Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Programmable System-on-Chip
CY8C28243/CY8C284xx/CY8C285xx/CY8C286xx, Programmable System-on-Chip
Features
■
■
■
■
■
■
25 mA sink, 10 mA drive on all GPIOs
Pull-up, pull-down, high Z, strong, or open-drain drive modes
on all GPIOs
❐ Analog input on all GPIOs
❐ 30 mA analog outputs on GPIOs
❐ Configurable interrupt on all GPIOs
❐
❐
Varied resource options within one PSoC® (Programmable
System-on-Chip) device group
Powerful Harvard-architecture processor
❐ M8C processor speeds up to 24 MHz
❐ 8 × 8 Multiply, 32-bit accumulate
❐ Low power at high speed
❐ Operating voltage: 3.0 V to 5.25 V
❐ Operating voltages down to 1.5 V Using on-chip switched
mode pump (SMP)
❐ Industrial temperature range: –40 °C to +85 °C
Advanced reconfigurable peripherals (PSoC Blocks)
❐ Up to 12 rail-to-rail analog PSoC blocks provide:
• Up to 14-bit ADCs
• Up to 9-bit DACs
• Programmable gain amplifiers
• Programmable filters and comparators
• Multiple ADC configurations
• Dedicated SAR ADC, up to 142 ksps with sample and hold
• Up to 4 synchronized or independent delta-sigma ADCs for
advanced applications
❐ Up to four limited type E analog blocks provide:
• Dual channel capacitive sensing capability
• Comparators with programmable DAC reference
• Up to 10-bit single-slope ADCs
❐ Up to 12 digital PSoC blocks provide:
• 8- to 32-bit timers and counters, 8- and 16-bit pulse-width
modulators (PWMs)
• Shift register, CRC, and PRS modules
• Up to 3 full-duplex UARTs
• Up to 6 half-duplex UARTs
• Multiple variable data length SPI masters or slaves
• Connectable to all GPIOs
❐ Complex peripherals by combining blocks
■
Additional system resources
2
❐ Up to two hardware I C resources
• Each resource implements slave, master, or multi-master
modes
• Operation between 0 and 400 kHz
❐ Watchdog and Sleep timers
❐ User-configurable low voltage detection
❐ Flexible internal voltage references
❐ Integrated supervisory circuit
❐ On-chip precision voltage reference
■
Complete development tools
TM
❐ Free development software (PSoC Designer )
❐ Full featured in-circuit emulator, and programmer
❐ Full speed emulation
❐ Flexible and functional breakpoint structure
❐ 128 KB trace memory
Logic Block Diagram
Port 5 Port 4 Port 3 Port 2 Port 1 Port 0
PSoC
CORE
System Bus
Global Digital Interconnect
SRAM
1K
SROM
Global Analog Interconnect
Flash 16K
CPU Core (M8C)
Interrupt
Controller
Sleep and
Watchdog
Multiple Clock Sources
(Includes IMO, ILO, PLL, and ECO)
Precision, programmable clocking
❐ Internal ±2.5% 24/48 MHz main oscillator
❐ Optional 32.768 kHz crystal for precise on-chip clocks
❐ Optional external oscillator, up to 24 MHz
❐ Internal low speed, low power oscillator for watchdog and
sleep functionality
Flexible on-chip memory
❐ 16 KB flash program storage 50,000 erase/write cycles
❐ 1-KB SRAM data storage
❐ In-system serial programming (ISSP)
❐ Partial flash updates
❐ Flexible protection modes
❐ EEPROM emulation in flash
Analog
Drivers
DIGITAL SYSTEM
Analog
Block
Array
Digital
Block
Array
Digital
Clocks
Programmable pin configurations
2
MACs
ANALOG SYSTEM
4 Type 2
2 I2C
Decimators Blocks
POR and LVD
System Resets
Analog
Ref.
Analog
Input
Muxing
Internal
Voltage
Ref.
Switch
Mode
Pump
SYSTEM RESOURCES
Errata: For information on silicon errata, see “Errata” on page 82. Details include trigger conditions, devices affected, and proposed workaround.
Cypress Semiconductor Corporation
Document Number: 001-48111 Rev. *Q
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised December 23, 2020
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
More Information
Note: For CY8C28xxx devices related Development Kits please
click here.
Cypress provides a wealth of data at www.cypress.com to help
you to select the right PSoC device for your design, and to help
you to quickly and effectively integrate the device into your
design. For a comprehensive list of resources, see the
knowledge base article “How to Design with PSoC® 1,
PowerPSoC®, and PLC – KBA88292”. Following is an
abbreviated list for PSoC 1:
The MiniProg1 and MiniProg3 devices provide interfaces for
flash programming and debug.
■
Overview: PSoC Portfolio, PSoC Roadmap
■
Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
■
In addition, PSoC Designer includes a device selection tool.
Application notes: Cypress offers a large number of PSoC
application notes covering a broad range of topics, from basic
to advanced level. Recommended application notes for getting
started with PSoC 1 are:
®
❐ Getting Started with PSoC 1 – AN75320.
®
❐ PSoC 1 - Getting Started with GPIO – AN2094.
®
❐ PSoC 1 Analog Structure and Configuration – AN74170.
®
❐ PSoC 1 Switched Capacitor Analog Blocks – AN2041.
❐ Selecting Analog Ground and Reference – AN2219.
Note: For CY8C28xxx devices related application note please
click here.
■
■
Development Kits:
❐ CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array
families, including automotive, except CY8C25/26xxx
devices. The kit includes an LCD module, potentiometer,
LEDs, and breadboarding space.
❐ CY3214-PSoCEvalUSB features a development board for
the CY8C24x94 PSoC device. Special features of the board
include USB and CapSense development and debugging
support.
PSoC Designer
PSoC Designer is a free Windows-based Integrated Design
Environment (IDE). Develop your applications using a library of
pre-characterized analog and digital peripherals in a
drag-and-drop design environment. Then, customize your
design leveraging the dynamically generated API libraries of
code. Figure 1 shows PSoC Designer windows. Note: This is not
the default view.
1. Global Resources – all device hardware settings.
2. Parameters – the parameters of the currently selected User
Modules.
3. Pinout – information related to device pins.
4. Chip-Level Editor – a diagram of the resources available on
the selected chip.
5. Datasheet – the datasheet for the currently selected UM
6. User Modules – all available User Modules for the selected
device.
7. Device Resource Meter – device resource usage for the
current project configuration.
8. Workspace – a tree level diagram of files associated with the
project.
9. Output – output from project build and debug operations.
Note: For detailed information on PSoC Designer, go to
PSoC® Designer > Help > Documentation >
Designer Specific Documents > IDE User Guide.
Figure 1. PSoC Designer Layout
Document Number: 001-48111 Rev. *Q
Page 2 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Contents
PSoC Functional Overview .............................................. 4
The PSoC Core ........................................................... 4
The Digital System ...................................................... 4
The Analog System ..................................................... 5
System Resources ...................................................... 8
PSoC Device Characteristics ...................................... 8
Development Tools ........................................................ 10
PSoC Designer Software Subsystems ...................... 10
Designing with PSoC Designer ..................................... 11
Select User Modules ................................................. 11
Configure User Modules ............................................ 11
Organize and Connect .............................................. 11
Generate, Verify, and Debug ..................................... 11
Pinouts ............................................................................ 12
20-pin Part Pinout ...................................................... 12
28-pin Part Pinout ...................................................... 13
44-pin Part Pinout ...................................................... 14
48-pin Part Pinout ...................................................... 15
56-pin Part Pinout ...................................................... 16
Register Reference ......................................................... 18
Register Conventions ................................................ 18
Register Mapping Tables .......................................... 18
Electrical Specifications ................................................ 33
Absolute Maximum Ratings ....................................... 34
Operating Temperature ............................................. 34
DC Electrical Characteristics ..................................... 35
AC Electrical Characteristics ..................................... 55
Packaging Information ................................................... 68
Packaging Dimensions .............................................. 68
Thermal Impedances ................................................. 72
Capacitance on Crystal Pins ..................................... 72
Solder Reflow Specifications ..................................... 72
Document Number: 001-48111 Rev. *Q
Development Tool Selection ......................................... 73
Software .................................................................... 73
Development Kits ...................................................... 73
Evaluation Tools ........................................................ 73
Device Programmers ................................................. 74
Accessories (Emulation and Programming) .............. 74
Ordering Information ...................................................... 75
Ordering Code Definitions ......................................... 75
Acronyms ........................................................................ 76
Acronyms Used ......................................................... 76
Reference Documents .................................................... 76
Document Conventions ................................................. 77
Units of Measure ....................................................... 77
Numeric Conventions ................................................ 77
Glossary .......................................................................... 77
Errata ............................................................................... 82
Part Numbers Affected .............................................. 82
Qualification Status ................................................... 82
Errata Summary ........................................................ 82
Document History Page ................................................. 84
Sales, Solutions, and Legal Information ...................... 86
Worldwide Sales and Design Support ....................... 86
Products .................................................................... 86
PSoC® Solutions ....................................................... 86
Cypress Developer Community ................................. 86
Technical Support ..................................................... 86
Page 3 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
PSoC Functional Overview
The Digital System
The PSoC family consists of many devices with On-Chip
Controllers. These devices are designed to replace multiple
traditional MCU based system components with one low cost
single chip programmable component. A PSoC device includes
configurable analog blocks, digital blocks, and interconnections.
This architecture enables the user to create customized
peripheral configurations to match the requirements of each
individual application. In addition, a fast CPU, Flash program
memory, SRAM data memory, and configurable I/O are included
in a range of convenient pinouts and packages.
The Digital System is composed of up to 12 configurable digital
PSoC blocks. Each block is an 8-bit resource that can be used
alone or combined with other blocks to create 8, 16, 24, and
32-bit peripherals, which are called user modules. The digital
blocks can be connected to any GPIO through a series of global
buses that can route any signal to any pin.
Figure 2. Digital System Block Diagram[1]
Port 5
DIGITAL SYSTEM
Row Input
Configuration
DBC00
DBC01
DCC02
4
DCC03
4
Row Output
Configuration
8
8
Row Input
Configuration
DBC20
DBC11
DCC12
4
DCC13
4
Row 2
DBC21
DCC22
4
DCC23
4
GIE[7:0]
GIO[7:0]
Global Digital
Interconnect
8
Row Output
Configuration
DBC10
Row Input
Configuration
Row 1
Row Output
Configuration
PSoC GPIOs provide connections to the CPU, and digital and
analog resources. Each pin’s drive mode may be selected from
8 options, which allows great flexibility in external interfacing.
Every pin also has the capability to generate a system interrupt
on high level, low level, and change from last read.
Row 0
8
The PSoC Core
Memory encompasses 16K bytes of Flash for program storage,
1K bytes of SRAM for data storage. The PSoC device incorporates flexible internal clock generators, including a 24 MHz
internal main oscillator (IMO) accurate to 2.5% over temperature
and voltage. A low power 32 kHz internal low speed oscillator
(ILO) is provided for the sleep timer and watch dog timer (WDT).
The 32.768 kHz external crystal oscillator (ECO) is available for
use as a real time clock (RTC) and can optionally generate a
crystal-accurate 24 MHz system clock using a PLL.
To System Bus
To Analog
System
Digital PSoC Block Array
The architecture for this specific PSoC device family, as shown
in the Logic Block Diagram on page 1, consists of four main
areas: PSoC Core, Digital System, Analog System, and System
Resources. The configurable global bus system allows all the
device resources to be combined into a complete custom
system. PSoC CY8C28xxx family devices have up to six I/O
ports that connect to the global digital and analog interconnects,
providing access to up to 12 digital blocks and up to 16 analog
blocks.
The PSoC Core is a powerful engine that supports a rich feature
set. The core includes a CPU, memory, clocks, and configurable
general Purpose I/O (GPIO). The M8C CPU core is a powerful
processor with speeds up to 24 MHz, providing a four MIPS 8-bit
Harvard architecture microcontroller.
Port 0
Port 2
Digital Clocks
From Core
The CY8C28xxx group of PSoC devices described in this
datasheet have multiple resource configuration options
available. Therefore, not every resource mentioned in this
datasheet is available for each CY8C28xxx subgroup. The
CY8C28x45 subgroup has a full feature set of all resources
described. There are six more segmented subgroups that allow
designers to use a device with only the resources and
functionality necessary for a specific application. See Table 2 on
page 9 to determine the resources available for each
CY8C28xxx subgroup. The same information is also presented
in more detail in the Ordering Information section.
Port 1
Port 3
Port 4
GOE[7:0]
GOO[7:0]
Digital peripheral configurations include:
■
PWMs (8- and 16-bit, One-shot and Multi-shot capability)
■
PWMs with Dead band/Kill (8- and 16-bit)
■
Counters (8 to 32 bit)
■
Timers (8 to 32 bit)
■
Full-duplex 8-bit UARTs (up to 3) with selectable parity
■
Half-duplex 8-bit UARTs (up to 6) with selectable parity
■
Variable length SPI slave and master
❐ Up to 6 total slaves and masters (8-bit)
❐ Supports 8 to 16 bit operation
■
I2C slave, master, or multi-master (up to 2 available as System
Resources)
■
IrDA (up to 3)
■
Pseudo Random Sequence Generators (8 to 32 bit)
■
Cyclical Redundancy Checker/Generator (16 bit)
■
Shift Register (2 to 32 bit)
Note
1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight total digital blocks.
Document Number: 001-48111 Rev. *Q
Page 4 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Some of the more common PSoC analog functions (most
available as user modules) are:
■
Analog-to-digital converters (6 to 14-bit resolution, up to 4,
selectable as Incremental or Delta-Sigma)
All GPIO
P0[7]
P0[6]
P0[5]
P0[4]
P0[3]
P0[2]
P0[1]
P0[0]
AGNDIn RefIn
The Analog System is composed of up to 16 configurable analog
blocks, each containing an opamp circuit that allows the creation
of complex analog signal flows. Some devices in this PSoC
family have an analog multiplex bus that can connect to every
GPIO pin. This bus can also connect to the analog system for
analysis with comparators and analog-to-digital converters. It
can be split into two sections for simultaneous dual-channel
processing.
Figure 3. Analog System Block Diagram for CY8C28x45 and
CY8C28x52 Devices
P2[3]
Analog Mux
Bus
The Analog System
P2[1]
P2[6]
P2[4]
P2[2]
■
Dedicated 10-bit SAR ADC with sample rates up to 142 ksps
■
Synchronized, simultaneous Delta-Sigma ADCs (up to 4)
■
Filters (2 to 8 pole band-pass, low pass, and notch)
■
Amplifiers (up to 4, with selectable gain to 48x)
■
Instrumentation amplifiers (up to 2, with selectable gain to 93x)
■
Comparators (up to 6, with 16 selectable thresholds)
■
DACs (up to 4, with 6 to 9-bit resolution)
■
Multiplying DACs (up to 4, with 6 to 9-bit resolution)
ACC00
ACC01
ACC02
ACC03
■
High current output drivers (up to 4 with 30 mA drive)
ASC10
ASD11
ASC12
ASD13
■
1.3-V reference (as a System Resource)
ASD20
ASC21
ASD22
ASC23
■
DTMF Dialer
■
Modulators
■
Correlators
■
Peak detectors
■
Many other topologies possible
P2[0]
Array Input Configuration
ACI0[1:0]
ACI1[1:0]
ACI2[1:0]
ACI3[1:0]
ACI4[1:0]
ACI5[1:0]
Block Array
ACE00
ACE01
ASE10
ASE11
Analog Reference
Interface to
Digital System
RefHi
RefLo
AGND
Reference
Generators
AGNDIn
RefIn
Bandgap
M8C Interface (Address Bus, Data Bus, Etc.)
