0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY3210-28XXX

CY3210-28XXX

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

  • 描述:

    CY8C28 系列 PSoC® 仿真头

  • 数据手册
  • 价格&库存
CY3210-28XXX 数据手册
Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Programmable System-on-Chip CY8C28243/CY8C284xx/CY8C285xx/CY8C286xx, Programmable System-on-Chip Features ■ ■ ■ ■ ■ ■ 25 mA sink, 10 mA drive on all GPIOs Pull-up, pull-down, high Z, strong, or open-drain drive modes on all GPIOs ❐ Analog input on all GPIOs ❐ 30 mA analog outputs on GPIOs ❐ Configurable interrupt on all GPIOs ❐ ❐ Varied resource options within one PSoC® (Programmable System-on-Chip) device group Powerful Harvard-architecture processor ❐ M8C processor speeds up to 24 MHz ❐ 8 × 8 Multiply, 32-bit accumulate ❐ Low power at high speed ❐ Operating voltage: 3.0 V to 5.25 V ❐ Operating voltages down to 1.5 V Using on-chip switched mode pump (SMP) ❐ Industrial temperature range: –40 °C to +85 °C Advanced reconfigurable peripherals (PSoC Blocks) ❐ Up to 12 rail-to-rail analog PSoC blocks provide: • Up to 14-bit ADCs • Up to 9-bit DACs • Programmable gain amplifiers • Programmable filters and comparators • Multiple ADC configurations • Dedicated SAR ADC, up to 142 ksps with sample and hold • Up to 4 synchronized or independent delta-sigma ADCs for advanced applications ❐ Up to four limited type E analog blocks provide: • Dual channel capacitive sensing capability • Comparators with programmable DAC reference • Up to 10-bit single-slope ADCs ❐ Up to 12 digital PSoC blocks provide: • 8- to 32-bit timers and counters, 8- and 16-bit pulse-width modulators (PWMs) • Shift register, CRC, and PRS modules • Up to 3 full-duplex UARTs • Up to 6 half-duplex UARTs • Multiple variable data length SPI masters or slaves • Connectable to all GPIOs ❐ Complex peripherals by combining blocks ■ Additional system resources 2 ❐ Up to two hardware I C resources • Each resource implements slave, master, or multi-master modes • Operation between 0 and 400 kHz ❐ Watchdog and Sleep timers ❐ User-configurable low voltage detection ❐ Flexible internal voltage references ❐ Integrated supervisory circuit ❐ On-chip precision voltage reference ■ Complete development tools TM ❐ Free development software (PSoC Designer ) ❐ Full featured in-circuit emulator, and programmer ❐ Full speed emulation ❐ Flexible and functional breakpoint structure ❐ 128 KB trace memory Logic Block Diagram Port 5 Port 4 Port 3 Port 2 Port 1 Port 0 PSoC CORE System Bus Global Digital Interconnect SRAM 1K SROM Global Analog Interconnect Flash 16K CPU Core (M8C) Interrupt Controller Sleep and Watchdog Multiple Clock Sources (Includes IMO, ILO, PLL, and ECO) Precision, programmable clocking ❐ Internal ±2.5% 24/48 MHz main oscillator ❐ Optional 32.768 kHz crystal for precise on-chip clocks ❐ Optional external oscillator, up to 24 MHz ❐ Internal low speed, low power oscillator for watchdog and sleep functionality Flexible on-chip memory ❐ 16 KB flash program storage 50,000 erase/write cycles ❐ 1-KB SRAM data storage ❐ In-system serial programming (ISSP) ❐ Partial flash updates ❐ Flexible protection modes ❐ EEPROM emulation in flash Analog Drivers DIGITAL SYSTEM Analog Block Array Digital Block Array Digital Clocks Programmable pin configurations 2 MACs ANALOG SYSTEM 4 Type 2 2 I2C Decimators Blocks POR and LVD System Resets Analog Ref. Analog Input Muxing Internal Voltage Ref. Switch Mode Pump SYSTEM RESOURCES Errata: For information on silicon errata, see “Errata” on page 82. Details include trigger conditions, devices affected, and proposed workaround. Cypress Semiconductor Corporation Document Number: 001-48111 Rev. *Q • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised December 23, 2020 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx More Information Note: For CY8C28xxx devices related Development Kits please click here. Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article “How to Design with PSoC® 1, PowerPSoC®, and PLC – KBA88292”. Following is an abbreviated list for PSoC 1: The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug. ■ Overview: PSoC Portfolio, PSoC Roadmap ■ Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP ■ In addition, PSoC Designer includes a device selection tool. Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are: ® ❐ Getting Started with PSoC 1 – AN75320. ® ❐ PSoC 1 - Getting Started with GPIO – AN2094. ® ❐ PSoC 1 Analog Structure and Configuration – AN74170. ® ❐ PSoC 1 Switched Capacitor Analog Blocks – AN2041. ❐ Selecting Analog Ground and Reference – AN2219. Note: For CY8C28xxx devices related application note please click here. ■ ■ Development Kits: ❐ CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space. ❐ CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support. PSoC Designer PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. Note: This is not the default view. 1. Global Resources – all device hardware settings. 2. Parameters – the parameters of the currently selected User Modules. 3. Pinout – information related to device pins. 4. Chip-Level Editor – a diagram of the resources available on the selected chip. 5. Datasheet – the datasheet for the currently selected UM 6. User Modules – all available User Modules for the selected device. 7. Device Resource Meter – device resource usage for the current project configuration. 8. Workspace – a tree level diagram of files associated with the project. 9. Output – output from project build and debug operations. Note: For detailed information on PSoC Designer, go to PSoC® Designer > Help > Documentation > Designer Specific Documents > IDE User Guide. Figure 1. PSoC Designer Layout Document Number: 001-48111 Rev. *Q Page 2 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Contents PSoC Functional Overview .............................................. 4 The PSoC Core ........................................................... 4 The Digital System ...................................................... 4 The Analog System ..................................................... 5 System Resources ...................................................... 8 PSoC Device Characteristics ...................................... 8 Development Tools ........................................................ 10 PSoC Designer Software Subsystems ...................... 10 Designing with PSoC Designer ..................................... 11 Select User Modules ................................................. 11 Configure User Modules ............................................ 11 Organize and Connect .............................................. 11 Generate, Verify, and Debug ..................................... 11 Pinouts ............................................................................ 12 20-pin Part Pinout ...................................................... 12 28-pin Part Pinout ...................................................... 13 44-pin Part Pinout ...................................................... 14 48-pin Part Pinout ...................................................... 15 56-pin Part Pinout ...................................................... 16 Register Reference ......................................................... 18 Register Conventions ................................................ 18 Register Mapping Tables .......................................... 18 Electrical Specifications ................................................ 33 Absolute Maximum Ratings ....................................... 34 Operating Temperature ............................................. 34 DC Electrical Characteristics ..................................... 35 AC Electrical Characteristics ..................................... 55 Packaging Information ................................................... 68 Packaging Dimensions .............................................. 68 Thermal Impedances ................................................. 72 Capacitance on Crystal Pins ..................................... 72 Solder Reflow Specifications ..................................... 72 Document Number: 001-48111 Rev. *Q Development Tool Selection ......................................... 73 Software .................................................................... 73 Development Kits ...................................................... 73 Evaluation Tools ........................................................ 73 Device Programmers ................................................. 74 Accessories (Emulation and Programming) .............. 74 Ordering Information ...................................................... 75 Ordering Code Definitions ......................................... 75 Acronyms ........................................................................ 76 Acronyms Used ......................................................... 76 Reference Documents .................................................... 76 Document Conventions ................................................. 77 Units of Measure ....................................................... 77 Numeric Conventions ................................................ 77 Glossary .......................................................................... 77 Errata ............................................................................... 82 Part Numbers Affected .............................................. 82 Qualification Status ................................................... 82 Errata Summary ........................................................ 82 Document History Page ................................................. 84 Sales, Solutions, and Legal Information ...................... 86 Worldwide Sales and Design Support ....................... 86 Products .................................................................... 86 PSoC® Solutions ....................................................... 86 Cypress Developer Community ................................. 86 Technical Support ..................................................... 