CS53L32A
Low Voltage, Stereo A/D Converter
FEATURES
DESCRIPTION
z 20-Pin
The CS53L32A is a highly integrated, 24-bit, 96 kHz audio ADC providing stereo analog-to-digital converters
using delta-sigma conversion techniques. This device includes volume control and line level inputs in a 20-pin
TSSOP package.
TSSOP package
z 1.8 V to 3.3 V supply
z 24-bit conversion / 96 kHz sample rate
z 98 dB dynamic range at 3 V supply
z -88 dBFS THD+N
z Low power consumption
The CS53L32A is based on delta-sigma modulation allowing infinite adjustment of the sample rate between
2 kHz and 100 kHz simply by changing the master clock
frequency.
– 11 mW at 1.8 V
z Up
to 32 dB gain
The CS53L32A contains adjustable analog gain, a 2:1
input mux, and digital attenuation.
– 20 dB gain step
– 12 dB variable input gain, 1 dB steps
– Changes made at zero crossings
The CS53L32A operates from a +1.8 V to +3.3 V supply.
These features are ideal for portable MP3 players, MD
recorders/players, digital camcorders, PDAs, set-top
boxes, and other portable systems that require extremely low power consumption in a minimum of space.
z Stereo
inputs
z Digital volume control
– 96 dB attenuation, 1 dB step size
– Mute
– Soft ramping
z 2:1
ORDERING INFORMATION
Input mux
CS53L32A-KZ
20-pin TSSOP
-10 to 70 °C
CS53L32A-KZZ 20-pin TSSOP
-10 to 70 °C
CS53L32A-BZ
20-pin TSSOP
-40 to 85 °C
CDB53L32A
Evaluation Board
Lead free
II
SCL/CCLK/ ChSEL SDA/CDIN/DIF
AD0/CS/DIV
RST
VA
Control Port
VL
LRCK
SCLK
SDOUT
Serial Port
AIN_L1
Attenuator
0-96 dB
Gain
ADC
Digital
Filters
Attenuator
0-96 dB
AIN_L2
ADC
AIN_R1
Gain
AIN_R2
GND
http://www.cirrus.com
VQ
MCLK
FILT+
REF_GND
Copyright © Cirrus Logic, Inc. 2004
(All Rights Reserved)
AFLTL
AFLTR
OCT ‘04
DS513F1
CS53L32A
TABLE OF CONTENTS
1. CHARACTERISTICS/SPECIFICATIONS ................................................................................. 4
ANALOG CHARACTERISTICS ................................................................................................ 4
ANALOG CHARACTERISTICS ................................................................................................ 5
POWER AND THERMAL CHARACTERISTICS....................................................................... 8
DIGITAL CHARACTERISTICS ................................................................................................. 9
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 9
RECOMMENDED OPERATING CONDITIONS ....................................................................... 9
SWITCHING CHARACTERISTICS ........................................................................................ 10
SWITCHING CHARACTERISTICS - CONTROL PORT - TWO WIRE MODE....................... 12
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE.................................... 13
2. TYPICAL CONNECTION DIAGRAM .................................................................................... 14
3. REGISTER QUICK REFERENCE .......................................................................................... 15
3.1 I/O and Power Control (address 01h) ............................................................................... 15
3.2 Interface Control (address 02h) ........................................................................................ 15
3.3 Analog I/O Control (address 03h) ..................................................................................... 16
3.4 Left Channel Digital Volume Control (address 04h).......................................................... 17
3.5 Right Channel Digital Volume Control (address 05h) ....................................................... 17
3.6 Analog Gain Control (address 06h) .................................................................................. 17
3.7 Clip Detection Status (address 07h) ................................................................................. 17
4. REGISTER DESCRIPTION .................................................................................................... 18
4.1 Gain Enable ...................................................................................................................... 18
4.2 Analog Input Multiplexer ................................................................................................... 18
4.3 Power-Down ..................................................................................................................... 19
4.4 Control Port Enable........................................................................................................... 19
4.5 Master Clock Divide .......................................................................................................... 20
4.6 Master Clock Ratio............................................................................................................ 20
4.7 Master Mode ..................................................................................................................... 21
4.8 Digital Interface Format..................................................................................................... 21
4.9 Left/Right Channel Mute ................................................................................................... 22
4.10 Soft Ramp and Zero Cross Enable ................................................................................. 22
4.11 Independent Volume Control Enable .............................................................................. 23
4.12 Left Channel Volume = Right Channel Volume .............................................................. 24
4.13 High-Pass Filter Freeze .................................................................................................. 24
4.14 Volume Control ............................................................................................................... 25
4.15 Left/Right Analog Gain.................................................................................................... 26
4.16 Clip Detection.................................................................................................................. 26
5. PIN DESCRIPTION ................................................................................................................. 27
6. PIN DESCRIPTION ................................................................................................................. 28
6. PIN DESCRIPTION ................................................................................................................. 28
6. APPLICATIONS ...................................................................................................................... 30
6.1 Grounding and Power Supply Decoupling ....................................................................... 30
6.2 Oversampling Modes ....................................................................................................... 30
6.3 Recommended Power-up Sequence ............................................................................... 30
7. CONTROL PORT INTERFACE ............................................................................................. 30
7.1 SPI Mode ......................................................................................................................... 30
7.2 Two Wire Mode ................................................................................................................ 31
7.3 Memory Address Pointer (MAP) ....................................................................................... 31
8. PARAMETER DEFINITIONS .................................................................................................. 38
9. REFERENCES ........................................................................................................................ 38
10. PACKAGE DIMENSIONS ..................................................................................................... 39
11. CHANGE HISTORY .............................................................................................................. 40
2
DS513F1
CS53L32A
LIST OF FIGURES
Figure 1. SCLK to LRCK and SDOUT, Slave Mode ..................................................................... 11
Figure 2. SCLK to LRCK and SDOUT, Master Mode ................................................................... 11
Figure 3. Relationship Required Between LRCK and MCLK in Slave Mode ................................ 11
Figure 4. Control Port Timing - Two Wire Mode............................................................................ 12
Figure 5. Control Port Timing - SPI Mode ..................................................................................... 13
Figure 6. Typical Connection Diagram.......................................................................................... 14
Figure 7. Control Port Timing, SPI Mode ...................................................................................... 32
Figure 8. Control Port Timing, Two Wire Mode............................................................................. 32
Figure 9. Base-Rate Stopband Rejection...................................................................................... 33
Figure 10. Base-Rate Transition Band.......................................................................................... 33
Figure 11. Base-Rate Transition Band (Detail) ............................................................................. 33
Figure 12. Base-Rate Passband Ripple........................................................................................ 33
Figure 13. High-Rate Stopband Rejection .................................................................................... 33
Figure 14. High-Rate Transition Band........................................................................................... 33
Figure 15. High-Rate Transition Band (Detail) .............................................................................. 34
Figure 16. High-Rate Passband Ripple......................................................................................... 34
Figure 17. Line Input Test Circuit .................................................................................................. 34
Figure 18. CS53L32A Control Port Mode - Serial Audio Format 0 (I2S) ....................................... 34
Figure 19. CS53L32A Control Port Mode - Serial Audio Format 1 ............................................... 35
Figure 20. CS53L32A Control Port Mode - Serial Audio Format 3 ............................................... 35
Figure 21. CS53L32A Control Port Mode - Serial Audio Format 4 ............................................... 35
Figure 22. CS53L32A Control Port Mode - Serial Audio Format 5 ............................................... 36
Figure 23. CS53L32A Control Port Mode - Serial Audio Format 6 ............................................... 36
Figure 24. CS53L32A Stand-Alone Mode - Serial Audio Format 0 (I2S) ...................................... 36
Figure 25. CS53L32A Stand-Alone Mode - Serial Audio Format 1............................................... 37
LIST OF TABLES
Table 1. Analog Input Options....................................................................................................... 18
Table 2. Power-Down Enable ....................................................................................................... 19
Table 3. Control Port Enable......................................................................................................... 19
Table 4. Master Clock Divide Select ............................................................................................. 20
Table 5. MCLK/LRCK Ratios ........................................................................................................ 20
Table 6. Master/Slave Mode Selection ......................................................................................... 21
Table 7. Digital Interface Format................................................................................................... 21
Table 8. Left/Right Channel Mute Enable ..................................................................................... 22
Table 9. Analog Volume Control ................................................................................................... 23
Table 10. Digital Volume Control .................................................................................................. 23
Table 11. Independent Volume Control Enable ............................................................................ 23
Table 12. High-Pass Filter Enable ................................................................................................ 24
Table 13. Example Volume Settings ............................................................................................. 25
Table 14. Example Gain Settings.................................................................................................. 26
Table 15. Clip Detection Status Bits.............................................................................................. 26
Table 16. Common Clock Frequencies......................................................................................... 28
Table 17. Digital Interface Format - DIF (Stand-Alone Mode)....................................................... 28
Table 18. Channel Select Options ................................................................................................ 28
Table 19. Revision Table .............................................................................................................. 40
DS513F1
3
CS53L32A
1.
