0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EP9307-IR

EP9307-IR

  • 厂商:

    CIRRUS(凌云)

  • 封装:

    LFBGA272

  • 描述:

    IC MPU EP9 200MHZ 272TFBGA

  • 数据手册
  • 价格&库存
EP9307-IR 数据手册
EP9307 Data Sheet FEATURES • • • • • Linux®, Microsoft® Windows® CE-enabled MMU 100-MHz System Bus • • • MaverickCrunch™ Math Engine • Floating Point, Integer and Signal Processing Instructions • Optimized for digital music compression and decompression algorithms. • Hardware interlocks allow in-line coding. Peripheral Bus 12 Channel DMA (3) UARTs w/ IrDA (3) USB Hosts • Clocks & Timers MaverickCrunchTM Interrupts & GPIO ARM920T MaverickKeyTM Boot ROM D-Cache 16KB I-Cache 16KB Bus Bridge MMU Keypad & Touch Screen I/F USER INTERFACE Serial Audio Interface Touchscreen Interface with ADC 8 x 8 Keypad Scanner One Serial Peripheral Interface (SPI) Port • 6-channel or 2-channel Serial Audio Interface (I2S) • 2-channel, Low-cost Serial Audio Interface (AC'97) Internal Peripherals • 12 Direct Memory Access (DMA) Channels • Real-time Clock with Software Trim • Dual PLL controls all clock domains. • Watchdog Timer • Two General-purpose 16-bit Timers • One General-purpose 32-bit Timer • One 40-bit Debug Timer • Interrupt Controller • Boot ROM Package • 272 pin TFBGA • MaverickKey™ IDs • 32-bit unique ID can be used for DRM-compliant, 128-bit random ID. Integrated Peripheral Interfaces • 32-bit SDRAM Interface (up to 4 banks) • 32/16-bit SRAM/FLASH/ROM • Serial EEPROM Interface • 1/10/100 Mbps Ethernet MAC • Three UARTs • Three-port USB 2.0 Full-speed Host (OHCI) (12 Mbits per second) • IrDA Interface • LCD and Raster Interface with Graphics Accelerator COMMUNICATIONS PORTS • ARM9 SOC with Ethernet, USB, Display, and Touchscreen 200-MHz ARM920T Processor • 16-kbyte Instruction Cache • 16-kbyte Data Cache Processor Bus Ethernet MAC SRAM & Flash I/F Unified SDRAM I/F Video/LCD Controller Graphic Accelerator MEMORY AND STORAGE Copyright 2010 Cirrus Logic (All Rights Reserved) http://www.cirrus.com Mar ‘10 DS667F2 1 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen OVERVIEW The EP9307 is an ARM920T-based system-on-a-chip (SOC) design with a large peripheral set targeted to a variety of applications: • • • • • • • Thin client computers for business and home Internet radio Internet access devices Industrial computers Specialized terminals Point of sale terminals Test and measurement equipment important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. A high-performance 1/10/100 Mbps Ethernet media access controller (MAC) is included along with external interfaces to SPI, I2S audio, Raster/LCD, keypad and touchscreen. A three-port USB 2.0 Full-speed Host (OHCI) (12 Mbits per second) and three UARTs are included as well. The ARM920T microprocessor core with separate 16kbyte, 64-way set-associative instruction and data caches is augmented by the MaverickCrunch™ coprocessor, enabling high-speed floating point calculations. The EP9307 is a high-performance, low-power, RISCbased, single-chip computer built around an ARM920T microprocessor core with a maximum operating clock rate of 200 MHz (184 MHz for industrial conditions). The ARM core operates from a 1.8 V supply, while the I/O operates at 3.3 V with power usage between 100 mW and 750 mW (dependent on speed). MaverickKey™ unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an Table A. Change History Revision 2 Date Changes PP1 July 2004 PP2 August 2004 Initial Release. PP3 August 2004 Minor correction. PP4 March 2005 Update electrical characteristics with most-current characterization data. F1 February 2010 F2 March 2010 Correct error in pin out table, pages 42 & 43. Removed “Preliminary Data” statement from legal disclaimer. Removed lead-containing device part numbers. Increased minimum CVDD & VDD_PLL voltages from 1.65 V min. to 1.71 V min. Changed operating temperatures to 0 to 60°C commercial, -40 to 70°C industrial. Increased commercial/industrial temperatures to 70/85 deg. C max. Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table of Contents FEATURES .........................................................................................................1 OVERVIEW .........................................................................................................2 Processor Core - ARM920T ......................................................................................... 6 MaverickCrunch™ Math Engine .................................................................................. 6 MaverickKey™ Unique ID ............................................................................................ 6 General Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH) ........................ 6 Ethernet Media Access Controller (MAC) .................................................................... 7 Serial Interfaces (SPI, I2S and AC ’97) ........................................................................ 7 Raster/LCD Interface ................................................................................................... 7 Graphics Accelerator ................................................................................................... 8 Touch Screen Interface with 12-bit Analog-to-digital Converter (ADC) ........................ 8 64-key Keypad Interface .............................................................................................. 8 Universal Asynchronous Receiver/Transmitters (UARTs) ............................................ 9 Internal Boot ROM ....................................................................................................... 9 Triple-port USB Host .................................................................................................... 9 Two-wire Interface Support .......................................................................................... 9 Real-Time Clock with Software Trim .......................................................................... 10 PLL and Clocking ....................................................................................................... 10 Timers ........................................................................................................................ 10 Interrupt Controller ..................................................................................................... 10 Dual LED Drivers ....................................................................................................... 10 General Purpose Input/Output (GPIO) ....................................................................... 10 Reset and Power Management ..................................................................................11 Hardware Debug Interface ..........................................................................................11 12-Channel DMA Controller ........................................................................................11 Electrical Specifications .................................................................................12 Absolute Maximum Ratings ....................................................................................... 12 Recommended Operating Conditions ........................................................................ 12 DC Characteristics ..................................................................................................... 13 Timings .............................................................................................................14 Memory Interface ....................................................................................................... 15 Ethernet MAC Interface ............................................................................................ 30 Audio Interface ........................................................................................................... 32 AC’97 ........................................................................................................................ 36 LCD Interface ............................................................................................................ 37 ADC ........................................................................................................................... 38 JTAG .......................................................................................................................... 39 272 Pin TFBGA Package Outline ...................................................................40 272 TFBGA Diagram ................................................................................................. 