3/25/08 15:11
CS5581
±2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ∆Σ ADC
Features & Description
Single-ended Analog Input On-chip Buffers for High Input Impedance Conversion Time = 5 µS Settles in One Conversion Linearity Error = 0.0008% Signal-to-Noise = 80 dB S/(N + D) = 80 dB DNL = ±0.1 LSB Max. Simple three/four-wire serial interface Power Supply Configurations:
- Analog: +5V/GND; IO: +1.8V to +3.3V - Analog: ±2.5V; IO: +1.8V to +3.3V
General Description
The CS5581 is a single-channel, 16-bit analog-to-digital converter capable of 200 kSps conversion rate. The input accepts a single-ended analog input signal. On-chip buffers provide high input impedance for both the AIN input and the VREF+ input. This significantly reduces the drive requirements of signal sources and reduces errors due to source impedances. The CS5581 is a delta-sigma converter capable of switching multiple input channels at a high rate with no loss in throughput. The ADC uses a low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in one conversion. The converter's 16-bit data output is in serial format, with the serial port acting as either a master or a slave. The converter is designed to support bipolar, ground-referenced signals when operated from ±2.5V analog supplies. The converter can operate from an analog supply of 0-5V or from ±2.5V. The digital interface supports standard logic operating from 1.8, 2.5, or 3.3 V. ORDERING INFORMATION: See Ordering Information on page 32.
Power Consumption:
- ADC Input Buffers On: 85 mW - ADC Input Buffers Off: 60 mW
V1+
V2+
VL
CS5581
VREF+ VREFDIGITAL FILTER LOGIC SERIAL INTERFACE SMODE CS SCLK ADC AIN ACOM
SDO RDY
BUFEN DIGITAL CONTROL OSC/CLOCK GENERATOR
RST CONV BP/UP MCLK
V1-
V2-
TST
DCR
VLR
VLR2
VLR3
Preliminary Product Information
http://www.cirrus.com
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
Copyright © Cirrus Logic, Inc. 2008 (All Rights Reserved)
MAR ‘08 DS796PP1
3/25/08 14:34
CS5581
TABLE OF CONTENTS
1. CHARACTERISTICS AND SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ANALOG CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DIGITAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 GUARANTEED LOGIC LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5 Output Coding Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6 Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7 AIN & VREF Sampling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 Converter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Digital Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.10 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.1 SSC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.2 SEC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.11 Power Supplies & Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.12 Using the CS5581 in Multiplexing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.13 Synchronizing Multiple Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4. PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5. PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6. ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION . . . . . . . . . . . . . . 32 8. REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2
DS796PP1
3/25/08 14:34
CS5581
LIST OF FIGURES
Figure 1. SSC Mode - Read Timing, CS remaining low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 2. SSC Mode - Read Timing, CS falling after RDY falls . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 3. SEC Mode - Continuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 4. SEC Mode - Discontinuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5. Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 6. CS5581 Configured Using ±2.5V Analog Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7. CS5581 Configured for Unipolar Measurement Using a Single 5V Analog Supply . . . . 18 Figure 8. CS5581 Configured for Bipolar Measurement Using a Single 5V Analog Supply . . . . . 19 Figure 9. CS5581 DNL Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 10. CS5581 DNL Error Plot with DNL Histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 11. Spectral Performance, 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12. Spectral Performance, -6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 13. Spectral Performance, -12 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 14. Spectral Performance, -80 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15. Spectral Performance, -100 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 16. Spectral Plot of Noise with Shorted Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 17. Noise Histogram (4096 Conversions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 18. CS5581 Spectral Response (DC to fs/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 19. CS5581 Spectral Response (DC to 20 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 20. CS5581 Spectral Response (DC to 8fs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 21. Simple Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 22. More Complex Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
LIST OF TABLES
Table 1. Output Coding, Two’s Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 2. Output Coding, Offset Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DS796PP1
3
3/25/08 14:34
1. CHARACTERISTICS AND SPECIFICATIONS
• • •
CS5581
Min / Max characteristics and specifications are guaranteed over the specified operating conditions. Typical characteristics and specifications are measured at nominal supply voltages and TA = 25°C. VLR = 0 V. All voltages measured with respect to 0 V.
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL, unless otherwise stated; BUFEN = V1+ unless otherwise stated. Connected per Figure 6. Bipolar mode unless otherwise stated. Parameter Accuracy Linearity Error Differential Linearity Error Positive Full-scale Error Negative Full-scale Error Full-scale Drift Bipolar Offset Bipolar Offset Drift Noise Dynamic Performance Peak Harmonic or Spurious Noise Total Harmonic Distortion Signal-to-Noise S/(N + D) Ratio -3 dB Input Bandwidth
1. 2. 3. 4.