CHARACTERISTICS/SPECIFICATIONS
ANALOG CHARACTERISTICS (TA = 25° C; Logic “1” = VL = 1.8 V; Logic “0” = GND = 0 V; MCLK =
12.288 MHz; Fs for Base-rate Mode = 48 kHz, SCLK = 3.072 MHz, Measurement Bandwidth 10 Hz to 20 kHz,
unless otherwise specified. Fs for High-Rate Mode = 96 kHz, SCLK = 6.144 MHz, Measurement Bandwidth 10 Hz
to 20 kHz, unless otherwise specified. Input signal is a 997 Hz sine wave.)
Base-rate Mode
Parameter
Symbol
Min
High-rate Mode
Typ
Max
Min
Typ
Max
Unit
88
85
93
90
-
89
86
94
91
-
dB
dB
-
-88
-70
-30
-86
-68
-28
-83
-
-
-88
-71
-31
-86
-68
-28
-83
-
dB
dB
dB
dB
dB
dB
-
90
87
-
-
89
86
-
dB
dB
-
85
82
-
-
86
83
-
dB
dB
-
85
-
-
84
-
dB
-
83
-
-
82
-
dB
91
88
96
93
-
93
90
98
95
-
dB
dB
-
-88
-73
-33
-86
-68
-28
-83
-
-
-85
-75
-35
-83
-65
-28
-80
-
dB
dB
dB
dB
dB
dB
-
93
90
-
-
92
89
-
dB
dB
-
88
85
-
-
89
86
-
dB
dB
CS53L32A-KZ/KZZ Analog Input Characteristics for VA = 1.8 V
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 1) THD+N
18 to 24-Bit
-1 dB
-20 dB
-60 dB
16-Bit
-1 dB
-20 dB
-60 dB
Dynamic Range (PGA on)*
0 dB Gain
A-weighted
unweighted
12 dB Gain
A-weighted
unweighted
THD+N
Total Harmonic Distortion + Noise (PGA on)*
(Note 1)
0 dB Gain
18 to 24-Bit
-1 dB
12 dB Gain
18 to 24-Bit
-1 dB
CS53L32A-KZ/KZZ Analog Input Characteristics for VA = 3.0 V
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 1) THD+N
18 to 24-Bit
-1 dB
-20 dB
-60 dB
16-Bit
-1 dB
-20 dB
-60 dB
Dynamic Range (PGA on)*
0 dB Gain
A-weighted
unweighted
12 dB Gain
A-weighted
unweighted
4
DS513F1
CS53L32A
ANALOG CHARACTERISTICS (CONTINUED)
Base-rate Mode
Parameter
Symbol
THD+N
Total Harmonic Distortion + Noise (PGA on)*
(Note 1)
0 dB Gain
18 to 24-Bit
-1 dB
12 dB Gain
18 to 24-Bit
-1 dB
High-rate Mode
Min
Typ
Max
Min
Typ
Max
Unit
-
78
-
-
77
-
dB
-
73
-
-
76
-
dB
CS53L32A-KZ/KZZ Analog Input Characteristics for VA=1.8 V - 3.3 V
Interchannel Isolation
1 kHz
-
90
-
-
90
-
dB
-
0.1
-
-
0.1
-
dB
-
-
0
-
-
0
LSB
-5%
VA/3.6
+5%
-5%
-
100
-
-
100
-
ppm/°C
Input Resistance
10
-
-
10
-
-
kΩ
Input Capacitance
-
-
15
-
-
15
pF
86
83
93
90
-
87
84
94
91
-
dB
dB
-
-88
-70
-30
-86
-68
-28
-81
-
-
-88
-71
-31
-86
-68
-28
-81
-
dB
dB
dB
dB
dB
dB
-
90
87
-
-
89
86
-
dB
dB
-
85
82
-
-
86
83
-
dB
dB
-
85
-
-
84
-
dB
-
83
-
-
82
-
dB
89
86
96
93
-
91
88
98
95
-
dB
dB
Interchannel Gain Mismatch
Offset Error
with High Pass Filter
Full Scale Input Voltage
Gain Drift
VA/3.6 +5%
Vrms
CS53L32A-BZ Analog Input Characteristics for VA = 1.8 V
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
18 to 24-Bit
16-Bit
Dynamic Range (PGA on)*
(Note 1) THD+N
-1 dB
-20 dB
-60 dB
-1 dB
-20 dB
-60 dB
0 dB Gain
A-weighted
unweighted
12 dB Gain
A-weighted
unweighted
Total Harmonic Distortion + Noise (PGA on)*
THD+N
(Note 1)
0 dB Gain
18 to 24-Bit
-1 dB
12 dB Gain
18 to 24-Bit
-1 dB
CS53L32A-BZ Analog Input Characteristics for VA = 3.0 V
Dynamic Range
DS513F1
A-weighted
unweighted
5
CS53L32A
Base-rate Mode
Parameter
Symbol
High-rate Mode
Min
Typ
Max
Min
Typ
Max
Unit
-
-88
-73
-33
-86
-68
-28
-81
-
-
-85
-75
-35
-83
-65
-28
-78
-
dB
dB
dB
dB
dB
dB
-
93
90
-
-
92
89
-
dB
dB
-
88
85
-
-
89
86
-
dB
dB
-
78
-
-
77
-
dB
-
73
-
-
76
-
dB
-
90
-
-
90
-
dB
-
0.1
-
-
0.1
-
dB
-
-
0
-
-
0
LSB
-7%
VA/3.6
+7%
-7%
-
100
-
-
100
-
ppm/°C
Input Resistance
10
-
-
10
-
-
kΩ
Input Capacitance
-
-
15
-
-
15
pF
Gain Step Size
-
1.0
-
-
1.0
-
dB
Absolute Gain Step Error
-
-
0.3
-
-
0.3
dB
0
-
23.5
0
-
47.5
kHz
-0.08
-
+0.17 -0.09
-
0
dB
(Note 1) THD+N
-1 dB
-20 dB
-60 dB
-1 dB
-20 dB
-60 dB
Total Harmonic Distortion + Noise
18 to 24-Bit
16-Bit
Dynamic Range (PGA on)*
0 dB Gain
A-weighted
unweighted
12 dB Gain
A-weighted
unweighted
THD+N
Total Harmonic Distortion + Noise (PGA on)*
(Note 1)
0 dB Gain
18 to 24-Bit
-1 dB
12 dB Gain
18 to 24-Bit
-1 dB
* PGA = Programmable Gain Amplifier
CS53L32A-BZ Analog Input Characteristics for VA=1.8 - 3.3V
Interchannel Isolation
1 kHz
Interchannel Gain Mismatch
Offset Error
with High Pass Filter
Full Scale Input Voltage
Gain Drift
VA/3.6 +7%
Vrms
Programmable Gain Characteristics
A/D Decimation Filter Characteristics (Note 2)
Passband
(Note 3)
Passband Ripple
Stopband
(Note 3)
27.5
-
-
64.1
-
-
kHz
Stopband Attenuation
(Note 4)
-60.3
-
-
-48.4
-
-
dB
Group Delay (Fs = Output Sample Rate)
(Note 5)
tgd
-
10/Fs
-
-
2.7/Fs
-
s
∆tgd
-
-
0.03
-
-
0.007
µs
Group Delay Variation vs. Frequency
6
DS513F1
CS53L32A
Base-rate Mode
Parameter
Symbol
High-rate Mode
Min
Typ
Max
Min
Typ
Max
Unit
High Pass Filter Characteristics
Frequency Response
-3 dB
-0.1 dB
(Note 2)
-
3.7
24.2
-
-
3.7
24.2
-
Hz
Hz
Phase Deviation
@ 20 Hz
(Note 2)
-
10
-
-
10
-
Degree
(Note 2)
-
-
0.17
-
-
0.09
dB
Passband Ripple
Notes: 1. Referenced to typical full-scale input voltage (0.5 Vrms).