40 272 Pin TFBGA Pinout (Bottom View) ....................................................................... 41 Acronyms and Abbreviations ........................................................................48 Units of Measurement .....................................................................................48 ORDERING INFORMATION ............................................................................49 DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 3 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen List of Figures Figure 1. Timing Diagram Drawing Key ................................................................................. 14 Figure 2. SDRAM Load Mode Register Cycle Timing Measurement ..................................... 15 Figure 3. SDRAM Burst Read Cycle Timing Measurement ................................................... 16 Figure 4. SDRAM Burst Write Cycle Timing Measurement ................................................... 17 Figure 5. SDRAM Auto Refresh Cycle Timing Measurement ................................................ 18 Figure 6. Static Memory Single Word Read Cycle Timing Measurement .............................. 19 Figure 7. Static Memory Single Word Write Cycle Timing Measurement .............................. 20 Figure 8. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement .................... 21 Figure 9. Static Memory Multiple Word Write 8-bit Cycle Timing Measurement .................... 22 Figure 10. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement ................ 23 Figure 11. Static Memory Multiple Word Write 16-bit Cycle Timing Measurement ................ 24 Figure 12. Static Memory Burst Read Cycle Timing Measurement ....................................... 25 Figure 13. Static Memory Burst Write Cycle Timing Measurement ....................................... 26 Figure 14. Static Memory Single Read Wait Cycle Timing Measurement ............................. 27 Figure 15. Static Memory Single Write Wait Cycle Timing Measurement .............................. 28 Figure 16. Static Memory Turnaround Cycle Timing Measurement ....................................... 29 Figure 17. Ethernet MAC Timing Measurement ..................................................................... 31 Figure 18. TI Single Transfer Timing Measurement ............................................................... 33 Figure 19. Microwire Frame Format, Single Transfer ............................................................ 33 Figure 20. SPI Format with SPH=1 Timing Measurement ..................................................... 34 Figure 21. Inter-IC Sound (I2S) Timing Measurement ........................................................... 35 Figure 22. AC ‘97 Configuration Timing Measurement .......................................................... 36 Figure 23. LCD Timing Measurement .................................................................................... 37 Figure 24. ADC Transfer Function ......................................................................................... 38 Figure 25. JTAG Timing Measurement .................................................................................. 39 Figure 26. 272 Pin TFBGA Diagram ...................................................................................... 40 Figure 27. 272 Pin TFBGA Pinout .................................................................................... 42 4 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen List of Tables Table A. Change History .......................................................................................................... 2 Table B. General Purpose Memory Interface Pin Assignments .............................................. 6 Table C. Ethernet Media Access Controller Pin Assignments ................................................. 7 Table D. Audio Interfaces Pin Assignment .............................................................................. 7 Table E. LCD Interface Pin Assignments ................................................................................ 8 Table F. Touch Screen Interface with 12-bit Analog-to-Digital Converter Pin Assignments ... 8 Table G. 64-Key Keypad Interface Pin Assignments ............................................................... 8 Table H. Universal Asynchronous Receiver / Transmitters Pin Assignments .......................... 9 Table I. Triple Port USB Host Pin Assignments ..................................................................... 9 Table J. Two-Wire Port with EEPROM Support Pin Assignments .......................................... 9 Table K. Real-Time Clock with Pin Assignments ................................................................... 10 Table L. PLL and Clocking Pin Assignments ........................................................................ 10 Table M.External Interrupt Controller Pin Assignment .......................................................... 10 Table N. Dual LED Pin Assignments ..................................................................................... 10 Table O. General Purpose Input/Output Pin Assignment ...................................................... 11 Table P. Reset and Power Management Pin Assignments ................................................... 11 Table Q. Hardware Debug Interface ...................................................................................... 11 Table R. 272 Pin Diagram Dimensions .................................................................................. 41 Table S. Pin Descriptions ..................................................................................................... 46 Table T. Pin Multiplex Usage Information ............................................................................. 47 DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 5 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Processor Core - ARM920T The ARM920T is a Harvard architecture processor with separate 16 kbyte instruction and data caches with an 8word line length but a unified memory. The processor utilizes a five-stage pipeline consisting of fetch, decode, execute, memory and write stages. Key features include: • • • • • • • • ARM (32-bit) and Thumb (16-bit compressed) instruction sets 32-bit Advanced Micro-Controller Bus Architecture (AMBA) 16 kbyte Instruction Cache with lockdown 16 kbyte Data Cache (programmable write-through or write-back) with lockdown MMU for Linux®, Microsoft® Windows® CE and other operating systems Translation Look Aside Buffers with 64 Data and 64 Instruction Entries Programmable Page Sizes of 1 Mbyte, 64 kbyte, 4 kbyte, and 1 kbyte Independent lockdown of TLB Entries MaverickCrunch™ Math Engine The MaverickCrunch Engine is a mixed-mode coprocessor designed primarily to accelerate the math processing required to rapidly encode digital audio formats. It accelerates single- and double-precision integer and floating point operations plus an integer multiply-accumulate (MAC) instruction that is considerably faster than the ARM920T's native MAC instruction. The ARM920T coprocessor interface is utilized thereby sharing its memory interface and instruction stream. Hardware forwarding and interlock allows the ARM to handle looping and addressing while MaverickCrunch handles computation. Features include: • • • • • • • • IEEE-754 single and double precision floating point 32/64-bit integer Add/multiply/compare Integer MAC 32-bit input with 72-bit accumulate Integer Shifts Floating point to/from integer conversion Sixteen 64-bit register files Four 72-bit accumulators MaverickKey™ Unique ID MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs 6 provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. Both a specific 32-bit ID as well as a 128-bit random ID are programmed into the EP9307 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP9307 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances. General Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH) The EP9307 features a unified memory address model where all memory devices are accessed over a common address/data bus. A separate internal port is dedicated to the read-only Raster/LCD refresh engine, while the rest of the memory accesses are performed via the Processor bus. The SRAM memory controller supports 8, 16 and 32-bit devices and accommodates an internal boot ROM concurrently with 32-bit SDRAM memory. • • • • 1 to 4 banks of 32-bit, 