/Fs 9/Fs 5/Fs 1 20 10 105/Fs 0.4896 0.035 0.4896 0.058 0.2604 0.058 0 Fs dB Fs dB s Fs dB Fs dB s Fs dB Fs dB s Hz Hz Deg dB s Symbol Min Typ Max Unit Double-Speed Mode Passband Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) (-0.1 dB) Quad-Speed Mode (Note 2) Passband Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) (-0.1 dB) High-Pass Filter Characteristics Frequency Response Phase Deviation Passband Ripple Filter Settling Time -3.0 dB -0.13 dB @ 20 Hz 7. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 1 to 9) are normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 6 DS608F1 CS5342 0 -10 -2 0 -3 0 -4 0 -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1.0 Amplitude (dB) Amplitude (dB) 0 -10 -2 0 -3 0 -4 0 -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0 .4 0 0 .4 2 0 .4 4 0 .4 6 0 .4 8 0 .50 0 .52 0 .54 0 .56 0 .58 0 .6 0 Fr e q u e n cy (n o r m aliz e d to Fs ) Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 1. Single-Speed Stopband Rejection Figure 2. Single-Speed Stopband Rejection (detail) 0 -1 -2 0 .10 0 .0 8 0 .0 6 Amplitude (dB) Amplitude (dB) -3 -4 -5 -6 -7 -8 -9 -10 0 .4 5 0 .4 6 0 .4 7 0 .4 8 0 .4 9 0 .5 0 .51 0 .52 0 .53 0 .54 0 .55 0 .0 4 0 .0 2 0 .0 0 -0 .0 2 -0 .0 4 -0 .0 6 -0 .0 8 -0 .10 0 0 .0 5 0 .1 0 .15 0 .2 0 .2 5 0 .3 0 .3 5 0 .4 0 .4 5 0 .5 Fr e que ncy (nor m alize d to Fs ) Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 3. Single-Speed Transition Band (detail) Figure 4. Single-Speed Passband Ripple Amplitude (dB) -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1.0 Amplitude (dB) 0 -10 -2 0 -3 0 -4 0 0 -10 -2 0 -3 0 -4 0 -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0 .4 0 0 .4 2 0 .4 4 0 .4 6 0 .4 8 0 .50 0 .52 0 .54 0 .56 0 .58 0 .6 0 Fr e q u e n cy (n o r m aliz e d to Fs ) Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 5. Double-Speed Stopband Rejection Figure 6. Double-Speed Stopband Rejection (detail) DS608F1 7 CS5342 0 -1 -2 0 .10 0 .0 8 0 .0 6 Amplitude (dB) -3 -4 -5 -6 -7 -8 -9 -10 0 .4 6 0 .4 7 0 .4 8 0 .4 9 0 .50 0 .51 0 .52 Amplitude (dB) 0 .0 4 0 .0 2 0 .0 0 -0 .0 2 -0 .0 4 -0 .0 6 -0 .0 8 -0 .10 0 .0 0 0 .0 5 0 .10 0 .15 0 .2 0 0 .2 5 0 .3 0 0 .3 5 0 .4 0 0 .4 5 0 .50 Fr e q u e n cy (n o r m aliz e d to Fs ) Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 7. Double-Speed Transition Band (detail) Figure 8. Double-Speed Passband Ripple Amplitude (dB) Amplitude (dB) 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1.0 0 -10 -2 0 -3 0 -4 0 -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0 -10 -2 0 -3 0 -4 0 -50 -6 0 -70 -8 0 -9 0 -10 0 -110 -12 0 -13 0 -14 0 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 Fr e q u e n cy (n o r m aliz e d to Fs ) Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 9. Quad-Speed Stopband Rejection Figure 10. Quad-Speed Stopband Rejection (detail) 0 -1 -2 0 .10 0 .0 8 0 .0 6 Amplitude (dB) -3 Amplitude (dB) 0 .15 0 .2 0 0 .2 5 0 .3 0 0 .3 5 0 .4 0 0 .4 5 0 .50 -4 -5 -6 -7 -8 -9 -10 0 .10 0 .0 4 0 .0 2 0 .0 0 -0 .0 2 -0 .0 4 -0 .0 6 -0 .0 8 Fr e q u e n cy (n o r m aliz e d to Fs ) -0 .10 0 .0 0 0 .0 3 0 .0 5 0 .0 8 0 .10 0 .13 0 .15 0 .18 0 .2 0 0 .2 3 0 .2 5 0 .2 8 Fr e q u e n cy (n o r m aliz e d to Fs ) Figure 11. Quad-Speed Transition Band (detail) Figure 12. Quad-Speed Passband Ripple 8 DS608F1 CS5342 DC ELECTRICAL CHARACTERISTICS (GND = 0 V, all voltages with respect to 0 V. MCLK=18.432 MHz; Master Mode; refer to Note 2) Parameter DC Power Supplies: Positive Analog Positive Digital