86 Page 3 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx PSoC Functional Overview The Digital System The PSoC family consists of many devices with On-Chip Controllers. These devices are designed to replace multiple traditional MCU based system components with one low cost single chip programmable component. A PSoC device includes configurable analog blocks, digital blocks, and interconnections. This architecture enables the user to create customized peripheral configurations to match the requirements of each individual application. In addition, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages. The Digital System is composed of up to 12 configurable digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to create 8, 16, 24, and 32-bit peripherals, which are called user modules. The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. Figure 2. Digital System Block Diagram[1] Port 5 DIGITAL SYSTEM Row Input Configuration DBC00 DBC01 DCC02 4 DCC03 4 Row Output Configuration 8 8 Row Input Configuration DBC20 DBC11 DCC12 4 DCC13 4 Row 2 DBC21 DCC22 4 DCC23 4 GIE[7:0] GIO[7:0] Global Digital Interconnect 8 Row Output Configuration DBC10 Row Input Configuration Row 1 Row Output Configuration PSoC GPIOs provide connections to the CPU, and digital and analog resources. Each pin’s drive mode may be selected from 8 options, which allows great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read. Row 0 8 The PSoC Core Memory encompasses 16K bytes of Flash for program storage, 1K bytes of SRAM for data storage. The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and watch dog timer (WDT). The 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. To System Bus To Analog System Digital PSoC Block Array The architecture for this specific PSoC device family, as shown in the Logic Block Diagram on page 1, consists of four main areas: PSoC Core, Digital System, Analog System, and System Resources. The configurable global bus system allows all the device resources to be combined into a complete custom system. PSoC CY8C28xxx family devices have up to six I/O ports that connect to the global digital and analog interconnects, providing access to up to 12 digital blocks and up to 16 analog blocks. The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general Purpose I/O (GPIO). The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microcontroller. Port 0 Port 2 Digital Clocks From Core The CY8C28xxx group of PSoC devices described in this datasheet have multiple resource configuration options available. Therefore, not every resource mentioned in this datasheet is available for each CY8C28xxx subgroup. The CY8C28x45 subgroup has a full feature set of all resources described. There are six more segmented subgroups that allow designers to use a device with only the resources and functionality necessary for a specific application. See Table 2 on page 9 to determine the resources available for each CY8C28xxx subgroup. The same information is also presented in more detail in the Ordering Information section. Port 1 Port 3 Port 4 GOE[7:0] GOO[7:0] Digital peripheral configurations include: ■ PWMs (8- and 16-bit, One-shot and Multi-shot capability) ■ PWMs with Dead band/Kill (8- and 16-bit) ■ Counters (8 to 32 bit) ■ Timers (8 to 32 bit) ■ Full-duplex 8-bit UARTs (up to 3) with selectable parity ■ Half-duplex 8-bit UARTs (up to 6) with selectable parity ■ Variable length SPI slave and master ❐ Up to 6 total slaves and masters (8-bit) ❐ Supports 8 to 16 bit operation ■ I2C slave, master, or multi-master (up to 2 available as System Resources) ■ IrDA (up to 3) ■ Pseudo Random Sequence Generators (8 to 32 bit) ■ Cyclical Redundancy Checker/Generator (16 bit) ■ Shift Register (2 to 32 bit) Note 1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight total digital blocks. Document Number: 001-48111 Rev. *Q Page 4 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Some of the more common PSoC analog functions (most available as user modules) are: ■ Analog-to-digital converters (6 to 14-bit resolution, up to 4, selectable as Incremental or Delta-Sigma) All GPIO P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0] AGNDIn RefIn The Analog System is composed of up to 16 configurable analog blocks, each containing an opamp circuit that allows the creation of complex analog signal flows. Some devices in this PSoC family have an analog multiplex bus that can connect to every GPIO pin. This bus can also connect to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing. Figure 3. Analog System Block Diagram for CY8C28x45 and CY8C28x52 Devices P2[3] Analog Mux Bus The Analog System P2[1] P2[6] P2[4] P2[2] ■ Dedicated 10-bit SAR ADC with sample rates up to 142 ksps ■ Synchronized, simultaneous Delta-Sigma ADCs (up to 4) ■ Filters (2 to 8 pole band-pass, low pass, and notch) ■ Amplifiers (up to 4, with selectable gain to 48x) ■ Instrumentation amplifiers (up to 2, with selectable gain to 93x) ■ Comparators (up to 6, with 16 selectable thresholds) ■ DACs (up to 4, with 6 to 9-bit resolution) ■ Multiplying DACs (up to 4, with 6 to 9-bit resolution) ACC00 ACC01 ACC02 ACC03 ■ High current output drivers (up to 4 with 30 mA drive) ASC10 ASD11 ASC12 ASD13 ■ 1.3-V reference (as a System Resource) ASD20 ASC21 ASD22 ASC23 ■ DTMF Dialer ■ Modulators ■ Correlators ■ Peak detectors ■ Many other topologies possible P2[0] Array Input Configuration ACI0[1:0] ACI1[1:0] ACI2[1:0] ACI3[1:0] ACI4[1:0] ACI5[1:0] Block Array ACE00 ACE01 ASE10 ASE11 Analog Reference Interface to Digital System RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *Q Page 5 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Figure 4. Analog System Block Diagram for CY8C28x43 Devices Figure 5. Analog System Block Diagram for CY8C28x33 Devices All GPIO All GPIO P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0] P0[7] P0[5] P2[1] P0[4] P0[1] P0[2] P2[3] P2[1] P2[4] P0[0] AGNDIn RefIn Analog Mux Bus P2[3] P2[6] P0[3] Analog Mux Bus AGNDIn RefIn P0[6] P2[2] P2[0] P2[6] P2[4] Array Input Configuration Array Input Configuration ACI0[1:0] ACI0[1:0] ACI1[1:0] ACI2[1:0] ACI1[1:0] ACI4[1:0] ACI5[1:0] ACI3[1:0] Block Array ACC00 ACC01 Block Array ACC00 ACC01 ACC02 ACC03 ASC10 ASD11 ASC10 ASD11 ASC12 ASD13 ASD20 ASC21 ASD20 ASC21 ASD22 ASC23 ACE00 ACE01 ASE10 ASE11 Analog Reference Interface to Digital System Analog Reference Interface to Digital System RefHi RefLo AGND Reference Generators RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *Q Page 6 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Figure 6. Analog System Block Diagram for CY8C28x23 Devices Figure 7. Analog System Block Diagram for CY8C28x13 Devices P0[7] All GPIO P0[5] P0[6] P0[4] P0[1] P0[6] Analog Mux Bus P0[7] P0[3] P0[5] P0[4] P0[2] P2[3] P0[0] AGNDIn RefIn P2[1] P0[3] P0[2] P0[1] P0[0] P2[6] Array Input Configuration P2[4] ACI0[1:0] ACI1[1:0] Array Input Configuration ACI0[1:0] Block Array ACI1[1:0] Block Array ACC00 ACC01 ASC10 ASD11 ASD20 ASC21 RefHi RefLo AGND Reference Generators ACE01 ASE10 ASE11 Analog Reference Interface to Digital System Analog Reference Interface to Digital System ACE00 RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *Q Page 7 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx System Resources System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, multiple decimators, switch mode pump, low voltage detection, and power on reset. Statements describing the merits of each system resource follow: ■ Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers. ■ Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters. ■ Up to four decimators provide custom hardware filters for digital signal processing applications such as Delta-Sigma ADCs and CapSense capacitive sensor measurement. ■ Up to two I2C resources provide 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported. I2C resources have hardware address detection capability. ■ Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor. ■ An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs. ■ An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.5 V battery cell, providing a low cost boost converter. PSoC Device Characteristics Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table. Table 1. PSoC Device Characteristics PSoC Part Number Digital I/O CY8C29x66 up to 64 CY8C28xxx up to 44 CY8C27x43 up to 44 CY8C24x94 CY8C24x23A Digital Rows Digital Blocks Analog Inputs Analog Outputs 4 16 up to 12 4 up to 3 up to 12 up to 44 up to 4 2 8 up to 12 4 up to 56 1 4 up to 48 up to 24 1 4 up to 12 Analog Columns Analog Blocks SRAM Size Flash Size 4 12 2K 32 K up to 6 up to 12 + 4[2] 1K 16 K 4 12 256 16 K 2 2 6 1K 16 K 2 2 6 256 4K CY8C23x33 up to 26 1 4 up to 12 2 2 4 256 8K CY8C22x45 up to 38 2 8 up to 38 0 4 6[2] 1K 16 K CY8C21x45 up to 24 1 4 up to 24 0 4 6[2] 512 8K CY8C21x34 up to 28 1 4 up to 28 0 2 [2] 512 8K CY8C21x23 up to 16 1 4 up to 8 0 2 [2] CY8C20x34 up to 28 0 0 up to 28 0 CY8C20xx6 up to 36 0 0 up to 36 0 4 256 4K 0 3[2,3] 512 8K 0 3[2,3] up to 2 K up to 32 K 4 Notes 2. Limited analog functionality. 3. Two analog blocks and one CapSense®. Document Number: 001-48111 Rev. *Q Page 8 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some hardware resources varies from device to device within the group. The following table lists resources available for the specific device subgroups covered by this datasheet. Table 2. CY8C28xxx Device Characteristics CapSense Digital Blocks Regular Analog Blocks Limited Analog Blocks HW I2C Decimators Digital I/O CY8C28x03 N 12 0 0 2 0 CY8C28x13 Y 12 0 4 1 2 CY8C28x23 N 12 6 0 2 CY8C28x33 Y 12 6 4 CY8C28x43 N 12 12 CY8C28x45 Y 12 12 CY8C28x52 Y 8 12 PSoC Part Number Document Number: 001-48111 Rev. *Q Analog Inputs Analog Outputs Analog Mux Buses up to 24 up to 8 0 0 up to 40 up to 40 0 2 2 up to 44 up to 10 2 0 1 4 up to 40 up to 40 2 2 0 2 4 up to 44 up to 44 4 2 4 2 4 up to 44 up to 44 4 2 4 1 4 up to 24 up to 24 4 2 Page 9 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Development Tools Code Generation Tools PSoC Designer is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes: The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two. Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing. ■ Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration ■ Extensive user module catalog C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality. ■ Integrated source-code editor (C and assembly) Debugger ■ Free C compiler with no size restrictions or time limits ■ Built-in debugger ■ In-circuit emulation Built-in support for communication interfaces: 2 ❐ Hardware and software I C slaves and masters ❐ Full-speed USB 2.0 ❐ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7. ■ PSoC Designer Software Subsystems Design Entry In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application. The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC’s resources for an application. Document Number: 001-48111 Rev. *Q PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest. Online Help System The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer. In-Circuit Emulator A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices. The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation. Page 10 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Designing with PSoC Designer Organize and Connect The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is: 1. Select user modules. 2. Configure user modules. 3. Organize and connect. 4. Generate, verify, and debug. Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources. Select User Modules PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called “user modules.” User modules make selecting and implementing peripheral devices, both analog and digital, simple. Configure User Modules Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design. Document Number: 001-48111 Rev. *Q Generate, Verify, and Debug When you are ready to test the hardware configuration or move on to developing code for the project, perform the “Generate Configuration Files” step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed. A complete code development environment lets you to develop and customize your applications in C, assembly language, or both. The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals. Page 11 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Pinouts This section describes, lists, and illustrates the CY8C28xxx PSoC device pins and pinout configurations. The CY8C28xxx PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a “P”) is capable of Digital I/O. However, VSS, VDD, SMP, and XRES are not capable of Digital I/O. 20-pin Part Pinout Table 3. 20-pin Part Pinout (SSOP) Type Pin No. Digital Analog Pin Name 1 I/O I, M, S P0[7] 2 I/O I/O, M, S P0[5] 3 I/O I/O, M, S P0[3] 4 I/O I, M, S P0[1] 5 Output Description Analog column mux and SAR ADC input.[5] SMP S, AI, M, P0[7] S, AIO, M, P0[5] S, AIO, M, P0[3] Analog column mux and SAR ADC input. S, AI, M, P0[1] Analog column output.[5, 6] SMP Analog column mux and SAR ADC input. I2C0 SCL, M, P1[7] Analog column output.[5, 6] I2C0 SDA, M, P1[5] Analog column mux and SAR ADC M, P1[3] input.[5] I2C0 SCL, XTALin, M, P1[1] Switch Mode Pump (SMP) connection to Vss external components. 6 I/O M P1[7] I2C0 Serial Clock (SCL). 7 I/O M P1[5] I2C0 Serial Data (SDA). 8 I/O M P1[3] 9 I/O M P1[1] 10 Power VSS M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[4]. 12 I/O M P1[2] I2C1 Serial Data (SDA).[7] 13 I/O M P1[4] Optional External Clock Input (EXTCLK). 14 I/O M P1[6] I2C1 Serial Clock (SCL).[7] I/O I, M, S P0[0] Analog column mux and SAR ADC input.[5] 17 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output.[5, 8] 18 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output.[5, 8] 19 I/O I, M, S P0[6] Analog column mux and SAR ADC input.[5] VDD Supply voltage. Power Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S XRES P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALout, I2C0 SDA XRES Active high external reset with internal pull-down. 16 20 SSOP 20 19 18 17 16 15 14 13 12 11 Ground connection. I/O Input 1 2 3 4 5 6 7 8 9 10 Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[4]. 11 15 CY8C28243 20-pin PSoC Device LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. Notes 4. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices for details. 5. CY8C28x52 and CY8C28x23 devices do not have a SAR ADC. Therefore, this pin does not function as a SAR ADC input for these devices. 6. CY8C28x13 and CY8C28x03 devices do not have any analog output buffers. Therefore, this pin does not function as an analog column output for these devices. 7. CY8C28x52, CY8C28x13, and CY8C28x33 devices only have one I2C block. Therefore, this GPIO does not function as an I2C pin for these devices. 8. CY8C28x33, CY8C28x23, CY8C28x13, and CY8C28x03 devices do not have an analog output buffer for this pin. Therefore, this pin does not function as an analog column output for these devices. Document Number: 001-48111 Rev. *Q Page 12 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx 28-pin Part Pinout Table 4. 28-pin Part Pinout (SSOP) Type Pin No. Digital Analog Pin Name 1 I/O I, M, S P0[7] Analog column mux and SAR ADC input.[5] 2 I/O I/O, M, S P0[5] Analog column mux and SAR ADC input. Analog column output.[5, 6] 3 I/O I/O, M, S P0[3] Analog column mux and SAR ADC input. Analog column output.[5, 6] 4 I/O I, M, S P0[1] Analog column mux and SAR ADC input.[5] 5 I/O M P2[7] 6 I/O M P2[5] 7 I/O I, M P2[3] Direct switched capacitor block input.[9] 8 I/O I, M P2[1] Direct switched capacitor block input.[9] SMP Switch Mode Pump (SMP) connection to external components. 9 Output Description 10 I/O M P1[7] I2C0 Serial Clock (SCL). 11 I/O M P1[5] I2C0 Serial Data (SDA). 12 I/O M P1[3] 13 I/O M P1[1] 14 Power VSS M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[4]. 16 I/O M P1[2] I2C1 Serial Data (SDA).[7] 17 I/O M P1[4] Optional External Clock Input (EXTCLK). 18 I/O M P1[6] I2C1 Serial Clock (SCL).[7] I/O I, M P2[0] Direct switched capacitor block input.[10] 21 I/O I, M P2[2] Direct switched capacitor block input.[10] 22 I/O M P2[4] External Analog Ground (AGND). 23 I/O M P2[6] External Voltage Reference (VRef). 24 I/O I, M, S P0[0] Analog column mux and SAR ADC input.[5] 25 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output.[5, 8] 26 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output.[5, 8] 27 I/O I, M, S P0[6] Analog column mux and SAR ADC input.[5] VDD Supply voltage. Power SSOP 28 27 26 25 24 23 22 21 20 19 18 17 16 15 Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef P2[4], M, External AGND P2[2], M, AI P2[0], M, AI XRES P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALout, I2C0 SDA XRES Active high external reset with internal pull-down. 20 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ground connection. I/O Input S, AI, M, P0[7] S, AIO, M, P0[5] S, AIO, M, P0[3] S, AI, M, P0[1] M, P2[7] M, P2[5] AI, M, P2[3] AI, M, P2[1] SMP I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[4]. 15 19 CY8C28403, CY8C28413, CY8C28433, CY8C28445, and CY8C28452 28-pin PSoC Devices LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input Notes 9. This pin is not a direct switched capacitor block analog input for CY8C28x03 and CY8C28x13 devices. 10. This pin is not a direct switched capacitor block analog input for CY8C28x03, CY8C28x13, CY8C28x23, and CY8C28x33 devices. Document Number: 001-48111 Rev. *Q Page 13 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx 44-pin Part Pinout Table 5. 44-pin Part Pinout (TQFP) 9 10 11 12 13 14 15 16 I/O I/O I/O I/O I/O I/O I/O I/O 17 18 Pin Name M M M M M M M M P3[7] P3[5] P3[3] P3[1] P1[7] P1[5] P1[3] P1[1] I/O M VSS P1[0] 19 20 21 22 23 24 25 26 I/O I/O I/O I/O I/O I/O I/O M M M M M M M 27 28 29 30 31 32 33 34 35 36 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O M M M M I, M I, M M M I, M, S I/O, M S P4[0] P4[2] P4[4] P4[6] P2[0] P2[2] P2[4] P2[6] P0[0] P0[2] 37 I/O I/O, M, S P0[4] 38 39 40 41 I/O I, M, S Power I/O I, M, S I/O I/O, M, S P0[6] VDD P0[7] P0[5] 42 I/O P0[3] Power Input I/O, M, S P1[2] P1[4] P1[6] P3[0] P3[2] P3[4] P3[6] XRES P2[7], M P0[1], M, AI, S P0[3], M, AIO, S P0[5], M, AIO, S P0[7], M, AI, S Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef Direct switched capacitor block input.[9] Direct switched capacitor block input.[9] Switch Mode Pump (SMP) connection to external components. I2C0 Serial Clock (SCL). I2C0 Serial Data (SDA). Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[4]. Ground connection. Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[4]. I2C1 Serial Data (SDA).[7] Optional External Clock Input (EXTCLK). I2C1 Serial Clock (SCL).[7] I2C1 Serial Data (SDA).[7] I2C1 Serial Clock (SCL).[7] M, P2[5] AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] SMP M, P3[7] M, P3[5] M, P3[3] 44 43 42 41 40 39 38 37 36 35 34 P2[5] P2[3] P2[1] P4[7] P4[5] P4[3] P4[1] SMP CY8C28513 and CY8C28545 44-pin PSoC Devices Description 1 2 3 4 5 6 7 8 9 10 11 TQFP 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 Type Digital Analog I/O M I/O I, M I/O I, M I/O M I/O M I/O M I/O M Output P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL M, P3[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss I2C0 SDA, XTALout, M, P1[0] I2C1 SDA, M, P1[2] EXTCLK, M, P1[4] I2C1 SCL, M, P1[6] I2C1 SDA, M, P3[0] Pin No. Active high external reset with internal pull-down. Direct switched capacitor block input.[10] Direct switched capacitor block input.[10] External Analog Ground (AGND). External Voltage Reference (VRef). Analog column mux and SAR ADC input.[5] Analog column mux and SAR ADC input. Analog column output.[5, 8] Analog column mux and SAR ADC input. Analog column output.[5, 8] Analog column mux and SAR ADC input.[5] Supply voltage. Analog column mux and SAR ADC input.[5] Analog column mux and SAR ADC input. Analog column output.[5, 6] Analog column mux and SAR ADC input. Analog column output.[5, 6] Analog column mux and SAR ADC input.[5] 43 I/O I, M, S P0[1] 44 I/O P2[7] LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. Document Number: 001-48111 Rev. *Q Page 14 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx 48-pin Part Pinout Table 6. 48-pin Part Pinout (QFN[11]) Type Pin Pin Description No. Digital Analog Name 1 I/O I, M P2[3] Direct switched capacitor block input.[9] 2 I/O I, M P2[1] Direct switched capacitor block input.[9] I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 18 19 I/O M 20 I/O M P3[7] P3[5] P3[3] P3[1] P5[3] P5[1] P1[7] I2C0 Serial Clock (SCL). P1[5] I2C0 Serial Data (SDA). P1[3] P1[1] Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[4]. VSS Ground connection. P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[4]. P1[2] I2C1 Serial Data (SDA).[7] 21 22 I/O I/O M M 23 24 25 I/O I/O I/O M M M 26 I/O M 27 28 29 I/O I/O M M 30 31 32 33 I/O I/O I/O I/O M M M M 34 I/O I, M 35 I/O I, M 36 I/O 37 M M M M M M M M M M Power Input P2[5], M P2[7], M P0[1], M, AI, S P0[3], M, AIO, S P0[5], M, AIO, S P0[7], M, AI, S Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef 8 9 10 11 12 13 14 15 16 17 Switch Mode Pump (SMP) connection to external components. AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] SMP M, P3[7] M, P3[5] M, P3[3] M, P3[1] M, P5[3] P1[4] Optional External Clock Input (EXTCLK). P1[6] I2C1 Serial Clock (SCL).[7] P5[0] P5[2] P3[0] I2C1 Serial Data (SDA).[7] P3[2] I2C1 Serial Clock (SCL).[7] P3[4] P3[6] XRES Active high external reset with internal pull-down. P4[0] P4[2] P4[4] P4[6] 48 47 46 45 44 43 42 41 40 39 38 37 P4[7] P4[5] P4[3] P4[1] SMP 1 2 3 4 5 6 7 8 9 10 11 12 QFN (Top View) Pin No. P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL P3[0], M, I2C1 SDA 41 Type Pin Description Digital Analog Name I/O I, M, S P0[6] Analog column mux and SAR ADC input.[5] Power VDD Supply voltage. P2[0] Direct switched capacitor block input.[10] P2[2] Direct switched capacitor block input.[10] 42 43 I/O I, M, S P0[7] M P2[4] External Analog Ground (AGND). 44 I/O I/O, M, S P0[5] I/O M P2[6] External Voltage Reference (VRef). 45 I/O I/O, M, S P0[3] 38 I/O I, M, S P0[0] Analog column mux and SAR ADC input.[5] 46 I/O I, M, S P0[1] 39 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. 47 I/O M Analog column output.[5, 8] 40 I/O I/O, M, P0[4] Analog column mux and SAR ADC input. 48 I/O M S Analog column output.[5, 8] LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. Document Number: 001-48111 Rev. *Q 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 I/O M I/O M I/O M I/O M Output M, P5[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss I2C0 SDA, XTALout, M, P1[0] I2C1 SDA, M, P1[2] EXTCLK, M, P1[4] I2C1 SCL, M, P1[6] M, P5[0] M, P5[2] 3 4 5 6 7 CY8C28623, CY8C28643, and CY8C28645 48-pin PSoC Devices Analog column mux and SAR ADC input.