100 MHz SDRAM One internal port dedicated to the Raster/LCD Refresh Engine (Read Only) Address and data bus shared between SDRAM, SRAM, ROM, and FLASH memory NOR FLASH memory supported Table B. General Purpose Memory Interface Pin Assignments Pin Mnemonic Pin Description SDCLK SDRAM Clock SDCLKEN SDRAM Clock Enable SDCSn[3:0] SDRAM Chip Selects 3-0 RASn SDRAM RAS CASn SDRAM CAS SDWEn SDRAM Write Enable CSn[7:6] and CSn[3:0] Chip Selects 7, 6, 3, 2, 1, 0 AD[25:0] Address Bus 25-0 DA[31:0] Data Bus 31-0 DQMn[3:0] SDRAM Output Enables / Data Masks WRn SRAM Write Strobe RDn SRAM Read/OE Strobe WAITn SRAM Wait Input Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Ethernet Media Access Controller (MAC) Table D. Audio Interfaces Pin Assignment The MAC subsystem is compliant with the ISO/TEC 802.3 topology for a single shared medium with several stations. Multiple MII-compliant PHYs are supported. Features include: • • Supports 1/10/100 Mbps transfer rates for home/small-business/large-business applications Interfaces to an off-chip PHY through industry standard Media Independent Interface (MII) Pin Name Normal Mode I2S on SSP Mode I2S on AC'97 Mode Pin Description Pin Description Pin Description SCLK1 SPI Bit Clock SFRM1 SPI Frame Clock I2S Frame Clock SSPRX1 SPI Serial Input SSPTX1 SPI Serial Output Pin Description SPI Bit Clock SPI Frame Clock I2S Serial Input SPI Serial Input I2S Serial Output SPI Serial Output (No I2S Master Clock) Table C. Ethernet Media Access Controller Pin Assignments Pin Mnemonic I2S Serial Clock ARSTn AC'97 Reset AC'97 Reset I2S Master Clock AC'97 Bit Clock I2S Serial Clock MDC Management Data Clock ABITCLK AC'97 Bit Clock MDIO Management Data I/O ASYNC Receive Clock AC'97 Frame Clock I2S Frame Clock RXCLK AC'97 Frame Clock MIIRXD[3:0] Receive Data ASDI AC'97 Serial Input AC'97 Serial Input I2S Serial Input RXDVAL Receive Data Valid RXERR Receive Data Error ASDO AC'97 Serial Output AC'97 Serial Output I2S Serial Output TXCLK Transmit Clock MIITXD[3:0] Transmit Data TXEN Transmit Enable TXERR Transmit Error CRS Carrier Sense CLD Collision Detect Raster/LCD Interface Serial Interfaces (SPI, I2S and AC ’97) The SPI port can be configured as a master or a slave, supporting the National Semiconductor®, Motorola®, and Texas Instruments® signaling protocols. The Raster/LCD interface provides data and interface signals for a variety of display types. It features fully programmable video interface timing for non-interlaced flat panel or dual scan displays. Resolutions up to 1024 x 768 are supported from a unified SDRAM based frame buffer. A 16-bit PWM provides control for LCD panel contrast. LCD specific features include: • • The AC'97 port supports multiple codecs for multichannel audio output with a single stereo input. The I2S port can be configured to support two channel, 24 bit audio. • These ports are multiplexed so that I2S port 0 will take over either the AC'97 pins or the SPI pins. The second and third I2S ports' serial input and serial output pins are multiplexed with EGPIO[4,5,6,13]. The clocks supplied in the first I2S port are also used for the second and third I2S ports. • • • • • Normal Mode: One SPI Port and one AC’97 Port • I2S on SSP Mode: One AC’97 Port and up to three I2S Ports • I2S on AC’97 Mode: One SPI Port and up to three I2S Ports Note: DS667F2 • Timing and interface signals for digital LCD and TFT displays Full programmability for either non-interlaced or dualscan color and grayscale flat panel displays Dedicated data path to SDRAM controller for improved system performance Pixel depths of 4, 8, 16, or 24 bits per pixel or 256 levels of grayscale Hardware Cursor up to 64 x 64 pixels 256 x 18 Color Lookup Table Hardware Blinking 8-bit interface to low-end panel I2S may not be output on AC’97 and SSP ports at the same time. Copyright 2010 Cirrus Logic (All Rights Reserved) 7 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table E. LCD Interface Pin Assignments Pin Mnemonic Table F. Touch Screen Interface with 12-bit Analog-to-Digital Converter Pin Assignments Pin Description Pin Mnemonic SPCLK Pixel Clock P[17:0] Pixel Data Bus [17:0] HSYNC/LP Horizontal Synchronization/Line Pulse VCSYNC/FP Vertical or Composite Synchronization / Frame Pulse BLANK Composite Blank BRIGHT Pulse Width Modulated Brightness Xp, Xm Pin Description Touch screen ADC X Axis Yp, Ym Touch screen ADC Y Axis SXp, SXm Touch screen ADC X Axis Voltage Feedback SYp, SYm Touch screen ADC Y Axis Voltage Feedback 64-key Keypad Interface Graphics Accelerator The EP9307 contains a hardware graphics acceleration engine that improves graphic performance by handling block copy, block fill and hardware line draw operations. The Graphics Accelerator is used in the system to offload graphics operations from the processor. Pixel depths supported by the Graphics Accelerator are 4, 8, 16 or 24 bits per pixel (bpp). The 24 bits per pixel mode can be operated as packed (4 pixels every 3 words) or unpacked (1 pixel per word with the high byte unused.) The block copy operations of the Graphics Accelerator are similar to a DMA (Direct Memory Access) transfer that understands pixel organization, block width, transparency, and transformation from 1bpp to higher 4, 8, 16 or 24 bpp. The line draw operations also allow for solid lines or dashed lines. The colors for line drawing can be either foreground color and background color or foreground color with the background being transparent. Touch Screen Interface with 12-bit Analogto-digital Converter (ADC) The keypad circuitry scans an 8 x 8 array of 64 normally open, single pole switches. Any one or two keys depressed will be de-bounced and decoded. An interrupt is generated whenever a stable set of depressed keys is detected. If the keypad is not utilized, the 16 column/row pins may be used as general purpose I/O. The Keypad interface: • • • • • Provides scanning, debounce, and decoding for a 64key switch array. Scans an 8-row by 8-column matrix. May decode 2 keys at once. Generates an interrupt when a new stable key is determined. Also generates a 3-key reset interrupt. Table G. 64-Key Keypad Interface Pin Assignments Pin Mnemonic Pin Description Alternative Usage COL[7:0] Key Matrix Column Inputs General Purpose I/O ROW[7:0] Key Matrix Row Inputs General Purpose I/O The touch screen interface performs all sampling, averaging, ADC range checking, and control for a wide variety of analog resistive touch screens. This controller only interrupts the processor when a meaningful change occurs. The touch screen hardware may be disabled and the switch matrix and ADC controlled directly if desired. Features include: • • • 8 Support for 4-, 5-, 7-, or 8-wire analog resistive touch screens. Flexibility - unused lines may be used for temperature sensing or other functions. Touch screen interrupt function. Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Universal Asynchronous Receiver/Transmitters (UARTs) Three 16550-compatible UARTs are supplied. Two provide asynchronous HDLC (High-level Data Link Control) protocol support for full duplex transmit and receive. The HDLC receiver handles framing, address matching, CRC checking, control-octet transparency, and optionally passes the CRC to the host at the end of the packet. The HDLC transmitter handles framing, CRC generation, and control-octet transparency. The host must assemble the frame in memory before transmission. The HDLC receiver and transmitter use the UART FIFOs to buffer the data streams. A third IrDA® compatible UART is also supplied. • • • UART1 supports modem bit rates up to 115.2 kbps, supports HDLC and includes a 16 byte FIFO for receive and a 16 byte FIFO for transmit. Interrupts are generated on Rx, Tx and modem status change. UART2 contains an IrDA encoder operating at either the slow (up to 115 kbps), medium (0.576 or 1.152 Mbps), or fast (4 Mbps) IR data rates. It also has a 16 byte FIFO for receive and a 16 byte FIFO for transmit. UART3 supports HDLC and includes a 16 byte FIFO for receive and a 16 byte FIFO for transmit. Interrupts are generated on Rx and Tx. Triple-port USB Host The USB Open Host Controller Interface (Open HCI) provides full-speed serial communications ports at a baud rate of 12 Mbits/sec. Up to 127 USB devices (printer, mouse, camera, keyboard, etc.) and USB hubs can be connected to the USB host in the USB “tieredstar” topology. This includes the following features: • • • Compliance with the USB 2.0 specification Compliance with the Open HCI Rev 1.0 specification Supports both low-speed (1.5 Mbps) and full-speed (12 