ANALOG CHARACTERISTICS
Min (Note 1) (Note 2, 3) (Note 3) (Note 2, 3) 1 kHz, -0.5 dB Input 12 kHz, -0.5 dB Input 1 kHz, -0.5 dB Input -0.5 dB Input, 1 kHz -60 dB Input, 1 kHz (Note 4) 77 -
Typ 0.0008 1.0 1.0 ±1 ±15 ±1 140 -96 -96 -95 80 80 21 168
Max ±0.1 -82 -
Unit ±%FS LSB16 %FS %FS LSB16 LSB16 LSB16 µVrms dB dB dB dB dB dB kHz
No missing codes is guaranteed at 16 bits resolution over the specified temperature range. Total drift over specified temperature range after reset at power-up, at 25º C. One LSB is equivalent to VREF ÷ 216 or 4.096 ÷ 65536 = 62.5 µV. Scales with MCLK.
4
DS796PP1
3/25/08 14:34
ANALOG CHARACTERISTICS (CONTINUED)
CS5581
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL, unless otherwise stated; BUFEN = V1+ unless otherwise stated. Connected per Figure 6. Parameter Analog Input Analog Input Range Input Capacitance CVF Current (Note 5) AIN Buffer On (BUFEN = V+) AIN Buffer Off (BUFEN = V-) ACOM Unipolar Bipolar 0 to +VREF / 2 ±VREF / 2 10 600 130 130 V V pF nA µA µA Min Typ Max Unit
Voltage Reference Input Voltage Reference Input Range (VREF+) – (VREF-) Input Capacitance CVF Current VREF+ Buffer On (BUFEN = V+) VREF+ Buffer Off (BUFEN = V-) VREFIV1 IV2 IVL Normal Operation Buffers On Buffers Off (Note 7) V1+ , V2+ Supplies V1-, V2- Supplies (Note 6) 2.4 4.096 10 3 1 1 85 60 80 80 4.2 18 1.8 0.6 101 80 V pF µA mA mA mA mA mA mW mW dB dB
Power Supplies DC Power Supply Currents
Power Consumption Power Supply Rejection
5. 6. 7.
Measured using an input signal of 1 V DC. For optimum performance, VREF+ should always be less than (V+) - 0.2 volts to prevent saturation of the VREF+ input buffer. Tested with 100 mVP-P on any supply up to 1 kHz. V1+ and V2+ supplies at the same voltage potential, V1- and V2- supplies at the same voltage potential.
DS796PP1
5
3/25/08 14:34
SWITCHING CHARACTERISTICS
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5% Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF. Parameter Master Clock Frequency Master Clock Duty Cycle Reset RST Low Time RST rising to RDY falling Conversion CONV Pulse Width BP/UP setup to CONV falling CONV low to start of conversion Perform Single Conversion (CONV high before RDY falling) Conversion Time
8. 9. 10.
CS5581
Symbol Internal Oscillator External Clock XIN fclk
Min 12 0.5 40
Typ 14 16 120 1536 -
Max 16 16.2 60 2 84
Unit MHz MHz % µs µs MCLKs MCLKs ns MCLKs MCLKs MCLKs
(Note 8) Internal Oscillator External Clock
tres twup
1 4 0 20 -
tcpw (Note 9) tscn tscn tbus tbuh
(Note 10) Start of Conversion to RDY falling
Reset must not be released until the power supplies and the voltage reference are within specification. BP/UP can be changed coincident CONV falling. BP/UP must remain stable until RDY falls. If CONV is held low continuously, conversions occur every 80 MCLK cycles. If RDY is tied to CONV, conversions will occur every 82 MCLKs. If CONV is operated asynchronously to MCLK, a conversion may take up to 84 MCLKs. RDY falls at the end of conversion.
6
DS796PP1
3/25/08 14:34
SWITCHING CHARACTERISTICS (CONTINUED)
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5% Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF. Parameter Serial Port Timing in SSC Mode (SMODE = VL) RDY falling to MSB stable Data hold time after SCLK rising Serial Clock (Out) (Note 11, 12) RDY rising after last SCLK rising
11.
CS5581
Symbol t1 t2 Pulse Width (low) Pulse Width (high) t3 t4 t5
Min 50 50 -
Typ -2 10 8
Max -
Unit MCLKs ns ns ns MCLKs
SDO and SCLK will be high impedance when CS is high. In some systems SCLK and SDO may require pull-down resistors. 12. SCLK = MCLK/2.