[5] Analog column mux and SAR ADC input. Analog column output.[5, 6] Analog column mux and SAR ADC input. Analog column output.[5, 6] Analog column mux and SAR ADC input.[5] P2[7] P2[5] Page 15 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx 56-pin Part Pinout The 56-pin SSOP part is for the CY8C28000 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production. Table 7. 56-pin Part Pinout (SSOP) Pin No. Type Digital Analog Pin Name 2 I/O I, M, S P0[7] Analog column mux and SAR ADC input. 3 I/O I/O, M, S P0[5] Analog column mux and SAR ADC input. Analog column output. 4 I/O I/O, M, S P0[3] Analog column mux and SAR ADC input. Analog column output. 5 I/O I, M, S P0[1] Analog column mux and SAR ADC input. 6 I/O M P2[7] 7 I/O M P2[5] 8 I/O I P2[3] Direct switched capacitor block input. Direct switched capacitor block input. 1 NC 9 I/O I P2[1] 10 I/O M P4[7] Description No connection. 11 I/O M P4[5] 12 I/O I, M P4[3] 13 I/O I, M 14 OCD M OCDE OCD even data I/O. 15 OCD M OCDO OCD odd data output. 16 Output P4[1] SMP Switch Mode Pump (SMP) connection to required external components. 17 I/O M P3[7] 18 I/O M P3[5] 19 I/O M P3[3] 20 I/O M P3[1] 21 I/O M P5[3] 22 I/O M P5[1] 23 I/O M P1[7] I2C0 Serial Clock (SCL). 24 I/O M P1[5] I2C0 Serial Data (SDA). 25 NC I/O M P1[3] 27 I/O M P1[1] Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[4]. VSS Ground connection. Power NC S, AI, M, P0[7] S, AIO, M, P0[5] S, AIO, M, P0[3] S, AI, M, P0[1] M, P2[7] M, P2[5] AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] OCDE OCDO SMP M, P3[7] M, P3[5] M, P3[3] M, P3[1] M, P5[3] M, P5[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] NC M, P1[3] SCLK, I2C0 SCL, XTALIn, M, P1[1] Vss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SSOP 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M CCLK HCLK XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL P3[0], M, I2C1 SDA P5[2], M P5[0], M P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALOut, I2C0 SDA, SDATA NC NC Not for Production No connection. 26 28 CY8C28000 56-pin PSoC Device 29 NC No connection. 30 NC No connection. 31 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[4]. 32 I/O M P1[2] I2C1 Serial Data (SDA). 33 I/O M P1[4] Optional External Clock Input (EXTCLK). 34 I/O M P1[6] I2C1 Serial Clock (SCL). 35 I/O M P5[0] 36 I/O M P5[2] 37 I/O M P3[0] I2C1 Serial Data (SDA). 38 I/O M P3[2] I2C1 Serial Clock (SCL). Note 11. The QFN package has a center pad that must be connected to ground (VSS) Document Number: 001-48111 Rev. *Q Page 16 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 7. 56-pin Part Pinout (SSOP) (continued) Type Pin No. Digital Analog Pin Name 39 I/O M P3[4] 40 I/O M 41 Input Description P3[6] XRES Active high external reset with internal pull-down. 42 OCD M HCLK OCD high speed clock output. 43 OCD M CCLK OCD CPU clock output. 44 I/O M P4[0] 45 I/O M P4[2] 46 I/O M P4[4] 47 I/O M P4[6] 48 I/O I, M P2[0] 49 I/O I, M P2[2] Direct switched capacitor block input. 50 I/O M P2[4] External Analog Ground (AGND). 51 I/O M P2[6] External Voltage Reference (VRef). 52 I/O I, M, S P0[0] Analog column mux and SAR ADC input. 53 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output. 54 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output. 55 I/O I, M, S P0[6] Analog column mux and SAR ADC input. VDD Supply voltage. 56 Power Direct switched capacitor block input. LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, M = Analog Mux Bus Input, and OCD = On-Chip Debug. Document Number: 001-48111 Rev. *Q Page 17 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Register Reference This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the PSoC Technical Reference Manual for CY8C28xxx PSoC devices. Register Conventions Register Mapping Tables The register conventions specific to this section are listed in the following table. CY8C28xxx PSoC devices have a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank of registers CPU instructions access. When the XIO bit is set the registers in Bank 1 are accessed by CPU instructions. When the XIO bit is cleared the registers in Bank 0 are accessed by CPU instructions. Convention Description R Read register or bit(s) W Write register or bit(s) L Logical register or bit(s) C Clearable register or bit(s) # Access is bit specific Document Number: 001-48111 Rev. *Q Note In the following register mapping tables, blank fields are reserved and should not be accessed. Page 18 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 8. CY8C28x03 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name Addr (0,Hex) 80 PRT0IE 01 RW DBC20DR1 41 W 81 PRT0GS 02 RW DBC20DR2 42 RW 82 PRT0DM2 03 RW DBC20CR0 43 # PRT1DR 04 RW DBC21DR0 44 PRT1IE 05 RW DBC21DR1 PRT1GS 06 RW PRT1DM2 07 PRT2DR Access Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW # 84 RDI2LT1 C4 RW 45 W 85 RDI2RO0 C5 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW RW DBC21CR0 47 # 87 RDI2DSM C7 RW 08 RW DCC22DR0 48 # 88 PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 90 CUR_PP D0 RW PRT4IE 11 RW 51 91 STK_PP D1 RW PRT4GS 12 RW 52 92 PRT4DM2 13 RW 53 93 IDX_PP D3 RW PRT5DR 14 RW 54 94 MVR_PP D4 RW PRT5IE 15 RW 55 95 MVW_PP D5 RW PRT5GS 16 RW 56 96 I2C0_CFG D6 RW PRT5DM2 17 RW 57 97 I2C0_SCR D7 # 58 98 I2C0_DR D8 RW 18 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW # 60 A0 INT_MSK0 E0 RW DBC00DR0 20 DBC00DR1 21 W 61 A1 INT_MSK1 E1 RW DBC00DR2 22 RW 62 A2 INT_VC E2 RC DBC00CR0 23 # 63 A3 RES_WDT E3 W DBC01DR0 24 # 64 A4 I2C1_SCR E4 # DBC01DR1 25 W 65 A5 I2C1_MSCR E5 # DBC01DR2 26 RW 66 A6 DBC01CR0 27 # DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # 70 RDI0RI B0 RW F0 DBC10DR1 31 W 71 RDI0SYN B1 RW F1 DBC10DR2 32 RW 72 RDI0IS B2 RW F2 DBC10CR0 33 # 73 RDI0LT0 B3 RW F3 DBC11DR0 34 # 74 RDI0LT1 B4 RW F4 DBC11DR1 35 W 75 RDI0RO0 B5 RW F5 DBC11DR2 36 RW 76 RDI0RO1 B6 RW DBC11CR0 37 # 77 RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW I2C1_DR 67 RW E6 A7 E7 F6 CPU_F F7 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW FB DCC13DR0 3C # 7C RDI1LT1 BC RW FC DCC13DR1 3D W 7D RDI1RO0 BD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 19 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 9. CY8C28x03 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW PRT4DM1 11 RW 51 91 GDI_E_IN D1 RW PRT4IC0 12 RW 52 92 GDI_O_OU D2 RW PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW PRT5DM0 14 RW 54 94 D4 CF PRT5DM1 15 RW 55 95 D5 PRT5IC0 16 RW 56 96 D6 PRT5IC1 17 RW 57 97 D7 18 58 98 D8 19 59 99 D9 1A 5A 9A DA 1B 5B 9B DB 1C 5C 9C DC 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW 65 RTC_M A5 RW E5 DBC01OU 26 RW 66 RTC_S A6 RW E6 DBC01CR1 27 RW 67 RTC_CR A7 RW DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW 69 SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW EC DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 6A 70 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. E7 F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 20 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 10. CY8C28x13 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name Addr (0,Hex) 80 PRT0IE 01 RW DBC20DR1 41 W 81 PRT0GS 02 RW DBC20DR2 42 RW 82 PRT0DM2 03 RW DBC20CR0 43 # PRT1DR 04 RW DBC21DR0 44 PRT1IE 05 RW DBC21DR1 PRT1GS 06 RW PRT1DM2 07 PRT2DR Access Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW # 84 RDI2LT1 C4 RW 45 W 85 RDI2RO0 C5 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW RW DBC21CR0 47 # 87 RDI2DSM C7 RW 08 RW DCC22DR0 48 # 88 PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 90 CUR_PP D0 RW PRT4IE 11 RW 51 91 STK_PP D1 RW PRT4GS 12 RW 52 92 PRT4DM2 13 RW 53 93 IDX_PP D3 RW PRT5DR 14 RW 54 94 MVR_PP D4 RW PRT5IE 15 RW 55 95 MVW_PP D5 RW PRT5GS 16 RW 56 96 I2C0_CFG D6 RW PRT5DM2 17 RW 57 97 I2C0_SCR D7 # 58 98 I2C0_DR D8 RW 18 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # 60 DBC00DR1 21 W DBC00DR2 22 RW 62 DBC00CR0 23 # 63 DBC01DR0 24 # 64 A4 DBC01DR1 25 W 65 A5 DBC01DR2 26 RW 66 A6 DEC_CR0* E6 RW DBC01CR0 27 # 67 A7 DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # 70 RDI0RI B0 RW F0 DBC10DR1 31 W 71 RDI0SYN B1 RW F1 DBC10DR2 32 RW 72 RDI0IS B2 RW F2 DBC10CR0 33 # 73 RDI0LT0 B3 RW F3 DBC11DR0 34 # 74 RDI0LT1 B4 RW F4 DBC11DR1 35 W 75 RDI0RO0 B5 RW F5 DBC11DR2 36 RW 76 RDI0RO1 B6 RW DBC11CR0 37 # 77 RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW AMUX_CFG 61 RW DEC0_DH A0 RC INT_MSK0 E0 RW DEC0_DL A1 RC INT_MSK1 E1 RW DEC1_DH A2 RC INT_VC E2 RC DEC1_DL A3 RC RES_WDT E3 W E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 21 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 11. CY8C28x13 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW ACE_AMD_CR1 83 RW Addr (1,Hex) C0 Access RW DBC20IN 41 RW DBC20OU 42 RW RDI2SYN C1 RW RDI2IS C2 RW DBC20CR1 43 RW RW RDI2LT0 C3 04 RW DBC21FN 44 RW RW RDI2LT1 C4 PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RW RDI2RO0 C5 PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR RW 86 RW RDI2RO1 C6 PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR RW 87 RW RDI2DSM C7 PRT2DM0 08 RW DCC22FN 48 RW RW PRT2DM1 09 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9 PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW CB 8C RW CC 84 Name RDI2RI 88 C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 PRT5IC0 16 RW 56 96 PRT5IC1 17 RW 90 DEC1_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW DEC1_CR D5 RW 95 RW D6 57 97 18 58 98 MUX_CR0 D8 RW 19 59 99 MUX_CR1 D9 RW 1A 5A MUX_CR2 DA RW 1B 5B 9B MUX_CR3 DB RW 1C 5C 9C IDAC_CR1 DC RW 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DEC_CR5 9A D7 RW DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW 65 RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW 66 RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW 67 RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW DBC10FN 30 RW DBC10IN 31 RW SADC_TSCR0 71 DBC10OU 32 RW SADC_TSCR1 DBC10CR1 33 RW ACE_AMD_CR0 DBC11FN 34 RW DBC11IN 35 RW DBC11OU 36 DBC11CR1 DCC12FN 69 AMUX_CFG1 6A RW 6B AE EE AMUX_CLK AF RW EF RDI0RI B0 RW F0 RW RDI0SYN B1 RW F1 72 RW RDI0IS B2 RW F2 73 RW RDI0LT0 B3 RW F3 74 RW RDI0LT1 B4 RW F4 ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 70 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 22 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 12. CY8C28x23 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 PRT0DM2 03 RW PRT1DR 04 PRT1IE Name RDI2RI Addr (0,Hex) C0 Access RW 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW RDI2SYN C1 RW RDI2IS C2 DBC20CR0 43 # ASC10CR3 83 RW RW RDI2LT0 C3 RW DBC21DR0 44 # ASD11CR0 RW 84 RW RDI2LT1 C4 05 RW DBC21DR1 45 W RW ASD11CR1 85 RW RDI2RO0 C5 PRT1GS 06 RW DBC21DR2 46 RW RW ASD11CR2 86 RW RDI2RO1 C6 PRT1DM2 07 RW DBC21CR0 RW 47 # ASD11CR3 87 RW RDI2DSM C7 PRT2DR 08 RW DCC22DR0 RW 48 # PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA 88 C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 98 I2C0_DR D8 RW 18 58 