Mbps) USB device connections • Root HUB integrated with 3 downstream USB ports • Transceiver buffers integrated, over-current protection on ports • Supports power management • Operates as a master on the bus The Open HCI host controller initializes the master DMA transfer with the AHB bus: • • • • Fetches endpoint descriptors and transfer descriptors Accesses endpoint data from system memory Accesses the HC communication area Writes status and retire transfer descriptor Table H. Universal Asynchronous Receiver / Transmitters Pin Assignments Pin Mnemonic Pin Name - Description Table I. Triple Port USB Host Pin Assignments Pin Mnemonic Pin Name - Description USBp[2:0] USB Positive signals USBm[2:0] USB Negative Signals TXD0 UART1 Transmit RXD0 UART1 Receive CTSn UART1 Clear To Send / Transmit Enable DSRn/DCDn UART1 Data Set Ready / Data Carrier Detect DTRn UART1 Data Terminal Ready RTSn UART1 Ready To Send EGPIO[0]/RI UART1 Ring Indicator TXD1/SIROUT UART2 Transmit / IrDA Output Pin Mnemonic RXD1/SIRIN UART2 Receive / IrDA Input EECLK Two-wire Interface Clock TXD2 UART3 Transmit General Purpose I/O RXD2 UART3 Receive EEDATA Two-wire Interface Data General Purpose I/O TENn HDLC3 Transmit Enable Two-wire Interface Support The two-wire interface provides communication and control for synchronous-serial-driven devices. Table J. Two-Wire Port with EEPROM Support Pin Assignments Pin Name - Description Alternative Usage Internal Boot ROM The Internal 16-kbyte ROM allows booting from FLASH memory, SPI or UART. Consult the EP9307 User’s Guide for operational details. DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 9 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Real-Time Clock with Software Trim The software trim feature on the real time clock (RTC) provides software controlled digital compensation of the 32.768 KHz input clock. This compensation is accurate to ±1.24 sec/month. Note: A real time clock must be connected to RTCXTALI or the EP9307 device will not boot. low level sensitive inputs. GPIO pins programmed as interrupts may be programmed as active high level sensitive, active low level sensitive, rising edge triggered, falling edge triggered, or combined rising/falling edge triggered. • • Table K. Real-Time Clock with Pin Assignments Pin Mnemonic Pin Name - Description RTCXTALI Real-Time Clock Oscillator Input RTCXTALO Real-Time Clock Oscillator Output • • • PLL and Clocking The Processor and the Peripheral Clocks operate from a single 14.7456 MHz crystal. Supports 64 interrupts from a variety of sources (such as UARTs, GPIO, and key matrix) Routes interrupt sources to either the ARM920T’s IRQ or FIQ (Fast IRQ) inputs Three dedicated off-chip interrupt lines operate as active high level sensitive interrupts Any of the 16 GPIO lines maybe configured to generate interrupts Software supported priority mask for all FIQs and IRQs Table M. External Interrupt Controller Pin Assignment Pin Mnemonic The Real Time Clock operates from a 32.768 KHz external oscillator. Table L. PLL and Clocking Pin Assignments Pin Mnemonic Pin Name - Description XTALI Main Oscillator Input XTALO Main Oscillator Output VDD_PLL Main Oscillator Power GND_PLL Main Oscillator Ground Timers The Watchdog Timer ensures proper operation by requiring periodic attention to prevent a reset-on-timeout. Two 16-bit timers operate as free running down-counters or as periodic timers for fixed interval interrupts and have a range of 0.03 ms to 4.27 seconds. One 32-bit timer, plus a 6-bit prescale counter, has a range of 0.03 μs to 73.3 hours. One 40-bit debug timer, plus a 6-bit prescale counter, has a range of 1.0 μs to 12.7 days. Interrupt Controller The interrupt controller allows up to 62 interrupts to generate an Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) signal to the processor core. Thirty-two hardware priority assignments are provided for assisting IRQ vectoring, and two levels are provided for FIQ vectoring. This allows time critical interrupts to be processed in the shortest time possible. Internal interrupts may be programmed as active high or active 10 INT[2:0] Pin Name - Description External Interrupts 2, 1, 0 Dual LED Drivers Two pins are assigned specifically to drive external LEDs. Table N. Dual LED Pin Assignments Pin Mnemonic Pin Name Description GRLED Green LED General Purpose I/O REDLED Red LED General Purpose I/O Alternative Usage General Purpose Input/Output (GPIO) The 14 EGPIO pins may each be configured individually as an output, an input, or an interrupt input. There are 22 pins that may alternatively be used as input, output, or open-drain pins, but do not support interrupts. These pins are: • Key Matrix ROW[7:0], COL[7:0] • Ethernet MDIO • Both LED Outputs • Two-wire Clock and Data • GGPIO[2] • HGPIO[7:2] 6 pins may alternatively be used as inputs only: • CTSn, DSRn/DCDn • 4 Interrupt Lines 2 pins may alternatively be used as outputs only: • RTSn • ARSTn Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table O. General Purpose Input/Output Pin Assignment Pin Mnemonic decrement, or stay at the same value. All DMA addresses are physical, not virtual addresses. Pin Name - Description EGPIO[15] EGPIO[13:0] Expanded General Purpose Input / Output Pins with Interrupts FGPIO[7] FGPIO[5] FGPIO[0] Expanded General Purpose Input / Output Pins with Interrupts Reset and Power Management The chip may be reset through the PRSTn pin or through the open drain common reset pin, RSTOn. Clocks are managed on a peripheral-by-peripheral basis and may be turned off to conserve power. The processor clock is dynamically adjustable from 0 to 200 MHz (184 MHz for industrial conditions). Table P. Reset and Power Management Pin Assignments Pin Mnemonic Pin Name - Description PRSTn Power On Reset RSTOn User Reset In/Out – Open Drain – Preserves Real Time Clock value Hardware Debug Interface The JTAG interface allows use of ARM’s Multi-ICE or other in-circuit emulators. Table Q. Hardware Debug Interface Pin Mnemonic Pin Name - Description TCK JTAG Clock TDI JTAG Data In TDO JTAG Data Out TMS JTAG Test Mode Select TRSTn JTAG Port Reset 12-Channel DMA Controller The DMA module contains 12 separate DMA channels. These may be used for peripheral-to-memory or memory-to-peripheral access. Two of these are dedicated to memory-to-memory transfers. Each DMA channel is connected to the 16-bit DMA request bus. The request bus is a collection of requests, Serial Audio and UARTs. Each DMA channel can be used independently or dedicated to any request signal. For each DMA channel, source and destination addressing can be independently programmed to increment, DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 11 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Electrical Specifications Absolute Maximum Ratings (All grounds = 0 V, all voltages with respect to 0 V) Parameter Power Supplies Total Power Dissipation Symbol Min Max Unit RVDD CVDD VDD_PLL VDD_ADC - 3.96 2.16 2.16 3.96 V V V V - 2 W (Note 1) Input Current per Pin, DC (Except supply pins) - ±10 mA Output current per pin, DC - ±50 mA -0.3 RVDD+0.3 V -40 +125 °C Digital Input voltage (Note 2) Storage temperature Note: 1. Includes all power generated due to AC and/or DC output loading. 2. The power supply pins are at maximum values listed in “Recommended Operating Conditions”, below. WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Recommended Operating Conditions (All grounds = 0 V, all voltages with respect to 0 V) Parameter Symbol Min Typ Max Unit RVDD CVDD VDD_PLL VDD_ADC 3.0 1.71 1.71 3.0 3.3 1.80 1.80 3.3 3.6 1.94 1.94 3.6 V V V V Operating Ambient Temperature - Commercial TA 0 +25 +70 °C Operating Ambient Temperature - Industrial TA -40 +25 +85 °C FCLK - - 200 MHz Processor Clock Speed - Industrial FCLK - - 184 MHz System Clock Speed - Commercial HCLK - - 100 MHz System Clock Speed - Industrial HCLK - - 92 MHz Power Supplies Processor Clock Speed - Commercial 12 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen DC Characteristics (TA = 0 to 70° C; CVDD = VDD_PLL = 1.8; RVDD = 3.3 V; All grounds = 0 V; all voltages with respect to 0 V unless otherwise noted) Parameter High level output voltage Iout = -4 mA Low level output voltage Iout = 4 mA Symbol Min Max Unit Voh 0.85 × RVDD - V Vol - 0.15 × RVDD V (Note 3) High level input voltage (Note 4) Vih 0.65 × RVDD VDD + 0.3 V Low level input voltage (Note 4) Vil −0.3 0.35 × RVDD V High level leakage current Vin = 3.3 V (Note 4) Iih - 10 µA Low level leakage current Vin = 0 (Note 4) Iil - -10 µA Parameter Min Typ Max Unit Power Supply Pins (Outputs