Document Number: 001-48111 Rev. *Q
Page 5 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Figure 4. Analog System Block Diagram for CY8C28x43
Devices
Figure 5. Analog System Block Diagram for CY8C28x33
Devices
All GPIO
All GPIO
P0[7]
P0[6]
P0[5]
P0[4]
P0[3]
P0[2]
P0[1]
P0[0]
P0[7]
P0[5]
P2[1]
P0[4]
P0[1]
P0[2]
P2[3]
P2[1]
P2[4]
P0[0]
AGNDIn RefIn
Analog Mux
Bus
P2[3]
P2[6]
P0[3]
Analog Mux
Bus
AGNDIn RefIn
P0[6]
P2[2]
P2[0]
P2[6]
P2[4]
Array Input Configuration
Array Input Configuration
ACI0[1:0]
ACI0[1:0]
ACI1[1:0]
ACI2[1:0]
ACI1[1:0]
ACI4[1:0]
ACI5[1:0]
ACI3[1:0]
Block Array
ACC00
ACC01
Block Array
ACC00
ACC01
ACC02
ACC03
ASC10
ASD11
ASC10
ASD11
ASC12
ASD13
ASD20
ASC21
ASD20
ASC21
ASD22
ASC23
ACE00
ACE01
ASE10
ASE11
Analog Reference
Interface to
Digital System
Analog Reference
Interface to
Digital System
RefHi
RefLo
AGND
Reference
Generators
RefHi
RefLo
AGND
Reference
Generators
AGNDIn
RefIn
Bandgap
AGNDIn
RefIn
Bandgap
M8C Interface (Address Bus, Data Bus, Etc.)
M8C Interface (Address Bus, Data Bus, Etc.)
Document Number: 001-48111 Rev. *Q
Page 6 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Figure 6. Analog System Block Diagram for CY8C28x23
Devices
Figure 7. Analog System Block Diagram for CY8C28x13
Devices
P0[7]
All GPIO
P0[5]
P0[6]
P0[4]
P0[1]
P0[6]
Analog Mux
Bus
P0[7]
P0[3]
P0[5]
P0[4]
P0[2]
P2[3]
P0[0]
AGNDIn RefIn
P2[1]
P0[3]
P0[2]
P0[1]
P0[0]
P2[6]
Array Input
Configuration
P2[4]
ACI0[1:0]
ACI1[1:0]
Array Input
Configuration
ACI0[1:0]
Block Array
ACI1[1:0]
Block Array
ACC00
ACC01
ASC10
ASD11
ASD20
ASC21
RefHi
RefLo
AGND
Reference
Generators
ACE01
ASE10
ASE11
Analog Reference
Interface to
Digital System
Analog Reference
Interface to
Digital System
ACE00
RefHi
RefLo
AGND
Reference
Generators
AGNDIn
RefIn
Bandgap
M8C Interface (Address Bus, Data Bus, Etc.)
AGNDIn
RefIn
Bandgap
M8C Interface (Address Bus, Data Bus, Etc.)
Document Number: 001-48111 Rev. *Q
Page 7 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
System Resources
System Resources, some of which are listed in the previous
sections, provide additional capability useful to complete
systems. Additional resources include a multiplier, multiple
decimators, switch mode pump, low voltage detection, and
power on reset. Statements describing the merits of each system
resource follow:
■
Digital clock dividers provide three customizable clock
frequencies for use in applications. The clocks can be routed
to both the digital and analog systems. Additional clocks can
be generated using digital PSoC blocks as clock dividers.
■
Multiply accumulate (MAC) provides fast 8-bit multiplier with
32-bit accumulate, to assist in general math and digital filters.
■
Up to four decimators provide custom hardware filters for digital
signal processing applications such as Delta-Sigma ADCs and
CapSense capacitive sensor measurement.
■
Up to two I2C resources provide 0 to 400 kHz communication
over two wires. Slave, master, and multi-master modes are all
supported. I2C resources have hardware address detection
capability.
■
Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power
On Reset) circuit eliminates the need for a system supervisor.
■
An internal 1.3 V reference provides an absolute reference for
the analog system, including ADCs and DACs.
■
An integrated switch mode pump (SMP) generates normal
operating voltages from a single 1.5 V battery cell, providing a
low cost boost converter.
PSoC Device Characteristics
Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4
analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is
highlighted in this table.
Table 1. PSoC Device Characteristics
PSoC Part
Number
Digital
I/O
CY8C29x66
up to 64
CY8C28xxx
up to 44
CY8C27x43
up to 44
CY8C24x94
CY8C24x23A
Digital
Rows
Digital
Blocks
Analog
Inputs
Analog
Outputs
4
16
up to 12
4
up to 3
up to 12
up to 44
up to 4
2
8
up to 12
4
up to 56
1
4
up to 48
up to 24
1
4
up to 12
Analog
Columns
Analog
Blocks
SRAM
Size
Flash
Size
4
12
2K
32 K
up to 6
up to
12 + 4[2]
1K
16 K
4
12
256
16 K
2
2
6
1K
16 K
2
2
6
256
4K
CY8C23x33
up to 26
1
4
up to 12
2
2
4
256
8K
CY8C22x45
up to 38
2
8
up to 38
0
4
6[2]
1K
16 K
CY8C21x45
up to 24
1
4
up to 24
0
4
6[2]
512
8K
CY8C21x34
up to 28
1
4
up to 28
0
2
[2]
512
8K
CY8C21x23
up to 16
1
4
up to 8
0
2
[2]
CY8C20x34
up to 28
0
0
up to 28
0
CY8C20xx6
up to 36
0
0
up to 36
0
4
256
4K
0
3[2,3]
512
8K
0
3[2,3]
up to 2 K
up to 32 K
4
Notes
2. Limited analog functionality.
3. Two analog blocks and one CapSense®.
Document Number: 001-48111 Rev. *Q
Page 8 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some
hardware resources varies from device to device within the group. The following table lists resources available for the specific device
subgroups covered by this datasheet.
Table 2. CY8C28xxx Device Characteristics
CapSense
Digital
Blocks
Regular
Analog
Blocks
Limited
Analog
Blocks
HW I2C
Decimators
Digital
I/O
CY8C28x03
N
12
0
0
2
0
CY8C28x13
Y
12
0
4
1
2
CY8C28x23
N
12
6
0
2
CY8C28x33
Y
12
6
4
CY8C28x43
N
12
12
CY8C28x45
Y
12
12
CY8C28x52
Y
8
12
PSoC Part
Number
Document Number: 001-48111 Rev. *Q
Analog
Inputs
Analog
Outputs
Analog
Mux
Buses
up to 24
up to 8
0
0
up to 40
up to 40
0
2
2
up to 44
up to 10
2
0
1
4
up to 40
up to 40
2
2
0
2
4
up to 44
up to 44
4
2
4
2
4
up to 44
up to 44
4
2
4
1
4
up to 24
up to 24
4
2
Page 9 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Development Tools
Code Generation Tools
PSoC Designer is the revolutionary integrated design
environment (IDE) that you can use to customize PSoC to meet
your specific application requirements. PSoC Designer software
accelerates system design and time to market. Develop your
applications using a library of precharacterized analog and digital
peripherals (called user modules) in a drag-and-drop design
environment. Then, customize your design by leveraging the
dynamically generated application programming interface (API)
libraries of code. Finally, debug and test your designs with the
integrated debug environment, including in-circuit emulation and
standard software debug features. PSoC Designer includes:
The code generation tools work seamlessly within the
PSoC Designer interface and have been tested with a full range
of debugging tools. You can develop your design in C, assembly,
or a combination of the two.
Assemblers. The assemblers allow you to merge assembly
code seamlessly with C code. Link libraries automatically use
absolute addressing or are compiled in relative mode, and linked
with other software modules to get absolute addressing.
■
Application editor graphical user interface (GUI) for device and
user module configuration and dynamic reconfiguration
■
Extensive user module catalog
C Language Compilers. C language compilers are available
that support the PSoC family of devices. The products allow you
to create complete C programs for the PSoC family devices. The
optimizing C compilers provide all of the features of C, tailored
to the PSoC architecture. They come complete with embedded
libraries providing port and bus operations, standard keypad and
display support, and extended math functionality.
■
Integrated source-code editor (C and assembly)
Debugger
■
Free C compiler with no size restrictions or time limits
■
Built-in debugger
■
In-circuit emulation
Built-in support for communication interfaces:
2
❐ Hardware and software I C slaves and masters
❐ Full-speed USB 2.0
❐ Up
to
four
full-duplex
universal
asynchronous
receiver/transmitters (UARTs), SPI master and slave, and
wireless
PSoC Designer supports the entire library of PSoC 1 devices and
runs on Windows XP, Windows Vista, and Windows 7.
■
PSoC Designer Software Subsystems
Design Entry
In the chip-level view, choose a base device to work with. Then
select different onboard analog and digital components that use
the PSoC blocks, which are called user modules. Examples of
user modules are analog-to-digital converters (ADCs),
digital-to-analog converters (DACs), amplifiers, and filters.
Configure the user modules for your chosen application and
connect them to each other and to the proper pins. Then
generate your project. This prepopulates your project with APIs
and libraries that you can use to program your application.
The tool also supports easy development of multiple
configurations and dynamic reconfiguration. Dynamic
reconfiguration makes it possible to change configurations at run
time. In essence, this lets you to use more than 100 percent of
PSoC’s resources for an application.
Document Number: 001-48111 Rev. *Q
PSoC Designer has a debug environment that provides
hardware in-circuit emulation, allowing you to test the program in
a physical system while providing an internal view of the PSoC
device. Debugger commands allow you to read and program and
read and write data memory, and read and write I/O registers.
You can read and write CPU registers, set and clear breakpoints,
and provide program run, halt, and step control. The debugger
also lets you to create a trace buffer of registers and memory
locations of interest.
Online Help System
The online help system displays online, context-sensitive help.
Designed for procedural and quick reference, each functional
subsystem has its own context-sensitive help. This system also
provides tutorials and links to FAQs and an Online Support
Forum to aid the designer.
In-Circuit Emulator
A low-cost, high-functionality in-circuit emulator (ICE) is
available for development support. This hardware can program
single devices.
The emulator consists of a base unit that connects to the PC
using a USB port. The base unit is universal and operates with
all PSoC devices. Emulation pods for each device family are
available separately. The emulation pod takes the place of the
PSoC device in the target board and performs full-speed
(24 MHz) operation.
Page 10 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Designing with PSoC Designer
Organize and Connect
The development process for the PSoC device differs from that
of a traditional fixed-function microprocessor. The configurable
analog and digital hardware blocks give the PSoC architecture a
unique flexibility that pays dividends in managing specification
change during development and lowering inventory costs. These
configurable resources, called PSoC blocks, have the ability to
implement a wide variety of user-selectable functions. The PSoC
development process is:
1. Select user modules.
2. Configure user modules.
3. Organize and connect.
4. Generate, verify, and debug.
Build signal chains at the chip level by interconnecting user
modules to each other and the I/O pins. Perform the selection,
configuration, and routing so that you have complete control over
all on-chip resources.
Select User Modules
PSoC Designer provides a library of prebuilt, pretested hardware
peripheral components called “user modules.” User modules
make selecting and implementing peripheral devices, both
analog and digital, simple.
Configure User Modules
Each user module that you select establishes the basic register
settings that implement the selected function. They also provide
parameters and properties that allow you to tailor their precise
configuration to your particular application. For example, a PWM
User Module configures one or more digital PSoC blocks, one
for each eight bits of resolution. Using these parameters, you can
establish the pulse width and duty cycle. Configure the
parameters and properties to correspond to your chosen
application. Enter values directly or by selecting values from
drop-down menus. All of the user modules are documented in
datasheets that may be viewed directly in PSoC Designer or on
the Cypress website. These user module datasheets explain the
internal operation of the user module and provide performance
specifications. Each datasheet describes the use of each user
module parameter, and other information that you may need to
successfully implement your design.
Document Number: 001-48111 Rev. *Q
Generate, Verify, and Debug
When you are ready to test the hardware configuration or move
on to developing code for the project, perform the “Generate
Configuration Files” step. This causes PSoC Designer to
generate source code that automatically configures the device to
your specification and provides the software for the system. The
generated code provides APIs with high-level functions to control
and respond to hardware events at run time, and interrupt
service routines that you can adapt as needed.
A complete code development environment lets you to develop
and customize your applications in C, assembly language, or
both.
The last step in the development process takes place inside
PSoC Designer's Debugger (accessed by clicking the Connect
icon). PSoC Designer downloads the HEX image to the ICE
where it runs at full-speed. PSoC Designer debugging
capabilities rival those of systems costing many times more. In
addition to traditional single-step, run-to-breakpoint, and
watch-variable features, the debug interface provides a large
trace buffer. It lets you to define complex breakpoint events that
include monitoring address and data bus values, memory
locations, and external signals.
Page 11 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Pinouts
This section describes, lists, and illustrates the CY8C28xxx PSoC device pins and pinout configurations.
The CY8C28xxx PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every
port pin (labeled with a “P”) is capable of Digital I/O. However, VSS, VDD, SMP, and XRES are not capable of Digital I/O.
20-pin Part Pinout
Table 3. 20-pin Part Pinout (SSOP)
Type
Pin
No.
Digital
Analog
Pin
Name
1
I/O
I, M, S
P0[7]
2
I/O
I/O, M, S
P0[5]
3
I/O
I/O, M, S
P0[3]
4
I/O
I, M, S
P0[1]
5
Output
Description
Analog column mux and SAR ADC
input.[5]
SMP
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
Analog column mux and SAR ADC input.
S, AI, M, P0[1]
Analog column output.[5, 6]
SMP
Analog column mux and SAR ADC input.
I2C0 SCL, M, P1[7]
Analog column output.[5, 6]
I2C0 SDA, M, P1[5]
Analog column mux and SAR ADC
M, P1[3]
input.[5]
I2C0 SCL, XTALin, M, P1[1]
Switch Mode Pump (SMP) connection to
Vss
external components.
6
I/O
M
P1[7]
I2C0 Serial Clock (SCL).
7
I/O
M
P1[5]
I2C0 Serial Data (SDA).
8
I/O
M
P1[3]
9
I/O
M
P1[1]
10
Power
VSS
M
P1[0]
Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[4].
12
I/O
M
P1[2]
I2C1 Serial Data (SDA).[7]
13
I/O
M
P1[4]
Optional External Clock Input (EXTCLK).
14
I/O
M
P1[6]
I2C1 Serial Clock (SCL).[7]
I/O
I, M, S
P0[0]
Analog column mux and SAR ADC
input.[5]
17
I/O
I/O, M, S
P0[2]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
18
I/O
I/O, M, S
P0[4]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
19
I/O
I, M, S
P0[6]
Analog column mux and SAR ADC
input.[5]
VDD
Supply voltage.
Power
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
XRES
P1[6], M, I2C1 SCL
P1[4], M, EXTCLK
P1[2], M, I2C1 SDA
P1[0], M, XTALout, I2C0 SDA
XRES Active high external reset with internal
pull-down.
16
20
SSOP
20
19
18
17
16
15
14
13
12
11
Ground connection.
I/O
Input
1
2
3
4
5
6
7
8
9
10
Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[4].
11
15
CY8C28243 20-pin PSoC Device
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
Notes
4. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices for details.
5. CY8C28x52 and CY8C28x23 devices do not have a SAR ADC. Therefore, this pin does not function as a SAR ADC input for these devices.
6. CY8C28x13 and CY8C28x03 devices do not have any analog output buffers. Therefore, this pin does not function as an analog column output for these devices.
7. CY8C28x52, CY8C28x13, and CY8C28x33 devices only have one I2C block. Therefore, this GPIO does not function as an I2C pin for these devices.
8. CY8C28x33, CY8C28x23, CY8C28x13, and CY8C28x03 devices do not have an analog output buffer for this pin. Therefore, this pin does not function as an analog
column output for these devices.
Document Number: 001-48111 Rev. *Q
Page 12 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
28-pin Part Pinout
Table 4. 28-pin Part Pinout (SSOP)
Type
Pin
No.
Digital
Analog
Pin
Name
1
I/O
I, M, S
P0[7]
Analog column mux and SAR ADC
input.[5]
2
I/O
I/O, M, S
P0[5]
Analog column mux and SAR ADC input.
Analog column output.[5, 6]
3
I/O
I/O, M, S
P0[3]
Analog column mux and SAR ADC input.
Analog column output.[5, 6]
4
I/O
I, M, S
P0[1]
Analog column mux and SAR ADC
input.[5]
5
I/O
M
P2[7]
6
I/O
M
P2[5]
7
I/O
I, M
P2[3]
Direct switched capacitor block input.[9]
8
I/O
I, M
P2[1]
Direct switched capacitor block input.[9]
SMP
Switch Mode Pump (SMP) connection to
external components.