2. Filter response is not tested but is guaranteed by design.
3. Filter characteristics scale with output sample rate. For output sample rates, Fs, other than 48 kHz, the
0.01 dB passband edge is 0.4535x Fs and the stopband edge is 0.625x Fs.
4. The analog modulator samples the input at 6.144 MHz for an Fs equal to 48 kHz. There is no rejection
of input signals which are multiples of the sampling frequency (n x 6.144 MHz ±21.8 kHz where
n = 0,1,2,3...).
5. Group delay for Fs = 48 kHz, tgd = 10/48 kHz = 208 µs.
DS513F1
7
CS53L32A
POWER AND THERMAL CHARACTERISTICS
Base-Rate Mode
Parameters
High-Rate Mode
Symbol
Min
Typ
Max
Min
Typ
Max
Units
Power Supplies
Power Supply CurrentNormal Operation
VA=1.8 V
VL=1.8 V
IA
ID_IO
-
6.0
150
-
-
7.6
300
-
mA
µA
Power Supply CurrentPower Down Mode
(Note 6)
VA=1.8 V
VL=1.8 V
IA
ID_IO
-
100
0
-
-
250
0
-
µA
µA
Power Supply CurrentNormal Operation
VA=3.0 V
VL=3.0 V
IA
ID_IO
-
9
260
-
-
11.5
520
-
mA
µA
Power Supply CurrentPower Down Mode
VA=3.0 V
VL=3.0 V
IA
ID_IO
-
250
0
-
-
500
0
-
µA
µA
-
11
28
12
31
-
14.5
36
16
40
mW
mW
-
75
-
-
75
-
°C/Watt
-
60
40
-
-
60
40
-
dB
dB
Total Power DissipationNormal Operation
All Supplies=1.8 V
All Supplies=3.0 V
Package Thermal Resistance
Power Supply Rejection Ratio
(Note 7)
θJA
(1 kHz) PSRR
(60 Hz)
Notes: 6. Power Down Mode is defined as the chip being held in reset with MCLK running. To lower power
consumption further, remove MCLK.
7.
8
Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 6.
DS513F1
CS53L32A
DIGITAL CHARACTERISTICS (TA = 25° C; VL = 1.7 V - 3.6 V; GND = 0 V)
Parameters
Symbol
Min
Typ
Max
Units
High-Level Input Voltage
VIH
0.7•VL
-
-
V
Low-Level Input Voltage
VIL
-
-
0.3•VL
V
High-Level Output Voltage
VOH
0.7•VL
-
-
V
Low-Level Output Voltage
VOL
-
-
0.3•VL
V
Iin
-
-
±10
µA
-
8
-
pF
Leakage Current
Input Capacitance
ABSOLUTE MAXIMUM RATINGS (GND = 0 V; all voltages with respect to ground.)
Parameters
Symbol
Min
Max
Units
VA
VL
-0.3
-0.3
4.0
4.0
V
V
Iin
-
±10
mA
VIND
-0.3
VL+0.4
V
Ambient Operating Temperature (power applied)
TA
-55
125
°C
Storage Temperature
Tstg
-65
150
°C
DC Power Supplies:
Positive Analog
Digital I/O
Input Current, Any Pin Except Supplies
Digital Input Voltage
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is
not guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS (GND = 0V; all voltages with respect to ground.)
Parameters
Ambient Temperature
DC Power Supplies:
DS513F1
Positive Analog
Digital I/O
Symbol
Min
Typ
Max
Units
TA
-10
-
70
°C
VA
VL
1.7
1.7
-
3.6
3.6
V
V
9
CS53L32A
SWITCHING CHARACTERISTICS (TA = -10 to 70° C; VA = 1.7 V - 3.6 V; Inputs: Logic 0 = GND,
Logic 1 = VL, CL = 20 pF)
Parameters
Input Sample Rate
Base Rate Mode
High Rate Mode
Symbol
Min
Typ
Max
Units
Fs
Fs
2
50
-
50
100
kHz
kHz
MCLK Pulse Width High
MCLK/LRCK = 1024
8
-
-
ns
MCLK Pulse Width Low
MCLK/LRCK = 1024
8
-
-
ns
MCLK Pulse Width High
MCLK/LRCK = 768
10
-
-
ns
MCLK Pulse Width Low
MCLK/LRCK = 768
10
-
-
ns
MCLK Pulse Width High
MCLK/LRCK = 512
15
-
-
ns
MCLK Pulse Width Low
MCLK/LRCK = 512
15
-
-
ns
MCLK Pulse Width High
MCLK / LRCK = 384 or 192
21
-
-
ns
MCLK Pulse Width Low
MCLK / LRCK = 384 or 192
21
-
-
ns
MCLK Pulse Width High
MCLK / LRCK = 256 or 128
31
-
-
ns
MCLK Pulse Width Low
MCLK / LRCK = 256 or 128
31
-
-
ns
Master Mode
SCLK Falling to LRCK Edge
tslrd
-20
-
20
ns
SCLK Falling to SDOUT Valid
tsdo
0
-
20
ns
40
50
60
%
-
50
-
%
SCLK Duty Cycle
Slave Mode
LRCK Duty Cycle
Notes 8, 9
Rise Time of Both LRCK and SCLK
tr
-
-
10
ns
Fall Time of Both LRCK and SCLK
tf
-
-
10
ns
Base Rate Mode
tsclkw
-
-
ns
High Rate Mode
tsclkw
1
---------------------( 128 )Fs
1
-----------------( 64 )Fs
-
-
ns
-20
-
20
ns
ns
ns
SCLK Period
SCLK Falling to LRCK Edge
SCLK Falling to SDOUT Valid
tslrd
Base Rate Mode
tdss
-
-
1
(512)Fs
High Rate Mode
tdss
-
-
1
(256)Fs
NOTE: When operating the CS53L32A Revision C in Slave Mode, Base Rate Mode, certain timing requirements
must be met in addition to those specified above. The required timing relationship between the MCLK and LRCK
is shown in Figures 3. An MCLK rising edge cannot lead an LRCK transition by 6ns to 10ns.
8.
There must be exactly 32, 48, 64, or 128 SCLK periods per LRCK transition.