Positive Logic VA = 5 V VA = 3.3 V VL,VD = 5 V VL,VD = 3.3 V VA = 5 V VL,VD=5 V VL, VD, VA = 5 V VL, VD, VA = 3.3 V (Note 9) Output Impedance Filt+ Nominal Voltage Output Impedance Maximum allowable DC current source/sink Symbol VA VD VL IA IA ID ID IA ID PSRR Min 3.14 3.14 2.38 - Typ 21 18.2 15 9 1.5 0.4 180 90 9.5 65 VA÷2 25 VA 36 0.01 Max 5.25 5.25 5.25 25.5 22.5 18.5 10 220 107.2 - Unit V V V mA mA mA mA mA mA mW mW mW dB V kΩ V kΩ mA Power Supply Current (Normal Operation) Power Supply Current (Power-down Mode) (Note 8) Power Consumption (Normal Operation) (Normal Operation) (Power-Down Mode)(Note 8) Power Supply Rejection Ratio (1 kHz) VQ Nominal Voltage 8. Power-Down Mode is defined as RST = Low with all clocks and data lines held static. 9. Valid with the recommended capacitor values on FILT+ and VQ as shown in the “Typical Connection Diagram”. DIGITAL CHARACTERISTICS Parameter High-level Input Voltage Low-level Input Voltage High-level Output Voltage at Io = 100 µA Low-level Output Voltage at Io =100 µA Input Leakage Current (% of VL) (% of VL) (% of VL) (% of VL) Symbol VIH VIL VOH VOL Iin Min 70% 70% -10 Typ - Max 30% 15% 10 Units V V V V µA DS608F1 9 CS5342 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT (Logic "0" = GND = 0 V; Logic "1" = VL, CL = 20 pF) Parameter MCLK Specifications MCLK Period MCLK Pulse Duty Cycle tclkw 26 52 40 tmslr tsdo Single-Speed Double-Speed Quad-Speed -20 50 50 33 30 1302 60 20 32 ns ns % ns ns % % % Symbol Min Typ Max Unit Master Mode SCLK falling to LRCK SCLK falling to SDOUT valid SCLK Duty Cycle Slave Mode Single-Speed (Note 10) LRCK Duty Cycle SCLK Period SCLK Duty Cycle SDOUT valid before SCLK rising SDOUT valid after SCLK rising SCLK falling to LRCK edge tstp thld tslrd tsclkw 40 313 45 10 5 -20 40 tsclkw tstp thld tslrd 208 45 10 5 -20 40 tsclkw tstp thld tslrd 104 40 10 5 -8 60 55 20 60 55 20 60 50 8 % ns % ns ns ns % ns % ns ns ns % ns % ns ns ns Double-Speed (Note 10) LRCK Duty Cycle SCLK Period (Note 11) SCLK Duty Cycle SDOUT valid before SCLK rising SDOUT valid after SCLK rising SCLK falling to LRCK edge Quad-Speed (Note 10) LRCK Duty Cycle SCLK Period (Note 11) SCLK Duty Cycle SDOUT valid before SCLK rising SDOUT valid after SCLK rising SCLK falling to LRCK edge 10. For a description of speed modes, please refer to Table 1 on page 14 11. SCLK must be derived synchronously from MCLK and the ratio of SCLK/LRCK must be equal to 48. 10 DS608F1 CS5342 LRCK output tmslr LRCK input t slrd t sclkw SCLK output tsdo SCLK input t stp thld SDOUT MSB MSB-1 SDOUT MSB MSB-1 Figure 13. Master Mode, Left-Justified SAI Figure 14. Slave Mode, Left-Justified SAI LRCK output tmslr LRCK input t slrd tsclkw SCLK output t sdo SCLK input t stp thld SDOUT MSB MSB-1 SDOUT MSB Figure 15. Master Mode, I²S SAI Figure 16. Slave Mode, I²S SAI DS608F1 11 CS5342 2. PIN DESCRIPTION M0 MCLK VL SDOUT GND VD SCLK LRCK 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 M1 FILT+ REFGND VA AINR VQ AINL RST Pin Name M0 M1 MCLK VL SDOUT GND VD SCLK LRCK RST AINL AINR VQ VA REFGND FILT+ # 1 16 2 3 4 5 6 7 8 9 10 12 11 13 14 15 Pin Description Mode Selection (Input) - Determines the operational mode of the device. Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Logic Power (Input) - Positive power for the digital input/output. Serial Audio Data Output (Output) - Output for two’s complement serial audio data. Ground (Input) - Ground reference. Must be connected to analog ground. Digital Power (Input) - Positive power supply for the digital section. Serial Clock (Input/Output) - Serial clock for the serial audio interface. Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio data line. Reset (Input) - The device enters a low-power mode when low. Analog Input (Input) - The full-scale analog input level is specified in the Analog Characteristics specification table. Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage. Analog Power (Input) - Positive power supply for the analog section. Reference Ground (Output) - Ground reference for the internal sampling circuits. Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. 12 DS608F1 CS5342 3. TYPICAL CONNECTION DIAGRAM 3.3V to 5V 4 + 1 µF 0.1 µF 2 0.1 µF + 1 µF 2.5V to 5V 3.3V to 5V 4 + 1 µF 0.1 µF 5.1Ω 0.1 µF VA FILT+ 1 µF 3 VD VL + 0.1 µF REFGND 0.1 µF VQ RST M0 M1 VL or GND 10 kΩ A INL 1 + 1 µF CS5342 A/D CONVERTER Power Down and Mode Settings Analog Input Buffer Figure 15 AI NR SDOUT Audio Data Processor MCLK LRCK SCLK 1 Pull-up to VL for I2S Pull-down to GND for LJ Timing Logic and Clock GND 2 Resistor may only be used if VD is derived from VA. If used, do not drive any other logic from VD Capacitor value affects low frequency distortion performance as described in Section 4.8 4 3 See Note 2 on page 4 Figure 17. Typical Connection Diagram DS608F1 13 CS5342 4. APPLICATIONS 4.1 Single-, Double-, and Quad-Speed Modes The CS5342 can support output sample rates from 2 kHz to 200 kHz. The proper speed mode can be determined by the desired output sample rate and the external MCLK/LRCK ratio, as shown in Table 1. Speed Mode MCLK/LRCK Ratio Output Sample Rate Range (kHz) 43 - 50 2 - 50 86 - 100 50 - 100 172 - 200 100 - 200 768x Single-Speed Mode 384x 384x Double-Speed Mode 192x 192x Quad-Speed Mode 96x* * Quad-Speed Mode, 96x only available in Master Mode. Table 1. Speed Modes and the Associated Output Sample Rates (Fs) 4.2 Operation as Either a Clock Master or Slave The CS5342 supports operation as either a clock master or slave. As a clock master, the LRCK and SCLK pins are outputs with the left/right and serial clocks synchronously generated on-chip. As a clock slave, the LRCK and SCLK pins are inputs and require the left/right and serial clocks to be externally generated. The selection of clock master or slave is made via the Mode pins as shown in Table 2. M1 (Pin 16) 0 0 1 1 M0 (Pin 1) 0 1 0 1 MODE Clock Master, Single-Speed Mode Clock Master, Double-Speed Mode Clock Master, Quad-Speed Mode Clock Slave, All Speed Modes Table 2. CS5342 Mode Control 14 DS608F1 CS5342 4.2.1 Operation as a Clock Master As a clock master, LRCK and SCLK operate as outputs. The left/right and serial clocks are internally derived from the master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as shown in Figure 18. ÷ 256 ÷ 128 ÷ 64 ÷ 1.5 MCLK ÷3 1 ÷4 Auto-Select ÷2 ÷1 0 Single Speed Double Speed Quad Speed 00 01 10 LRCK Output (Equal to Fs) M[1:0] Single Speed Double Speed Quad Speed 00 01 10 SCLK Output Figure 18. CS5342 Master Mode Clocking 4.2.2 Operation as a Clock Slave LRCK and SCLK operate as inputs in clock slave mode. It is recommended that the left/right clock be synchronously derived from the master clock and must be equal to Fs. It is also recommended that the serial clock be synchronously derived from the master clock and equal to 48x Fs or 64x Fs in SingleSpeed Mode. In Double-Speed and Quad-Speed Modes, the serial clock must be derived synchronously from the master clock and equal to 48x Fs. Additionally, Quad-Speed Slave Mode