9
Output
Description
10
I/O
M
P1[7]
I2C0 Serial Clock (SCL).
11
I/O
M
P1[5]
I2C0 Serial Data (SDA).
12
I/O
M
P1[3]
13
I/O
M
P1[1]
14
Power
VSS
M
P1[0]
Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[4].
16
I/O
M
P1[2]
I2C1 Serial Data (SDA).[7]
17
I/O
M
P1[4]
Optional External Clock Input (EXTCLK).
18
I/O
M
P1[6]
I2C1 Serial Clock (SCL).[7]
I/O
I, M
P2[0]
Direct switched capacitor block input.[10]
21
I/O
I, M
P2[2]
Direct switched capacitor block input.[10]
22
I/O
M
P2[4]
External Analog Ground (AGND).
23
I/O
M
P2[6]
External Voltage Reference (VRef).
24
I/O
I, M, S
P0[0]
Analog column mux and SAR ADC
input.[5]
25
I/O
I/O, M, S
P0[2]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
26
I/O
I/O, M, S
P0[4]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
27
I/O
I, M, S
P0[6]
Analog column mux and SAR ADC
input.[5]
VDD
Supply voltage.
Power
SSOP
28
27
26
25
24
23
22
21
20
19
18
17
16
15
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
XRES
P1[6], M, I2C1 SCL
P1[4], M, EXTCLK
P1[2], M, I2C1 SDA
P1[0], M, XTALout, I2C0 SDA
XRES Active high external reset with internal
pull-down.
20
28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Ground connection.
I/O
Input
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
S, AI, M, P0[1]
M, P2[7]
M, P2[5]
AI, M, P2[3]
AI, M, P2[1]
SMP
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[4].
15
19
CY8C28403, CY8C28413, CY8C28433, CY8C28445, and
CY8C28452 28-pin PSoC Devices
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input
Notes
9. This pin is not a direct switched capacitor block analog input for CY8C28x03 and CY8C28x13 devices.
10. This pin is not a direct switched capacitor block analog input for CY8C28x03, CY8C28x13, CY8C28x23, and CY8C28x33 devices.
Document Number: 001-48111 Rev. *Q
Page 13 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
44-pin Part Pinout
Table 5. 44-pin Part Pinout (TQFP)
9
10
11
12
13
14
15
16
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
17
18
Pin
Name
M
M
M
M
M
M
M
M
P3[7]
P3[5]
P3[3]
P3[1]
P1[7]
P1[5]
P1[3]
P1[1]
I/O
M
VSS
P1[0]
19
20
21
22
23
24
25
26
I/O
I/O
I/O
I/O
I/O
I/O
I/O
M
M
M
M
M
M
M
27
28
29
30
31
32
33
34
35
36
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
M
M
M
M
I, M
I, M
M
M
I, M, S
I/O, M S
P4[0]
P4[2]
P4[4]
P4[6]
P2[0]
P2[2]
P2[4]
P2[6]
P0[0]
P0[2]
37
I/O
I/O, M, S
P0[4]
38
39
40
41
I/O
I, M, S
Power
I/O
I, M, S
I/O
I/O, M, S
P0[6]
VDD
P0[7]
P0[5]
42
I/O
P0[3]
Power
Input
I/O, M, S
P1[2]
P1[4]
P1[6]
P3[0]
P3[2]
P3[4]
P3[6]
XRES
P2[7], M
P0[1], M, AI, S
P0[3], M, AIO, S
P0[5], M, AIO, S
P0[7], M, AI, S
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
Direct switched capacitor block input.[9]
Direct switched capacitor block input.[9]
Switch Mode Pump (SMP) connection to
external components.
I2C0 Serial Clock (SCL).
I2C0 Serial Data (SDA).
Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[4].
Ground connection.
Crystal Output (XTALout), I2C0 Serial Data
(SDA), ISSP-SDATA[4].
I2C1 Serial Data (SDA).[7]
Optional External Clock Input (EXTCLK).
I2C1 Serial Clock (SCL).[7]
I2C1 Serial Data (SDA).[7]
I2C1 Serial Clock (SCL).[7]
M, P2[5]
AI, M, P2[3]
AI, M, P2[1]
M, P4[7]
M, P4[5]
M, P4[3]
M, P4[1]
SMP
M, P3[7]
M, P3[5]
M, P3[3]
44
43
42
41
40
39
38
37
36
35
34
P2[5]
P2[3]
P2[1]
P4[7]
P4[5]
P4[3]
P4[1]
SMP
CY8C28513 and CY8C28545
44-pin PSoC Devices
Description
1
2
3
4
5
6
7
8
9
10
11
TQFP
33
32
31
30
29
28
27
26
25
24
23
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
Type
Digital Analog
I/O
M
I/O
I, M
I/O
I, M
I/O
M
I/O
M
I/O
M
I/O
M
Output
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
XRES
P3[6], M
P3[4], M
P3[2], M, I2C1 SCL
M, P3[1]
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
I2C0 SDA, XTALout, M, P1[0]
I2C1 SDA, M, P1[2]
EXTCLK, M, P1[4]
I2C1 SCL, M, P1[6]
I2C1 SDA, M, P3[0]
Pin
No.
Active high external reset with internal
pull-down.
Direct switched capacitor block input.[10]
Direct switched capacitor block input.[10]
External Analog Ground (AGND).
External Voltage Reference (VRef).
Analog column mux and SAR ADC input.[5]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
Analog column mux and SAR ADC input.
Analog column output.[5, 8]
Analog column mux and SAR ADC input.[5]
Supply voltage.
Analog column mux and SAR ADC input.[5]
Analog column mux and SAR ADC input.
Analog column output.[5, 6]
Analog column mux and SAR ADC input.
Analog column output.[5, 6]
Analog column mux and SAR ADC input.[5]
43
I/O
I, M, S
P0[1]
44
I/O
P2[7]
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
Document Number: 001-48111 Rev. *Q
Page 14 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
48-pin Part Pinout
Table 6. 48-pin Part Pinout (QFN[11])
Type
Pin
Pin
Description
No. Digital Analog Name
1
I/O
I, M
P2[3] Direct switched capacitor block input.[9]
2
I/O
I, M
P2[1] Direct switched capacitor block input.[9]
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
18
19
I/O
M
20
I/O
M
P3[7]
P3[5]
P3[3]
P3[1]
P5[3]
P5[1]
P1[7] I2C0 Serial Clock (SCL).
P1[5] I2C0 Serial Data (SDA).
P1[3]
P1[1] Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[4].
VSS Ground connection.
P1[0] Crystal Output (XTALout), I2C0 Serial Data
(SDA), ISSP-SDATA[4].
P1[2] I2C1 Serial Data (SDA).[7]
21
22
I/O
I/O
M
M
23
24
25
I/O
I/O
I/O
M
M
M
26
I/O
M
27
28
29
I/O
I/O
M
M
30
31
32
33
I/O
I/O
I/O
I/O
M
M
M
M
34
I/O
I, M
35
I/O
I, M
36
I/O
37
M
M
M
M
M
M
M
M
M
M
Power
Input
P2[5], M
P2[7], M
P0[1], M, AI, S
P0[3], M, AIO, S
P0[5], M, AIO, S
P0[7], M, AI, S
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
8
9
10
11
12
13
14
15
16
17
Switch Mode Pump (SMP) connection to
external components.
AI, M, P2[3]
AI, M, P2[1]
M, P4[7]
M, P4[5]
M, P4[3]
M, P4[1]
SMP
M, P3[7]
M, P3[5]
M, P3[3]
M, P3[1]
M, P5[3]
P1[4] Optional External Clock Input (EXTCLK).
P1[6] I2C1 Serial Clock (SCL).[7]
P5[0]
P5[2]
P3[0] I2C1 Serial Data (SDA).[7]
P3[2] I2C1 Serial Clock (SCL).[7]
P3[4]
P3[6]
XRES Active high external reset with internal
pull-down.
P4[0]
P4[2]
P4[4]
P4[6]
48
47
46
45
44
43
42
41
40
39
38
37
P4[7]
P4[5]
P4[3]
P4[1]
SMP
1
2
3
4
5
6
7
8
9
10
11
12
QFN
(Top View)
Pin
No.
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
XRES
P3[6], M
P3[4], M
P3[2], M, I2C1 SCL
P3[0], M, I2C1 SDA
41
Type
Pin
Description
Digital Analog Name
I/O
I, M, S P0[6] Analog column mux and SAR ADC
input.[5]
Power
VDD Supply voltage.
P2[0] Direct switched capacitor block input.[10]
P2[2] Direct switched capacitor block input.[10]
42
43
I/O
I, M, S
P0[7]
M
P2[4]
External Analog Ground (AGND).
44
I/O
I/O, M,
S
P0[5]
I/O
M
P2[6]
External Voltage Reference (VRef).
45
I/O
I/O, M,
S
P0[3]
38
I/O
I, M, S
P0[0] Analog column mux and SAR ADC input.[5]
46
I/O
I, M, S
P0[1]
39
I/O
I/O, M,
S
P0[2]
Analog column mux and SAR ADC input.
47
I/O
M
Analog column output.[5, 8]
40
I/O
I/O, M, P0[4] Analog column mux and SAR ADC input.
48
I/O
M
S
Analog column output.[5, 8]
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
Document Number: 001-48111 Rev. *Q
36
35
34
33
32
31
30
29
28
27
26
25
13
14
15
16
17
18
19
20
21
22
23
24
I/O
M
I/O
M
I/O
M
I/O
M
Output
M, P5[1]
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
I2C0 SDA, XTALout, M, P1[0]
I2C1 SDA, M, P1[2]
EXTCLK, M, P1[4]
I2C1 SCL, M, P1[6]
M, P5[0]
M, P5[2]
3
4
5
6
7
CY8C28623, CY8C28643, and CY8C28645
48-pin PSoC Devices
Analog column mux and SAR ADC
input.[5]
Analog column mux and SAR ADC
input. Analog column output.[5, 6]
Analog column mux and SAR ADC
input. Analog column output.[5, 6]
Analog column mux and SAR ADC
input.[5]
P2[7]
P2[5]
Page 15 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
56-pin Part Pinout
The 56-pin SSOP part is for the CY8C28000 On-Chip Debug (OCD) PSoC device.
Note This part is only used for in-circuit debugging. It is NOT available for production.
Table 7. 56-pin Part Pinout (SSOP)
Pin
No.
Type
Digital
Analog
Pin
Name
2
I/O
I, M, S
P0[7]
Analog column mux and SAR ADC input.
3
I/O
I/O, M, S
P0[5]
Analog column mux and SAR ADC input.
Analog column output.
4
I/O
I/O, M, S
P0[3]
Analog column mux and SAR ADC input.
Analog column output.
5
I/O
I, M, S
P0[1]
Analog column mux and SAR ADC input.
6
I/O
M
P2[7]
7
I/O
M
P2[5]
8
I/O
I
P2[3]
Direct switched capacitor block input.
Direct switched capacitor block input.
1
NC
9
I/O
I
P2[1]
10
I/O
M
P4[7]
Description
No connection.
11
I/O
M
P4[5]
12
I/O
I, M
P4[3]
13
I/O
I, M
14
OCD
M
OCDE OCD even data I/O.
15
OCD
M
OCDO OCD odd data output.
16
Output
P4[1]
SMP
Switch Mode Pump (SMP) connection to
required external components.
17
I/O
M
P3[7]
18
I/O
M
P3[5]
19
I/O
M
P3[3]
20
I/O
M
P3[1]
21
I/O
M
P5[3]
22
I/O
M
P5[1]
23
I/O
M
P1[7]
I2C0 Serial Clock (SCL).
24
I/O
M
P1[5]
I2C0 Serial Data (SDA).
25
NC
I/O
M
P1[3]
27
I/O
M
P1[1]
Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[4].
VSS
Ground connection.
Power
NC
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
S, AI, M, P0[1]
M, P2[7]
M, P2[5]
AI, M, P2[3]
AI, M, P2[1]
M, P4[7]
M, P4[5]
M, P4[3]
M, P4[1]
OCDE
OCDO
SMP
M, P3[7]
M, P3[5]
M, P3[3]
M, P3[1]
M, P5[3]
M, P5[1]
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
NC
M, P1[3]
SCLK, I2C0 SCL, XTALIn, M, P1[1]
Vss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
SSOP
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
CCLK
HCLK
XRES
P3[6], M
P3[4], M
P3[2], M, I2C1 SCL
P3[0], M, I2C1 SDA
P5[2], M
P5[0], M
P1[6], M, I2C1 SCL
P1[4], M, EXTCLK
P1[2], M, I2C1 SDA
P1[0], M, XTALOut, I2C0 SDA, SDATA
NC
NC
Not for Production
No connection.
26
28
CY8C28000 56-pin PSoC Device
29
NC
No connection.
30
NC
No connection.
31
I/O
M
P1[0]
Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[4].
32
I/O
M
P1[2]
I2C1 Serial Data (SDA).
33
I/O
M
P1[4]
Optional External Clock Input (EXTCLK).
34
I/O
M
P1[6]
I2C1 Serial Clock (SCL).
35
I/O
M
P5[0]
36
I/O
M
P5[2]
37
I/O
M
P3[0]
I2C1 Serial Data (SDA).
38
I/O
M
P3[2]
I2C1 Serial Clock (SCL).
Note
11. The QFN package has a center pad that must be connected to ground (VSS)
Document Number: 001-48111 Rev. *Q
Page 16 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 7. 56-pin Part Pinout (SSOP) (continued)
Type
Pin
No.
Digital
Analog
Pin
Name
39
I/O
M
P3[4]
40
I/O
M
41
Input
Description
P3[6]
XRES Active high external reset with internal
pull-down.
42
OCD
M
HCLK OCD high speed clock output.
43
OCD
M
CCLK OCD CPU clock output.
44
I/O
M
P4[0]
45
I/O
M
P4[2]
46
I/O
M
P4[4]
47
I/O
M
P4[6]
48
I/O
I, M
P2[0]
49
I/O
I, M
P2[2]
Direct switched capacitor block input.
50
I/O
M
P2[4]
External Analog Ground (AGND).
51
I/O
M
P2[6]
External Voltage Reference (VRef).
52
I/O
I, M, S
P0[0]
Analog column mux and SAR ADC input.
53
I/O
I/O, M, S
P0[2]
Analog column mux and SAR ADC input.
Analog column output.
54
I/O
I/O, M, S
P0[4]
Analog column mux and SAR ADC input.
Analog column output.
55
I/O
I, M, S
P0[6]
Analog column mux and SAR ADC input.
VDD
Supply voltage.
56
Power
Direct switched capacitor block input.
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, M = Analog Mux Bus Input, and OCD = On-Chip Debug.
Document Number: 001-48111 Rev. *Q
Page 17 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Register Reference
This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the
PSoC Technical Reference Manual for CY8C28xxx PSoC devices.
Register Conventions
Register Mapping Tables
The register conventions specific to this section are listed in the
following table.
CY8C28xxx PSoC devices have a total register address space
of 512 bytes. The register space is referred to as I/O space and
is divided into two banks. The XIO bit in the Flag register
(CPU_F) determines which bank of registers CPU instructions
access. When the XIO bit is set the registers in Bank 1 are
accessed by CPU instructions. When the XIO bit is cleared the
registers in Bank 0 are accessed by CPU instructions.
Convention
Description
R
Read register or bit(s)
W
Write register or bit(s)
L
Logical register or bit(s)
C
Clearable register or bit(s)
#
Access is bit specific
Document Number: 001-48111 Rev. *Q
Note In the following register mapping tables, blank fields are
reserved and should not be accessed.