9. Slave Mode operation requires an exact 50% duty cycle. Otherwise the CS53L32A will produce
erroneous data.
10
DS513F1
CS53L32A
t sclkh
t sclkw
SCLK
t sclkl
t slrd
LRCK
t dss
MSB
SDOUT
Figure 1. SCLK to LRCK and SDOUT, Slave Mode
SCLK
t slrd
LRCK
t sdo
SDOUT
MSB
MSB-1
Figure 2. SCLK to LRCK and SDOUT, Master Mode
LRCK Input
6 ns
10 ns
MCLK Input
No rising edge of MCLK allowed within this
timing window.
Figure 3. Relationship Required Between LRCK and MCLK in Slave Mode
DS513F1
11
CS53L32A
SWITCHING CHARACTERISTICS - CONTROL PORT - TWO WIRE MODE
(TA = 25° C; VL = 1.7 V - 3.6 V; Inputs: logic 0 = GND, logic 1 = VL, CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
fscl
-
100
KHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
SDA Setup time to SCL Rising
tsud
250
-
ns
Rise Time of SCL
trc
-
25
ns
Fall Time of SCL
tfc
-
25
ns
Rise Time of SDA
trd
-
1
us
Fall Time of SDA
tfd
-
300
ns
tsusp
4.7
-
µs
Two Wire Mode
SDA Hold Time from SCL Falling
(Note 10)
Setup Time for Stop Condition
Note: 10. Data must be held for sufficient time to bridge the transition time, tf, of SCL
.
RST
RST
tt irs
irs
Stop
Stop
Repeated
Repeated
Start
Start
Start
Stop
Stop
Start
SDA
SDA
t buf
t buf
t
t high
t hdst
t
t high
t hdst
tf
hdst
tf
hdst
t susp
t susp
SCL
SCL
t
t
low
low
t
t
hdd
t sud
t sust
tr
hdd
t sud
t sust
tr
Figure 4. Control Port Timing - Two Wire Mode
12
DS513F1
CS53L32A
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE
(TA = 25 °C; VL = 1.7V - 3.6V; Inputs: logic 0 = GND, logic 1 = VL, CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
CCLK Clock Frequency
fsclk
-
6
MHz
RST Rising Edge to CS Falling
tsrs
500
-
ns
tspi
500
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
µs
CS Falling to CCLK Edge
tcss
20
-
ns
CCLK Low Time
tscl
66
-
ns
CCLK High Time
tsch
66
-
ns
CDIN to CCLK Rising Setup Time
tdsu
40
-
ns
SPI Mode
CCLK Edge to CS Falling
(Note 11)
CCLK Rising to DATA Hold Time
(Note 12)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 13)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 13)
tf2
-
100
ns
Notes: 11. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
12. Data must be held for sufficient time to bridge the transition time of CCLK.
13. For FSCLK < 1 MHz.
RST
t srs
CS
t spi t css
t scl
t sch
t csh
CCLK
t r2
t f2
CDIN
t dsu t
dh
Figure 5. Control Port Timing - SPI Mode
DS513F1
13
CS53L32A
2.
TYPICAL CONNECTION DIAGRAM
1.8 to 3.3 V
Supply
*Ferrite
bead
+
1.0 µF
0.1 µF
5
VA
1.8 to 3.3 V
Supply
*Ferrite
bead
FILT+
1
0.1 µF
0.47 µF
**
150 Ω
150 Ω
150 Ω
0.1 µF
CS53L32A
18 AIN_L1
17 AIN_R1
15 AIN_L2
14 AIN_R2
0.01 µF
MCLK
2
LRCK
7
SCLK
3
SDOUT
RST
SDA/CDIN/DIF
SCL/CCLK/ChSEL
AD0/CS/DIV
**Optional if analog input
circuit is biased within
±5% of CS53L32A
nominal bias voltage
* Optional
+ 1.0 µF
VQ 19
0.01 µF
0.47 µF
**
REF_GND 16
0.01 µF
0.47 µF
**
1.0 µF
0.01 µF
0.47 µF
**
+
0.1 µF
VL
+
1.0 µF
150 Ω
13
AFLTL
AFLTR
GND
Digital
Audio
Source
4
20
9
10
µc/
Mode
Configuration
8
12
11
1 nF
1 nF
6
Figure 6. Typical Connection Diagram
14
DS513F1
CS53L32A
3.
REGISTER QUICK REFERENCE
** “default” ==> bit status after power-up-sequence or reset.
3.1
I/O and Power Control (address 01h)
7
RESERVED
0
6
BOOST
0
5
AINMUX1
0
4
AINMUX0
0
3
RESERVED
0
BOOST
20 dB Digital Gain
Default = ‘0’
0 - Disabled
1 - Enabled
AINMUX
Analog Input Multiplexer
Default =’0’.
0 - AIN_L1/AIN_R1 direct to A/D (default)
1 - AIN_L2/AIN_R2 direct to A/D
2 - AIN_L2/AIN_R2 through PGA to A/D
3 - Reserved
PDN
Power-Down
Default =’1’.
0 - Disabled
1 - Enabled
CP_EN
Control Port Enable
Default =’0’.
0 - Disabled
1 - Enabled
3.2
2
RESERVED
0
1
PDN
1
0
CP_EN
0
2
DIF2
0
1
DIF1
0
0
DIF0
0
Interface Control (address 02h)
7
RESERVED
0
6
MCLKDIV
0
5
RATIO1
0
MCLKDIV
Master Clock Divider
Default =’0’.
0 - Disabled
1 - Enabled
RATIO1-0
Master Clock Ratio
Default =’0’.
0 - 128x (default)
1 - 192x
2 - 256x
3 - 384x
MASTER
Master Mode
Default =’0’.
0 - Slave Mode
1 - Master Mode
DS513F1
4
RATIO0
0
3
MASTER
0
15
CS53L32A
DIF2-0
3.3
Digital Interface Format
Default = ‘0’.
0 - I2S, up to 24-bit Data, Data valid on positive edge of SLCK (default)
1 - Left Justified, up to 24-bit Data, Data valid on positive edge of SLCK
2 - Reserved
3 - Right Justified, 16-bit Data, Data valid on positive edge of SLCK
4 - Right Justified, 24-bit Data, Data valid on positive edge of SLCK
5 - Right Justified, 18-bit Data, Data valid on positive edge of SLCK
6 - Right Justified, 20-bit Data, Data valid on positive edge of SLCK
7 - Reserved
Analog I/O Control (address 03h)
7
MUTEL
0
6
MUTER
0
5
SOFT
1
4
ZC
1
3
RESERVED
0
2
INDVC
0
1
L=R
0
0
HPFREEZE
0
MUTEL
Left Channel Mute
Default = ‘0’.
0 - Disabled
1 - Enabled
MUTER
Right Channel Mute
Default = ‘0’.
0 - Disabled
1 - Enabled
SOFT
Soft Digital/Analog Volume Control
Default = ‘1’.
0 - Disabled
1 - Enabled
ZC
Analog Zero Cross Detection Control
Default = ‘1’.
0 - Disabled
1 - Enabled
INDVC
Independent Volume Control Enable
Default = ‘0’.
0 - Disabled
1 - Enabled
L=R
Left Channel Volume = Right Channel Volume
Default = ‘0’.
0 - Left channel volume is determined by the left channel volume control registers and right
channel volume is determined by the right channel volume control registers.
1 - Left and right channel volumes are determined by the left channel volume control registers
and the right channel volume control registers are ignored.
HPFREEZE
High-pass filter freeze
Default = ‘0’.