is only specified for operation with a VA and VD at 5 V, ±5%. A unique feature of the CS5342 is the automatic selection of either Single-, Double- or Quad-Speed Mode when operating as a clock slave. The auto-mode select feature negates the need to configure the Mode pins to correspond to the desired mode. The auto-mode selection feature supports all standard audio sample rates from 2 to 200 kHz. However, there are ranges of non-standard audio sample rates that are not supported when operating with a fast MCLK (768x, 384x, and 192x for Single-, Double-, and QuadSpeed Modes respectively). Please refer to Table 1 on page 14 for supported sample rate ranges. DS608F1 15 CS5342 4.2.3 Master Clock The CS5342 requires a Master clock (MCLK) which runs the internal sampling circuits and digital filters. There is also an internal MCLK divider which is automatically activated according to the frequency of the MCLK. Table 3 shows a listing of the external MCLK/LRCK ratios that are required. Table 3 lists some common audio output sample rates and the required MCLK frequency. Please note that not all of the listed sample rates are supported when operating with a fast MCLK (768x, 384x, 192x for Single-, Double-, and Quad-Speed Modes, respectively). Single-Speed Mode MCLK/LRCK Ratio 384x, 768x * Quad-Speed, 96x only available in Master Mode. Double-Speed Mode 192x, 384x Quad-Speed Mode 96x*, 192x SAMPLE RATE (kHz) 32 44.1 48 64 88.2 96 192 MCLK (MHz) 12.288 16.9344 33.8688 18.432 36.864 12.288 16.9344 33.8688 18.432 36.864 36.864 Table 3. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates 4.3 Serial Audio Interface The CS5342 supports both I²S and Left-Justified serial audio formats. Upon start-up, the CS5342 will detect the logic level on SDOUT (pin 4). A 10 kΩ pull-up resistor to VL is needed to select I²S format, and a 10 kΩ pull-down resistor to GND is needed to select Left-Justified format. Please see Figures 13 through 16 for more information on the required timing for the two serial audio interface formats. LRCK Left Channel Right Channel SCLK SDATA 23 22 9 8 7 6 5 4 3 2 1 0 23 22 9 8 7 6 5 4 3 2 1 0 23 22 Figure 19. Left-Justified Serial Audio Interface LRCK Left Channel Right Channel SCLK SDATA 23 22 9 8 7 6 5 4 3 2 1 0 23 22 9 8 7 6 5 4 3 2 1 0 23 22 Figure 20. I²S Serial Audio Interface 16 DS608F1 CS5342 4.4 Power-Up Sequence Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies drop below the minimum specified operating voltages to prevent power-glitch-related issues. 4.5 Analog Connections The analog modulator samples the input at 6.144 MHz. The digital filter rejects signals within the stopband of the filter. However, there is no rejection for input signals that are multiples of the input sampling frequency (n × 6.144 MHz), where n=0, 1, 2, .... Figure 21 shows the suggested filter that attenuates any noise energy at 6.144 MHz and provides the optimum source impedance for the modulators. The use of capacitors that have a large voltage coefficient (such as general-purpose ceramics) must be avoided because these can degrade signal linearity. 634 Ω VA 100 kΩ 4.7 µF AINx 2700 pF 100 kΩ 470 pF C0G 91 Ω CS5342 AINx Figure 21. CS5342 Recommended Analog Input Buffer 4.6 Grounding and Power Supply Decoupling As with any high-resolution converter, the CS5342 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 17 shows the recommended power arrangements, with VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the system logic supply or powered from the analog supply via a resistor. In this case, no additional devices should be powered from VD. Decoupling capacitors should be as near to the ADC as possible, with the low value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from FILT+ and REF_GND. The CDB5342 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the ADC digital outputs only to CMOS inputs. 