Page 18 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 8. CY8C28x03 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
Addr (0,Hex)
80
PRT0IE
01
RW
DBC20DR1
41
W
81
PRT0GS
02
RW
DBC20DR2
42
RW
82
PRT0DM2
03
RW
DBC20CR0
43
#
PRT1DR
04
RW
DBC21DR0
44
PRT1IE
05
RW
DBC21DR1
PRT1GS
06
RW
PRT1DM2
07
PRT2DR
Access
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
83
RDI2LT0
C3
RW
#
84
RDI2LT1
C4
RW
45
W
85
RDI2RO0
C5
RW
DBC21DR2
46
RW
86
RDI2RO1
C6
RW
RW
DBC21CR0
47
#
87
RDI2DSM
C7
RW
08
RW
DCC22DR0
48
#
88
PRT2IE
09
RW
DCC22DR1
49
W
89
C9
PRT2GS
0A
RW
DCC22DR2
4A
RW
8A
CA
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
8B
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
8C
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
8D
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
8E
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
8F
PRT4DR
10
RW
50
90
CUR_PP
D0
RW
PRT4IE
11
RW
51
91
STK_PP
D1
RW
PRT4GS
12
RW
52
92
PRT4DM2
13
RW
53
93
IDX_PP
D3
RW
PRT5DR
14
RW
54
94
MVR_PP
D4
RW
PRT5IE
15
RW
55
95
MVW_PP
D5
RW
PRT5GS
16
RW
56
96
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
97
I2C0_SCR
D7
#
58
98
I2C0_DR
D8
RW
18
CF
D2
19
59
99
I2C0_MSCR
D9
#
1A
5A
9A
INT_CLR0
DA
RW
1B
5B
9B
INT_CLR1
DB
RW
1C
5C
9C
INT_CLR2
DC
RW
1D
5D
9D
INT_CLR3
DD
RW
1E
5E
9E
INT_MSK3
DE
RW
1F
5F
9F
INT_MSK2
DF
RW
#
60
A0
INT_MSK0
E0
RW
DBC00DR0
20
DBC00DR1
21
W
61
A1
INT_MSK1
E1
RW
DBC00DR2
22
RW
62
A2
INT_VC
E2
RC
DBC00CR0
23
#
63
A3
RES_WDT
E3
W
DBC01DR0
24
#
64
A4
I2C1_SCR
E4
#
DBC01DR1
25
W
65
A5
I2C1_MSCR
E5
#
DBC01DR2
26
RW
66
A6
DBC01CR0
27
#
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
SADC_DH
6A
RW
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
SADC_DL
6B
RW
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
70
RDI0RI
B0
RW
F0
DBC10DR1
31
W
71
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
72
RDI0IS
B2
RW
F2
DBC10CR0
33
#
73
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
74
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
75
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
76
RDI0RO1
B6
RW
DBC11CR0
37
#
77
RDI0DSM
B7
RW
DCC12DR0
38
#
78
RDI1RI
B8
RW
I2C1_DR
67
RW
E6
A7
E7
F6
CPU_F
F7
DCC12DR1
39
W
79
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
7A
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
7B
RDI1LT0
BB
RW
FB
DCC13DR0
3C
#
7C
RDI1LT1
BC
RW
FC
DCC13DR1
3D
W
7D
RDI1RO0
BD
RW
DCC13DR2
3E
RW
7E
RDI1RO1
BE
RW
DCC13CR0
3F
#
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
# Access is bit specific.
RL
F8
FD
CPU_SCR1
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
FE
#
FF
#
Page 19 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 9. CY8C28x03 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
DBC20IN
41
RW
DBC20OU
42
RW
RW
DBC20CR1
43
RW
04
RW
DBC21FN
44
PRT1DM1
05
RW
DBC21IN
PRT1IC0
06
RW
PRT1IC1
07
PRT2DM0
Name
Addr (1,Hex)
80
Access
SADC_TSCMPL
81
RW
SADC_TSCMPH
82
RW
Name
RDI2RI
Addr (1,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
83
RDI2LT0
C3
RW
RW
84
RDI2LT1
C4
RW
45
RW
85
RDI2RO0
C5
RW
DBC21OU
46
RW
86
RDI2RO1
C6
RW
RW
DBC21CR1
47
RW
87
RDI2DSM
C7
RW
08
RW
DCC22FN
48
RW
88
PRT2DM1
09
RW
DCC22IN
49
RW
89
C9
PRT2IC0
0A
RW
DCC22OU
4A
RW
8A
CA
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
8B
CB
PRT3DM0
0C
RW
DCC23FN
4C
RW
8C
CC
PRT3DM1
0D
RW
DCC23IN
4D
RW
8D
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
8E
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
8F
PRT4DM0
10
RW
50
90
GDI_O_IN
D0
RW
PRT4DM1
11
RW
51
91
GDI_E_IN
D1
RW
PRT4IC0
12
RW
52
92
GDI_O_OU
D2
RW
PRT4IC1
13
RW
53
93
GDI_E_OU
D3
RW
PRT5DM0
14
RW
54
94
D4
CF
PRT5DM1
15
RW
55
95
D5
PRT5IC0
16
RW
56
96
D6
PRT5IC1
17
RW
57
97
D7
18
58
98
D8
19
59
99
D9
1A
5A
9A
DA
1B
5B
9B
DB
1C
5C
9C
DC
1D
5D
9D
OSC_GO_EN
DD
RW
1E
5E
9E
OSC_CR4
DE
RW
1F
5F
9F
OSC_CR3
DF
RW
DBC00FN
20
RW
60
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
61
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
62
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
63
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
64
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
65
RTC_M
A5
RW
E5
DBC01OU
26
RW
66
RTC_S
A6
RW
E6
DBC01CR1
27
RW
67
RTC_CR
A7
RW
DCC02FN
28
RW
68
SADC_CR0
A8
RW
IMO_TR
E8
RW
DCC02IN
29
RW
69
SADC_CR1
A9
RW
ILO_TR
E9
RW
DCC02OU
2A
RW
SADC_CR2
AA
RW
BDG_TR
EA
RW
DCC02CR1
2B
RW
I2C1_CFG
6B
RW
SADC_CR3
AB
RW
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
SADC_CR4
AC
RW
EC
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
ED
DCC03OU
2E
RW
TMP_DR2
6E
RW
I2C1_ADDR
AE
RW
EE
DCC03CR1
2F
RW
TMP_DR3
6F
RW
AMUX_CLK
AF
RW
EF
DBC10FN
30
RW
RDI0RI
B0
RW
F0
DBC10IN
31
RW
SADC_TSCR0
71
RW
RDI0SYN
B1
RW
F1
DBC10OU
32
RW
SADC_TSCR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR1
33
RW
73
RDI0LT0
B3
RW
F3
DBC11FN
34
RW
74
RDI0LT1
B4
RW
F4
DBC11IN
35
RW
75
RDI0RO0
B5
RW
F5
DBC11OU
36
RW
76
RDI0RO1
B6
RW
DBC11CR1
37
RW
77
RDIODSM
B7
RW
DCC12FN
38
RW
78
RDI1RI
B8
RW
DCC12IN
39
RW
79
RDI1SYN
B9
RW
DCC12OU
3A
RW
7A
RDI1IS
BA
RW
DCC12CR1
3B
RW
7B
RDI1LT0
BB
RW
FB
DCC13FN
3C
RW
7C
RDI1LT1
BC
RW
FC
DCC13IN
3D
RW
7D
RDI1RO0
BD
RW
DCC13OU
3E
RW
7E
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
7F
RDI1DSM
BF
RW
CPU_SCR0
FF
#
6A
70
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
E7
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FD
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 20 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 10. CY8C28x13 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
Addr (0,Hex)
80
PRT0IE
01
RW
DBC20DR1
41
W
81
PRT0GS
02
RW
DBC20DR2
42
RW
82
PRT0DM2
03
RW
DBC20CR0
43
#
PRT1DR
04
RW
DBC21DR0
44
PRT1IE
05
RW
DBC21DR1
PRT1GS
06
RW
PRT1DM2
07
PRT2DR
Access
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
83
RDI2LT0
C3
RW
#
84
RDI2LT1
C4
RW
45
W
85
RDI2RO0
C5
RW
DBC21DR2
46
RW
86
RDI2RO1
C6
RW
RW
DBC21CR0
47
#
87
RDI2DSM
C7
RW
08
RW
DCC22DR0
48
#
88
PRT2IE
09
RW
DCC22DR1
49
W
89
C9
PRT2GS
0A
RW
DCC22DR2
4A
RW
8A
CA
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
8B
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
8C
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
8D
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
8E
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
8F
PRT4DR
10
RW
50
90
CUR_PP
D0
RW
PRT4IE
11
RW
51
91
STK_PP
D1
RW
PRT4GS
12
RW
52
92
PRT4DM2
13
RW
53
93
IDX_PP
D3
RW
PRT5DR
14
RW
54
94
MVR_PP
D4
RW
PRT5IE
15
RW
55
95
MVW_PP
D5
RW
PRT5GS
16
RW
56
96
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
97
I2C0_SCR
D7
#
58
98
I2C0_DR
D8
RW
18
CF
D2
19
59
99
I2C0_MSCR
D9
#
1A
5A
9A
INT_CLR0
DA
RW
1B
5B
9B
INT_CLR1
DB
RW
1C
5C
9C
INT_CLR2
DC
RW
1D
5D
9D
INT_CLR3
DD
RW
1E
5E
9E
INT_MSK3
DE
RW
1F
5F
9F
INT_MSK2
DF
RW
DBC00DR0
20
#
60
DBC00DR1
21
W
DBC00DR2
22
RW
62
DBC00CR0
23
#
63
DBC01DR0
24
#
64
A4
DBC01DR1
25
W
65
A5
DBC01DR2
26
RW
66
A6
DEC_CR0*
E6
RW
DBC01CR0
27
#
67
A7
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
SADC_DH
6A
RW
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
SADC_DL
6B
RW
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
70
RDI0RI
B0
RW
F0
DBC10DR1
31
W
71
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
72
RDI0IS
B2
RW
F2
DBC10CR0
33
#
73
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
74
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
75
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
76
RDI0RO1
B6
RW
DBC11CR0
37
#
77
RDI0DSM
B7
RW
DCC12DR0
38
#
78
RDI1RI
B8
RW
AMUX_CFG
61
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DEC1_DL
A3
RC
RES_WDT
E3
W
E4
E5
F6
CPU_F
F7
RL
F8
DCC12DR1
39
W
79
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
7A
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
7B
RDI1LT0
BB
RW
DCC13DR0
3C
#
7C
RDI1LT1
BC
RW
DAC1_D
FC
RW
DCC13DR1
3D
W
7D
RDI1RO0
BD
RW
DAC0_D
FD
RW
DCC13DR2
3E
RW
7E
RDI1RO1
BE
RW
CPU_SCR1
FE
#
FF
#
DCC13CR0
3F
#
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
# Access is bit specific.
FB
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 21 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 11. CY8C28x13 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
Name
Addr (1,Hex)
80
Access
SADC_TSCMPL
81
RW
SADC_TSCMPH
82
RW
ACE_AMD_CR1
83
RW
Addr (1,Hex)
C0
Access
RW
DBC20IN
41
RW
DBC20OU
42
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
DBC20CR1
43
RW
RW
RDI2LT0
C3
04
RW
DBC21FN
44
RW
RW
RDI2LT1
C4
PRT1DM1
05
RW
DBC21IN
45
RW
ACE_PWM_CR
85
RW
RW
RDI2RO0
C5
PRT1IC0
06
RW
DBC21OU
46
RW
ACE_ADC0_CR
RW
86
RW
RDI2RO1
C6
PRT1IC1
07
RW
DBC21CR1
47
RW
ACE_ADC1_CR
RW
87
RW
RDI2DSM
C7
PRT2DM0
08
RW
DCC22FN
48
RW
RW
PRT2DM1
09
RW
DCC22IN
49
RW
ACE_CLK_CR0
89
RW
C9
PRT2IC0
0A
RW
DCC22OU
4A
RW
ACE_CLK_CR1
8A
RW
CA
ACE_CLK_CR3
8B
RW
CB
8C
RW
CC
84
Name
RDI2RI
88
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
PRT3DM0
0C
RW
DCC23FN
4C
RW
PRT3DM1
0D
RW
DCC23IN
4D
RW
ACE01CR1
8D
RW
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
ACE01CR2
8E
RW
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
ASE11CR0
8F
RW
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
92
PRT4IC1
13
RW
53
PRT5DM0
14
RW
54
PRT5DM1
15
RW
55
PRT5IC0
16
RW
56
96
PRT5IC1
17
RW
90
DEC1_CR0
CF
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
RW
GDI_O_OU
D2
RW
93
GDI_E_OU
D3
RW
94
DEC0_CR
D4
RW
DEC1_CR
D5
RW
95
RW
D6
57
97
18
58
98
MUX_CR0
D8
RW
19
59
99
MUX_CR1
D9
RW
1A
5A
MUX_CR2
DA
RW
1B
5B
9B
MUX_CR3
DB
RW
1C
5C
9C
IDAC_CR1
DC
RW
1D
5D
9D
OSC_GO_EN
DD
RW
1E
5E
9E
OSC_CR4
DE
RW
1F
5F
9F
OSC_CR3
DF
RW
DEC_CR5
9A
D7
RW
DBC00FN
20
RW
60
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
61
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
62
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
63
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
64
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
65
RTC_M
A5
RW
ADC0_TR
E5
RW
DBC01OU
26
RW
66
RTC_S
A6
RW
ADC1_TR
E6
RW
DBC01CR1
27
RW
67
RTC_CR
A7
RW
IDAC_CR2
E7
RW
DCC02FN
28
RW
68
SADC_CR0
A8
RW
IMO_TR
E8
RW
DCC02IN
29
RW
SADC_CR1
A9
RW
ILO_TR
E9
RW
DCC02OU
2A
RW
SADC_CR2
AA
RW
BDG_TR
EA
RW
DCC02CR1
2B
RW
SADC_CR3
AB
RW
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
SADC_CR4
AC
RW
MUX_CR4
EC
RW
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
MUX_CR5
ED
RW
DCC03OU
2E
RW
TMP_DR2
6E
RW
DCC03CR1
2F
RW
TMP_DR3
6F
RW
DBC10FN
30
RW
DBC10IN
31
RW
SADC_TSCR0
71
DBC10OU
32
RW
SADC_TSCR1
DBC10CR1
33
RW
ACE_AMD_CR0
DBC11FN
34
RW
DBC11IN
35
RW
DBC11OU
36
DBC11CR1
DCC12FN
69
AMUX_CFG1
6A
RW
6B
AE
EE
AMUX_CLK
AF
RW
EF
RDI0RI
B0
RW
F0
RW
RDI0SYN
B1
RW
F1
72
RW
RDI0IS
B2
RW
F2
73
RW
RDI0LT0
B3
RW
F3
74
RW
RDI0LT1
B4
RW
F4
ACE_AMX_IN
75
RW
RDI0RO0
B5
RW
F5
RW
ACE_CMP_CR0
76
RW
RDI0RO1
B6
RW
37
RW
ACE_CMP_CR1
77
RW
RDIODSM
B7
RW
38
RW
RDI1RI
B8
RW
DCC12IN
39
RW
ACE_CMP_GI_EN
79
RW
RDI1SYN
B9
RW
DCC12OU
3A
RW
ACE_ALT_CR0
7A
RW
RDI1IS
BA
RW
DCC12CR1
3B
RW
ACE_ABF_CR0
7B
RW
RDI1LT0
BB
RW
DCC13FN
3C
RW
RDI1LT1
BC
RW
DCC13IN
3D
RW
ACE0_CR1
7D
RW
RDI1RO0
BD
RW
IDAC_CR0
FD
RW
DCC13OU
3E
RW
ACE0_CR2
7E
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
ACE0_CR3
7F
RW
RDI1DSM
BF
RW
CPU_SCR0
FF
#
70
78
7C
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FB
FC
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 22 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 12. CY8C28x23 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
ASC10CR0
Addr (0,Hex)