0 - Disabled
1 - Enabled
16
DS513F1
CS53L32A
3.4
Left Channel Digital Volume Control (address 04h)
3.5
Right Channel Digital Volume Control (address 05h)
7
VOL7
0
VOL7-0
3.6
6
VOL6
0
5
VOL5
0
3
VOL3
0
2
VOL2
0
1
VOL1
0
0
VOL0
0
3
RVOL3
0
2
RVOL2
0
1
RVOL1
0
0
RVOL0
0
3
RESERVED
0
2
RESERVED
0
Volume
Default = ‘0’.
(Refer to Table 13)
Analog Gain Control (address 06h)
7
LVOL3
0
6
LVOL2
0
5
LVOL1
0
LVOL3-0
Left Analog Gain
Default = ‘0’.
(Refer to Table 14)
RVOL3-0
Right Analog Gain
Default = ‘0’.
(Refer to Table 14)
3.7
4
VOL4
0
4
LVOL0
0
Clip Detection Status (address 07h)
7
RESERVED
0
6
RESERVED
0
5
RESERVED
0
4
RESERVED
0
CLIP_L_FLAG
Left Channel Clip Detection
CLIP_R_FLAG
Right Channel Clip Detection
Default = ‘0’.
0 - No Clipping Detected
1 - Clipping Detected
DS513F1
1
0
CLIP_L_FLAG CLIP_R_FLAG
0
0
17
CS53L32A
4.
4.1
REGISTER DESCRIPTION
GAIN ENABLE
I/O and Power Control Register (address 01h)
7
RESERVED
6
BOOST
5
AINMUX1
4
AINMUX0
3
RESERVED
2
RESERVED
1
PDN
0
CP_EN
1
PDN
0
CP_EN
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Disabled
Function:
Applies a 20 dB digital gain to the input signal, regardless of the input path.
4.2
ANALOG INPUT MULTIPLEXER
I/O and Power Control Register (address 01h)
7
RESERVED
6
BOOST
5
AINMUX1
4
AINMUX0
3
RESERVED
2
RESERVED
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - AIN_L1/AIN_R1 direct to A/D
Function:
The analog input multiplexer selects the input channel as well as the input path associated with various gain stages.
AINMUX
0
1
2
3
MODE
AIN_L1/AIN_R1 direct to A/D
AIN_L2/AIN_R2 direct to A/D
AIN_L2/AIN_R2 through PGA to A/D
Reserved
Table 1. Analog Input Options
18
DS513F1
CS53L32A
4.3
POWER-DOWN
I/O and Power Control Register (address 01h)
7
RESERVED
6
BOOST
5
AINMUX1
4
AINMUX0
3
RESERVED
2
RESERVED
1
PDN
0
CP_EN
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
1 - Enabled
Function:
The entire device will enter a low-power state whenever this function is activated. The power-down
bit defaults to ‘enabled’ on power-up and must be disabled before normal operation will begin. The
contents of the control registers are retained when this mode is enabled.
PDN
0
1
MODE
Disabled
Enabled
Table 2. Power-Down Enable
4.4
CONTROL PORT ENABLE
I/O and Power Control Register (address 01h)
7
RESERVED
6
BOOST
5
AINMUX1
4
AINMUX0
3
RESERVED
2
RESERVED
1
PDN
0
CP_EN
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Disabled
Function:
The CS53L32A will enter Control Port mode when this bit is enabled. Stand-Alone is the default power
up mode. See Section 6.3, Recommended Power-up Sequence, for more details.
CP_EN
0
1
MODE
Disabled
Enabled
Table 3. Control Port Enable
DS513F1
19
CS53L32A
4.5
MASTER CLOCK DIVIDE
Interface Control Register (address 02h)
7
RESERVED
6
MCLKDIV
5
RATIO1
4
RATIO0
3
MASTER
2
DIF2
1
DIF1
0
DIF0
2
DIF2
1
DIF1
0
DIF0
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Disabled
Function:
Divides MCLK by two prior to all other chip circuitry.
MCLKDIV
0
1
MODE
Disabled
Enabled
Table 4. Master Clock Divide Select
4.6
MASTER CLOCK RATIO
Interface Control Register (address 02h)
7
RESERVED
6
MCLKDIV
5
RATIO1
4
RATIO0
3
MASTER
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - 128x
Function:
Sets the ratio of MCLK to LRCK.
RATIO1,0
0
1
2
3
MCLK/LRCK RATIO (MCLKDIV=0)
128x
192x
256x
384x
MCLK/LRCK RATIO (MCLKDIV=1)
256x
384x
512x
768x
Table 5. MCLK/LRCK Ratios
20
DS513F1
CS53L32A
4.7
MASTER MODE
Interface Control Register (address 02h)
7
RESERVED
6
MCLKDIV
5
RATIO1
4
RATIO0
3
MASTER
2
DIF2
1
DIF1
0
DIF0
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Slave Mode
Function:
Configures the device for master or slave operation when in Control Port mode.
MASTER
0
1
MODE
Slave Mode
Master Mode
Table 6. Master/Slave Mode Selection
4.8
DIGITAL INTERFACE FORMAT
Interface Control Register (address 02h)
7
RESERVED
6
MCLKDIV
5
RATIO1
4
RATIO0
3
MASTER
2
DIF2
1
DIF1
0
DIF0
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Format 0 (I2S, up to 24-bit data, Data valid on positive edge of SCLK)
Function:
The required relationship between the Left/Right clock, serial clock and serial data is defined by the
Digital Interface Format and the options are detailed in Figures 18 through 21.
DIF2 DIF1 DIF0
DESCRIPTION
2
0
0
0 I S, up to 24-bit Data, Data valid on positive edge of SCLK
0
0
1 Left Justified, up to 24-bit Data, Data valid on positive edge of SCLK
0
1
0 Reserved
0
1
1 Right Justified, 16-bit Data, Data valid on positive edge of SCLK
1
0
0 Right Justified, 24-bit Data, Data valid on positive edge of SCLK
1
0
1 Right Justified, 18-bit Data, Data valid on positive edge of SCLK
1
1
0 Right Justified, 20-bit Data, Data valid on positive edge of SCLK
1
1
1 Reserved
Format
0
FIGURE
18
1
2
3
4
5
6
7
19
18
19
20
21
-
Table 7. Digital Interface Format
DS513F1
21
CS53L32A
4.9
LEFT/RIGHT CHANNEL MUTE
Analog I/O Control (address 03h)
7
MUTEL
6
MUTER
5
SOFT
4
ZC
3
RESERVED
2
INDVC
1
L=R
0
HPFREEZE
2
INDVC
1
L=R
0
HPFREEZE
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Disabled
Function:
Digital mute of the left and right channels.
MUTEL/
MUTER
0
1
MODE
Disabled
Enabled
Table 8. Left/Right Channel Mute Enable
4.10
SOFT RAMP AND ZERO CROSS ENABLE
Analog I/O Control Register (address 03h)
7
MUTEL
6
MUTER
5
SOFT
4
ZC
3
RESERVED
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
11 - Soft Ramp and Zero Cross enabled
Function:
Soft Ramp Enable
Soft Ramp allows level changes, both muting and attenuation, to be implemented via an incremental
ramp. Digital volume control is ramped from the current level to the new level at a rate of 1/8 dB per
left/right clock period. Analog volume control is ramped in 1 dB steps every 8 left/right clock periods
in Base Rate mode, and 1 dB every 16 left/right clock periods in High Rate mode.
Zero Cross Enable
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will
occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur
after a timeout period of 512 sample periods in BRM or 1024 sample periods in HRM (approximately
10.7 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.
22
DS513F1
CS53L32A
Soft Ramp and Zero Cross Enable
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes
or muting, will occur in 1 dB steps and be implemented on a signal zero crossing. The level change
will occur after a timeout period of 512 sample periods in BRM or 1024 sample periods in HRM (approximately 10.7 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero
cross function is independently monitored and implemented for each channel.