4.7 Synchronization of Multiple Devices In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure synchronous sampling, the MCLK and LRCK must be the same for all of the CS5342’s in the system. 4.8 Capacitor Size on the Reference Pin (FILT+) The CS5342 requires an external capacitance on the internal reference voltage pin, FILT+. The size of this decoupling capacitor affects the low frequency distortion performance, as shown in Figure 22, with larger capacitor values used to optimize low frequency distortion performance. The THD+N curves in Figure 22 DS608F1 17 CS5342 were measured with VA = VD = VL = 5 V in Single-Speed Master Mode using a 1 kHz input tone of magnitude -1 dB Full-Scale. 1 uF 2.2 uF 3.3 uF 4.7 uF 5.6 uF 6.8 uF 10 uF 22 uF 47 uF 100 uF Figure 22. CS5342 THD+N versus Frequency 18 DS608F1 CS5342 5. PARAMETER DEFINITIONS Dynamic Range The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full-scale analog input for a full-scale digital output. Gain Drift The change in gain value with temperature. Units in ppm/°C. Offset Error The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV. DS608F1 19 CS5342 6. PACKAGE DIMENSIONS 16L TSSOP (4.4 mm BODY) PACKAGE DRAWING N D E11 A2 A1 L E A ∝ e b2 SIDE VIEW 123 END VIEW SEATING PLANE TOP VIEW DIM A A1 A2 b D E E1 e L µ MIN -0.002 0.03346 0.00748 0.193 0.248 0.169 -0.020 0° INCHES NOM -0.004 0.0354 0.0096 0.1969 0.2519 0.1732 0.026 BSC 0.024 4° MAX 0.043 0.006 0.037 0.012 0.201 0.256 0.177 -0.028 8° MIN -0.05 0.85 0.19 4.90 6.30 4.30 -0.50 0° MILLIMETERS NOM --0.90 0.245 5.00 6.40 4.40 0.65 BSC 0.60 4° NOTE MAX 1.10 0.15 0.95 0.30 5.10 6.50 4.50 -0.70 8° 1 2,3 1 JEDEC #: MO-153 Controlling Dimension is Millimeters Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side. 2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition. 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips. THERMAL CHARACTERISTICS Parameter Allowable Junction Temperature Junction-to-ambient Thermal Impedance Symbol Min - Typ 75 Max 135 - Unit °C °C/W θJA 20 DS608F1 CS5342 7. ORDERING INFORMATION Product CS5342 CS5342 Description Package Pb-Free Yes NO Grade Commercial - Temp Range -10° to 70° C - Container Tube Tape and Reel - Order # CS5342-CZZ CS5342-CZZR - 105 dB, 192 kHz, Multi-bit Audio A/D 16-TSSOP Converter CS5342 Evaluation Board 8. REVISION HISTORY Release A1 A2 Changes Initial Release Modify serial port timing specs Add Applications section on speed mode detect Change value of capacitors in analog input buffer diagram Add new Applications section about capacitor on FILT+ pin Redefine slave mode timing specifications under Switching Characteristics Initial Preliminary Release. Add lead-free device ordering information Update Output Sample Rate Range table Final Release Correct dimension “e” under Package Dimensions Update maximum current and power specifications Update FILT+ output impedance specification PP1 PP2 PP3 F1 Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest to you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. DS608F1 21
CS5342-CZZ 价格&库存

很抱歉,暂时无法提供与“CS5342-CZZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货