MCLK
RDY t1 CS t2 SCLK(o) t3 t4 t5
SDO
MSB
MSB–1
LSB+1
LSB
Figure 1. SSC Mode - Read Timing, CS remaining low (Not to Scale)
DS796PP1
7
3/25/08 14:34
SWITCHING CHARACTERISTICS (CONTINUED)
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5% Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF. Parameter Serial Port Timing in SSC Mode (SMODE = VL) Data hold time after SCLK rising Serial Clock (Out) (Note 13, 14) RDY rising after last SCLK rising CS falling to MSB stable First SCLK rising after CS falling CS hold time (low) after SCLK rising SCLK, SDO tristate after CS rising
13.
CS5581
Symbol t7 Pulse Width (low) Pulse Width (high) t8 t9 t10 t11 t12 t13 t14
Min 50 50 10 -
Typ 10 8 10 8 5
Max -
Unit ns ns ns MCLKs ns MCLKs ns ns
SDO and SCLK will be high impedance when CS is high. In some systems SCLK and SDO may require pull-down resistors. 14. SCLK = MCLK/2.
MCLK t10 RDY t13 CS t12 SCLK(o) t11 SDO
MSB MSB–1 LSB+1 LSB
t7
t8
t9
t14
Figure 2. SSC Mode - Read Timing, CS falling after RDY falls (Not to Scale)
8
DS796PP1
3/25/08 14:34
SWITCHING CHARACTERISTICS (CONTINUED)
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5% Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF. Parameter Serial Port Timing in SEC Mode (SMODE = VLR) SCLK(in) Pulse Width (High) SCLK(in) Pulse Width (Low) CS hold time (high) after RDY falling CS hold time (high) after SCLK rising CS low to SDO out of Hi-Z Data hold time after SCLK rising Data setup time before SCLK rising CS hold time (low) after SCLK rising RDY rising after SCLK falling
15.
-
CS5581
Symbol
Min 30 30 10 10 10 10 -
Typ 10 10 10
Max 1 10 SCLK
Unit ns ns ns ns ns ns ns ns ns
t15 t16 (Note 15) t17 t18 t19 t20 t21
-
SDO will be high impedance when CS is high. In some systems SDO may require a pull-down resistor.
MCLK t21 RDY t15 CS t16 SCLK(i) t17 SDO t18 t19
MSB LSB
t20
Figure 3. SEC Mode - Continuous SCLK Read Timing (Not to Scale)
DS796PP1
9
3/25/08 14:34
CS5581
MCLK t21 RDY t15 CS t20
SCLK(i) t17 SDO t18 t19
MSB LSB
Figure 4. SEC Mode - Discontinuous SCLK Read Timing (Not to Scale)
DIGITAL CHARACTERISTICS
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V Parameter Input Leakage Current Digital Input Pin Capacitance Digital Output Pin Capacitance Symbol Iin Cin Cout Min Typ 3 3 Max 2 Unit µA pF pF
10
DS796PP1
3/25/08 14:34
GUARANTEED LOGIC LEVELS
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%; VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5% Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF. Guaranteed Limits Parameter Logic Inputs 3.3
Minimum High-level Input Voltage:
CS5581
Sym
VL
Min
Typ
Max
Unit
Conditions
1.9 1.6 1.2 1.1 0.95 0.6 V V
VIH
2.5 1.8 3.3
Maximum Low-level Input Voltage:
VIL
2.5 1.8
Logic Outputs 3.3
Minimum High-level Output Voltage:
2.9 2.1 1.65 0.36 0.36 0.44 V
IOH = -2 mA
VOH
2.5 1.8 3.3
V
IOH = -2 mA
Maximum Low-level Output Voltage:
VOL
2.5 1.8
DS796PP1
11
3/25/08 14:34
RECOMMENDED OPERATING CONDITIONS
(VLR = 0V, see Note 16)
CS5581
Parameter Single Analog Supply DC Power Supplies: (Note 16) V1+ V2+ V1V2-
Symbol
Min
Typ
Max
Unit
V1+ V2V1+ V2-
4.75 4.75 -
5.0 5.0 0 0
5.25 5.25 -
V V V V
Dual Analog Supplies DC Power Supplies: (Note 16) V1+ V2+ V1V2(Note 17) [VREF+] – [VREF-] V1+ V2V1+ V2VREF +2.375 +2.375 -2.375 -2.375 2.4 +2.5 +2.5 -2.5 -2.5 4.096 +2.625 +2.625 -2.625 -2.625 4.2 V V V V V
Analog Reference Voltage
16. 17.