SOFT/ZC
00
01
10
11
ANALOG VOLUME CONTROL MODES
Change volume immediately
Change volume at next zero cross time
Change volume in 1 dB steps
Change volume in 1 dB steps at every zero cross time
Table 9. Analog Volume Control
.
SOFT
0
1
DIGITAL VOLUME CONTROL MODES
Change volume immediately
Change volume in1/8 dB steps
Table 10. Digital Volume Control
4.11
INDEPENDENT VOLUME CONTROL ENABLE
Analog I/O Control Register (address 03h)
7
MUTEL
6
MUTER
5
SOFT
4
ZC
3
RESERVED
2
INDVC
1
L=R
0
HPFREEZE
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Enabled
Function:
When this function is disabled, the AIN_L and AIN_R volume levels are controlled by the Left and
Right Volume Control registers and the Independent Analog Gain Control registers are ignored.
When this function is enabled, the volume levels are determined by both the Volume Control registers
and the Independent Analog Gain Control registers.
INDVC
0
1
MODE
Enabled
Frozen
Table 11. Independent Volume Control Enable
DS513F1
23
CS53L32A
4.12
LEFT CHANNEL VOLUME = RIGHT CHANNEL VOLUME
Analog I/O Control (address 03h)
7
MUTEL
6
MUTER
5
SOFT
4
ZC
3
RESERVED
2
INDVC
1
L=R
0
HPFREEZE
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Disabled
Function:
When this function is disabled, the left channel volume is determined by the left channel volume control register and right channel volume is determined by the right channel volume control register.
When enabled, the left and right channel volumes are determined by the left channel volume control
register and the right channel volume control register is ignored.
4.13
HIGH-PASS FILTER FREEZE
Analog I/O Control Register (address 03h)
7
MUTEL
6
MUTER
5
SOFT
4
ZC
3
RESERVED
2
INDVC
1
L=R
0
HPFREEZE
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - Enabled
Function:
The high-pass filter works by continuously subtracting a measure of the dc offset from the output of
the decimation filter. If the HPFREEZE bit is taken low during normal operation, the current value of
the dc offset is frozen and this dc offset will continue to be subtracted from the conversion result. This
feature makes it possible to perform a system calibration by:
1) removing the signal source at the input to the subsystem containing the CS53L32A,
2) running the CS53L32A with the HPFREEZE bit high until the filter settles, approximately
one second,
3) taking the HPFREEZE bit low, thus disabling the high-pass filter and freezing the stored dc offset.
A system calibration performed in this way will eliminate offsets anywhere in the signal path between
the calibration point and the CS53L32A.
HPFREEZE
0
1
MODE
Enabled
Frozen
Table 12. High-Pass Filter Enable
24
DS513F1
CS53L32A
4.14
VOLUME CONTROL
Left Channel Volume Control Register (address 04h)
Right Channel Volume Control Register (address 05h)
7
VOL7
6
VOL6
5
VOL5
4
VOL4
3
VOL3
2
VOL2
1
VOL1
0
VOL0
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - 0 dB (No attenuation)
Function:
The Volume Control allows the user to alter the signal level in 1 dB increments from +12 to -96 dB, when
the INDVC bit is disabled. When INDVC is enabled, the Volume Control can be altered in 1 dB increments
from 0 to -96 dB. Volume settings are decoded as shown in Table 13, using a 2’s complement code. The
volume changes are implemented as dictated by the Soft and Zero Cross bits in the Analog I/O Control
register. All volume settings less than -96 dB are equivalent to muting the channel.
Binary Code
00001010
00000111
00000000
11000100
10100110
Decimal Value
12
7
0
-60
-90
Volume Setting
+12 dB
+7 dB
0 dB
-60 dB
-90 dB
Table 13. Example Volume Settings
DS513F1
25
CS53L32A
4.15
LEFT/RIGHT ANALOG GAIN
ADC Independent Analog Gain Control Register (address 06h)
7
LVOL3
6
LVOL2
5
LVOL1
4
LVOL0
3
RVOL3
2
RVOL2
1
RVOL1
0
RVOL0
Access:
R/W in Two Wire Mode and write only in SPI.
Default:
0 - 0 dB (No Gain)
Function:
The level of the left and right analog channels can be adjusted in 1 dB increments as dictated by the
Soft Ramp and Zero Cross bits from 0 to +12 dB when routed through the PGA via the AINMUX bits
in Control Port mode or the CH_SEL pins in Stand-Alone mode. Levels are decoded as shown in
Table 14. Levels above +12 dB are interpreted as +12 dB.
Binary Code
0000
0010
1010
1001
1100
Decimal Value
0
2
6
9
12
Volume Setting
0 dB
+2 dB
+6 dB
+9 dB
+12 dB
Table 14. Example Gain Settings
4.16
CLIP DETECTION
Clip Detection Status Register (address 07h)
7
RESERVED
6
RESERVED
5
RESERVED
4
RESERVED
3
RESERVED
2
RESERVED
1
0
CLIP_L_FLAG CLIP_R_FLAG
Access:
Read only in Two Wire Mode and unavailable in SPI.
Default:
0 - No Clipping Detected
Function:
The Clip Flags indicate when there is an over-range condition anywhere in the CS53L32A internal signal
path. These bits are “sticky”. They constantly monitor the ADC signal path and are set to 1 when an overrange condition occurs. They are reset to 0 when read.
CLIP_L_FLAG
CLIP_R_FLAG
0
1
Condition
Signal within normal range
Signal is over-range
Table 15. Clip Detection Status Bits
26
DS513F1
CS53L32A
5.
PIN DESCRIPTION
Interface Power
VL
Master Clock
MCLK
Serial Clock
SCLK
Serial Audio Data Out
SDOUT
Analog Power
VA
Ground
GND
Left/Right Clock
LRCK
AD0/CS/DIV
AD0/CS/DIV
SDA/CDIN/DIF
SDA/CDIN/DIF
SCL/CCLK/ChSEL SCL/CCLK/ChSEL
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
RST
VQ
AIN_L1
AIN_R1
REF_GND
AIN_L2
AIN_R2
FILT+
AFLTL
AFLTR
Reset
Quiescent Voltage
Analog Input 1 Left
Analog Input 1 Right
Reference Ground
Analog Input 2 Left
Analog Input 2 Right
Positive Voltage Reference
Anti-Aliasing Capacitor
Anti-Aliasing Capacitor
Interface Power
1
VL (Input) - Digital interface power supply. Typically 1.8 to 3.3 VDC.
Master Clock
2
MCLK (Input) - The master clock frequency must be either 256x, 384x,
512x, 768x or 1024x the input sample rate in Base Rate Mode (BRM) and
128x, 192x, 256x, 384x the input sample rate in High Rate Mode (HRM).
Table 16 illustrates several standard audio sample rates and the required
master clock frequencies.
Serial Clock
3
SCLK (Input/Output) - Clocks the individual bits of the serial data out of the
SDOUT pin. The required relationship between the Left/Right clock, serial
clock and serial data is defined by the DIF2-0 bytes when in Control Port
mode or by the DIF1-0 pins when in Stand-Alone mode.
Serial Audio Data Out
4
SDOUT (Output) - This pin serves two functions.
First: Two's complement MSB-first serial data is output on this pin. The data
is clocked out of SDOUT via the serial clock and the channel is determined
by the Left/Right clock. The required relationship between the Left/Right
clock, serial clock and serial data is defined by the DIF2-0 bytes when in
Control Port mode or by the DIF pin when in Stand-Alone mode.
Second: In Stand-alone mode, Master/Slave mode selection is determined,
at start-up, by a 47 kOhm pull-up/pull-down on this line. A pull-up to VL
selects Master mode and a pull-down to GND selects Slave mode.