Unloaded) Power Supply Current: CVDD/VDD_PLL Total RVDD - 190 45 240 80 mA mA Low-Power Mode Supply Current CVDD/VDD_PLL Total RVDD - 2 1.0 3.5 2 mA mA Note: DS667F2 3. For open drain pins, high level output voltage is dependent on the external load. 4. All inputs that do not include internal pull-ups or pull-downs, must be externally driven for proper operation (See Table S on page 46). If an input is not driven, it should be tied to power or ground, depending on the particular function. If an I/O pin is not driven and programmed as an input, it should be tied to power or ground through its own resistor. Copyright 2010 Cirrus Logic (All Rights Reserved) 13 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Timings Timing Diagram Conventions This data sheet contains one or more timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated. Clock High to Low High/Low to High Bus Change Bus Valid Undefined/Invalid Valid Bus to Tristate Bus/Signal Omission Figure 1. Timing Diagram Drawing Key Timing Conditions Unless specified otherwise, the following conditions are true for all timing measurements. • TA = 0 to 70° C • CVDD = VDD_PLL = 1.8V • RVDD = 3.3 V • All grounds = 0 V • Logic 0 = 0 V, Logic 1 = 3.3 V • Output loading = 50 pF • Timing reference levels = 1.5 V • The Processor Bus Clock (HCLK) is programmable and is set by the user. The frequency is typically between 33 MHz and 100 MHz (92 MHz for industrial conditions). 14 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Memory Interface Figure 2 through Figure 5 define the timings associated with all phases of the SDRAM. The following table contains the values for the timings of each of the SDRAM modes. Parameter Symbol Min Typ Max Unit SDCLK high time tclk_high - (tHCLK) / 2 - ns SDCLK low time tclk_low - (tHCLK) / 2 - ns tclkrf - 2 4 ns SDCLK rise/fall time Signal delay from SDCLK rising edge time td - - 8 ns Signal hold from SDCLK rising edge time th 1 - - ns DQMn delay from SDCLK rising edge time tDQd - - 8 ns DQMn hold from SDCLK rising edge time tDQh 1 - - ns DA valid setup to SDCLK rising edge time tDAs 2 - - ns DA valid hold from SDCLK rising edge time tDAh 3 - - ns SDRAM Load Mode Register Cycle tclk_low tclkrf tclk_high SDCLK td th SDCSn RASn CASn SDWEn DQMn AD OP-Code DA Figure 2. SDRAM Load Mode Register Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 15 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen SDRAM Burst Read Cycle tclk_low tclk_high SDCLK tclkrf td th SDCSn RASn CASn SDWEn tDQh tDQd DQMn CL = 2 tDQh DQMn CL = 3 AD td tDAs DA tDAh n n+1 n+2 n+3 CL = 2 tDAs DA CL = 3 tDAh n n+1 n+2 n+3 Figure 3. SDRAM Burst Read Cycle Timing Measurement 16 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen SDRAM Burst Write Cycle tclk_high tclk_low SDCLK tclkrf td th th SDCSn RASn CASn SDWEn DQMn AD DA n n +1 n+2 n+3 Figure 4. SDRAM Burst Write Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 17 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen SDRAM Auto Refresh Cycle tclk_high tclk_low SDCLK tclkrf td SDCSn th 7 b d e RASn CASn SDWEn Note: Chip select shown as bus to illustrate multiple devices being put into auto refresh in one access Figure 5. SDRAM Auto Refresh Cycle Timing Measurement 18 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Single Word Read Cycle Parameter Symbol Min Typ Max Unit AD setup to CSn assert time tADs 0 - - ns AD hold from CSn deassert time tADh tHCLK - - ns RDn assert time tRDpw - tHCLK × (WST1 + 2) - ns CSn to RDn delay time tRDd - - 3 ns tDQMd - - 1 ns DA setup to RDn deassert time tDAs tHCLK + 12 - - ns DA hold from RDn deassert time tDAh 0 - - ns CSn assert to DQMn assert delay time See “Timing Conditions” on page 14 for definition of HCLK. tADs tADh AD CSn WRn tRDd tRDd RDn DQMn tDQMd tDAs tDAh DA WAIT Figure 6. Static Memory Single Word Read Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 19 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Single Word Write Cycle Parameter Symbol Min Typ Max Unit AD setup to WRn assert time tADs tHCLK -3 - - ns AD hold from WRn deassert time tADh tHCLK × 2 - - ns WRn deassert to CSn deassert time tCSh 7 - - ns CSn to WRn assert delay time tWRd - - 2 ns WRn assert time tWRpw - tHCLK × (WST1 + 1) - ns CSn to DQMn assert delay time tDQMd - - 1 ns WRn deassert to DA transition time tDAh tHCLK - - ns WRn assert to DA valid tDAV - - 8 ns tADs tADh AD tCSh CSn tWRd tWRpw WRn RDn DQMn tDQMd tDAV tDAh DA WAIT Figure 7. Static Memory Single Word Write Cycle Timing Measurement 20 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory 32-bit Read on 8-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to CSn assert time tADs tHCLK - - ns CSn assert to Address transition time tAD1 - tHCLK × (WST1 + 1) - ns Address assert time tAD2 - tHCLK × (WST1 + 1) - ns AD transition to CSn deassert time tAD3 - tHCLK × (WST1 + 2) - ns tADh - ns tHCLK - tRDpwL - tHCLK × (4 × WST1 + 5) - ns tRDd - - 3 ns CSn assert to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA setup to RDn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns AD hold from CSn deassert time RDn assert time CSn to RDn delay time tADs tAD1 tAD2 tAD2 tADh tAD3 AD CSn WRn tRDd tRDd RDn tDQMd DQMn tDAh1 tDAh1 tDAh11 tDAh2 DA tDAs1 tDAs1 tDAs1 tDAs2 WAIT Figure 8. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 21 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory 32-bit Write on 8-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to WRn assert time tADs tHCLK − 3 - - ns WRn/DQMn deassert to AD transition time tADd - - tHCLK + 6 ns AD hold from WRn deassert time tADh tHCLK × 2 - - ns CSn hold from WRn deassert time tCSh 7 - - ns tWRd 2 ns CSn to WRn assert delay time - - WRn assert time tWRpwL - tHCLK × (WST1 + 1) - ns WRn deassert time tWRpwH - tHCLK × 2 (tHCLK × 2) + 14 ns tDQMd - - 1 ns DQMn assert time tDQMpwL - tHCLK × (WST1 + 1) - ns DQMn deassert time tDQMpwH - - (tHCLK × 2) + 7 ns WRn / DQMn deassert to DA transition time tDAh tHCLK - - ns WRn / DQMn assert to DA valid time tDAV - - 8 ns CSn to DQMn assert delay time tADs tADd tADd tADd tADh AD CSn tWRd tWRpwL tWRpwL tCSh tWRpwL WRn tWRpwH tWRpwH tWRpwH RDn tDQMd tDQMpwL tDQMpwL tDQMpwL DQMn tDQMpwH tDAV tDQMpwH tDAV tDQMpwH tDAV tDAV DA tDAh tDAh tDAh tDAh WAIT Figure 9. Static Memory Multiple Word Write 8-bit Cycle Timing Measurement 22 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory 32-bit Read on 16-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to CSn assert time tADs tHCLK - - ns CSn assert to AD transition time tADd1 - tHCLK × (WST1 + 1) - ns AD transition to CSn deassert time tADd2 - tHCLK × (WST1 + 2) - ns AD hold from CSn deassert time tADh tHCLK - - ns tRDpwL - tHCLK × ((2 × WST1) + 3) - ns tRDd - - 3 ns CSn assert to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA to RDn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns RDn assert time CSn to RDn delay time tADs tADd1 tADd2 tADh AD CSn WRn tRDd tRDh tRDpwl RDn DQMn tDQMh tDQMd tDAs1 tDAh1 tDAs2 tDAh2 DA WAIT Figure 10. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 23 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory 32-bit Write on 16-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to WRn assert time tADs tHCLK – 3 - - ns WRn/DQMn deassert to AD transition time tADd - - tHCLK + 6 ns AD hold from WRn deassert time tADh tHCLK × 2 - - ns CSn hold from WRn deassert time tCSh 7 - - ns tWRd CSn to WRn assert delay time - - 2 ns WRn assert time tWRpwL - tHCLK × (WST1 + 1) - ns WRn deassert time tWRpwH - - (tHCLK × 2) + 14 ns tDQMd - - 1 ns DQMn assert time tDQMpwL - tHCLK × (WST1 + 1) - ns DQMn deassert time tDQMpwH - - (tHCLK × 2) + 7 ns WRn / DQMn deassert to DA transition time tDAh1 tHCLK - - ns WRn / DQMn assert to DA valid time tDAV - - 8 ns CSn to DQMn assert delay time tADs tADd tADh AD CSn tWRd tWRpwL WRn tWRpwL tCSh tWRpwH RDn tDQMd tDQpwL DQMn tDQpwL tDQpwH tDAV tDAh tDAV tDAh DA WAIT Figure 11. Static Memory Multiple Word Write 16-bit Cycle Timing Measurement 24 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Burst Read Cycle Parameter Symbol Min Typ Max Unit CSn assert to Address 1 transition time tADd1 - tHCLK × (WST1 + 1) - ns Address assert time tADd2 - tHCLK × (WST2 + 1) - ns AD transition to CSn deassert time tADd3 - tHCLK × (WST1 + 2) - ns AD hold from CSn deassert time tADh tHCLK - - ns tRDd - - 3 ns CSn to RDn delay time CSn to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA setup to CSn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns Note: These characteristics are valid when the Page Mode Enable (Burst Mode) bit