80
Access
RW
PRT0IE
01
RW
DBC20DR1
PRT0GS
02
RW
DBC20DR2
PRT0DM2
03
RW
PRT1DR
04
PRT1IE
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
41
W
ASC10CR1
81
RW
42
RW
ASC10CR2
82
RW
RDI2SYN
C1
RW
RDI2IS
C2
DBC20CR0
43
#
ASC10CR3
83
RW
RW
RDI2LT0
C3
RW
DBC21DR0
44
#
ASD11CR0
RW
84
RW
RDI2LT1
C4
05
RW
DBC21DR1
45
W
RW
ASD11CR1
85
RW
RDI2RO0
C5
PRT1GS
06
RW
DBC21DR2
46
RW
RW
ASD11CR2
86
RW
RDI2RO1
C6
PRT1DM2
07
RW
DBC21CR0
RW
47
#
ASD11CR3
87
RW
RDI2DSM
C7
PRT2DR
08
RW
DCC22DR0
RW
48
#
PRT2IE
09
RW
DCC22DR1
49
W
89
C9
PRT2GS
0A
RW
DCC22DR2
4A
RW
8A
CA
88
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
8B
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
8C
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
8D
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
8E
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
8F
PRT4DR
10
RW
50
ASD20CR0
90
RW
CUR_PP
D0
RW
PRT4IE
11
RW
51
ASD20CR1
91
RW
STK_PP
D1
RW
PRT4GS
12
RW
52
ASD20CR2
92
RW
PRT4DM2
13
RW
53
ASD20CR3
93
RW
IDX_PP
D3
RW
PRT5DR
14
RW
54
ASC21CR0
94
RW
MVR_PP
D4
RW
PRT5IE
15
RW
55
ASC21CR1
95
RW
MVW_PP
D5
RW
PRT5GS
16
RW
56
ASC21CR2
96
RW
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
ASC21CR3
97
RW
I2C0_SCR
D7
#
98
I2C0_DR
D8
RW
18
58
CF
D2
19
59
99
I2C0_MSCR
D9
#
1A
5A
9A
INT_CLR0
DA
RW
1B
5B
9B
INT_CLR1
DB
RW
1C
5C
9C
INT_CLR2
DC
RW
1D
5D
9D
INT_CLR3
DD
RW
1E
5E
9E
INT_MSK3
DE
RW
1F
5F
9F
INT_MSK2
DF
RW
DBC00DR0
20
#
AMX_IN
60
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DBC00DR1
DBC00DR2
21
W
AMUX_CFG
61
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
22
RW
CLK_CR3
62
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DBC00CR0
23
#
ARF_CR
63
RW
DEC1_DL
A3
RC
RES_WDT
E3
W
DBC01DR0
24
#
CMP_CR0
64
#
A4
I2C1_SCR
E4
#
DBC01DR1
25
W
ASY_CR
65
#
A5
I2C1_MSCR
E5
#
DBC01DR2
26
RW
CMP_CR1
66
RW
A6
DEC_CR0*
E6
RW
DBC01CR0
27
#
I2C1_DR
67
RW
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
6A
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
6B
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
ACB00CR3
70
RW
RDI0RI
B0
RW
F0
DBC10DR1
31
W
ACB00CR0
71
RW
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
ACB00CR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR0
33
#
ACB00CR2
73
RW
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
ACB01CR3
74
RW
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
ACB01CR0
75
RW
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
ACB01CR1
76
RW
RDI0RO1
B6
RW
DBC11CR0
37
#
ACB01CR2
77
RW
RDI0DSM
B7
RW
DCC12DR0
38
#
78
RDI1RI
B8
RW
A7
F6
CPU_F
F7
DCC12DR1
39
W
79
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
7A
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
7B
RDI1LT0
BB
RW
FB
DCC13DR0
3C
#
7C
RDI1LT1
BC
RW
FC
DCC13DR1
3D
W
7D
RDI1RO0
BD
RW
DCC13DR2
3E
RW
7E
RDI1RO1
BE
RW
DCC13CR0
3F
#
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
# Access is bit specific.
RL
F8
FD
CPU_SCR1
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
FE
#
FF
#
Page 23 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
Name
Addr (1,Hex)
80
DBC20IN
41
RW
81
DBC20OU
42
RW
82
RW
DBC20CR1
43
RW
04
RW
DBC21FN
44
PRT1DM1
05
RW
DBC21IN
PRT1IC0
06
RW
PRT1IC1
07
PRT2DM0
Access
Name
RDI2RI
Addr (1,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
83
RDI2LT0
C3
RW
RW
84
RDI2LT1
C4
RW
45
RW
85
RDI2RO0
C5
RW
DBC21OU
46
RW
86
RDI2RO1
C6
RW
RW
DBC21CR1
47
RW
87
RDI2DSM
C7
RW
08
RW
DCC22FN
48
RW
88
PRT2DM1
09
RW
DCC22IN
49
RW
89
C9
PRT2IC0
0A
RW
DCC22OU
4A
RW
8A
CA
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
8B
CB
PRT3DM0
0C
RW
DCC23FN
4C
RW
8C
CC
PRT3DM1
0D
RW
DCC23IN
4D
RW
8D
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
8E
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
8F
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
PRT4IC1
13
RW
PRT5DM0
14
PRT5DM1
CF
90
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
92
RW
GDI_O_OU
D2
RW
53
93
RW
GDI_E_OU
D3
RW
RW
54
94
RW
DEC0_CR
D4
RW
15
RW
55
95
RW
DEC1_CR
D5
RW
PRT5IC0
16
RW
56
96
D6
PRT5IC1
17
RW
DEC1_CR0
57
97
D7
18
58
98
D8
19
59
99
1A
5A
DEC_CR5
9A
D9
RW
DA
1B
5B
9B
DB
1C
5C
9C
DC
1D
5D
9D
OSC_GO_EN
DD
RW
1E
5E
9E
OSC_CR4
DE
RW
1F
5F
9F
OSC_CR3
DF
RW
DBC00FN
20
RW
CLK_CR0
60
RW
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
CLK_CR1
61
RW
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
ABF_CR0
62
RW
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
AMD_CR0
63
RW
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
CMP_GO_EN
64
RW
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
RTC_M
A5
RW
E5
DBC01OU
26
RW
AMD_CR1
66
RW
RTC_S
A6
RW
E6
DBC01CR1
27
RW
ALT_CR0
67
RW
RTC_CR
A7
RW
DCC02FN
28
RW
DCC02IN
29
RW
DCC02OU
2A
RW
DCC02CR1
2B
RW
I2C1_CFG
6B
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
AC
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
ED
DCC03OU
2E
RW
TMP_DR2
6E
RW
I2C1_ADDR
AE
RW
EE
DCC03CR1
2F
RW
TMP_DR3
6F
RW
AMUX_CLK
AF
RW
EF
DBC10FN
30
RW
70
RDI0RI
B0
RW
F0
DBC10IN
31
RW
71
RDI0SYN
B1
RW
F1
DBC10OU
32
RW
72
RDI0IS
B2
RW
F2
DBC10CR1
33
RW
73
RDI0LT0
B3
RW
F3
DBC11FN
34
RW
74
RDI0LT1
B4
RW
F4
DBC11IN
35
RW
75
RDI0RO0
B5
RW
F5
DBC11OU
36
RW
76
RDI0RO1
B6
RW
DBC11CR1
37
RW
77
RDIODSM
B7
RW
DCC12FN
38
RW
78
RDI1RI
B8
RW
DCC12IN
39
RW
79
RDI1SYN
B9
RW
DCC12OU
3A
RW
7A
RDI1IS
BA
RW
DCC12CR1
3B
RW
7B
RDI1LT0
BB
RW
FB
DCC13FN
3C
RW
7C
RDI1LT1
BC
RW
FC
DCC13IN
3D
RW
7D
RDI1RO0
BD
RW
DCC13OU
3E
RW
7E
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
7F
RDI1DSM
BF
RW
CPU_SCR0
FF
#
65
68
CLK_CR2
69
RW
6A
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
E7
A8
IMO_TR
E8
RW
A9
ILO_TR
E9
RW
AA
BDG_TR
EA
RW
AB
ECO_TR
EB
RW
EC
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FD
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 24 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 14. CY8C28x33 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
ASC10CR0
Addr (0,Hex)
80
Access
RW
PRT0IE
01
RW
DBC20DR1
PRT0GS
02
RW
DBC20DR2
PRT0DM2
03
RW
PRT1DR
04
PRT1IE
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
41
W
ASC10CR1
81
RW
42
RW
ASC10CR2
82
RW
RDI2SYN
C1
RW
RDI2IS
C2
DBC20CR0
43
#
ASC10CR3
83
RW
RW
RDI2LT0
C3
RW
DBC21DR0
44
#
ASD11CR0
RW
84
RW
RDI2LT1
C4
05
RW
DBC21DR1
45
W
RW
ASD11CR1
85
RW
RDI2RO0
C5
PRT1GS
06
RW
DBC21DR2
46
RW
RW
ASD11CR2
86
RW
RDI2RO1
C6
PRT1DM2
07
RW
DBC21CR0
RW
47
#
ASD11CR3
87
RW
RDI2DSM
C7
PRT2DR
08
RW
DCC22DR0
RW
48
#
PRT2IE
09
RW
DCC22DR1
49
W
89
C9
PRT2GS
0A
RW
DCC22DR2
4A
RW
8A
CA
88
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
8B
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
8C
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
8D
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
8E
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
8F
PRT4DR
10
RW
50
ASD20CR0
90
RW
CUR_PP
D0
RW
PRT4IE
11
RW
51
ASD20CR1
91
RW
STK_PP
D1
RW
PRT4GS
12
RW
52
ASD20CR2
92
RW
PRT4DM2
13
RW
53
ASD20CR3
93
RW
IDX_PP
D3
RW
PRT5DR
14
RW
54
ASC21CR0
94
RW
MVR_PP
D4
RW
PRT5IE
15
RW
55
ASC21CR1
95
RW
MVW_PP
D5
RW
PRT5GS
16
RW
56
ASC21CR2
96
RW
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
ASC21CR3
97
RW
I2C0_SCR
D7
#
98
I2C0_DR
D8
RW
18
58
CF
D2
19
59
99
I2C0_MSCR
D9
#
1A
5A
9A
INT_CLR0
DA
RW
1B
5B
9B
INT_CLR1
DB
RW
1C
5C
9C
INT_CLR2
DC
RW
1D
5D
9D
INT_CLR3
DD
RW
1E
5E
9E
INT_MSK3
DE
RW
1F
5F
9F
INT_MSK2
DF
RW
DBC00DR0
20
#
AMX_IN
60
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DBC00DR1
DBC00DR2
21
W
AMUX_CFG
61
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
22
RW
CLK_CR3
62
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DBC00CR0
23
#
ARF_CR
63
RW
DEC1_DL
A3
RC
RES_WDT
E3
W
DBC01DR0
24
#
CMP_CR0
64
#
DEC2_DH
A4
RC
DBC01DR1
25
W
ASY_CR
65
#
DEC2_DL
A5
RC
DBC01DR2
26
RW
CMP_CR1
66
RW
DEC3_DH
A6
RC
DEC_CR0*
E6
RW
DBC01CR0
27
#
67
DEC3_DL
A7
RC
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
SADC_DH
6A
RW
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
SADC_DL
6B
RW
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
ACB00CR3
70
RW
RDI0RI
B0
RW
F0
DBC10DR1
31
W
ACB00CR0
71
RW
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
ACB00CR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR0
33
#
ACB00CR2
73
RW
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
ACB01CR3
74
RW
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
ACB01CR0
75
RW
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
ACB01CR1
76
RW
RDI0RO1
B6
RW
DBC11CR0
37
#
ACB01CR2
77
RW
RDI0DSM
B7
RW
DCC12DR0
38
#
78
RDI1RI
B8
RW
E4
E5
F6
CPU_F
F7
RL
F8
DCC12DR1
39
W
79
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
7A
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
7B
RDI1LT0
BB
RW
DCC13DR0
3C
#
7C
RDI1LT1
BC
RW
DAC1_D
FC
RW
DCC13DR1
3D
W
7D
RDI1RO0
BD
RW
DAC0_D
FD
RW
DCC13DR2
3E
RW
7E
RDI1RO1
BE
RW
CPU_SCR1
FE
#
FF
#
DCC13CR0
3F
#
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
# Access is bit specific.
FB
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 25 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 15. CY8C28x33 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
Name
Addr (1,Hex)
80
Access
DBC20IN
41
RW
DBC20OU
42
RW
SADC_TSCMPL
81
RW
SADC_TSCMPH
82
RW
RW
DBC20CR1
43
RW
ACE_AMD_CR1
83
RW
04
RW
DBC21FN
44
RW
Addr (1,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
RDI2LT0
C3
RW
RDI2LT1
C4
PRT1DM1
05
RW
DBC21IN
45
RW
ACE_PWM_CR
85
RW
RW
RDI2RO0
C5
PRT1IC0
06
RW
DBC21OU
46
RW
ACE_ADC0_CR
RW
86
RW
RDI2RO1
C6
PRT1IC1
07
RW
DBC21CR1
47
RW
ACE_ADC1_CR
RW
87
RW
RDI2DSM
C7
PRT2DM0
08
RW
DCC22FN
48
RW
RW
88
RW
PRT2DM1
09
RW
DCC22IN
49
RW
PRT2IC0
0A
RW
DCC22OU
4A
RW
ACE_CLK_CR0
89
RW
C9
ACE_CLK_CR1
8A
RW
CA
ACE_CLK_CR3
8B
RW
84
Name
RDI2RI
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
PRT3DM0
0C
RW
DCC23FN
4C
RW
CB
PRT3DM1
0D
RW
DCC23IN
4D
RW
ACE01CR1
8D
RW
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
ACE01CR2
8E
RW
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
ASE11CR0
8F
RW
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
92
PRT4IC1
13
RW
53
PRT5DM0
14
RW
54
PRT5DM1
15
RW
55
DEC1_CR0
95
PRT5IC0
16
RW
56
DEC_CR4
96
PRT5IC1
17
RW
57
18
58
19
59
DEC2_CR0
99
1A
5A
DEC_CR5
9A
1B
5B
1C
5C
1D
5D
1E
5E
9E
1F
5F
9F
8C
CC
90
DEC3_CR0
CF
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
RW
GDI_O_OU
D2
RW
93
GDI_E_OU
D3
RW
94
DEC0_CR
D4
RW
RW
DEC1_CR
D5
RW
RW
DEC2_CR
D6
RW
97
DEC3_CR
D7
RW
98
MUX_CR0
D8
RW
RW
MUX_CR1
D9
RW
RW
MUX_CR2
DA
RW
9B
MUX_CR3
DB
RW
9C
IDAC_CR1
DC
RW
OSC_GO_EN
DD
RW
OSC_CR4
DE
RW
OSC_CR3
DF
RW
9D
RW
DBC00FN
20
RW
CLK_CR0
60
RW
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
CLK_CR1
61
RW
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
ABF_CR0
62
RW
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
AMD_CR0
63
RW
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
CMP_GO_EN
64
RW
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
RTC_M
A5
RW
ADC0_TR
E5
RW
DBC01OU
26
RW
AMD_CR1
66
RW
RTC_S
A6
RW
ADC1_TR
E6
RW
DBC01CR1
27
RW
ALT_CR0
67
RW
RTC_CR
A7
RW
IDAC_CR2
E7
RW
DCC02FN
28
RW
SADC_CR0
A8
RW
IMO_TR
E8
RW
DCC02IN
29
RW
CLK_CR2
69
RW
SADC_CR1
A9
RW
ILO_TR
E9
RW
DCC02OU
2A
RW
AMUX_CFG1
6A
RW
SADC_CR2
AA
RW
BDG_TR
EA
RW
DCC02CR1
2B
RW
SADC_CR3
AB
RW
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
SADC_CR4
AC
RW
MUX_CR4
EC
RW
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
MUX_CR5
ED
RW
DCC03OU
2E
RW
TMP_DR2
6E
RW
DCC03CR1
2F
RW
TMP_DR3
6F
RW
DBC10FN
30
RW
DBC10IN
31
RW
SADC_TSCR0
71
DBC10OU
32
RW
SADC_TSCR1
DBC10CR1
33
RW
ACE_AMD_CR0
DBC11FN
34
RW
DBC11IN
35
RW
ACE_AMX_IN
75
DBC11OU
36
RW
ACE_CMP_CR0
DBC11CR1
37
RW
ACE_CMP_CR1
DCC12FN
38
RW
DCC12IN
39
RW
ACE_CMP_GI_EN
79
RW
DCC12OU
3A
RW
ACE_ALT_CR0
7A
RW
DCC12CR1
3B
RW
ACE_ABF_CR0
7B
RW
DCC13FN
3C
RW
DCC13IN
3D
RW
ACE0_CR1
7D
RW
DCC13OU
3E
RW
ACE0_CR2
7E
DCC13CR1
3F
RW
ACE0_CR3
7F
65
68
6B
AF
RW
EF
RDI0RI
B0
RW
F0
RW
RDI0SYN
B1
RW
F1
72
RW
RDI0IS
B2
RW
F2
73
RW
RDI0LT0
B3
RW
F3
RDI0LT1
B4
RW
F4
RW
RDI0RO0
B5
RW
F5
76
RW
RDI0RO1
B6
RW
77
RW
RDIODSM
B7
RW
RDI1RI
B8
RW
RDI1SYN
B9
RW
RDI1IS
BA
RW
RDI1LT0
BB
RW
RDI1LT1
BC
RW
RDI1RO0
BD
RW
IDAC_CR0
FD
RW
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
RW
RDI1DSM
BF
RW
CPU_SCR0
FF
#
74
78
7C
Document Number: 001-48111 Rev. *Q
EE
AMUX_CLK
70
Blank fields are Reserved and should not be accessed.