Analog Power
5
VA (Input) - Analog power supply. Typically 1.8 to 3.3 VDC.
Ground
6
GND (Input) - Ground Reference.
Left/Right Clock
7
LRCK (Input/Output) - The Left/Right clock determines which channel is currently being output on the serial audio data line SDOUT. The frequency of
the Left/Right clock must be at the input sample rate. The required relationship between the Left/Right clock, serial clock and serial data is defined by
the DIF2-0 bytes when in Control Port mode or by the DIF pin when in
Stand-Alone mode.
DS513F1
27
CS53L32A
MCLK (MHz)
Sample
Rate
(kHz)
32
44.1
48
64
88.2
96
128x
192x
HRM
256x*
384x*
256x
384x
BRM
512x
768x*
1024x*
4.0960
5.6448
6.1440
8.1920
11.2896
12.2880
6.1440
8.4672
9.2160
12.2880
16.9344
18.4320
8.1920
11.2896
12.2880
16.3840
22.5792
24.5760
12.2880
16.9344
18.4320
24.5760
33.8688
36.8640
8.1920
11.2896
12.2880
-
12.2880
16.9344
18.4320
-
16.3840
22.5792
24.5760
-
24.5760
32.7680
36.8640
-
32.7680
45.1584
49.1520
-
* MCLKDIV = 1 in Control Port mode or DIV= Hi when in Stand-Alone mode
Table 16. Common Clock Frequencies
Address Bit
8
AD0/CS (Control Port Mode) (Input) - In Two Wire mode, AD0 is a chip
address bit. CS is used to enable the control port interface in SPI mode.
MCLK Divide Enable
8
DIV (Stand-Alone Mode) (Input) - When high, the chip will enter High Rate
Mode. When this pin is low, the chip will enter Base Rate Mode.
Serial Control Data I/O
9
SDA/CDIN (Control Port Mode) (Input/Output) - In Two Wire mode, SDA is
a data I/O line. CDIN is the input data line for the control port interface in SPI
mode.
Digital Interface Format
9
DIF (Stand-Alone Mode) (Input) - The required relationship between the
Left/Right clock, serial clock and serial data is defined by the Digital Interface
Format.
DIF
0
1
DESCRIPTION
I2S, up to 24-bit data
Left Justified, up to 24-bit data
Table 17. Digital Interface Format - DIF (Stand-Alone Mode)
Serial Control
Interface Clock
10
SCL/CCLK (Control Port Mode) (Input) - Clocks the serial control data into
or from SDA/CDIN/DIF.
Channel Select
10
ChSEL (Stand-Alone Mode) (Input) - The analog data path is determined
by the Channel Select bit. These options are detailed in Table 18.
ChSEL
0
1
DESCRIPTION
Channel 1 directly to A/D
Channel 2 with 32dB of gain
Table 18. Channel Select Options
Anti-Aliasing Capacitors
Positive Voltage
Reference
Analog Inputs
28
11, 12
AFLTR, AFLTL (Output) - Anti-aliasing capacitors for the left and right channels. An external capacitor is required from AFLTR and AFLTL to ground, as
shown in Figure 5. AFLTR and AFLTL are not intended to supply external
current, and any current drawn from these pins will alter device performance.
13
FILT+ (Output) - Positive reference for internal sampling circuits. An external
capacitor is required from FILT+ to ground, as shown in Figure 6. The recommended value will typically provide 60 dB of PSRR at 1 kHz and 40 dB of
PSRR at 60 Hz. FILT+ is not intended to supply external current. FILT+ has
a typical source impedance of 250 kΩ and any current drawn from this pin
will alter device performance.
14, 15, 17, and 18
AIN_R1, AIN_L1, AIN_R2, AIN_L2 (Input) - Channel 1/Channel 2 analog
inputs.
DS513F1
CS53L32A
Reference Ground
16
REF_GND (Input) - Ground reference for the internal sampling circuits. Must
be connected to ground.
Quiescent Voltage
19
VQ (Output) - Filter connection for internal A/D converter quiescent reference voltage. A capacitor must be connected from VQ to ground. VQ is not
intended to supply external current. VQ has a typical source impedance of
250 kΩ and any current drawn from this pin will alter device performance.
Reset
20
RST (Input) - The device enters a low power mode and all internal registers
are reset to their default settings, including the control port, when low. When
high, the control port becomes operational and the PDN bit must be cleared
before normal operation will occur. The control port cannot be accessed
when Reset is low.
DS513F1
29
CS53L32A
6. APPLICATIONS
6.1
GROUNDING AND POWER SUPPLY DECOUPLING
As with any high resolution converter, the CS53L32A requires careful attention to power supply and
grounding arrangements to optimize performance. Figure 6 shows the recommended power arrangement
with VA and VL connected to clean supplies. Decoupling capacitors should be located as close to the device package as possible.
6.2
OVERSAMPLING MODES
The CS53L32A operates in one of two oversampling modes. Base Rate Mode supports input sample
rates up to 50 kHz while High Rate Mode supports input sample rates up to 100 kHz. See Table 16 for
more details.
6.3
RECOMMENDED POWER-UP SEQUENCE
1) Hold RST low until the power supply, master, and left/right clocks are stable. In this state, the control
port is reset to its default settings and VQ will remain low.
2) Bring RST high. The device will remain in a low power state with VQ low and will initiate the StandAlone power-up sequence. The control port will be accessible at this time. If control port operation is
desired, write the CP_EN bit prior to the completion of the Stand-Alone power-up sequence, approximately 1024 LRCK cycles. Writing this bit will halt the Stand-Alone power-up sequence and initialize
the control port to its default settings. The desired register settings can be loaded while keeping the
PDN bit set to 1.
3) If Control Port mode is selected via the CP_EN bit, set the PDN bit to 0 which will initiate the powerup sequence, which requires approximately 50 µS.
7. CONTROL PORT INTERFACE
The control port is used to load all the internal settings. The operation of the control port may be completely asynchronous with the audio sample rate. However, to avoid potential interference problems, the control port pins should remain static if no operation is required.
The control port has 2 modes: SPI and Two Wire. If Two Wire operation is desired, AD0/CS should be
tied to VL or GND. If the CS53L32A ever detects a high to low transition on AD0/CS after power-up, SPI
mode will be selected.
7.1
SPI MODE
In SPI mode, CS is the CS53L32A chip select signal, CCLK is the control port bit clock, CDIN is the input
data line from the microcontroller and the chip address is 0010000. All signals are inputs and data is
clocked in on the rising edge of CCLK. All CS53L32A registers are write-only in SPI mode.
Figure 7 shows the operation of the control port in SPI mode. To write to a register, bring CS low. The first
7 bits on CDIN form the chip address, and must be 0010000. The eighth bit is a read/write indicator (R/W),
which must be low to write. The next 8 bits form the Memory Address Pointer (MAP), which is set to the
address of the register that is to be updated. The next 8 bits are the data which will be placed into the
register designated by the MAP.
The CS53L32A has a MAP auto increment capability, enabled by the INCR bit in the MAP. If INCR is a
zero, then the MAP will stay constant for successive writes. If INCR is set to a 1, then MAP will auto increment after each byte is written, allowing block writes of successive registers.
30
DS513F1
CS53L32A
7.2
TWO WIRE MODE
In Two Wire mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock,
SCL, with the clock to data relationship as shown in Figure 8. There is no CS pin. Pin AD0 forms the partial
chip address and should be tied to VL or GND as required. The upper 6 bits of the 7 bit address field must
be 001000. To communicate with the CS53L32A the LSB of the chip address field, which is the first byte
sent to the CS53L32A, should match the setting of the AD0 pin. The eighth bit of the address byte is the
R/W bit (high for a read, low for a write). If the operation is a write, the next byte is the Memory Address
Pointer which selects the register to be read or written. See Section 7.3, Memory Address Pointer (MAP).