is set. See the User's Guide for details. tADs tADd1 tADd2 tADd2 tADh tADd3 AD CSn WRn tRDd RDn DQMn tDQMd tDAh1 tDAh1 tDAh1 tDAh2 DA tDAs1 tDAs1 tDAs1 tDAs2 WAIT Figure 12. Static Memory Burst Read Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 25 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Burst Write Cycle Parameter Symbol Min AD setup to WRn assert time tADs tHCLK − 3 ns AD hold from WRn deassert time tADh tHCLK × 2 ns WRN/DQMn deassert to AD transition time tADd CSn hold from WRn deassert time tCSh CSn to WRn assert delay time tWRd CSn to DQMn assert delay time tDQMd DQMn assert time tDQpwL DQMn deassert time tDQpwH WRn assert time tWRpwL WRn deassert time tWRpwH WRn/DQMn deassert to DA transition time tDAh WRn/DQMn assert to DA valid time tDAv Note: Typ Max Unit tHCLK + 6 ns 7 ns 2 ns 1 ns tHCLK × (WST1 + 1) ns (tHCLK × 2) + 14 ns tHCLK × (WST1 + 11) ns (tHCLK × 2) + 7 ns tHCLK ns 8 ns These characteristics are valid when the Page Mode Enable (Burst Mode) bit is set. See the User's Guide for details. tADs tADd tADh AD CSn tWRpwL WRn tCSh tWRpwH tWRd RD tDQMd tDQpwL DQMn tDQpwH tDAv tDAh DA WAIT Figure 13. Static Memory Burst Write Cycle Timing Measurement 26 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Single Read Wait Cycle Parameter Symbol Min Typ Max Unit CSn assert to WAIT time tWAITd - - tHCLK × (WST1-2) ns WAIT assert time tWAITpw tHCLK × 2 - tHCLK × 510 ns tCSnd tHCLK × 3 - tHCLK × 5 ns WAIT to CSn deassert delay time AD CSn WRn RDn DQMn DA WAIT tWAITd tWAITpw tCSnd Figure 14. Static Memory Single Read Wait Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 27 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Single Write Wait Cycle Parameter Symbol Min Typ Max Unit tWRd tHCLK × 2 - tHCLK × 4 ns CSn assert to WAIT time tWAITd - - tHCLK × (WST1-2) ns WAIT assert time tWAITpw tHCLK × 2 - tHCLK × 510 ns tCSnd tHCLK × 3 - tHCLK × 5 ns WAIT to WRn deassert delay time WAIT to CSn deassert delay time AD CSn tWRd WRn RDn DQMn DA tWAITd tWAITpw tCSnd WAIT Figure 15. Static Memory Single Write Wait Cycle Timing Measurement 28 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Static Memory Turnaround Cycle Parameter CSnX deassert to CSnY assert time Symbol Min Typ Max Unit tBTcyc - tHCLK × (IDCY+1) - ns Notes: 1. X and Y represent any two chip select numbers. 2. IDCY occurs on read-to-write and write-to-read. 3. IDCY is honored when going from a asynchronous device (CSx) to a synchronous device (/SDCSy). tBTcyc AD CSnX CSnY WRn RDn DQMn DA WAIT Figure 16. Static Memory Turnaround Cycle Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 29 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Ethernet MAC Interface Min Parameter Typ Max Symbol 10 Mbit mode 100 Mbit mode 10 Mbit mode 100 Mbit mode 10 Mbit mode 100 Mbit mode Unit TXCLK cycle time tTX_per - - 400 40 - - ns TXCLK high time tTX_high 140 14 200 20 260 26 ns TXCLK low time tTX_low 140 14 200 20 260 26 ns TXCLK to signal transition delay time tTXd 0 0 10 10 25 25 ns TXCLK rise/fall time tTXrf - - - - 5 5 ns RXCLK cycle time tRX_per - - 400 40 - - ns RXCLK high time tRX_high 140 14 200 20 260 26 ns RXCLK low time tRX_low 140 14 200 20 260 26 ns tRXs 10 10 - - - - ns RXDVAL / RXERR hold time tRXh 10 10 - - - - ns RXCLK rise/fall time tRXrf - - - - 5 5 ns RXDVAL / RXERR setup time MDC cycle time tMDC_per - - 400 400 - - ns MDC high time tMDC_high 160 160 - - - - ns MDC low time tMDC_low 160 160 - - - - ns MDC rise/fall time tMDCrf - - - - 5 5 ns MDIO setup time (STA sourced) tMDIOs 10 10 - - - - ns MDIO hold time (STA sourced) tMDIOh 10 10 - - - - ns MDC to MDIO signal transition delay time (PHY sourced) tMDIOd - - - - 300 300 ns STA - Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium. PHY - Ethernet physical layer interface. 30 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen tTX_high tTX_low TXCLK TXD[3:0]/ TXEN/ TXERR tTXd tTX_per tRX_low tRX_high RXCLK tRXh RXD[3:0]/ RXDVAL/ RXERR tRX_per tRXs MDC MDIO (Sourced by STA) tMDC_high tMDC_low tMDIOs tMDIOh tMDC_per MDC MDIO (Sourced by PHY) tMDIOd Figure 17. Ethernet MAC Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 31 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Audio Interface The following table contains the values for the timings of each of the SPI modes. Parameter Symbol Min Typ Max Unit SCLK cycle time tclk_per - tspix_clk - ns SCLK high time tclk_high - (tspix_clk) / 2 - ns SCLK low time tclk_low - (tspix_clk) / 2 - ns SCLK rise/fall time tclkrf 1 - 8 ns Data from master valid delay time tDMd - - 3 ns Data from master setup time tDMs 20 - - ns Data from master hold time tDMh 40 - - ns Data from slave setup time tDSs 20 - - ns Data from slave hold time tDSh 40 - - ns Note: 32 The tspix_clk is programmable by the user. Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Texas Instruments’ Synchronous Serial Format tclk_per tclk_high tclkrf SCLK tclk_low SFRM SSPTXD/ SSPRXD MSB LSB 4 to 16 bits Figure 18. TI Single Transfer Timing Measurement Microwire tclk_high tclk_per tclkrf SCLK tclk_low SFRM SSPTXD LSB MSB 8-bit control SSPRXD 0 MSB LSB 4 to 16 bits output data Figure 19. Microwire Frame Format, Single Transfer DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 33 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Motorola SPI tclk_per tclk_high tclkrf SCLK (SPO=0) tclk_low SCLK (SPO=1) tDMs SSPTXD (master) tDMh MSB LSB tDMd tDSs SSPRXD (slave) tDSh MSB LSB SFRM Figure 20. SPI Format with SPH=1 Timing Measurement 34 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Inter-IC Sound - I2S Parameter Symbol Min Typ Max Unit SCLK cycle time tclk_per - ti2s_clk - ns SCLK high time tclk_high - (ti2s_clk) / 2 - ns SCLK low time tclk_low - (ti2s_clk) / 2 - ns SCLK rise/fall time tclkrf 1 4 8 ns SCLK to LRCLK assert delay time tLRd - - 3 ns Hold between SCLK assert then LRCLK deassert or Hold between LRCLK deassert then SCLK assert tLRh 0 - - ns SDI to SCLK deassert setup time tSDIs 12 - - ns SDI from SCLK deassert hold time tSDIh 0 - - ns SCLK assert to SDO delay time tSDOd - - 9 ns SDO from SCLK assert hold time tSDOh 1 - - ns Note: ti2s_clk is programmable by the user. tclk_per tclk_low tclk_high tclkrf SCLK tLRd tLRh LRCLK tSDIs tSDIh SDI tSDOd tSDOh SDO Figure 21. Inter-IC Sound (I2S) Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 35 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen AC’97 Parameter Symbol Min Typ Max Unit ABITCLK input cycle time tclk_per - 81.4 - ns ABITCLK input high time tclk_high 36 - 45 ns ABITCLK input low time tclk_low ns 36 - 45 tclkrf 2 - 6 ns ASDI setup to ABITCLK falling ts 10 - - ns ASDI hold after ABITCLK falling th 10 - - ns ASDI input rise/fall time trfin 2 - 6 ns ABITCLK rising to ASDO / ASYNC valid, CL = 55 pF tco 2 - 15 ns trfout 2 - 6 ns ABITCLK input rise/fall time ASYNC / ASDO rise/fall time, CL = 55 pF tclk_high tclk_low tclk_per ABITCLK tclkrf tclkrf th ts trfin ASDI ASDO trfout tco tco tco ASYNC trfout trfout Figure 22. AC ‘97 Configuration Timing Measurement 36 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen LCD Interface Parameter Symbol Min Typ Max Unit SPCLK rise/fall time tclkr 2 - 8 ns SPCLK rising edge to control signal transition time tCD - - 3 ns SPCLK rising edge to data transition time tDD - - 10 ns Data valid time tDv tSPCLK - - ns tclkrf tclkrf SPCLK HSYNC/ V_CSYNC/ BLANK/ BRIGHT tCD tDD P [17:0] tDv Figure 23. LCD Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 37 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen ADC Parameter Resolution Comment Value No missing codes Range of 0 to 3.3 V 50K counts (approximate) Integral non-linearity Units 0.01% Offset error ±15 Full scale error mV 0.2% Maximum sample rate ADIV = 0 ADIV = 1 3750 925 Samples per second Samples per second Channel switch settling time ADIV = 0 ADIV = 1 500 2 μs ms 120 μV Noise (RMS) - typical Note: ADIV refers to bit 16 in the KeyTchClkDiv register. ADIV = 0 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 4. ADIV = 1 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 16. 