AE
# Access is bit specific.
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FB
FC
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 26 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 16. CY8C28x43 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
ASC10CR0
Addr (0,Hex)
80
Access
RW
PRT0IE
01
RW
DBC20DR1
PRT0GS
02
RW
DBC20DR2
41
W
ASC10CR1
81
RW
42
RW
ASC10CR2
82
RW
PRT0DM2
03
RW
DBC20CR0
43
#
ASC10CR3
83
PRT1DR
04
RW
DBC21DR0
44
#
ASD11CR0
PRT1IE
05
RW
DBC21DR1
45
W
PRT1GS
06
RW
DBC21DR2
46
PRT1DM2
07
RW
DBC21CR0
PRT2DR
08
RW
DCC22DR0
PRT2IE
09
RW
DCC22DR1
PRT2GS
0A
RW
DCC22DR2
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
RW
RDI2LT0
C3
RW
84
RW
RDI2LT1
C4
RW
ASD11CR1
85
RW
RDI2RO0
C5
RW
RW
ASD11CR2
86
RW
RDI2RO1
C6
RW
47
#
ASD11CR3
87
RW
RDI2DSM
C7
RW
48
#
ASC12CR0
88
RW
49
W
ASC12CR1
89
RW
C9
4A
RW
ASC12CR2
8A
RW
CA
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
ASC12CR3
8B
RW
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
ASD13CR0
8C
RW
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
ASD13CR1
8D
RW
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
ASD13CR2
8E
RW
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
ASD13CR3
8F
RW
PRT4DR
10
RW
50
ASD20CR0
90
RW
CUR_PP
D0
RW
PRT4IE
11
RW
51
ASD20CR1
91
RW
STK_PP
D1
RW
PRT4GS
12
RW
52
ASD20CR2
92
RW
PRT4DM2
13
RW
53
ASD20CR3
93
RW
IDX_PP
D3
RW
PRT5DR
14
RW
54
ASC21CR0
94
RW
MVR_PP
D4
RW
PRT5IE
15
RW
55
ASC21CR1
95
RW
MVW_PP
D5
RW
PRT5GS
16
RW
56
ASC21CR2
96
RW
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
ASC21CR3
97
RW
I2C0_SCR
D7
#
58
ASD22CR0
98
RW
I2C0_DR
D8
RW
19
59
ASD22CR1
99
RW
I2C0_MSCR
D9
#
1A
5A
ASD22CR2
9A
RW
INT_CLR0
DA
RW
18
CF
D2
1B
5B
ASD22CR3
9B
RW
INT_CLR1
DB
RW
1C
5C
ASC23CR0
9C
RW
INT_CLR2
DC
RW
1D
5D
ASC23CR1
9D
RW
INT_CLR3
DD
RW
1E
5E
ASC23CR2
9E
RW
INT_MSK3
DE
RW
1F
5F
ASC23CR3
9F
RW
INT_MSK2
DF
RW
DBC00DR0
20
#
AMX_IN
60
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DBC00DR1
DBC00DR2
21
W
AMUX_CFG
61
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
22
RW
CLK_CR3
62
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DBC00CR0
23
#
ARF_CR
63
RW
DEC1_DL
A3
RC
RES_WDT
E3
W
DBC01DR0
24
#
CMP_CR0
64
#
DEC2_DH
A4
RC
I2C1_SCR
E4
#
DBC01DR1
25
W
ASY_CR
65
#
DEC2_DL
A5
RC
I2C1_MSCR
E5
#
DBC01DR2
26
RW
CMP_CR1
66
RW
DEC3_DH
A6
RC
DEC_CR0*
E6
RW
DBC01CR0
27
#
I2C1_DR
67
RW
DEC3_DL
A7
RC
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
SADC_DH
6A
RW
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
SADC_DL
6B
RW
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
ACB00CR3
70
RW
RDI0RI
B0
RW
F0
DBC10DR1
31
W
ACB00CR0
71
RW
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
ACB00CR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR0
33
#
ACB00CR2
73
RW
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
ACB01CR3
74
RW
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
ACB01CR0
75
RW
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
ACB01CR1
76
RW
RDI0RO1
B6
RW
DBC11CR0
37
#
ACB01CR2
77
RW
RDI0DSM
B7
RW
DCC12DR0
38
#
ACB02CR3
78
RW
RDI1RI
B8
RW
F6
CPU_F
F7
DCC12DR1
39
W
ACB02CR0
79
RW
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
ACB02CR1
7A
RW
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
ACB02CR2
7B
RW
RDI1LT0
BB
RW
FB
DCC13DR0
3C
#
ACB03CR3
7C
RW
RDI1LT1
BC
RW
FC
DCC13DR1
3D
W
ACB03CR0
7D
RW
RDI1RO0
BD
RW
DCC13DR2
3E
RW
ACB03CR1
7E
RW
RDI1RO1
BE
RW
DCC13CR0
3F
#
ACB03CR2
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
RW
# Access is bit specific.
RL
F8
FD
CPU_SCR1
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
FE
#
FF
#
Page 27 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 17. CY8C28x43 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
DBC20IN
41
RW
DBC20OU
42
RW
RW
DBC20CR1
43
RW
04
RW
DBC21FN
44
PRT1DM1
05
RW
DBC21IN
PRT1IC0
06
RW
PRT1IC1
07
PRT2DM0
Name
Addr (1,Hex)
80
Access
SADC_TSCMPL
81
RW
SADC_TSCMPH
82
RW
Name
RDI2RI
Addr (1,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
83
RDI2LT0
C3
RW
RW
84
RDI2LT1
C4
RW
45
RW
85
RDI2RO0
C5
RW
DBC21OU
46
RW
86
RDI2RO1
C6
RW
RW
DBC21CR1
47
RW
87
RDI2DSM
C7
RW
08
RW
DCC22FN
48
RW
88
PRT2DM1
09
RW
DCC22IN
49
RW
89
C9
PRT2IC0
0A
RW
DCC22OU
4A
RW
8A
CA
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
8B
CB
PRT3DM0
0C
RW
DCC23FN
4C
RW
8C
CC
PRT3DM1
0D
RW
DCC23IN
4D
RW
8D
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
8E
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
8F
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
92
PRT4IC1
13
RW
53
PRT5DM0
14
RW
54
PRT5DM1
15
RW
55
DEC1_CR0
95
PRT5IC0
16
RW
56
DEC_CR4
96
PRT5IC1
17
RW
57
18
58
19
59
DEC2_CR0
99
1A
5A
DEC_CR5
9A
1B
5B
9B
1C
5C
9C
1D
5D
OSC_GO_EN
DD
RW
1E
5E
9E
OSC_CR4
DE
RW
1F
5F
9F
OSC_CR3
DF
RW
CF
90
DEC3_CR0
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
RW
GDI_O_OU
D2
RW
93
GDI_E_OU
D3
RW
94
DEC0_CR
D4
RW
RW
DEC1_CR
D5
RW
RW
DEC2_CR
D6
RW
97
DEC3_CR
D7
RW
98
MUX_CR0
D8
RW
RW
MUX_CR1
D9
RW
RW
MUX_CR2
DA
RW
MUX_CR3
DB
RW
9D
DC
RW
DBC00FN
20
RW
CLK_CR0
60
RW
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
CLK_CR1
61
RW
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
ABF_CR0
62
RW
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
AMD_CR0
63
RW
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
CMP_GO_EN
64
RW
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
CMP_GO_EN1
65
RW
RTC_M
A5
RW
E5
DBC01OU
26
RW
AMD_CR1
66
RW
RTC_S
A6
RW
E6
DBC01CR1
27
RW
ALT_CR0
67
RW
RTC_CR
A7
RW
DCC02FN
28
RW
ALT_CR1
68
RW
SADC_CR0
A8
RW
IMO_TR
E8
RW
DCC02IN
29
RW
CLK_CR2
69
RW
SADC_CR1
A9
RW
ILO_TR
E9
RW
DCC02OU
2A
RW
AMUX_CFG1
6A
RW
SADC_CR2
AA
RW
BDG_TR
EA
RW
DCC02CR1
2B
RW
I2C1_CFG
6B
RW
SADC_CR3
AB
RW
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
SADC_CR4
AC
RW
MUX_CR4
EC
RW
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
MUX_CR5
ED
RW
DCC03OU
2E
RW
TMP_DR2
6E
RW
I2C1_ADDR
AE
RW
EE
DCC03CR1
2F
RW
TMP_DR3
6F
RW
AMUX_CLK
AF
RW
EF
DBC10FN
30
RW
RDI0RI
B0
RW
F0
DBC10IN
31
RW
SADC_TSCR0
71
RW
RDI0SYN
B1
RW
F1
DBC10OU
32
RW
SADC_TSCR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR1
33
RW
73
RDI0LT0
B3
RW
F3
DBC11FN
34
RW
74
RDI0LT1
B4
RW
F4
DBC11IN
35
RW
75
RDI0RO0
B5
RW
F5
DBC11OU
36
RW
76
RDI0RO1
B6
RW
DBC11CR1
37
RW
77
RDIODSM
B7
RW
DCC12FN
38
RW
78
RDI1RI
B8
RW
DCC12IN
39
RW
79
RDI1SYN
B9
RW
DCC12OU
3A
RW
7A
RDI1IS
BA
RW
DCC12CR1
3B
RW
7B
RDI1LT0
BB
RW
FB
DCC13FN
3C
RW
7C
RDI1LT1
BC
RW
FC
DCC13IN
3D
RW
7D
RDI1RO0
BD
RW
DCC13OU
3E
RW
7E
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
7F
RDI1DSM
BF
RW
CPU_SCR0
FF
#
70
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
E7
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FD
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 28 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 18. CY8C28x45 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
Name
DBC20DR0
Addr (0,Hex)
40
Access
#
Name
ASC10CR0
Addr (0,Hex)