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # A4 I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # A5 I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW A6 DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW 6A MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # 6B MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW A7 F6 CPU_F F7 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW FB DCC13DR0 3C # 7C RDI1LT1 BC RW FC DCC13DR1 3D W 7D RDI1RO0 BD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 23 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 DBC20IN 41 RW 81 DBC20OU 42 RW 82 RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Access Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 PRT4IC1 13 RW PRT5DM0 14 PRT5DM1 CF 90 GDI_O_IN D0 RW RW GDI_E_IN D1 RW 92 RW GDI_O_OU D2 RW 53 93 RW GDI_E_OU D3 RW RW 54 94 RW DEC0_CR D4 RW 15 RW 55 95 RW DEC1_CR D5 RW PRT5IC0 16 RW 56 96 D6 PRT5IC1 17 RW DEC1_CR0 57 97 D7 18 58 98 D8 19 59 99 1A 5A DEC_CR5 9A D9 RW DA 1B 5B 9B DB 1C 5C 9C DC 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW RTC_M A5 RW E5 DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6 DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW DCC02FN 28 RW DCC02IN 29 RW DCC02OU 2A RW DCC02CR1 2B RW I2C1_CFG 6B RW DCC03FN 2C RW TMP_DR0 6C RW AC DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDI0RI B0 RW F0 DBC10IN 31 RW 71 RDI0SYN B1 RW F1 DBC10OU 32 RW 72 RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 65 68 CLK_CR2 69 RW 6A Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. E7 A8 IMO_TR E8 RW A9 ILO_TR E9 RW AA BDG_TR EA RW AB ECO_TR EB RW EC F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 24 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 14. CY8C28x33 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 PRT0DM2 03 RW PRT1DR 04 PRT1IE Name RDI2RI Addr (0,Hex) C0 Access RW 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW RDI2SYN C1 RW RDI2IS C2 DBC20CR0 43 # ASC10CR3 83 RW RW RDI2LT0 C3 RW DBC21DR0 44 # ASD11CR0 RW 84 RW RDI2LT1 C4 05 RW DBC21DR1 45 W RW ASD11CR1 85 RW RDI2RO0 C5 PRT1GS 06 RW DBC21DR2 46 RW RW ASD11CR2 86 RW RDI2RO1 C6 PRT1DM2 07 RW DBC21CR0 RW 47 # ASD11CR3 87 RW RDI2DSM C7 PRT2DR 08 RW DCC22DR0 RW 48 # PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA 88 C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 98 I2C0_DR D8 RW 18 58 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 25 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 15. CY8C28x33 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 Access DBC20IN 41 RW DBC20OU 42 RW SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW RW DBC20CR1 43 RW ACE_AMD_CR1 83 RW 04 RW DBC21FN 44 RW Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RDI2LT0 C3 RW RDI2LT1 C4 PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RW RDI2RO0 C5 PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR RW 86 RW RDI2RO1 C6 PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR RW 87 RW RDI2DSM C7 PRT2DM0 08 RW DCC22FN 48 RW RW 88 RW PRT2DM1 09 RW DCC22IN 49 RW PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR0 89 RW C9 ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW 84 Name RDI2RI C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW CB PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 8C CC 90 DEC3_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW DBC10FN 30 RW DBC10IN 31 RW SADC_TSCR0 71 DBC10OU 32 RW SADC_TSCR1 DBC10CR1 33 RW ACE_AMD_CR0 DBC11FN 34 RW DBC11IN 35 RW ACE_AMX_IN 75 DBC11OU 36 RW ACE_CMP_CR0 DBC11CR1 37 RW ACE_CMP_CR1 DCC12FN 38 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW DCC13FN 3C RW DCC13IN 3D RW ACE0_CR1 7D RW DCC13OU 3E RW ACE0_CR2 7E DCC13CR1 3F RW ACE0_CR3 7F 65 68 6B AF RW EF RDI0RI B0 RW F0 RW RDI0SYN B1 RW F1 72 RW RDI0IS B2 RW F2 73 RW RDI0LT0 B3 RW F3 RDI0LT1 B4 RW F4 RW RDI0RO0 B5 RW F5 76 RW RDI0RO1 B6 RW 77 RW RDIODSM B7 RW RDI1RI B8 RW RDI1SYN B9 RW RDI1IS BA RW RDI1LT0 BB RW RDI1LT1 BC RW RDI1RO0 BD RW IDAC_CR0 FD RW RW RDI1RO1 BE RW CPU_SCR1 FE # RW RDI1DSM BF RW CPU_SCR0 FF # 74 78 7C Document Number: 001-48111 Rev. *Q EE AMUX_CLK 70 Blank fields are Reserved and should not be accessed. AE # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 26 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 16. CY8C28x43 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 PRT1IE 05 RW DBC21DR1 45 W PRT1GS 06 RW DBC21DR2 46 PRT1DM2 07 RW DBC21CR0 PRT2DR 08 RW DCC22DR0 PRT2IE 09 RW DCC22DR1 PRT2GS 0A RW DCC22DR2 Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ASD11CR1 85 RW RDI2RO0 C5 RW RW ASD11CR2 86 RW RDI2RO1 C6 RW 47 # ASD11CR3 87 RW RDI2DSM C7 RW 48 # ASC12CR0 88 RW 49 W ASC12CR1 89 RW C9 4A RW ASC12CR2 8A RW CA C8 PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F6 CPU_F F7 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW FB DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW FC DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F RW # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 27 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 17. CY8C28x43 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 9B 1C 5C 9C 1D 5D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW CF 90 DEC3_CR0 GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW MUX_CR3 DB RW 9D DC RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW E5 DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6 DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 70 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. E7 F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 28 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 18. CY8C28x45 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 PRT1IE 05 RW DBC21DR1 45 W PRT1GS 06 RW DBC21DR2 46 PRT1DM2 07 RW DBC21CR0 PRT2DR 08 RW DCC22DR0 PRT2IE 09 RW DCC22DR1 PRT2GS 0A RW DCC22DR2 Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ASD11CR1 85 RW RDI2RO0 C5 RW RW ASD11CR2 86 RW RDI2RO1 C6 RW 47 # ASD11CR3 87 RW RDI2DSM C7 RW 48 # ASC12CR0 88 RW 49 W ASC12CR1 89 RW C9 4A RW ASC12CR2 8A RW CA C8 PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F6 CPU_F F7 RL F8 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F RW # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 29 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 19. CY8C28x45 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 RW PRT1DM1 05 RW DBC21IN 45 RW PRT1IC0 06 RW DBC21OU 46 PRT1IC1 07 RW DBC21CR1 PRT2DM0 08 RW DCC22FN PRT2DM1 09 RW PRT2IC0 0A RW Name Addr (1,Hex) 80 Access RW SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW ACE_AMD_CR1 83 Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ACE_PWM_CR 85 RW RDI2RO0 C5 RW RW ACE_ADC0_CR 86 RW RDI2RO1 C6 RW 47 RW ACE_ADC1_CR 87 RW RDI2DSM C7 RW 48 RW 88 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9 DCC22OU 4A RW ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW CB 8C RW CC C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 90 DEC3_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3 DBC11FN 34 RW RDI0LT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW DCC12FN 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 70 74 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 30 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 20. CY8C28x52 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW PRT0IE 01 RW PRT0GS 02 RW PRT0DM2 03 PRT1DR Name Addr (0,Hex) 40 Access Name ASC10CR0 Addr (0,Hex) 80 Access RW Name Addr (0,Hex) C0 41 ASC10CR1 81 RW C1 42 ASC10CR2 82 RW C2 RW 43 ASC10CR3 83 RW C3 04 RW 44 ASD11CR0 84 RW C4 PRT1IE 05 RW 45 ASD11CR1 85 RW C5 PRT1GS 06 RW 46 ASD11CR2 86 RW C6 PRT1DM2 07 RW 47 ASD11CR3 87 RW C7 PRT2DR 08 RW 48 ASC12CR0 88 RW C8 PRT2IE 09 RW 49 ASC12CR1 89 RW C9 PRT2GS 0A RW 4A ASC12CR2 8A RW CA Access PRT2DM2 0B RW 4B ASC12CR3 8B RW CB PRT3DR 0C RW 4C ASD13CR0 8C RW CC PRT3IE 0D RW 4D ASD13CR1 8D RW CD PRT3GS 0E RW 4E ASD13CR2 8E RW CE PRT3DM2 0F RW 4F ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW 6A MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # 6B MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q 7F RW # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 31 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 21. CY8C28x52 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW Name Addr (1,Hex) 40 Access Name PRT0DM1 01 RW 41 81 PRT0IC0 02 RW 42 82 PRT0IC1 03 RW 43 PRT1DM0 04 RW 44 PRT1DM1 05 RW 45 ACE_PWM_CR 85 RW C5 PRT1IC0 06 RW 46 ACE_ADC0_CR 86 RW C6 PRT1IC1 07 RW 47 ACE_ADC1_CR 87 RW C7 PRT2DM0 08 RW 48 PRT2DM1 09 RW 49 ACE_CLK_CR0 89 RW C9 PRT2IC0 0A RW 4A ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW ACE_AMD_CR1 Addr (1,Hex) 80 83 Access Name Addr (1,Hex) C0 C1 C2 RW C3 84 C4 88 C8 PRT2IC1 0B RW 4B PRT3DM0 0C RW 4C CB PRT3DM1 0D RW 4D ACE01CR1 8D RW CD PRT3IC0 0E RW 4E ACE01CR2 8E RW CE PRT3IC1 0F RW 4F ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 8C CC 90 DEC3_CR0 Access CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW ALT_CR1 68 RW A8 IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW A9 ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW AA BDG_TR EA RW DCC02CR1 2B RW AB ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW AC MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDI0RI B0 RW F0 DBC10IN 31 RW 71 RDI0SYN B1 RW F1 DBC10OU 32 RW 72 RDI0IS B2 RW F2 DBC10CR1 33 RW RDI0LT0 B3 RW F3 DBC11FN 34 RW RDI0LT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW DCC12FN 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 6B ACE_AMD_CR0 73 RW 74 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *Q # Access is bit specific. I2C0_ADDR AD RW AE EE F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 32 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Electrical Specifications This section presents the DC and AC electrical specifications of the CY8C28xxx PSoC devices. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at www.cypress.com. Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Figure 8. Voltage versus CPU Frequency 5.25 Vdd Voltage lid ing Va rat on pe i O Reg 4.75 3.00 93 kHz 12 MHz 24 MHz CPU Frequency Document Number: 001-48111 Rev. *Q Page 33 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Absolute Maximum Ratings Table 22. Absolute Maximum Ratings Symbol TSTG Description Storage temperature TBAKETEMP Bake temperature tBAKETIME Bake time TA VDD VIO VIOZ IMIO IMAIO Ambient temperature with power applied Supply voltage on VDD relative to VSS DC input voltage DC voltage applied to tri-state Maximum current into any port pin Maximum current into any port pin configured as analog driver Electrostatic discharge voltage Latch-up current ESD LU Min –55 Typ 25 Max +100 Units °C – 125 °C See package label -40 -0.5 VSS – 0.5 VSS – 0.5 -25 -50 - See Package label 72 Hours – – – – – – +85 +6.0 VDD + 0.5 VDD + 0.5 +50 +50 °C V V V mA mA 2000 – – – – 200 V mA Min -40 -40 Typ – – Max +85 +100 Units °C °C Notes Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability. Human Body Model ESD. Operating Temperature Table 23. Operating Temperature Symbol TA TJ Description Ambient temperature Junction temperature Document Number: 001-48111 Rev. *Q Notes The temperature rise from ambient to junction is package specific. See Thermal Impedances on page 72. The user must limit the power consumption to comply with this requirement. Page 34 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Electrical Characteristics DC Chip Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 24. DC Chip Level Specifications Symbol Description VDD Supply voltage IDD Supply current Min 3.00 – Typ – 8 Max 5.25 14 Units V mA IDD3 Supply current – 5 9 mA IDDP Supply current when IMO = 6 MHz using SLIMO mode=1 – 2 3 mA ISB Sleep (Mode) current with POR, LVD, sleep timer, and WDT.