The logic supply can be any value VL – VLR = +1.71 to +3.465 volts as long as VLR ≥ V2- and VL ≤ 3.465 V. The differential voltage reference magnitude is constrained by the V1+ or V1- supply magnitude.
ABSOLUTE MAXIMUM RATINGS
(VLR = 0V)
Parameter DC Power Supplies: [V1+] – [V1-] (Note 18) VL + [ |V1-| ] (Note 19) Input Current, Any Pin Except Supplies Analog Input Voltage Digital Input Voltage Storage Temperature Notes: 18. V1+ = V2+; V1- = V219. 20.
Symbol IIN VINA VIND Tstg
Min 0 0 (V1-) – 0.3 VLR – 0.3 -65
Typ -
Max 5.5 6.1 ±10 (V1+) + 0.3 VL + 0.3 150
Unit V V mA V V °C
(Note 20)
(AIN and VREF pins)
V1- = V2Transient currents of up to 100 mA will not cause SCR latch-up.
WARNING: Recommended Operating Conditions indicate limits to which the device is functionally operational. Absolute Maximum Ratings indicate limits beyond which permanent damage to the device may occur. The Absolute Maximum Ratings are stress ratings only and the device should not be operated at these limits. Operation at conditions beyond the Recommended Operating Conditions may affect device reliability, and functional operation beyond Recommended Operating Conditions is not implied. Performance specifications are intended for the conditions specified for each table in the Characteristics and Specifications section.
12
DS796PP1
3/25/08 14:34
2. OVERVIEW
CS5581
The CS5581 is a 16-bit analog-to-digital converter capable of 200 kSps conversion rate. The analog input accepts a single-ended input with a magnitude of ±VREF / 2 volts. The ADC uses a low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in one conversion. The converter is a serial output device. The serial port can be configured to function as either a master or a slave. The converter can operate from an analog supply of 5V or from ±2.5V. The digital interface supports standard logic operating from 1.8, 2.5, or 3.3 V. The CS5581 may convert at rates up to 200 kSps when operating from a 16 MHz input clock.
3. THEORY OF OPERATION
The CS5581 converter provides high-performance measurement of DC or AC signals. The converter can be used to perform single conversions or continuous conversions upon command. Each conversion is independent of previous conversions and settles to full specified accuracy, even with a full-scale input voltage step. This is due to the converter architecture which uses a combination of a high-speed delta-sigma modulator and a low-latency filter architecture. Once power is established to the converter, a reset must be performed. A reset initializes the internal converter logic. If CONV is held low, the converter will convert continuously with RDY falling every 80 MCLKs. This is equivalent to 200 kSps if MCLK = 16.0 MHz. If CONV is tied to RDY, a conversion will occur every 82 MCLKs. If CONV is operated asynchronously to MCLK, it may take up to 84 MCLKs from CONV falling to RDY falling. Multiple converters can operate synchronously if they are driven by the same MCLK source and CONV to each converter falls on the same MCLK falling edge. Alternately, CONV can be held low and all devices can be synchronized if they are reset with RST rising on the same falling edge of MCLK. The output coding of the conversion word is a function of the BP/UP pin.
3.1 Converter Operation
The converter should be reset after the power supplies and voltage reference are stable. The CS5581 converts at 200 kSps when synchronously operated (CONV = VLR) from a 16.0 MHz master clock. Conversion is initiated by taking CONV low. A conversion lasts 80 master clock cycles, but if CONV is asynchronous to MCLK there may be an uncertainty of 0-4 MCLK cycles after CONV falls to when a conversion actually begins. This may extend the throughput to 84 MCLKs per conversion. When the conversion is completed, the output word is placed into the serial port and RDY goes low. To convert continuously, CONV should be held low. In continuous conversion mode with CONV held low, a conversion is performed in 80 MCLK cycles. Alternately RDY can be tied to CONV and a conversion will occur every 82 MCLK cycles. To perform only one conversion, CONV should return high at least 20 master clock cycles before RDY falls.