61A8 0000 FFFF 9E58 0 Vref/2 Vref A/D Converter Transfer Function (approximately ±25,000 counts) Figure 24. ADC Transfer Function Using the ADC: This ADC has a state-machine based conversion engine that automates the conversion process. The initiator for a conversion is the read access of the TSXYResult register by the CPU. The data returned from reading this register contains the result as well as the status bit indicating the state of the ADC. However, this peripheral requires a delay between each successful conversion and the issue of the next conversion command, or else the returned value of successive samples may not reflect the analog input. Since the state of the ADC state machine is returned through the same channel used to initiate the conversion process, there must be a delay inserted after every complete conversion. Note that reading TSXYResult during a conversion will not affect the result of the ongoing process. The following is a recommended procedure for safely polling the ADC from software: 1. Read the TSXYResult register into a local variable to initiate a conversion. 2. If the value of bit 31 of the local variable is '0' then repeat step 1. 3. Delay long enough to meet the maximum sample rate as shown above. 4. Mask the local variable with 0xFFFF to remove extraneous data. 5. If signed mode is used, do a sign extend of the lower halfword. 6. Return the sampled value. 38 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen JTAG Parameter Symbol Min Max Units TCK clock period tclk_per 100 - ns TCK clock high time tclk_high 50 - ns TCK clock low time tclk_low 50 - ns TMS / TDI to clock rising setup time tJPs 20 - ns Clock rising to TMS / TDI hold time tJPh 45 - ns JTAG port clock to output tJPco - 30 ns JTAG port high impedance to valid output tJPzx - 30 ns JTAG port valid output to high impedance tJPxz - 30 ns TMS TDI tclk_per tclk_high tJPs tJPh tclk_low TCK tJPzx tJPco tJPxz TDO Figure 25. JTAG Timing Measurement DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 39 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen 272 Pin TFBGA Package Outline 272 TFBGA Diagram Figure 26. 272 Pin TFBGA Diagram D 0.600 REF E1 E D1 e e ddd A A2 c A1 Øb ddd 40 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table R. 272 Pin Diagram Dimensions dimension in mm dimension in inches Symbol MIN NOM MIN NOM MAX A 1.35 1.40 1.45 0.053 0.055 0.057 A1 0.23 0.28 0.33 0.009 0.011 0.013 A2 0.65 0.70 0.75 0.026 0.028 0.030 b 0.35 0.40 0.45 0.014 0.016 0.018 c 0.21 0.26 0.31 0.0083 0.0102 0.0122 D 13.95 14.00 14.05 0.549 0.551 0.553 D3 12.75 12.80 12.85 0.502 0.504 0.506 E 13.95 14.00 14.05 0.549 0.551 0.553 E3 12.75 12.80 12.85 0.502 0.504 0.506 e 0.75 0.80 0.85 0.030 0.031 0.033 ddd Note: MAX 0.10 0.004 1. Controlling Dimension: Millimeter. 2. Primary Datum C and seating plane are defined by the spherical crowns of the solder balls. 3. Dimension b is measured at the maximum solder ball diameter, parallel to Primary Datum C. 4. There shall be a minimum clearance of 0.25 mm between the edge of the solder ball and the body edge. 5. Reference Document: JEDEC MO-151, BAL-2 272 Pin TFBGA Pinout (Bottom View) The following table shows the 272 pin TFBGA pinout. (For better understanding, compare the coordinates on the x and y axis on Figure 27, "272 Pin TFBGA Pinout", on page 42 with Figure 26, "272 Pin TFBGA Diagram", on page 40. • VDD_core is vddc. • VDD_ring is vddr. • GND_core is gndc. • GND_ring is gndr. DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 41 DS667F2 Figure 27. 272 Pin TFBGA Pinout 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 U NC NC P[8] P[4] P[1] DA[6] DA[3] AD[10] DA[0] TDO NC SCLK[1] SSPRX[1] INT[1] RTSn USBm[1] NC U T NC NC V_CSYNC P[7] P[2] DA[7] AD[11] AD[9] DSRn TMS gndr SFRM[1] INT[2] INT[0] USBp[1] NC NC T R P[9] HSYNC P[6] P[5] P[0] AD[14] DA[4] DA[1] DTRn TDI BOOT[0] ASYNC USBm[0] ABITCLK USBp[0] R P SPCLK P[10] P[11] P[3] AD[15] AD[13] AD[12] DA[2] AD[8] TCK BOOT[1] EEDAT GRLED RDLED GGPIO[2] RXD[1] RXD[2] P N P[16] P[15] P[13] P[12] DA[5] vddr vddr vddr vddr EECLK ASDO CTSn RXD[0] TXD[0] TXD[1] TXD[2] N P[17] gndr gndr vddc vddc gndr gndr ROW[6] ROW[4] ROW[1] ROW[0] ROW[3] ROW[2] M gndr ROW[7] ROW[5] PLL_GND XTALI XTALO L gndc vddc COL[4] PLL_VDD COL[2] COL[1] COL[0] K gndc vddc vddr COL[5] COL[6] CSn[0] COL[3] J gndc gndr vddr EGPIO[8] PRSTn COL[7] RSTOn H P[14] M BRIGHT AD[0] L DA[9] AD[2] AD[1] DA[8] BLANK gndr K AD[4] DA[12] DA[10] DA[11] vddr gndr gndc J AD[6] DA[14] AD[7] DA[13] vddr vddc gndc H DA[18] DA[20] DA[19] DA[16] vddr vddc gndc G DQMn[0] CASn DA[21] AD[22] vddr gndr AD[5] gndr gndr gndr vddc vddc gndr DA[15] AD[21] DA[17] vddr vddr vddr MIIRXD[0] DA[28] HGPIO[4] AD[16] MDC MIIRXD[2] F RASn DQMn[1] DQMn[2] SDCSn[1] SDCSn[0] DQMn[3] gndc gndc gndr E SDCSn[2] SDWEN DA[22] AD[3] D SDCSn[3] DA[23] SDCLK DA[24] HGPIO[7] HGPIO[6] C AD[23] DA[26] CSn[3] DA[25] AD[24] AD[19] HGPIO[5] WRn MDIO B AD[25] CSn[2] CSn[6] AD[20] DA[30] AD[18] HGPIO[3] AD[17] RXCLK A CSn[1] CSn[7] SDCLKEN DA[31] DA[29] DA[27] HGPIO[2] RDn 5 6 7 8 1 2 3 4 SSPTX[1] PWMOUT EGPIO[9] EGPIO[10] EGPIO[11] RTCXTALO RTCXTALI EGPIO[7] EGPIO[5] ADC_GND EGPIO[6] sYm sYp F EGPIO[4] EGPIO[3] sXp sXm E RXERR MIITXD[3] EGPIO[12] EGPIO[1] EGPIO[0] Ym Yp D TXCLK MIITXD[0] EGPIO[13] TRSTn Xp Xm C USBp[2] ARSTn ADC_VDD B A TXERR EGPIO[2] CLD MIIRXD[1] MIITXD[2] TXEN FGPIO[5] EGPIO[15] MIIRXD[3] RXDVAL MIITXD[1] CRS FGPIO[7] FGPIO[0] WAITn USBm[2] ASDI 12 13 14 15 16 17 9 10 G 11 42 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Copyright 2010 Cirrus Logic (All Rights Reserved) 1 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Pin List The following Thin-profile Fine-pitch Ball Grid Array (TFBGA) ball assignment table is sorted in order of ball. Ball Signal Ball Signal Ball Signal Ball Signal A1 CSn[1] E1 SDCSn[2] J10 gndc P1 SPCLK A2 CSn[7] E2 SDWEN J12 vddc P2 P[10] A3 SDCLKEN E3 DA[22] J13 vddr P3 P[11] A4 DA[31] E4 AD[3] J14 COL[5] P4 P[3] A5 DA[29] E5 DA[15] J15 COL[6] P5 AD[15] A6 DA[27] E6 AD[21] J16 CSn[0] P6 AD[13] A7 HGPIO[2] E7 DA[17] J17 COL[3] P7 AD[12] A8 RDn E8 vddr K1 AD[4] P8 DA[2] A9 MIIRXD[3] E9 vddr K2 DA[12] P9 AD[8] A10 RXDVAL E10 vddr K3 DA[10] P10 TCK A11 MIITXD[1] E11 MIIRXD[0] K4 DA[11] P11 BOOT[1] A12 CRS E12 TXERR K5 vddr P12 EEDAT A13 FGPIO[7] E13 EGPIO[2] K6 gndr P13 GRLED A14 FGPIO[0] E14 EGPIO[4] K8 gndc P14 RDLED A15 WAITn E15 EGPIO[3] K9 gndc P15 GGPIO[2] A16 USBm[2] E16 sXp K10 gndc P16 RXD[1] A17 ASDI E17 sXm K12 vddc P17 RXD[2] B1 AD[25] F1 RASn K13 COL[4] R1 P[9] B2 CSn[2] F2 SDCSn[1] K14 PLL_VDD R2 HSYNC B3 CSn[6] F3 SDCSn[0] K15 COL[2] R3 P[6] B4 AD[20] F4 DQMn[3] K16 COL[1] R4 P[5] B5 DA[30] F5 AD[5] K17 COL[0] R5 P[0] B6 AD[18] F6 gndr L1 DA[9] R6 AD[14] B7 HGPIO[3] F7 gndr L2 AD[2] R7 DA[4] B8 AD[17] F8 gndr L3 AD[1] R8 DA[1] B9 RXCLK F9 vddc L4 DA[8] R9 DTRn B10 MIIRXD[1] F10 vddc L5 BLANK R10 TDI B11 MIITXD[2] F11 gndr L6 gndr R11 BOOT[0] B12 TXEN F12 EGPIO[7] L12 gndr R12 ASYNC B13 FGPIO[5] F13 EGPIO[5] L13 ROW[7] R13 SSPTX[1] B14 EGPIO[15] F14 ADC_GND L14 ROW[5] R14 PWMOUT B15 USBp[2] F15 EGPIO[6] L15 PLL_GND R15 USBm[0] B16 ARSTn F16 sYm L16 XTALI R16 ABITCLK B17 ADC_VDD F17 sYp L17 XTALO R17 USBp[0] C1 AD[23] G1 DQMn[0] M1 BRIGHT T1 NC C2 DA[26] G2 CASn M2 AD[0] T2 NC C3 CSn[3] G3 DA[21] M3 DQMn[1] T3 V_CSYNC C4 DA[25] G4 AD[22] M4 DQMn[2] T4 P[7] C5 AD[24] G5 vddr M5 P[17] T5 P[2] C6 AD[19] G6 gndr M6 gndr T6 DA[7] C7 HGPIO[5] G12 gndr M7 gndr T7 AD[11] C8 WRn G13 EGPIO[9] M8 vddc T8 AD[9] DS667F2 Copyright 2010 Cirrus Logic (All Rights Reserved) 43 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen 44 Ball Signal Ball Signal Ball Signal Ball Signal C9 MDIO G14 EGPIO[10] M9 vddc T9 DSRn C10 MIIRXD[2] G15 EGPIO[11] M10 gndr T10 TMS C11 TXCLK G16 RTCXTALO M11 gndr T11 gndr C12 MIITXD[0] G17 RTCXTALI M12 ROW[6] T12 SFRM[1] C13 CLD H1 DA[18] M13 ROW[4] T13 INT[2] C14 EGPIO[13] H2 DA[20] M14 ROW[1] T14 INT[0] C15 TRSTn H3 DA[19] M15 ROW[0] T15 USBp[1] C16 Xp H4 DA[16] M16 ROW[3] T16 NC C17 Xm H5 vddr M17 ROW[2] T17 NC D1 SDCSn[3] H6 vddc N1 P[14] U1 NC D2 DA[23] H8 gndc N2 P[16] U2 NC D3 SDCLK H9 gndc N3 P[15] U3 P[8] D4 DA[24] H10 gndc N4 P[13] U4 P[4] D5 HGPIO[7] H12 gndr N5 P[12] U5 P[1] D6 HGPIO[6] H13 vddr N6 DA[5] U6 DA[6] D7 DA[28] H14 EGPIO[8] N7 vddr U7 DA[3] D8 HGPIO[4] H15 PRSTn N8 vddr U8 AD[10] D9 AD[16] H16 COL[7] N9 vddr U9 DA[0] D10 MDC H17 RSTOn N10 vddr U10 TDO D11 RXERR J1 AD[6] N11 EECLK U11 NC D12 MIITXD[3] J2 DA[14] N12 ASDO U12 SCLK[1] D13 EGPIO[12] J3 AD[7] N13 CTSn U13 SSPRX[1] D14 EGPIO[1] J4 DA[13] N14 RXD[0] U14 INT[1] D15 EGPIO[0] J5 vddr N15 TXD[0] U15 RTSn D16 Ym J6 vddc N16 TXD[1] U16 USBm[1] D17 Yp J8 gndc N17 TXD[2] U17 NC Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen The following section focuses on the EP9307 pin signals from two viewpoints - the pin usage and pad characteristics, and the pin multiplexing usage. The first table (Table S) is a summary of all the EP9307 pin signals. The second table (Table T) illustrates the pin signal multiplexing and configuration options. Table S is a summary of the EP9307 pin signals, which illustrates the pad type and