[12] – 3 10 A ISBH Sleep (Mode) current with POR, LVD, sleep timer, and WDT at high temperature.[12] – 4 25 A ISBXTL Sleep (Mode) Current with POR, LVD, sleep timer, WDT, and external crystal.[12] – 4 13 A ISBXTLH Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature.[12] Current consumed by RTC during sleep – 5 26 A – 0.5 1 µA 1.280 – - 1.300 0.65 0.4 1.320 3 1.5 V mA mA ISBRTC VREF ISXRES Reference voltage (Bandgap) Supply current with XRES asserted 5 V Supply current with XRES asserted 3.3 V Notes Conditions are VDD = 5.0 V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz. Conditions are VDD = 3.3 V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz. Conditions are VDD = 3.3 V, TA = 25 °C, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz. Conditions are with internal slow speed oscillator, VDD = 3.3 V, – 40 °C  TA  55 °C. Conditions are with internal slow speed oscillator, VDD = 3.3 V, 55 °C < TA  85 °C. Conditions are with properly loaded, 1 W max, 32.768 kHz crystal. VDD = 3.3 V, –40 °C  TA  55 °C. Conditions are with properly loaded, 1 W max, 32.768 kHz crystal. VDD = 3.3 V, 55 °C < TA  85 °C. Extra current consumed by the RTC during sleep. This number is typical at 25 °C and 5 V. Trimmed for appropriate VDD. Max is peak current after XRES; Typical value is the steady state current value. TA = 25 °C. Note 12. Standby (sleep) current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This should be compared with devices that have similar functions enabled. Document Number: 001-48111 Rev. *Q Page 35 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC GPIO Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 25. DC GPIO Specifications Symbol RPU RPD VOH Description Pull-up resistor Pull-down resistor High output level Min 4 4 VDD – 1.0 Typ 5.6 5.6 – Max 8 8 – VOL Low output level – – 0.75 IOH High level source current 10 – – IOL Low level sink current 25 – – VIL VIH VH IIL CIN Input low level Input high level Input hysteresis Input leakage (absolute value) Capacitive load on pins as input – 2.1 – – – – – 60 1 3.5 0.8 – – – 10 COUT Capacitive load on pins as output – 3.5 10 Document Number: 001-48111 Rev. *Q Units Notes k k V IOH = 10 mA, VDD = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined IOH budget. V IOL = 25 mA, VDD = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined IOL budget. mA VOH = VDD – 1.0 V, see the limitations of the total current in the note for VOH. mA VOL = 0.75 V, see the limitations of the total current in the note for VOL. V VDD = 3.0 to 5.25. V VDD = 3.0 to 5.25. mV nA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. pF Package and pin dependent. Temp = 25 °C. Page 36 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Table 26. 5 V DC Operational Amplifier Specifications Symbol VOSOACT Description Input Offset Voltage CT Block (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High VOSOA Input Offset Voltage SC and AGND Opamps (absolute value) TCVOSOA Average Input Offset Voltage Drift IEBOA Input Leakage Current (Port 0 Analog Pins) Input Capacitance (Port 0 Analog Pins) CINOA Min Typ Max Units – – – – 1.6 1.3 1.2 1 8 8 8 6 mV mV mV mV – – – 7.0 200 4.5 35.0 – 9.5 VCMOA 0.0 0.5 – – VDD VDD – 0.5 60 60 60 – – – – – – dB dB dB 60 60 80 – – – – – – dB dB dB VDD – 0.2 VDD – 0.2 VDD – 0.5 – – – – – – V V V – – – – – – 0.2 0.2 0.5 V V V – – – – – – 60 200 400 700 1400 2400 4600 – 300 600 1100 2000 3600 7700 – A A A A A A dB Common Mode Voltage Range Common Mode Voltage Range (high power or high Opamp bias) CMRROA Common Mode Rejection Ratio Power = Low Power = Medium Power = High GOLOA Open Loop Gain Power = Low Power = Medium Power = High VOHIGHOA High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High VOLOWOA Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High ISOA PSRROA Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High Supply Voltage Rejection Ratio Document Number: 001-48111 Rev. *Q Notes Applies to High and Low Opamp bias. V/°C pA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V The common-mode input V voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. VSS  VIN  (VDD – 2.25) or (VDD – 1.25 V)  VIN  VDD. Page 37 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 27. 3.3 V DC Operational Amplifier Specifications Symbol VOSOACT Description Input Offset Voltage CT Blocks (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High VOSOA Input Offset Voltage SC and AGND (absolute value) TCVOSOA Average Input Offset Voltage Drift IEBOA Input Leakage Current (Port 0 Analog Pins) Input Capacitance (Port 0 Analog Pins) CINOA Min Typ Max Units – – – – 1.65 1.32 – 1 8 8 – 6 mV mV mV mV – – – 7.0 200 4.5 35.0 – 9.5 VCMOA 0.2 – VDD – 0.2 50 50 50 – – – – – – dB dB dB 60 60 80 – – – – – – dB dB dB VDD – 0.2 VDD – 0.2 VDD – 0.2 – – – – – – V V V – – – – – – 0.2 0.2 0.2 V V V – – – – – – 50 200 400 700 1400 2400 4600 80 300 600 1000 2000 3600 7500 – A A A A A A dB Common Mode Voltage Range CMRROA Common Mode Rejection Ratio Power = Low Power = Medium Power = High GOLOA Open Loop Gain Power = Low Power = Medium Power = High VOHIGHOA High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High is 5 V only VOLOWOA Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High ISOA Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High PSRROA Supply Voltage Rejection Ratio Document Number: 001-48111 Rev. *Q Notes Applies to High and Low Opamp bias. V/°C pA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. VSS  VIN  (VDD – 2.25 V) or (VDD – 1.25 V)  VIN  VDD. Page 38 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Type-E Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E Analog PSoC blocks. Table 28. 5 V DC Type-E Operational Amplifier Specifications Symbol Description Input offset voltage (absolute value) VOSOA Min – – Typ 2.5 2.5 Max 15 20 TCVOSOA Average input offset voltage drift [13] Input leakage current (Port 0 Analog Pins) I – – 10 200 – – CINOA Input capacitance (Port 0 Analog Pins) – 4.5 9.5 pF VCMOA ISOA Common mode voltage range Amplifier supply current 0.0 – – 10 VDD 30 V A Min – – Typ 2.5 2.5 Max 15 20 TCVOSOA Average input offset voltage drift IEBOA[13] Input leakage current (Port 0 Analog Pins) Input capacitance (Port 0 Analog Pins) CINOA – – – 10 200 4.5 – – 9.5 VCMOA ISOA 0 – – 10 VDD 30 EBOA Units mV mV Notes For 0.2 V < VIN < VDD – 1.2 V. For VIN = 0 to 0.2 V and VIN > VDD – 1.2 V. V/°C nA Gross tested to 1 A. Package and pin dependent. Temp = 25 °C. Table 29. 3.3 V DC Type-E Operational Amplifier Specifications Symbol Description VOSOA Input offset voltage (absolute value) Common mode voltage range Amplifier supply current Units Notes mV For 0.2 V < VIN < VDD – 1.2 V. mV For VIN = 0 to 0.2 V and VIN > VDD – 1.2 V. V/°C nA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V A DC Low Power Comparator Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, 3.0 V to 3.6 V and –40 °C  TA  85 °C, or 2.4 V to 3.0 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only. Table 30. DC Low Power Comparator Specifications Symbol VREFLPC VOSLPC ISLPC Description Low power comparator (LPC) reference voltage range LPC voltage offset LPC supply current Min 0.2 Typ – Max VDD – 1 Units V – – 2.5 10 30 40 mV A Notes Note 13. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA. Document Number: 001-48111 Rev. *Q Page 39 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Analog Output Buffer Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 31. 5 V DC Analog Output Buffer Specifications Symbol Description Min Typ Max Units Notes – – 200 pF This specification applies to the external circuit that is being driven by the analog output buffer. 3 +6 – 12 20 VDD – 1.0 mV V/°C V 1 1 – –   – – – – V V – – 0.5 × VDD – 1.3 0.5 × VDD – 1.3 V V 1.1 2.6 64 5.1 8.8 – mA mA dB CL Load capacitance VOSOB TCVOSOB VCMOB ROUTOB Input offset voltage (Absolute Value) – Average input offset voltage drift – Common-mode input voltage range 0.5 Output resistance – Power = Low – Power = High High output voltage swing (Load = 32  to VDD/2) Power = Low 0.5 × VDD + 1.3 Power = High 0.5 × VDD + 1.3 Low output voltage swing (Load = 32  to VDD/2) Power = Low – Power = High – Supply current including bias cell (No Load) Power = Low – Power = High – Supply voltage rejection ratio 53 VOHIGHOB VOLOWOB ISOB PSRROB Document Number: 001-48111 Rev. *Q (0.5 × VDD – 1.0)  VOUT  (0.5 × VDD + 0.9). Page 40 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 32. 3.3 V DC Analog Output Buffer Specifications Symbol CL Description Load Capacitance VOSOB TCVOSOB VCMOB ROUTOB Min Typ Max Units Notes – – 200 pF This specification applies to the external circuit that is being driven by the analog output buffer. 3 +6 – 12 20 VDD – 1.0 mV V/°C V 1 1 – –   – – – – V V – – 0.5 × VDD – 1.0 0.5 × VDD – 1.0 V V 0.8 2.0 2.0 4.3 mA mA 64 – dB Input Offset Voltage (Absolute Value) – Average Input Offset Voltage Drift – Common-Mode Input Voltage Range 0.5 Output Resistance Power = Low – Power = High – VOHIGHOB High Output Voltage Swing (Load = 1 k to VDD/2) Power = Low 0.5 × VDD + 1.0 Power = High 0.5 × VDD + 1.0 VOLOWOB Low Output Voltage Swing (Load = 1 k to VDD/2) – Power = Low – Power = High ISOB Supply current including bias cell (No – Load) – Power = Low Power = High PSRROB Supply voltage rejection ratio 47 Document Number: 001-48111 Rev. *Q (0.5 × VDD – 1.0)  VOUT  (0.5 × VDD + 0.9). Page 41 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Switch Mode Pump Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 33. DC Switch Mode Pump (SMP) Specifications Symbol VPUMP 5 V Description 5 V output voltage Min 4.75 Typ 5.0 Max 5.25 Units Notes V Configuration of footnote.[14] Average, neglecting ripple. SMP trip voltage is set to 5.0 V. V Configuration of footnote.[14] Average, neglecting ripple. SMP trip voltage is set to 3.25 V. Configuration of footnote.[14] SMP trip voltage is set to 3.25 V. mA SMP trip voltage is set to 5.0 V. mA V Configuration of footnote.[14] SMP trip voltage is set to 5.0 V. V Configuration of footnote.[14] SMP trip voltage is set to 3.25 V. V Configuration of footnote.