DS796PP1
13
3/25/08 14:34
CS5581
Once a conversion is completed and RDY falls, RDY will return high when all the bits of the data word are emptied from the serial port or if the conversion data is not read and CS is held low, RDY will go high two MCLK cycles before the end of conversion. RDY will fall at the end of the next conversion when new data is put into the port register. See Serial Port on page 24 for information about reading conversion data. Conversion performance can be affected by several factors. These include the choice of clock source for the chip, the timing of CONV, and the choice of the serial port mode. The converter can be operated from an internal oscillator. This clock source has greater jitter than an external crystal-based clock. Jitter may not be an issue when measuring DC signals, or very-low-frequency AC signals, but can become an issue for higher frequency AC signals. For maximum performance when digitizing AC signals, a low-jitter MCLK should be used. To maximize performance, the CONV pin should be held low in the continuous conversion state to perform multiple conversions, or CONV should occur synchronous to MCLK, falling when MCLK falls. If the converter is operated at maximum throughput, the SSC serial port mode is less likely to cause interference to measurements as the SCLK output is synchronized to the MCLK. Alternately, any interference due to serial port clocking can also be minimized if data is read in the SEC serial port mode when a conversion is not in progress.
3.2 Clock
The CS5581 can be operated from its internal oscillator or from an external master clock. The state of MCLK determines which clock source will be used. If MCLK is tied low, the internal oscillator will start and be used as the clock source for the converter. If an external CMOS-compatible clock is input into MCLK, the converter will power down the internal oscillator and use the external clock. If the MCLK pin is held high, the internal oscillator will be held in the stopped state. The MCLK input can be held high to delete clock cycles to aid in synchronizing multiple converters in different phase relationships. The internal oscillator can be used if the signals to be measured are essentially DC. The internal oscillator exhibits jitter at about 500 picoseconds rms. If the CS5581 is used to digitize AC signals, an external low-jitter clock source should be used. If the internal oscillator is used as the clock for the CS5581, the maximum conversion rate will be dictated by the oscillator frequency. If driven from an external MCLK source, the fast rise and fall times of the MCLK signal can result in clock coupling from the internal bond wire of the IC to the analog input. Adding a 50 ohm resistor on the external MCLK source significantly reduces this effect.
14
DS796PP1
3/25/08 14:34
3.3 Voltage Reference
CS5581
The voltage reference for the CS5581 can range from 2.4 volt to 4.2 volts. A 4.096 volt reference is required to achieve the specified signal-to-noise performance. Figure 6 and Figure 7 illustrate the connection of the voltage reference with either a single +5 V analog supply or with ±2.5 V. For optimum performance, the voltage reference device should be one that provides a capacitor connection to provide a means of noise filtering, or the output should include some type of bandwidth-limiting filter. Some 4.096 volt reference devices need only 5 volts total supply for operation and can be connected as shown in Figure 6 or Figure 7. The reference should have a local bypass capacitor and an appropriate output capacitor. Some older 4.096 voltage reference designs require more headroom and must operate from an input voltage of 5.5 to 6.5 volts. If this type of voltage reference is used ensure that when power is applied to the system, the voltage reference rise time is slower than the rise time of the V1+ and V1- power supply voltage to the converter. An example circuit to slow the output startup time of the reference is illustrated in Figure 5.
5.5 to 15 V
2k
10µF
VIN VOUT GND Refer to V1- and VREF1 pins. 4.096 V
Figure 5. Voltage Reference Circuit
3.4 Analog Input
The analog input of the converter is single-ended with a full-scale input of ±2.048 volts, relative to the ACOM pin. This is illustrated in Figure 6 and Figure 7. These diagrams also illustrate a differential buffer amplifier configuration for driving the CS5581. The capacitors at the outputs of the amplifiers provide a charge reservoir for the dynamic current from the A/D inputs while the resistors isolate the dynamic current from the amplifier. The amplifiers can be powered from higher supplies than those used by the A/D but precautions should be taken to ensure that the op amp output voltage remains within the power supply limits of the A/D, especially under start-up conditions.
DS796PP1
15
3/25/08 14:34
3.5 Output Coding Format
CS5581
The reference voltage directly defines the input voltage range in both the unipolar and bipolar configurations. In the unipolar configuration (BP/UP low), the first code transition occurs 0.5 LSB above zero, and the final code transition occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first code transition occurs 0.5 LSB above -VREF and the last transition occurs 1.5 LSBs below +VREF. See Table 1 for the output coding of the converter.
Table 1. Output Coding, Two’s Complement
Bipolar Input Voltage
>(VREF-1.5 LSB) VREF-1.5 LSB 7F FE 00 00 -0.5 LSB FF FF 80 01 -VREF+0.5 LSB 80 00 (VREF-1.5 LSB) VREF-1.5 LSB FF FE 80 00 (VREF/2)-0.5 LSB 7F FF 00 01 +0.5 LSB 00 00