If the operation is a read, the contents of the register pointed to by the Memory Address Pointer will be
output. Setting the auto increment bit in MAP, allows successive reads or writes of consecutive registers.
Each byte is separated by an acknowledge bit.
Note: The Two-Wire control port mode is compatible with the I2C protocol.
7.3
MEMORY ADDRESS POINTER (MAP)
7
INCR
0
6
Reserved
0
5
Reserved
0
4
Reserved
0
3
Reserved
0
2
MAP2
0
1
MAP1
0
0
MAP0
0
INCR (Auto MAP Increment Enable)
Default = ‘0’.
0 - Disabled
1 - Enabled
MAP0-2 (Memory Address Pointer)
Default = ‘000’.
DS513F1
31
CS53L32A
CS
CCLK
CHIP
ADDRESS
CDIN
0010000
MAP
DATA
MSB
R/W
byte 1
LSB
byte n
MAP = Memory Address Pointer
Figure 7. Control Port Timing, SPI Mode
Note 1
SDA
001000
ADDR
AD0
R/W
ACK
DATA
1-8
ACK
DATA
1-8
ACK
SCL
Start
Stop
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.
Figure 8. Control Port Timing, Two Wire Mode
32
DS513F1
0
0
-10
-10
-20
-20
-30
-30
Amplitude dB
Amplitude dB
CS53L32A
-40
-50
-60
-70
-40
-50
-60
-70
-80
-80
-90
-90
-100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
-100
0.4
1
0.42
0.44
0.46
Frequency (normalized to Fs)
Figure 9. Base-Rate Stopband Rejection
-1
-3
Amplitude dB
Amplitude dB
-2
-4
-5
-6
-7
-8
-9
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.52
0.54
0.56
0.58
0.6
0.53
0.54
0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
0
0.55
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Frequency (normalized to Fs)
Frequency (normalized to Fs)
Figure 11. Base-Rate Transition Band (Detail)
Figure 12. Base-Rate Passband Ripple
0
0
-10
-10
-20
-20
-30
-30
Amplitude dB
Amplitude dB
0.5
Figure 10. Base-Rate Transition Band
0
-10
0.45
0.48
Frequency (normalized to Fs)
-40
-50
-60
-70
-80
-40
-50
-60
-70
-80
-90
-90
-100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Frequency (normalized to Fs)
Figure 13. High-Rate Stopband Rejection
DS513F1
1
-100
0.4
0.43
0.46
0.49
0.52
0.55
0.58
0.61
0.64
0.67
Frequency (normalized to Fs)
Figure 14. High-Rate Transition Band
33
CS53L32A
0
-1
-3
Amplitude dB
Amplitude dB
-2
-4
-5
-6
-7
-8
-9
-10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
0
0.05
0.1
0.15
Frequency (normalized to Fs)
Figure 15. High-Rate Transition Band (Detail)
150 Ω
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Frequency (normalized to Fs)
Figure 16. High-Rate Passband Ripple
0.47 µF
AIN_xx
0.01 µF
GND
Figure 17. Line Input Test Circuit
Left Channel
LRCK
Right Channel
SCLK
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
I2S, up to 24-Bit Data. Data Valid on Rising Edge of
SCLK.
Figure 18. CS53L32A Control Port Mode - Serial Audio Format 0 (I2S)
34
DS513F1
CS53L32A
Left Channel
LRCK
Right Channel
SCLK
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Left Justified, up to 24-Bit Data. Data Valid on Rising
Edge of SCLK.
Figure 19. CS53L32A Control Port Mode - Serial Audio Format 1
LRCK
Right Channel
Left Channel
SCLK
SDATA
15 14 13 12 11 10 9 8 7
6 5
4 3
2 1
0
15 14 13 12 11 10 9
8 7 6
5
4 3 2
1 0
Right
32
clocks Justified,
16-Bit Data. Data Valid on Rising Edge of
SCLK. SCLK Must Have at Least 32 Cycles per LRCK
Period.
Figure 20. CS53L32A Control Port Mode - Serial Audio Format 3
LRCK
Right Channel
Left Channel
SCLK
SDATA
0
23 22 21 20 19 18
7 6 5
4 3 2 1 0
23 22 21 20 19 18
7 6 5 4 3 2 1 0
Right Justified, 24-Bit Data. Data Valid on Rising Edge of
SCLK. SCLK Must Have at Least 48 Cycles per LRCK
Period.
32 clocks
Figure 21. CS53L32A Control Port Mode - Serial Audio Format 4
DS513F1
35
CS53L32A
LRCK
Right Channel
Left Channel
SCLK
SDATA
1 0
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 clocks
Right Justified, 20-Bit Data. Data Valid on Rising Edge of
SCLK. SCLK Must Have at Least 40 Cycles per LRCK
Period.
Figure 23. CS53L32A Control Port Mode - Serial Audio Format 6
Left Channel
LRCK
Right Channel
SCLK
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
I2S, up to 24-Bit Data. Data Valid on Rising Edge of
SCLK
Figure 24. CS53L32A Stand-Alone Mode - Serial Audio Format 0 (I2S)
LRCK
Right Channel
Left Channel
SCLK
SDATA
1
0
17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
32 clocks
Right Justified, 18-Bit Data.
Data Valid on Rising Edge of SCLK.
SCLK Must Have at Least 36 Cycles per LRCK Period.
Figure 22. CS53L32A Control Port Mode - Serial Audio Format 5
36
DS513F1
CS53L32A
Left Channel
LRCK
Right Channel
SCLK
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Left Justified, up to 24-Bit Data. Data Valid on Rising
Edge of SCLK.
Figure 25. CS53L32A Stand-Alone Mode - Serial Audio Format 1
DS513F1
37
CS53L32A
8. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement
to full scale. This technique ensures that the distortion components are below the noise level and do not
effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full scale analog output for a full scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
9. REFERENCES
1. “How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters” by Steven Harris.
Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB53L32 Evaluation Board Datasheet.
38
DS513F1
CS53L32A
10.PACKAGE DIMENSIONS
20L TSSOP (4.4 mm BODY) PACKAGE DRAWING
N
D
E11
A2
E
A
∝
e
b2
SIDE VIEW
A1
END VIEW
L
SEATING
PLANE
1 2 3
TOP VIEW
INCHES
DIM
A
A1
A2
b
D
E
E1
e
L
∝
MIN
-0.002
0.03346
0.00748
0.252
0.248
0.169
-0.020
0°
NOM
-0.004
0.0354
0.0096
0.256
0.2519
0.1732
-0.024
4°
MILLIMETERS
MAX
0.043
0.006
0.037
0.012
0.259
0.256
0.177
0.026
0.028
8°
MIN
-0.05
0.85
0.19
6.40
6.30
4.30
-0.50
0°
NOM
--0.90
0.245
6.50
6.40
4.40
-0.60
4°
NOTE
MAX
1.10
0.15
0.95
0.30
6.60
6.50
4.50
0.65
0.70
8°
2,3
1
1
JEDEC #: MO-153
Controlling Dimension is Millimeters.
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per
side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not
reduce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
DS513F1
39
CS53L32A
11.CHANGE HISTORY
Table 19. Revision Table
Revision
Date
PP1
PP2
July 2000
September 2004
F1
October 2004
Change
Initial release
Added part number CS53L32A-KZZ, lead free package option.
Updated Min/Max Specifications
Integrated Errata ER513B1
Integrated Errata ER513B2
Integrated Errata ER513C1
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by
Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights
of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work
rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and
gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This
consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER
CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
40
DS513F1