[14] VPUMP 3 V 3 V output voltage 3.00 3.25 3.60 IPUMP VBAT5 V Available output current VBAT = 1.5 V, VPUMP = 3.25 V VBAT = 1.8 V, VPUMP = 5.0 V Input voltage range from battery 8 5 1.8 – – – – – 5.0 VBAT3 V Input voltage range from battery 1.5 – 3.3 VBATSTART 2.6 – – VPUMP_Line Minimum input voltage from battery to start pump Line regulation (over VBAT range) – 5 – VPUMP_Load Load regulation – 5 – VPUMP_Ripple – 100 – E3 Output voltage ripple (depends on capacitor/load) Efficiency 35 50 – % FPUMP DCPUMP Switching frequency Switching duty cycle – – 1.3 50 – – MHz % %VO Configuration of footnote.[14] VO is the “VDD Value for PUMP Trip” specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52. %VO Configuration of footnote.[14] VO is the “VDD Value for PUMP Trip” specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52. mVpp Configuration of footnote.[14] Load is 5mA. Configuration of footnote.[14] Load is 5 mA. SMP trip voltage is set to 3.25 V. Figure 9. Basic Switch Mode Pump Circuit D1 Vdd L1 V BAT + V PUMP C1 SMP Battery PSoC TM Vss Note 14. L1 = 2 µH inductor, C1 = 10 µF capacitor, D1 = Schottky diode. See Figure 9. Document Number: 001-48111 Rev. *Q Page 42 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Analog Reference Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each Analog Continuous Time PSoC block adds a maximum of 10mV additional offset error to guaranteed AGND specifications from the local AGND buffer. Reference control power can be set to medium or high unless otherwise noted. Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND. Table 34. 5-V DC Analog Reference Specifications Reference ARF_CR [5:3] 0b000 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High Reference Description Min Typ Max Units Ref high VDD/2 + Bandgap VDD/2 + 1.214 VDD/2 + 1.279 VDD/2 + 1.341 V VAGND AGND VDD/2 VDD/2 – 0.018 VDD/2 – 0.004 VDD/2 + 0.01 V VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.301 VDD/2 – 1.273 V Ref high VDD/2 + Bandgap VDD/2 + 0.228 VDD/2 + 1.284 VDD/2 + 1.344 V VAGND AGND VDD/2 VDD/2 – 0.015 VDD/2 – 0.002 VDD/2 + 0.011 V VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.329 VDD/2 – 1.303 VDD/2 – 1.275 V Ref high VDD/2 + Bandgap VDD/2 + 1.224 VDD/2 + 1.287 VDD/2 + 1.345 V AGND VDD/2 VDD/2 – 0.014 VDD/2 – 0.001 VDD/2 + 0.012 V Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.304 VDD/2 – 1.275 V Ref high VDD/2 + Bandgap VDD/2 + 1.226 VDD/2 + 1.288 VDD/2 + 1.346 V AGND VDD/2 VDD/2 – 0.014 VDD/2 – 0.001 VDD/2 + 0.012 V Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.304 VDD/2 – 1.276 V RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High V AGND VREFLO RefPower = VREFHI Medium Opamp bias = Low V AGND VREFLO Note 15. AGND tolerance includes the offsets of the local buffer in the PSoC block. Document Number: 001-48111 Rev. *Q Page 43 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b001 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High Description Min Typ Max Units Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.055 – 0.019 + 0.019 V VAGND AGND P2[4] – VREFLO Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] + 0.005 + 0.035 VDD/2, P2[6] = 1.3 V) – 0.030 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] – 0.015 + 0.021 VDD/2, P2[6] = 1.3 V) – 0.05 V RefPower = High VREFHI Opamp bias = Low P2[4] AGND P2[4] Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] VDD/2, P2[6] = 1.3 V) – 0.033 + 0.001 + 0.031 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.048 – 0.013 + 0.022 V AGND P2[4] – Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] VDD/2, P2[6] = 1.3 V) – 0.034 – 0.001 + 0.031 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.047 – 0.012 + 0.023 V VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO RefPower = VREFHI Medium V Opamp bias = Low AGND VREFLO Document Number: 001-48111 Rev. *Q P2[4] P2[4] P2[4] P2[4] VAGND VREFLO P2[4] P2[4] VREFLO RefPower = VREFHI Medium Opamp bias = High V AGND 0b010 Reference P2[4] P2[4] P2[4] – P2[4] AGND P2[4] Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] – 0.002 + 0.030 VDD/2, P2[6] = 1.3 V) – 0.036 V Ref high VDD VDD V AGND VDD/2 VDD – 0.028 VDD – 0.010 VDD/2 – VDD/2 – 0.014 0.002 VDD/2 + 0.012 V Ref low VSS VSS Ref high VDD AGND VDD/2 VDD – 0.021 VDD – 0.007 VDD/2 – VDD/2 – 0.014 0.001 Ref low VSS VSS Ref high VDD AGND VDD/2 VDD – 0.019 VDD – 0.006 VDD/2 – VDD/2 – 0.014 0.001 Ref low VSS VSS VSS + 0.004 V Ref high VDD VDD V AGND VDD/2 VDD – 0.017 VDD – 0.005 VDD/2 – VDD/2 – 0.014 0.001 VDD/2 + 0.013 V Ref low VSS VSS VSS + 0.003 V VSS + 0.004 VSS + 0.002 VSS + 0.002 VSS + 0.001 P2[4] – VSS + 0.008 V VDD V VDD/2 + 0.012 V VSS + 0.005 V VDD V VDD/2 + 0.012 V Page 44 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b011 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO 0b100 Reference Description Min Typ Max Units Ref high 3 × Bandgap 3.736 3.887 4.030 V AGND 2 × Bandgap 2.525 2.598 2.667 V Ref low Bandgap 1.265 1.302 1.335 V Ref high 3 × Bandgap 3.747 3.894 4.034 V AGND 2 × Bandgap 2.528 2.601 2.668 V Ref low Bandgap 1.264 1.302 1.335 V VREFHI RefPower = Medium V Opamp bias = High AGND VREFLO Ref high 3 × Bandgap 3.749 3.897 4.035 V AGND 2 × Bandgap 2.529 2.602 2.668 V Ref low Bandgap 1.264 1.302 1.335 V VREFHI RefPower = Medium V Opamp bias = Low AGND VREFLO Ref high 3 × Bandgap 3.751 3.899 4.037 V AGND 2 × Bandgap 2.530 2.603 2.669 V Ref low Bandgap 1.264 1.302 1.335 RefPower = High VREFHI Opamp bias = High Ref high 2 × Bandgap + P2[6] 2.483 – P2[6] 2.578 – P2[6] 2.669 – P2[6] (P2[6] = 1.3 V) V VAGND AGND 2 × Bandgap V VREFLO Ref low 2 × Bandgap – P2[6] 2.512 – P2[6] 2.602 – P2[6] 2.684 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.495 – P2[6] 2.586 – P2[6] 2.673 – P2[6] (P2[6] = 1.3 V) V VAGND AGND 2 × Bandgap VREFLO Ref low 2 × Bandgap – P2[6] 2.510 – P2[6] 2.602 – P2[6] 2.685 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.498 – P2[6] 2.589 – P2[6] 2.674 – P2[6] (P2[6] = 1.3 V) V AGND 2 × Bandgap V Ref low 2 × Bandgap – P2[6] 2.509 – P2[6] 2.601 – P2[6] 2.685 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.500 – P2[6] 2.591 – P2[6] 2.675 – P2[6] (P2[6] = 1.3 V) V AGND 2 × Bandgap Ref low 2 × Bandgap – P2[6] 2.508 – P2[6] 2.601 – P2[6] 2.686 – P2[6] (P2[6] = 1.3 V) RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High V AGND VREFLO VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO Document Number: 001-48111 Rev. *Q 2.525 2.528 2.529 2.530 2.598 2.601 2.601 2.603 V 2.666 2.668 V 2.668 2.669 V V Page 45 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b101 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High Description Min Typ Max Units Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.218 P2[4] + 1.283 P2[4] + 1.344 V VAGND AGND P2[4] P2[4] – VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.329 P2[4] – 1.297 P2[4] – 1.265 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.225 P2[4] + 1.287 P2[4] + 1.346 V RefPower = High VREFHI Opamp bias = Low P2[4] AGND P2[4] P2[4] VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.330 P2[4] – 1.301 P2[4] – 1.271 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.226 P2[4] + 1.288 P2[4] + 1.346 V AGND P2[4] P2[4] – Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.330 P2[4] – 1.302 P2[4] – 1.272 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.227 P2[4] + 1.289 P2[4] + 1.347 V VREFLO VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO P2[4] P2[4] VAGND RefPower = VREFHI Medium Opamp bias = High V AGND 0b110 Reference P2[4] P2[4] P2[4] – P2[4] AGND P2[4] P2[4] Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.331 P2[4] – 1.303 P2[4] – 1.273 P2[4] V – Ref high 2 × Bandgap 2.506 2.597 2.674 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.006 VSS + 0.014 V Ref high 2 × Bandgap 2.508 2.595 2.675 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.003 VSS + 0.008 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high 2 × Bandgap 2.508 2.595 2.676 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.002 VSS + 0.005 V RefPower = VREFHI Medium V Opamp bias = Low AGND VREFLO Ref high 2 × Bandgap 2.508 2.596 2.677 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.001 VSS + 0.003 V Document Number: 001-48111 Rev. *Q Page 46 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b111 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO Reference Description Min Typ Max Units Ref high 3.2 × Bandgap 4.056 4.155 4.222 V AGND 1.6 × Bandgap 2.012 2.083 2.168 V Ref low VSS VSS VSS + 0.01 VSS + 0.035 V Ref high 3.2 × Bandgap 4.061 4.153 4.223 V AGND 1.6 × Bandgap 2.023 2.082 2.145 V Ref low VSS VSS VSS + 0.006 VSS + 0.022 V VREFHI RefPower = Medium V Opamp bias = High AGND VREFLO Ref high 3.2 × Bandgap 4.063 4.154 4.224 V AGND 1.6 × Bandgap 2.020 2.083 2.152 V Ref low VSS VSS VSS + 0.006 VSS + 0.024 V VREFHI RefPower = Medium V Opamp bias = Low AGND VREFLO Ref high 3.2 × Bandgap 4.061 4.154 4.225 V AGND 1.6 × Bandgap 2.026 2.081 2.140 V Ref low VSS VSS VSS + 0.004 VSS + 0.017 V Table 35. 3.3-V DC Analog Reference Specifications Reference Reference Power ARF_CR Settings [5:3] 0b000 Symbol RefPower = High VREFHI Opamp bias = High VAGND VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO Reference Description Min Typ Max Units Ref high VDD/2 + Bandgap VDD/2 + 1.223 VDD/2 + 1.283 VDD/2 + 1.343 V AGND VDD/2 VDD/2 – 0.013 VDD/2 – 0.003 VDD/2 + 0.005 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.297 VDD/2 – 1.270 V Ref high VDD/2 + Bandgap VDD/2 + 1.228 VDD/2 + 1.288 VDD/2 + 1.345 V AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.002 VDD/2 + 0.005 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.298 VDD/2 – 1.271 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high VDD/2 + Bandgap VDD/2 + 1.232 VDD/2 + 1.290 VDD/2 + 1.346 V AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.001 VDD/2 + 0.006 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V RefPower = VREFHI Medium V AGND Opamp bias = Low VREFLO Ref high VDD/2 + Bandgap VDD/2 + 1.233 VDD/2 + 1.291 VDD/2 + 1.347 V AGND VDD/2 VDD/2 – 0.006 VDD/2 VDD/2 + 0.006 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V Document Number: 001-48111 Rev. *Q Page 47 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 35. 