80
Access
RW
PRT0IE
01
RW
DBC20DR1
PRT0GS
02
RW
DBC20DR2
41
W
ASC10CR1
81
RW
42
RW
ASC10CR2
82
RW
PRT0DM2
03
RW
DBC20CR0
43
#
ASC10CR3
83
PRT1DR
04
RW
DBC21DR0
44
#
ASD11CR0
PRT1IE
05
RW
DBC21DR1
45
W
PRT1GS
06
RW
DBC21DR2
46
PRT1DM2
07
RW
DBC21CR0
PRT2DR
08
RW
DCC22DR0
PRT2IE
09
RW
DCC22DR1
PRT2GS
0A
RW
DCC22DR2
Name
RDI2RI
Addr (0,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
RW
RDI2LT0
C3
RW
84
RW
RDI2LT1
C4
RW
ASD11CR1
85
RW
RDI2RO0
C5
RW
RW
ASD11CR2
86
RW
RDI2RO1
C6
RW
47
#
ASD11CR3
87
RW
RDI2DSM
C7
RW
48
#
ASC12CR0
88
RW
49
W
ASC12CR1
89
RW
C9
4A
RW
ASC12CR2
8A
RW
CA
C8
PRT2DM2
0B
RW
DCC22CR0
4B
#
ASC12CR3
8B
RW
CB
PRT3DR
0C
RW
DCC23DR0
4C
#
ASD13CR0
8C
RW
CC
PRT3IE
0D
RW
DCC23DR1
4D
W
ASD13CR1
8D
RW
CD
PRT3GS
0E
RW
DCC23DR2
4E
RW
ASD13CR2
8E
RW
CE
PRT3DM2
0F
RW
DCC23CR0
4F
#
ASD13CR3
8F
RW
PRT4DR
10
RW
50
ASD20CR0
90
RW
CUR_PP
D0
RW
PRT4IE
11
RW
51
ASD20CR1
91
RW
STK_PP
D1
RW
PRT4GS
12
RW
52
ASD20CR2
92
RW
PRT4DM2
13
RW
53
ASD20CR3
93
RW
IDX_PP
D3
RW
PRT5DR
14
RW
54
ASC21CR0
94
RW
MVR_PP
D4
RW
PRT5IE
15
RW
55
ASC21CR1
95
RW
MVW_PP
D5
RW
PRT5GS
16
RW
56
ASC21CR2
96
RW
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
ASC21CR3
97
RW
I2C0_SCR
D7
#
58
ASD22CR0
98
RW
I2C0_DR
D8
RW
19
59
ASD22CR1
99
RW
I2C0_MSCR
D9
#
1A
5A
ASD22CR2
9A
RW
INT_CLR0
DA
RW
18
CF
D2
1B
5B
ASD22CR3
9B
RW
INT_CLR1
DB
RW
1C
5C
ASC23CR0
9C
RW
INT_CLR2
DC
RW
1D
5D
ASC23CR1
9D
RW
INT_CLR3
DD
RW
1E
5E
ASC23CR2
9E
RW
INT_MSK3
DE
RW
1F
5F
ASC23CR3
9F
RW
INT_MSK2
DF
RW
DBC00DR0
20
#
AMX_IN
60
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DBC00DR1
DBC00DR2
21
W
AMUX_CFG
61
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
22
RW
CLK_CR3
62
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DBC00CR0
23
#
ARF_CR
63
RW
DEC1_DL
A3
RC
RES_WDT
E3
W
DBC01DR0
24
#
CMP_CR0
64
#
DEC2_DH
A4
RC
I2C1_SCR
E4
#
DBC01DR1
25
W
ASY_CR
65
#
DEC2_DL
A5
RC
I2C1_MSCR
E5
#
DBC01DR2
26
RW
CMP_CR1
66
RW
DEC3_DH
A6
RC
DEC_CR0*
E6
RW
DBC01CR0
27
#
I2C1_DR
67
RW
DEC3_DL
A7
RC
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
SADC_DH
6A
RW
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
SADC_DL
6B
RW
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
ACB00CR3
70
RW
RDI0RI
B0
RW
F0
DBC10DR1
31
W
ACB00CR0
71
RW
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
ACB00CR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR0
33
#
ACB00CR2
73
RW
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
ACB01CR3
74
RW
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
ACB01CR0
75
RW
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
ACB01CR1
76
RW
RDI0RO1
B6
RW
DBC11CR0
37
#
ACB01CR2
77
RW
RDI0DSM
B7
RW
DCC12DR0
38
#
ACB02CR3
78
RW
RDI1RI
B8
RW
F6
CPU_F
F7
RL
F8
DCC12DR1
39
W
ACB02CR0
79
RW
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
ACB02CR1
7A
RW
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
ACB02CR2
7B
RW
RDI1LT0
BB
RW
DCC13DR0
3C
#
ACB03CR3
7C
RW
RDI1LT1
BC
RW
DAC1_D
FC
RW
DCC13DR1
3D
W
ACB03CR0
7D
RW
RDI1RO0
BD
RW
DAC0_D
FD
RW
DCC13DR2
3E
RW
ACB03CR1
7E
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
FF
#
DCC13CR0
3F
#
ACB03CR2
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
RW
# Access is bit specific.
FB
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 29 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 19. CY8C28x45 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
PRT0DM1
01
RW
PRT0IC0
02
RW
PRT0IC1
03
PRT1DM0
Name
DBC20FN
Addr (1,Hex)
40
Access
RW
DBC20IN
41
RW
DBC20OU
42
RW
RW
DBC20CR1
43
RW
04
RW
DBC21FN
44
RW
PRT1DM1
05
RW
DBC21IN
45
RW
PRT1IC0
06
RW
DBC21OU
46
PRT1IC1
07
RW
DBC21CR1
PRT2DM0
08
RW
DCC22FN
PRT2DM1
09
RW
PRT2IC0
0A
RW
Name
Addr (1,Hex)
80
Access
RW
SADC_TSCMPL
81
RW
SADC_TSCMPH
82
RW
ACE_AMD_CR1
83
Name
RDI2RI
Addr (1,Hex)
C0
Access
RW
RDI2SYN
C1
RW
RDI2IS
C2
RW
RW
RDI2LT0
C3
RW
84
RW
RDI2LT1
C4
RW
ACE_PWM_CR
85
RW
RDI2RO0
C5
RW
RW
ACE_ADC0_CR
86
RW
RDI2RO1
C6
RW
47
RW
ACE_ADC1_CR
87
RW
RDI2DSM
C7
RW
48
RW
88
RW
DCC22IN
49
RW
ACE_CLK_CR0
89
RW
C9
DCC22OU
4A
RW
ACE_CLK_CR1
8A
RW
CA
ACE_CLK_CR3
8B
RW
CB
8C
RW
CC
C8
PRT2IC1
0B
RW
DCC22CR1
4B
RW
PRT3DM0
0C
RW
DCC23FN
4C
RW
PRT3DM1
0D
RW
DCC23IN
4D
RW
ACE01CR1
8D
RW
CD
PRT3IC0
0E
RW
DCC23OU
4E
RW
ACE01CR2
8E
RW
CE
PRT3IC1
0F
RW
DCC23CR1
4F
RW
ASE11CR0
8F
RW
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
92
PRT4IC1
13
RW
53
PRT5DM0
14
RW
54
PRT5DM1
15
RW
55
DEC1_CR0
95
PRT5IC0
16
RW
56
DEC_CR4
96
PRT5IC1
17
RW
57
18
58
19
59
DEC2_CR0
99
1A
5A
DEC_CR5
9A
1B
5B
1C
5C
1D
5D
1E
5E
9E
1F
5F
9F
90
DEC3_CR0
CF
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
RW
GDI_O_OU
D2
RW
93
GDI_E_OU
D3
RW
94
DEC0_CR
D4
RW
RW
DEC1_CR
D5
RW
RW
DEC2_CR
D6
RW
97
DEC3_CR
D7
RW
98
MUX_CR0
D8
RW
RW
MUX_CR1
D9
RW
RW
MUX_CR2
DA
RW
9B
MUX_CR3
DB
RW
9C
IDAC_CR1
DC
RW
OSC_GO_EN
DD
RW
OSC_CR4
DE
RW
OSC_CR3
DF
RW
9D
RW
DBC00FN
20
RW
CLK_CR0
60
RW
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
CLK_CR1
61
RW
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
ABF_CR0
62
RW
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
AMD_CR0
63
RW
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
CMP_GO_EN
64
RW
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
CMP_GO_EN1
65
RW
RTC_M
A5
RW
ADC0_TR
E5
RW
DBC01OU
26
RW
AMD_CR1
66
RW
RTC_S
A6
RW
ADC1_TR
E6
RW
DBC01CR1
27
RW
ALT_CR0
67
RW
RTC_CR
A7
RW
IDAC_CR2
E7
RW
DCC02FN
28
RW
ALT_CR1
68
RW
SADC_CR0
A8
RW
IMO_TR
E8
RW
DCC02IN
29
RW
CLK_CR2
69
RW
SADC_CR1
A9
RW
ILO_TR
E9
RW
DCC02OU
2A
RW
AMUX_CFG1
6A
RW
SADC_CR2
AA
RW
BDG_TR
EA
RW
DCC02CR1
2B
RW
I2C1_CFG
6B
RW
SADC_CR3
AB
RW
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
SADC_CR4
AC
RW
MUX_CR4
EC
RW
DCC03IN
2D
RW
TMP_DR1
6D
RW
I2C0_ADDR
AD
RW
MUX_CR5
ED
RW
DCC03OU
2E
RW
TMP_DR2
6E
RW
I2C1_ADDR
AE
RW
EE
DCC03CR1
2F
RW
TMP_DR3
6F
RW
AMUX_CLK
AF
RW
EF
DBC10FN
30
RW
RDI0RI
B0
RW
F0
DBC10IN
31
RW
SADC_TSCR0
71
RW
RDI0SYN
B1
RW
F1
DBC10OU
32
RW
SADC_TSCR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR1
33
RW
ACE_AMD_CR0
73
RW
RDI0LT0
B3
RW
F3
DBC11FN
34
RW
RDI0LT1
B4
RW
F4
DBC11IN
35
RW
ACE_AMX_IN
75
RW
RDI0RO0
B5
RW
F5
DBC11OU
36
RW
ACE_CMP_CR0
76
RW
RDI0RO1
B6
RW
DBC11CR1
37
RW
ACE_CMP_CR1
77
RW
RDIODSM
B7
RW
DCC12FN
38
RW
RDI1RI
B8
RW
DCC12IN
39
RW
ACE_CMP_GI_EN
79
RW
RDI1SYN
B9
RW
DCC12OU
3A
RW
ACE_ALT_CR0
7A
RW
RDI1IS
BA
RW
DCC12CR1
3B
RW
ACE_ABF_CR0
7B
RW
RDI1LT0
BB
RW
DCC13FN
3C
RW
RDI1LT1
BC
RW
DCC13IN
3D
RW
ACE0_CR1
7D
RW
RDI1RO0
BD
RW
IDAC_CR0
FD
RW
DCC13OU
3E
RW
ACE0_CR2
7E
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
ACE0_CR3
7F
RW
RDI1DSM
BF
RW
CPU_SCR0
FF
#
70
74
78
7C
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FB
FC
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 30 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 20. CY8C28x52 Register Map Bank 0 Table: User Space
Name
PRT0DR
Addr (0,Hex)
00
Access
RW
PRT0IE
01
RW
PRT0GS
02
RW
PRT0DM2
03
PRT1DR
Name
Addr (0,Hex)
40
Access
Name
ASC10CR0
Addr (0,Hex)
80
Access
RW
Name
Addr (0,Hex)
C0
41
ASC10CR1
81
RW
C1
42
ASC10CR2
82
RW
C2
RW
43
ASC10CR3
83
RW
C3
04
RW
44
ASD11CR0
84
RW
C4
PRT1IE
05
RW
45
ASD11CR1
85
RW
C5
PRT1GS
06
RW
46
ASD11CR2
86
RW
C6
PRT1DM2
07
RW
47
ASD11CR3
87
RW
C7
PRT2DR
08
RW
48
ASC12CR0
88
RW
C8
PRT2IE
09
RW
49
ASC12CR1
89
RW
C9
PRT2GS
0A
RW
4A
ASC12CR2
8A
RW
CA
Access
PRT2DM2
0B
RW
4B
ASC12CR3
8B
RW
CB
PRT3DR
0C
RW
4C
ASD13CR0
8C
RW
CC
PRT3IE
0D
RW
4D
ASD13CR1
8D
RW
CD
PRT3GS
0E
RW
4E
ASD13CR2
8E
RW
CE
PRT3DM2
0F
RW
4F
ASD13CR3
8F
RW
PRT4DR
10
RW
50
ASD20CR0
90
RW
CUR_PP
D0
RW
PRT4IE
11
RW
51
ASD20CR1
91
RW
STK_PP
D1
RW
PRT4GS
12
RW
52
ASD20CR2
92
RW
PRT4DM2
13
RW
53
ASD20CR3
93
RW
IDX_PP
D3
RW
PRT5DR
14
RW
54
ASC21CR0
94
RW
MVR_PP
D4
RW
PRT5IE
15
RW
55
ASC21CR1
95
RW
MVW_PP
D5
RW
PRT5GS
16
RW
56
ASC21CR2
96
RW
I2C0_CFG
D6
RW
PRT5DM2
17
RW
57
ASC21CR3
97
RW
I2C0_SCR
D7
#
58
ASD22CR0
98
RW
I2C0_DR
D8
RW
19
59
ASD22CR1
99
RW
I2C0_MSCR
D9
#
1A
5A
ASD22CR2
9A
RW
INT_CLR0
DA
RW
18
CF
D2
1B
5B
ASD22CR3
9B
RW
INT_CLR1
DB
RW
1C
5C
ASC23CR0
9C
RW
INT_CLR2
DC
RW
1D
5D
ASC23CR1
9D
RW
INT_CLR3
DD
RW
1E
5E
ASC23CR2
9E
RW
INT_MSK3
DE
RW
1F
5F
ASC23CR3
9F
RW
INT_MSK2
DF
RW
DBC00DR0
20
#
AMX_IN
60
RW
DEC0_DH
A0
RC
INT_MSK0
E0
RW
DBC00DR1
DBC00DR2
21
W
AMUX_CFG
61
RW
DEC0_DL
A1
RC
INT_MSK1
E1
RW
22
RW
CLK_CR3
62
RW
DEC1_DH
A2
RC
INT_VC
E2
RC
DBC00CR0
23
#
ARF_CR
63
RW
DEC1_DL
A3
RC
RES_WDT
E3
W
DBC01DR0
24
#
CMP_CR0
64
#
DEC2_DH
A4
RC
DBC01DR1
25
W
ASY_CR
65
#
DEC2_DL
A5
RC
DBC01DR2
26
RW
CMP_CR1
66
RW
DEC3_DH
A6
RC
DEC_CR0*
E6
RW
DBC01CR0
27
#
67
DEC3_DL
A7
RC
DEC_CR1*
E7
RW
DCC02DR0
28
#
68
MUL1_X
A8
W
MUL0_X
E8
W
DCC02DR1
29
W
69
MUL1_Y
A9
W
MUL0_Y
E9
W
DCC02DR2
2A
RW
6A
MUL1_DH
AA
R
MUL0_DH
EA
R
DCC02CR0
2B
#
6B
MUL1_DL
AB
R
MUL0_DL
EB
R
DCC03DR0
2C
#
TMP_DR0
6C
RW
ACC1_DR1
AC
RW
ACC0_DR1
EC
RW
DCC03DR1
2D
W
TMP_DR1
6D
RW
ACC1_DR0
AD
RW
ACC0_DR0
ED
RW
DCC03DR2
2E
RW
TMP_DR2
6E
RW
ACC1_DR3
AE
RW
ACC0_DR3
EE
RW
DCC03CR0
2F
#
TMP_DR3
6F
RW
ACC1_DR2
AF
RW
ACC0_DR2
EF
RW
DBC10DR0
30
#
ACB00CR3
70
RW
RDI0RI
B0
RW
F0
DBC10DR1
31
W
ACB00CR0
71
RW
RDI0SYN
B1
RW
F1
DBC10DR2
32
RW
ACB00CR1
72
RW
RDI0IS
B2
RW
F2
DBC10CR0
33
#
ACB00CR2
73
RW
RDI0LT0
B3
RW
F3
DBC11DR0
34
#
ACB01CR3
74
RW
RDI0LT1
B4
RW
F4
DBC11DR1
35
W
ACB01CR0
75
RW
RDI0RO0
B5
RW
F5
DBC11DR2
36
RW
ACB01CR1
76
RW
RDI0RO1
B6
RW
DBC11CR0
37
#
ACB01CR2
77
RW
RDI0DSM
B7
RW
DCC12DR0
38
#
ACB02CR3
78
RW
RDI1RI
B8
RW
E4
E5
F6
CPU_F
F7
RL
F8
DCC12DR1
39
W
ACB02CR0
79
RW
RDI1SYN
B9
RW
F9
DCC12DR2
3A
RW
ACB02CR1
7A
RW
RDI1IS
BA
RW
FA
DCC12CR0
3B
#
ACB02CR2
7B
RW
RDI1LT0
BB
RW
DCC13DR0
3C
#
ACB03CR3
7C
RW
RDI1LT1
BC
RW
DAC1_D
FC
RW
DCC13DR1
3D
W
ACB03CR0
7D
RW
RDI1RO0
BD
RW
DAC0_D
FD
RW
DCC13DR2
3E
RW
ACB03CR1
7E
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
FF
#
DCC13CR0
3F
#
ACB03CR2
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
7F
RW
# Access is bit specific.
FB
RDI1DSM
BF
RW
CPU_SCR0
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 31 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 21. CY8C28x52 Register Map Bank 1 Table: Configuration Space
Name
PRT0DM0
Addr (1,Hex)
00
Access
RW
Name
Addr (1,Hex)
40
Access
Name
PRT0DM1
01
RW
41
81
PRT0IC0
02
RW
42
82
PRT0IC1
03
RW
43
PRT1DM0
04
RW
44
PRT1DM1
05
RW
45
ACE_PWM_CR
85
RW
C5
PRT1IC0
06
RW
46
ACE_ADC0_CR
86
RW
C6
PRT1IC1
07
RW
47
ACE_ADC1_CR
87
RW
C7
PRT2DM0
08
RW
48
PRT2DM1
09
RW
49
ACE_CLK_CR0
89
RW
C9
PRT2IC0
0A
RW
4A
ACE_CLK_CR1
8A
RW
CA
ACE_CLK_CR3
8B
RW
ACE_AMD_CR1
Addr (1,Hex)
80
83
Access
Name
Addr (1,Hex)
C0
C1
C2
RW
C3
84
C4
88
C8
PRT2IC1
0B
RW
4B
PRT3DM0
0C
RW
4C
CB
PRT3DM1
0D
RW
4D
ACE01CR1
8D
RW
CD
PRT3IC0
0E
RW
4E
ACE01CR2
8E
RW
CE
PRT3IC1
0F
RW
4F
ASE11CR0
8F
RW
PRT4DM0
10
RW
50
PRT4DM1
11
RW
51
DEC0_CR0
91
PRT4IC0
12
RW
52
DEC_CR3
92
PRT4IC1
13
RW
53
PRT5DM0
14
RW
54
PRT5DM1
15
RW
55
DEC1_CR0
95
PRT5IC0
16
RW
56
DEC_CR4
96
PRT5IC1
17
RW
57
18
58
19
59
DEC2_CR0
99
1A
5A
DEC_CR5
9A
1B
5B
1C
5C
1D
5D
1E
5E
9E
1F
5F
9F
8C
CC
90
DEC3_CR0
Access
CF
GDI_O_IN
D0
RW
RW
GDI_E_IN
D1
RW
RW
GDI_O_OU
D2
RW
93
GDI_E_OU
D3
RW
94
DEC0_CR
D4
RW
RW
DEC1_CR
D5
RW
RW
DEC2_CR
D6
RW
97
DEC3_CR
D7
RW
98
MUX_CR0
D8
RW
RW
MUX_CR1
D9
RW
RW
MUX_CR2
DA
RW
9B
MUX_CR3
DB
RW
9C
IDAC_CR1
DC
RW
OSC_GO_EN
DD
RW
OSC_CR4
DE
RW
OSC_CR3
DF
RW
9D
RW
DBC00FN
20
RW
CLK_CR0
60
RW
GDI_O_IN_CR
A0
RW
OSC_CR0
E0
RW
DBC00IN
21
RW
CLK_CR1
61
RW
GDI_E_IN_CR
A1
RW
OSC_CR1
E1
RW
DBC00OU
22
RW
ABF_CR0
62
RW
GDI_O_OU_CR
A2
RW
OSC_CR2
E2
RW
DBC00CR1
23
RW
AMD_CR0
63
RW
GDI_E_OU_CR
A3
RW
VLT_CR
E3
RW
DBC01FN
24
RW
CMP_GO_EN
64
RW
RTC_H
A4
RW
VLT_CMP
E4
RW
DBC01IN
25
RW
CMP_GO_EN1
65
RW
RTC_M
A5
RW
ADC0_TR
E5
RW
DBC01OU
26
RW
AMD_CR1
66
RW
RTC_S
A6
RW
ADC1_TR
E6
RW
DBC01CR1
27
RW
ALT_CR0
67
RW
RTC_CR
A7
RW
IDAC_CR2
E7
RW
DCC02FN
28
RW
ALT_CR1
68
RW
A8
IMO_TR
E8
RW
DCC02IN
29
RW
CLK_CR2
69
RW
A9
ILO_TR
E9
RW
DCC02OU
2A
RW
AMUX_CFG1
6A
RW
AA
BDG_TR
EA
RW
DCC02CR1
2B
RW
AB
ECO_TR
EB
RW
DCC03FN
2C
RW
TMP_DR0
6C
RW
AC
MUX_CR4
EC
RW
DCC03IN
2D
RW
TMP_DR1
6D
RW
MUX_CR5
ED
RW
DCC03OU
2E
RW
TMP_DR2
6E
RW
DCC03CR1
2F
RW
TMP_DR3
6F
RW
AMUX_CLK
AF
RW
EF
DBC10FN
30
RW
70
RDI0RI
B0
RW
F0
DBC10IN
31
RW
71
RDI0SYN
B1
RW
F1
DBC10OU
32
RW
72
RDI0IS
B2
RW
F2
DBC10CR1
33
RW
RDI0LT0
B3
RW
F3
DBC11FN
34
RW
RDI0LT1
B4
RW
F4
DBC11IN
35
RW
ACE_AMX_IN
75
RW
RDI0RO0
B5
RW
F5
DBC11OU
36
RW
ACE_CMP_CR0
76
RW
RDI0RO1
B6
RW
DBC11CR1
37
RW
ACE_CMP_CR1
77
RW
RDIODSM
B7
RW
DCC12FN
38
RW
RDI1RI
B8
RW
DCC12IN
39
RW
ACE_CMP_GI_EN
79
RW
RDI1SYN
B9
RW
DCC12OU
3A
RW
ACE_ALT_CR0
7A
RW
RDI1IS
BA
RW
DCC12CR1
3B
RW
ACE_ABF_CR0
7B
RW
RDI1LT0
BB
RW
DCC13FN
3C
RW
RDI1LT1
BC
RW
DCC13IN
3D
RW
ACE0_CR1
7D
RW
RDI1RO0
BD
RW
IDAC_CR0
FD
RW
DCC13OU
3E
RW
ACE0_CR2
7E
RW
RDI1RO1
BE
RW
CPU_SCR1
FE
#
DCC13CR1
3F
RW
ACE0_CR3
7F
RW
RDI1DSM
BF
RW
CPU_SCR0
FF
#
6B
ACE_AMD_CR0
73
RW
74
78
7C
Blank fields are Reserved and should not be accessed.