pad pull type (if any). The symbols used in the table are defined as follows. (Note: A blank box means Not Applicable (NA) or, for Pull Type, No Pull (NP).) Under the Pad Type column: • A - Analog pad • P - Power pad • G - Ground pad • I - Pin is an input only • I/O - Pin is input/output • 4mA - Pin is a 4mA output driver • 8mA - Pin is an 8mA output driver • 12mA - Pin is an 12mA output driver See the text description for additional information about bi-directional pins. Under the Pull Type Column: • • DS667F2 PU - Resistor is a pull up to the RVDD supply PD - Resistor is a pull down to the RGND supply Copyright 2010 Cirrus Logic (All Rights Reserved) 45 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table S. Pin Descriptions (Continued) . Table S. Pin Descriptions Pin Name TCK Block Pad Type Pull Type JTAG I PD TDI JTAG I PD TDO JTAG 4ma - TMS TRSTn BOOT[1:0] XTALI JTAG I PD I PD JTAG reset I PD Boot mode select in PLL A - Main oscillator input PLL A - Main oscillator output PLL P - Main oscillator power, 1.8V GND_PLL PLL G - Main oscillator ground RTCXTALI RTC A - RTC oscillator input RTC A - RTC oscillator output EBUS 4ma - SRAM Write strobe out 4ma - WAITn EBUS I PU EBUS 8ma - Shared Address bus out EBUS 8ma PU Shared Data bus in/out CSn[3:0] EBUS 4ma PU Chip select out CSn[7:6] EBUS 4ma PU Chip select out 8ma - SDRAM 8ma - SDRAM clock out SDCLKEN SDRAM 8ma - SDRAM clock enable out SDCSn[3:0] SDRAM 4ma - SDRAM chip selects out SDRAM 8ma - Data Terminal Ready output - Ready to send TXD1 UART2 4ma - Transmit/IrDA output RXD1 UART2 I PU TXD2 UART3 4ma - Transmit RXD2 UART3 I PU Receive PU Management data input/output Receive/IrDA input MDC EMAC 4ma MDIO EMAC 4ma Management data clock RXCLK EMAC I PD Receive clock in MIIRXD[3:0] EMAC I PD Receive data in RXDVAL EMAC I PD Receive data valid RXERR EMAC I PD Receive data error TXCLK EMAC 4ma PU Transmit clock in MIITXD[3:0] EMAC I PD Transmit data out TXEN EMAC 4ma PD Transmit enable TXERR EMAC 4ma PD Transmit error CRS EMAC I PD Carrier sense CLD EMAC I PU Collision detect GRLED LED 12ma - RDLED LED 12ma - Green LED EECLK EEPROM 4ma PU EEPROM/Two-wire Interface clock EEDAT EEPROM 4ma PU EEPROM/Two-wire Interface data ABITCLK AC97 8ma PD AC97 bit clock ASYNC AC97 8ma PD AC97 frame sync ASDI AC97 I PD AC97 Primary input ASDO AC97 8ma PU AC97 output ARSTn AC97 8ma - AC97 reset SCLK1 SPI1 8ma PD SPI bit clock SFRM1 SPI1 8ma PD SPI Frame Clock SSPRX1 SPI1 I PD SPI input Red LED Shared data mask out SDCLK RASn - 4ma SRAM Wait in DA[31:0] EBUS 4ma UART1 SRAM Read/OE strobe out AD[25:0] DQMn[3:0] UART1 RTSn JTAG test mode select JTAG EBUS DTRn Description JTAG data out System RDn Pull Type JTAG data in VDD_PLL WRn Pad Type JTAG clock in XTALO RTCXTALO Block Pin Name Description SDRAM RAS out CASn SDRAM 8ma - SDRAM CAS out SDWEn SDRAM 8ma - SDRAM write enable out P[17:0] Raster 4ma PU Pixel data bus out SPCLK Raster 12ma PU Pixel clock in/out HSYNC Raster 8ma PU Horizontal synchronization/ line pulse out V_CSYNC Raster 8ma PU Vertical or composite synchronization/frame pulse out SSPTX1 SPI1 8ma - BLANK Raster 8ma PU Composite blanking signal out INT[2:0] INT I PD External interrupts BRIGHT Raster 4ma - PWM brightness control out PRSTn Syscon I PU Power on reset PWMOUT PWM 8ma Pulse width modulator output RSTOn Syscon 4ma - SPI output User Reset in out - open drain Xp, Xm ADC A - Touchscreen ADC X axis EGPIO[15] GPIO I/O, 4ma PU Enhanced GPIO Yp, Ym ADC A - Touchscreen ADC Y axis EGPIO[13:0] GPIO I/O, 4ma PU Enhanced GPIO sXp, sXm ADC A - Touchscreen ADC X axis feedback FGPIO[7, 5, 0] GPIO I/O, 8ma PU GPIO GPIO I/O, 8ma PU GPIO sYp, sYm ADC A - Touchscreen ADC Y axis feedback GGPIO[2] VDD_ADC ADC P - Touchscreen ADC power, 3.3V HGPIO[7:2] GPIO I/O, 8ma PU GND_ADC ADC G - Touchscreen ADC ground vddc Power P - COL[7:0] Key 8ma PU Key matrix column inputs vddr Power P - Digital power, 3.3V Ground G - Digital ground Ground G - Digital ground ROW[7:0] Key 8ma PU Key matrix row outputs gndc USBp[2:0] USB A - USB positive signals gndr USBm[2:0] USB A - USB negative signals TXD0 UART1 4ma - Transmit out RXD0 UART1 I PU Receive in CTSn UART1 I PU Clear to send/transmit enable DSRn UART1 I PU Data set ready/Data Carrier Detect 46 Copyright 2010 Cirrus Logic (All Rights Reserved) GPIO Digital power, 1.8V DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Table T illustrates the pin signal multiplexing and configuration options. Table T. Pin Multiplex Usage Information DS667F2 Physical Pin Name Description Multiplex signal name COL[7:0] GPIO GPIO Port D[7:0] ROW[7:0] GPIO GPIO Port C[7:0] EGPIO[0] Ring Indicator Input RI EGPIO[1] 1Hz clock monitor CLK1HZ EGPIO[2] DMA request DMARQ EGPIO[3] HDLC Clock HDLCCLK1 EGPIO[4] I2S Transmit Data 1 SDO1 EGPIO[5] I2S Receive Data 1 SDI1 EGPIO[6] I2S Transmit Data 2 SDO2 EGPIO[7] DMA Request 0 DREQ0 EGPIO[8] DMA Acknowledge 0 DACK0 EGPIO[9] DMA EOT 0 DEOT0 EGPIO[10] DMA Request 1 DREQ1 EGPIO[11] DMA Acknowledge 1 DACK1 EGPIO[12] DMA EOT 1 DEOT1 EGPIO[13] I2S Receive Data 2 SDI2 EGPIO[15] Device active / present DASP ABITCLK I2S Serial clock SCLK ASYNC I2S Frame Clock LRCK ASDO I2S Transmit Data 0 SDO0 ASDI I2S Receive Data 0 SDI0 ARSTn I2S Master clock MCLK SCLK1 I2S Serial clock SCLK SFRM1 I2S Frame Clock LRCK SSPTX1 I2S Transmit Data 0 SDO0 SSPRX1 I2S Receive Data 0 SDI0 Copyright 2010 Cirrus Logic (All Rights Reserved) 47 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Acronyms and Abbreviations The following tables list abbreviations and acronyms used in this data sheet. Term Term Definition OHCI Open Host Controller Interface PHY Ethernet PHYsical layer interface PIO Programmed I/O RISC Reduced Instruction Set Computer SDMI Secure Digital Music Initiative SDRAM Synchronous Dynamic RAM SPI Serial Peripheral Interface SRAM Static Random Access Memory STA Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium TFT Thin Film Transistor TLB Translation Lookaside Buffer USB Universal Serial Bus Definition ADC Analog-to-Digital Converter ALT Alternative AMBA Advanced Micro-controller Bus Architecture ATAPI ATA Packet Interface CODEC COder / DECoder CRC Cyclic Redundancy Check DAC Digital-to-Analog Converter DMA Direct-Memory Access EBUS External Memory Bus EEPROM Electronically Erasable Programmable Read Only Memory EMAC Ethernet Media Access Controller FIFO First In / First Out FIQ Fast Interrupt Request FLASH Flash memory GPIO General Purpose I/O HDLC High-level Data Link Control I/F Units of Measurement Symbol Unit of Measure °C degree Celsius Hz Hertz = cycle per second Kbps Kilobits per second Interface kbyte Kilobyte I2S Inter-IC Sound kHz KiloHertz = 1000 Hz IC Integrated Circuit Mbps Megabits per second ICE In-Circuit Emulator MHz MegaHertz = 1,000 kHz IDE Integrated Drive Electronics μA microAmpere = 10-6 Ampere IEEE Institute of Electronics and Electrical Engineers μs microsecond = 1,000 nanoseconds = 10-6 seconds IrDA Infrared Data Association mA milliAmpere = 10-3 Ampere IRQ Standard Interrupt Request ms millisecond = 1,000 microseconds = 10-3 seconds ISO International Standards Organization mW milliWatt = 10-3 Watts JTAG Joint Test Action Group ns nanosecond = 10-9 seconds LFSR Linear Feedback Shift Register pF picoFarad = 10-12 Farads MII Media Independent Interface V Volt W Watt MMU Memory Management Unit 48 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen ORDERING INFORMATION The order numbers for the device are: EP9307-CRZ EP9307-IRZ 0°C to +70°C -40°C to +85°C 272 pin TFBGA 272 pin TFBGA Lead Free Lead Free EP9307 — CRZ Lead Material: Z = Lead Free Part Number Product Line: Embedded Processor Note: DS667F2 Package Type: R = 272 pin TFBGA Temperature Range: C = Commercial E = Extended Operating Version I = Industrial Operating Version Go to the Cirrus Logic Internet site at http://www.cirrus.com to find contact information for your local sales representative. Copyright 2010 Cirrus Logic (All Rights Reserved) 49 EP9307 ARM9 SOC with Ethernet, USB, Display and Touchscreen Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, MaverickCrunch, MaverickKey, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. Microsoft and Windows are registered trademarks of Microsoft Corporation. Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp. Texas Instruments is a registered trademark of Texas Instruments, Inc. Motorola and SPI are registered trademarks of Motorola, Inc. LINUX is a registered trademark of Linus Torvalds. 50 Copyright 2010 Cirrus Logic (All Rights Reserved) DS667F2
EP9307-IR 价格&库存

很抱歉,暂时无法提供与“EP9307-IR”相匹配的价格&库存,您可以联系我们找货

免费人工找货