3.3-V DC Analog Reference Specifications (continued) Reference Reference Power ARF_CR Settings [5:3] 0b001 Symbol RefPower = High VREFHI Opamp bias = High Description Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) VAGND AGND VREFLO Ref low Min Typ Max Units P2[4] + P2[6] – P2[4] + P2[6] – 0.045 0.017 P2[4] + P2[6] + V 0.016 P2[4] P2[4] P2[4] P2[4] P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.019 P2[4] – P2[6] + 0.004 P2[4] – P2[6] + V 0.023 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.036 0.012 P2[4] + P2[6] + V 0.013 VAGND AGND P2[4] P2[4] P2[4] P2[4] VREFLO Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.021 P2[4] – P2[6] – 0.001 P2[4] – P2[6] + V 0.021 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.034 0.011 P2[4] + P2[6] + V 0.013 AGND P2[4] P2[4] P2[4] P2[4] Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.023 P2[4] – P2[6] – 0.002 P2[4] – P2[6] + V 0.016 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.033 0.009 P2[4] + P2[6] + V 0.014 AGND P2[4] P2[4] P2[4] P2[4] Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.024 P2[4] – P2[6] – 0.003 P2[4] – P2[6] + V 0.020 Ref high VDD VDD – 0.042 VDD – 0.008 VDD AGND VDD/2 VDD/2 – 0.035 VDD/2 – 0.001 VDD/2 + 0.031 V Ref low VSS VSS VSS + 0.003 VSS + 0.0165 V V Ref high VDD VDD – 0.035 VDD – 0.005 VDD AGND VDD/2 VDD/2 – 0.031 VDD/2 – 0.001 VDD/2 + 0.028 V RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High VAGND VREFLO RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO 0b010 Reference RefPower = High VREFHI Opamp bias = High VAGND VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO – – – – V V Ref low VSS VSS VSS + 0.002 VSS + 0.012 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high VDD VDD – 0.044 VDD – 0.005 VDD V AGND VDD/2 VDD/2 – 0.052 VDD/2 VDD/2 + 0.046 V Ref low VSS VSS VSS + 0.002 VSS + 0.014 V RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO Ref high VDD VDD – 0.036 VDD – 0.004 VDD V VDD/2 + 0.029 V 0b011 All power settings. Not allowed for 3.3 V. 0b100 All power settings. Not allowed for 3.3 V. AGND VDD/2 VDD/2 – 0.032 VDD/2 Ref low VSS VSS VSS + 0.001 VSS + 0.012 V – – – – – – – – – – – – – – Document Number: 001-48111 Rev. *Q Page 48 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx Table 35. 3.3-V DC Analog Reference Specifications (continued) Reference Reference Power ARF_CR Settings [5:3] 0b101 Symbol RefPower = High VREFHI Opamp bias = High Min P2[4] + Bandgap (P2[4] = VDD/2) VAGND AGND P2[4] VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.232 VAGND AGND P2[4] VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) Ref high P2[4] + Bandgap (P2[4] = VDD/2) AGND RefPower = VREFHI Medium Opamp bias = High VAGND VREFLO RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO RefPower = High VREFHI Opamp bias = High VAGND VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO 0b111 Description Ref high RefPower = High VREFHI Opamp bias = Low 0b110 Reference P2[4] + 1.226 Typ Max Units P2[4] + 1.286 P2[4] + 1.343 V P2[4] P2[4] P2[4] – P2[4] – 1.323 P2[4] – 1.293 P2[4] –1.262 V P2[4] + 1.29 P2[4] + 1.344 V P2[4] P2[4] P2[4] P2[4] – 1.324 P2[4] – 1.296 P2[4] – 1.267 V P2[4] + 1.233 P2[4] + 1.291 P2[4] + 1.345 V P2[4] P2[4] P2[4] P2[4] Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.298 P2[4] – 1.269 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.234 P2[4] + 1.292 P2[4] +1.345 V AGND P2[4] P2[4] P2[4] P2[4] – Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.299 P2[4] – 1.270 V Ref high 2 × Bandgap 2.504 2.595 2.672 AGND Bandgap 1.262 1.301 1.336 V Ref low VSS VSS VSS + 0.006 VSS + 0.013 V Ref high 2 × Bandgap 2.506 2.593 2.674 V AGND Bandgap 1.262 1.301 1.336 V – – V Ref low VSS VSS VSS + 0.003 VSS + 0.008 V RefPower = VREFHI Medium Opamp bias = High VAGND VREFLO Ref high 2 × Bandgap 2.506 2.594 2.675 V AGND Bandgap 1.262 1.301 1.335 V Ref low VSS VSS VSS + 0.002 VSS + 0.007 V RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO Ref high 2 × Bandgap 2.507 2.595 2.675 V AGND Bandgap 1.262 1.301 1.335 V Ref low VSS VSS VSS + 0.001 VSS + 0.005 V All power settings. Not allowed for 3.3 V. – – – – – – – Document Number: 001-48111 Rev. *Q Page 49 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Analog PSoC Block Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 36. DC Analog PSoC Block Specifications Symbol RCT CSC Description Resistor Unit Value (Continuous Time) Capacitor Unit Value (Switch Cap) Min – – Typ 12.24 80 Max – – Units k fF Notes DC Analog Mux Bus Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 37. DC Analog Mux Bus Specifications Symbol RSW RVSS Description Switch Resistance to Common Analog Bus Resistance of Initialization Switch to VSS Min – – Typ – – Max 400 800 Units   Notes VDD  3.0 V DC SAR10 ADC Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 38. DC SAR10 ADC Specifications Symbol INLSAR10 DNLSAR10 ISAR10 IVREFSAR10 VVREFSAR10 VOSSAR10 SARIMP Description Integral nonlinearity for VREF 3 V Integral nonlinearity for VREF < 3 V Differential nonlinearity for VREF 3 V Differential nonlinearity for VREF < 3 V Active current consumption Input current into P2[5] when configured as the SAR10 ADC’s VREF input. Input reference voltage at P2[5] when configured as the SAR10 ADC’s external voltage reference. Offset voltage SAR input impedence Document Number: 001-48111 Rev. *Q Min –2.5 –5 –1.5 –4 0.08 – Typ – – – – 0.5 – Max 2.5 5 1.5 4 0.497 0.5 Units LSB LSB LSB LSB mA mA 2.7 – VDD – 0.3 V V 5 – 7.7 1.64 10 – mV M Notes 10-bit resolution 10-bit resolution 10-bit resolution 10-bit resolution The internal voltage reference buffer is disabled in this configuration. When VREF is buffered inside the SAR10 ADC, the voltage level at P2[5] (when configured as the external reference voltage) must always be at least 300 mV less than the chip supply voltage level on the VDD pin. (VVREFSAR10 < (VDD – 300 mV)). Frequency dependant = 1/ Fs °C. 142.9 kHz (maximum) and Cin = 4.28 pF (typical) Page 50 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC IDAC Specifications Table 39. DC IDAC Specifications Symbol Description Min Typ Max Units Notes IDAC_DNL Differential nonlinearity –5.0 2.0 5.0 LSB Valid for all 3 current ranges IDAC_INL Integral nonlinearity –5.0 2.0 5.0 LSB Valid for all 3 current ranges IDAC_Gain Gain per bit – Range 1 (91 µA) 283 357 447 nA Gain per bit – Range 2 (318 µA) 985 1250 1532 nA Gain per bit – Range 3 (637 µA) 1959 IDACOffset 2500 3056 nA Offset at Code 0 vs LSB Ideal – Range 1 (91 µA) 2.0% 20% % Offset at Code 0 vs LSB Ideal – Range 2 (318 µA) 1.0% 10% % Offset at Code 0 vs LSB Ideal – Range 3 (637 µA) 1.0% 10% % Document Number: 001-48111 Rev. *Q Measured at full scale Measured as a % of LSB (Current @ Code 0)/(LSB Ideal Current) Page 51 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC POR and LVD Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices, for more information on the VLT_CR register. Table 40. DC POR and LVD Specifications Symbol VPPOR0R VPPOR1R VPPOR2R VPPOR0 VPPOR1 VPPOR2 VPH0 VPH1 VPH2 VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7 VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7 Description VDD Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VDD Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VDD Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b VDD Value for PUMP Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b Min Typ Max Units – – – 2.91 4.39 4.55 2.985 4.49 4.65 V V V – – – 2.82 4.39 4.55 2.90 4.49 4.64 V V V – – – 92 0 0 – – – mV mV mV 2.83 2.93 3.04 3.90 4.38 4.54 4.62 4.71 2.91 3.01 3.12 3.99 4.47 4.63 4.71 4.80 3.00[16] 3.10 3.21 4.09 4.58 4.74[17] 4.83 4.92 V V V V V V V V 2.93 3.00 3.16 4.09 4.53 4.61 4.70 4.88 3.01 3.08 3.24 4.17 4.62 4.71 4.80 4.98 3.10 3.17 3.33 4.28 4.74 4.82 4.91 5.10 V V V V V V V V Notes VDD must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog. VDD must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog. Notes 16. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply. 17. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply. Document Number: 001-48111 Rev. *Q Page 52 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 41. DC Programming Specifications Symbol VDDP Description VDD for programming and erase Min 4.5 Typ 5 Max 5.5 VDDLV VDDHV Low VDD for verify 3 3.1 3.2 High VDD for verify 5.1 5.2 5.3 VDDIWRITE Supply Voltage for Flash write operation 3 – 5.25 IDDP VILP – – 5 – 25 0.8 2.2 – – V – – 0.21 mA – – 1.5 mA – – 0.75 V VDD – 1.0 – VDD V 50,000[18] 1,800,000 – – – – – – 10 – – Years Supply Current During Programming or Verify Input Low Voltage During Programming or Verify VIHP Input High Voltage During Programming or Verify IILP Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify IIHP Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify VOLV Output Low Voltage During Programming or Verify VOHV Output High Voltage During Programming or Verify FlashENPB Flash Endurance (per block) FlashENT Flash Endurance (total)[19] FlashDR Flash Data Retention Units Notes V This specification applies to the functional requirements of external programmer tools. V This specification applies to the functional requirements of external programmer tools. V This specification applies to the functional requirements of external programmer tools. V This specification applies to this device when it is executing internal flash writes. mA V Driving internal pull-down resistor. Driving internal pull-down resistor. Erase/write cycles per block. Erase/write cycles. Must be programmed and read at the same voltage to meet this. Notes 18. The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V. 19. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the AN2015 - PSoC® 1 - Getting Started with Flash & E2PROMfor more information. Document Number: 001-48111 Rev. *Q Page 53 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx DC I2C Specifications Table 42 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and – 40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 42. DC I2C Specifications[20] Symbol VILI2C Input low level Description VIHI2C VOLI2C Input high level Output low level Min – – 0.7 × VDD – – Typ Max – 0.3 × VDD – 0.25 × VDD – – – 0.4 – 0.6 Units V V V V V Notes 3.0 V VDD 3.6 V 4.75 V VDD 5.25 V 3.0 V VDD 5.25 V at sink current of 3 mA at sink current of 6 mA Note 20. All GPIOs meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I2C GPIO pins also meet the above specs. Document Number: 001-48111 Rev. *Q Page 54 of 86 CY8C28243/CY8C284xx CY8C285xx/CY8C286xx AC Electrical Characteristics AC Chip-Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  TA  85 °C, or 3.0 V to 3.6 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 43. AC Chip-Level Specifications Symbol FIMO Description Internal Main Oscillator Frequency Min 23.4 Typ 24 Max 24.6[21] Units MHz FIMO6 Internal Main Oscillator Frequency for 6 MHz 5.5 6 6.5[21] MHz FCPU1 CPU Frequency (5 V Nominal) 0.091 24 24.6[21] MHz FCPU2 CPU Frequency (3.3 V Nominal) 0.091 12 12.3[22] MHz FBLK5 FBLK33 F32K1 Digital PSoC Block Frequency Digital PSoC Block Frequency Internal Low Speed Oscillator Frequency External Crystal Oscillator 0 0 15 – 24 32 49.2[21, 23] 24.6[23] 64 MHz MHz kHz – 32.768 – kHz Internal Low Speed Oscillator Untrimmed Frequency 5 – 100 kHz – 0.5 0.5 23.986 – – – 10 50 MHz ms ms – 1700 2620 ms – 2800 3800 ms F32K2 F32K_U FPLL PLL Frequency tPLLSLEW PLL Lock Time tPLLSLEWSLO PLL Lock Time for Low Gain Setting Notes Trimmed. Utilizing factory trim values. SLIMO Mode = 0. Trimmed for 5 V or 3.3 V operation using factory trim values. SLIMO Mode = 1. Trimmed. Utilizing factory trim values. SLIMO mode = 0. Trimmed. Utilizing factory trim values. SLIMO mode = 0. 4.75 V< VDD
CY3210-28XXX 价格&库存

很抱歉,暂时无法提供与“CY3210-28XXX”相匹配的价格&库存,您可以联系我们找货

免费人工找货