Document Number: 001-48111 Rev. *Q
# Access is bit specific.
I2C0_ADDR
AD
RW
AE
EE
F6
CPU_F
F7
RL
F8
F9
FLS_PR1
FA
RW
FB
FC
*Address has a dual purpose, see “Mapping Exceptions” on page 251
Page 32 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Electrical Specifications
This section presents the DC and AC electrical specifications of the CY8C28xxx PSoC devices. For the most up to date electrical
specifications, confirm that you have the most recent datasheet by going to the web at www.cypress.com.
Specifications are valid for –40 °C TA 85 °C and TJ 100 °C, except where noted.
Figure 8. Voltage versus CPU Frequency
5.25
Vdd Voltage
lid ing
Va rat on
pe i
O Reg
4.75
3.00
93 kHz
12 MHz
24 MHz
CPU Frequency
Document Number: 001-48111 Rev. *Q
Page 33 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Absolute Maximum Ratings
Table 22. Absolute Maximum Ratings
Symbol
TSTG
Description
Storage temperature
TBAKETEMP Bake temperature
tBAKETIME
Bake time
TA
VDD
VIO
VIOZ
IMIO
IMAIO
Ambient temperature with power applied
Supply voltage on VDD relative to VSS
DC input voltage
DC voltage applied to tri-state
Maximum current into any port pin
Maximum current into any port pin
configured as analog driver
Electrostatic discharge voltage
Latch-up current
ESD
LU
Min
–55
Typ
25
Max
+100
Units
°C
–
125
°C
See
package
label
-40
-0.5
VSS – 0.5
VSS – 0.5
-25
-50
-
See
Package
label
72
Hours
–
–
–
–
–
–
+85
+6.0
VDD + 0.5
VDD + 0.5
+50
+50
°C
V
V
V
mA
mA
2000
–
–
–
–
200
V
mA
Min
-40
-40
Typ
–
–
Max
+85
+100
Units
°C
°C
Notes
Higher storage temperatures
reduce data retention time.
Recommended storage
temperature is +25 °C ± 25 °C.
Extended duration storage
temperatures above 65 °C
degrade reliability.
Human Body Model ESD.
Operating Temperature
Table 23. Operating Temperature
Symbol
TA
TJ
Description
Ambient temperature
Junction temperature
Document Number: 001-48111 Rev. *Q
Notes
The temperature rise from
ambient to junction is package
specific. See Thermal
Impedances on page 72. The
user must limit the power
consumption to comply with this
requirement.
Page 34 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Electrical Characteristics
DC Chip Level Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 24. DC Chip Level Specifications
Symbol
Description
VDD
Supply voltage
IDD
Supply current
Min
3.00
–
Typ
–
8
Max
5.25
14
Units
V
mA
IDD3
Supply current
–
5
9
mA
IDDP
Supply current when IMO = 6 MHz using
SLIMO mode=1
–
2
3
mA
ISB
Sleep (Mode) current with POR, LVD, sleep
timer, and WDT.[12]
–
3
10
A
ISBH
Sleep (Mode) current with POR, LVD, sleep
timer, and WDT at high temperature.[12]
–
4
25
A
ISBXTL
Sleep (Mode) Current with POR, LVD, sleep
timer, WDT, and external crystal.[12]
–
4
13
A
ISBXTLH
Sleep (Mode) current with POR, LVD, sleep
timer, WDT, and external crystal at high
temperature.[12]
Current consumed by RTC during sleep
–
5
26
A
–
0.5
1
µA
1.280
–
-
1.300
0.65
0.4
1.320
3
1.5
V
mA
mA
ISBRTC
VREF
ISXRES
Reference voltage (Bandgap)
Supply current with XRES asserted 5 V
Supply current with XRES asserted 3.3 V
Notes
Conditions are VDD = 5.0 V,
TA = 25 °C, CPU = 3 MHz, SYSCLK
doubler disabled. VC1 = 1.5 MHz,
VC2 = 93.75 kHz, VC3 = 93.75 kHz.
Conditions are VDD = 3.3 V,
TA = 25 °C, CPU = 3 MHz, SYSCLK
doubler disabled. VC1 = 1.5 MHz,
VC2 = 93.75 kHz, VC3 = 93.75 kHz.
Conditions are VDD = 3.3 V,
TA = 25 °C, CPU = 0.75 MHz,
SYSCLK doubler disabled,
VC1 = 0.375 MHz, VC2 = 23.44 kHz,
VC3 = 0.09 kHz.
Conditions are with internal slow
speed oscillator, VDD = 3.3 V, –
40 °C TA 55 °C.
Conditions are with internal slow
speed oscillator, VDD = 3.3 V,
55 °C < TA 85 °C.
Conditions are with properly loaded,
1 W max, 32.768 kHz crystal.
VDD = 3.3 V, –40 °C TA 55 °C.
Conditions are with properly loaded,
1 W max, 32.768 kHz crystal.
VDD = 3.3 V, 55 °C < TA 85 °C.
Extra current consumed by the RTC
during sleep. This number is typical at
25 °C and 5 V.
Trimmed for appropriate VDD.
Max is peak current after XRES;
Typical value is the steady state
current value. TA = 25 °C.
Note
12. Standby (sleep) current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This should be compared with devices that have
similar functions enabled.
Document Number: 001-48111 Rev. *Q
Page 35 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC GPIO Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 25. DC GPIO Specifications
Symbol
RPU
RPD
VOH
Description
Pull-up resistor
Pull-down resistor
High output level
Min
4
4
VDD – 1.0
Typ
5.6
5.6
–
Max
8
8
–
VOL
Low output level
–
–
0.75
IOH
High level source current
10
–
–
IOL
Low level sink current
25
–
–
VIL
VIH
VH
IIL
CIN
Input low level
Input high level
Input hysteresis
Input leakage (absolute value)
Capacitive load on pins as input
–
2.1
–
–
–
–
–
60
1
3.5
0.8
–
–
–
10
COUT
Capacitive load on pins as output
–
3.5
10
Document Number: 001-48111 Rev. *Q
Units
Notes
k
k
V
IOH = 10 mA, VDD = 4.75 to 5.25 V
(8 total loads, 4 on even port pins
(for example, P0[2], P1[4]), 4 on odd
port pins (for example, P0[3],
P1[5])). 80 mA maximum combined
IOH budget.
V
IOL = 25 mA, VDD = 4.75 to 5.25 V
(8 total loads, 4 on even port pins
(for example, P0[2], P1[4]), 4 on odd
port pins (for example, P0[3],
P1[5])). 150 mA maximum
combined IOL budget.
mA VOH = VDD – 1.0 V, see the
limitations of the total current in the
note for VOH.
mA
VOL = 0.75 V, see the limitations of
the total current in the note for VOL.
V
VDD = 3.0 to 5.25.
V
VDD = 3.0 to 5.25.
mV
nA Gross tested to 1 A.
pF
Package and pin dependent.
Temp = 25 °C.
pF
Package and pin dependent.
Temp = 25 °C.
Page 36 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Operational Amplifier Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog
Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog
Continuous Time PSoC block.
Table 26. 5 V DC Operational Amplifier Specifications
Symbol
VOSOACT
Description
Input Offset Voltage CT Block (absolute value)
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = High
Power = High, Opamp bias = High
VOSOA
Input Offset Voltage SC and AGND Opamps
(absolute value)
TCVOSOA Average Input Offset Voltage Drift
IEBOA
Input Leakage Current (Port 0 Analog Pins)
Input Capacitance (Port 0 Analog Pins)
CINOA
Min
Typ
Max
Units
–
–
–
–
1.6
1.3
1.2
1
8
8
8
6
mV
mV
mV
mV
–
–
–
7.0
200
4.5
35.0
–
9.5
VCMOA
0.0
0.5
–
–
VDD
VDD –
0.5
60
60
60
–
–
–
–
–
–
dB
dB
dB
60
60
80
–
–
–
–
–
–
dB
dB
dB
VDD – 0.2
VDD – 0.2
VDD – 0.5
–
–
–
–
–
–
V
V
V
–
–
–
–
–
–
0.2
0.2
0.5
V
V
V
–
–
–
–
–
–
60
200
400
700
1400
2400
4600
–
300
600
1100
2000
3600
7700
–
A
A
A
A
A
A
dB
Common Mode Voltage Range
Common Mode Voltage Range (high power or
high Opamp bias)
CMRROA
Common Mode Rejection Ratio
Power = Low
Power = Medium
Power = High
GOLOA
Open Loop Gain
Power = Low
Power = Medium
Power = High
VOHIGHOA High Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High
VOLOWOA Low Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High
ISOA
PSRROA
Supply Current (including associated AGND
buffer)
Power = Low, Opamp bias = Low
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = Low
Power = Medium, Opamp bias = High
Power = High, Opamp bias = Low
Power = High, Opamp bias = High
Supply Voltage Rejection Ratio
Document Number: 001-48111 Rev. *Q
Notes
Applies to High and Low Opamp
bias.
V/°C
pA
Gross tested to 1 A.
pF
Package and pin dependent.
Temp = 25 °C.
V
The common-mode input
V
voltage range is measured
through an analog output buffer.
The specification includes the
limitations imposed by the
characteristics of the analog
output buffer.
VSS VIN (VDD – 2.25) or
(VDD – 1.25 V) VIN VDD.
Page 37 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 27. 3.3 V DC Operational Amplifier Specifications
Symbol
VOSOACT
Description
Input Offset Voltage CT Blocks (absolute value)
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = High
Power = High, Opamp bias = High
VOSOA
Input Offset Voltage SC and AGND (absolute
value)
TCVOSOA Average Input Offset Voltage Drift
IEBOA
Input Leakage Current (Port 0 Analog Pins)
Input Capacitance (Port 0 Analog Pins)
CINOA
Min
Typ
Max
Units
–
–
–
–
1.65
1.32
–
1
8
8
–
6
mV
mV
mV
mV
–
–
–
7.0
200
4.5
35.0
–
9.5
VCMOA
0.2
–
VDD –
0.2
50
50
50
–
–
–
–
–
–
dB
dB
dB
60
60
80
–
–
–
–
–
–
dB
dB
dB
VDD –
0.2
VDD –
0.2
VDD –
0.2
–
–
–
–
–
–
V
V
V
–
–
–
–
–
–
0.2
0.2
0.2
V
V
V
–
–
–
–
–
–
50
200
400
700
1400
2400
4600
80
300
600
1000
2000
3600
7500
–
A
A
A
A
A
A
dB
Common Mode Voltage Range
CMRROA Common Mode Rejection Ratio
Power = Low
Power = Medium
Power = High
GOLOA
Open Loop Gain
Power = Low
Power = Medium
Power = High
VOHIGHOA High Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High is 5 V only
VOLOWOA Low Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High
ISOA
Supply Current (including associated AGND
buffer)
Power = Low, Opamp bias = Low
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = Low
Power = Medium, Opamp bias = High
Power = High, Opamp bias = Low
Power = High, Opamp bias = High
PSRROA Supply Voltage Rejection Ratio
Document Number: 001-48111 Rev. *Q
Notes
Applies to High and Low Opamp
bias.
V/°C
pA
Gross tested to 1 A.
pF
Package and pin dependent.
Temp = 25 °C.
V
The common-mode input
voltage range is measured
through an analog output buffer.
The specification includes the
limitations imposed by the
characteristics of the analog
output buffer.
VSS VIN (VDD – 2.25 V) or
(VDD – 1.25 V) VIN VDD.
Page 38 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Type-E Operational Amplifier Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E
Analog PSoC blocks.
Table 28. 5 V DC Type-E Operational Amplifier Specifications
Symbol
Description
Input offset voltage (absolute value)
VOSOA
Min
–
–
Typ
2.5
2.5
Max
15
20
TCVOSOA Average input offset voltage drift
[13] Input leakage current (Port 0 Analog Pins)
I
–
–
10
200
–
–
CINOA
Input capacitance (Port 0 Analog Pins)
–
4.5
9.5
pF
VCMOA
ISOA
Common mode voltage range
Amplifier supply current
0.0
–
–
10
VDD
30
V
A
Min
–
–
Typ
2.5
2.5
Max
15
20
TCVOSOA Average input offset voltage drift
IEBOA[13] Input leakage current (Port 0 Analog Pins)
Input capacitance (Port 0 Analog Pins)
CINOA
–
–
–
10
200
4.5
–
–
9.5
VCMOA
ISOA
0
–
–
10
VDD
30
EBOA
Units
mV
mV
Notes
For 0.2 V < VIN < VDD – 1.2 V.
For VIN = 0 to 0.2 V and
VIN > VDD – 1.2 V.
V/°C
nA
Gross tested to 1 A.
Package and pin dependent.
Temp = 25 °C.
Table 29. 3.3 V DC Type-E Operational Amplifier Specifications
Symbol
Description
VOSOA
Input offset voltage (absolute value)
Common mode voltage range
Amplifier supply current
Units
Notes
mV For 0.2 V < VIN < VDD – 1.2 V.
mV For VIN = 0 to 0.2 V and
VIN > VDD – 1.2 V.
V/°C
nA
Gross tested to 1 A.
pF
Package and pin dependent.
Temp = 25 °C.
V
A
DC Low Power Comparator Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical
parameters apply to 5 V at 25 °C and are for design guidance only.
Table 30. DC Low Power Comparator Specifications
Symbol
VREFLPC
VOSLPC
ISLPC
Description
Low power comparator (LPC) reference
voltage range
LPC voltage offset
LPC supply current
Min
0.2
Typ
–
Max
VDD – 1
Units
V
–
–
2.5
10
30
40
mV
A
Notes
Note
13. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.
Document Number: 001-48111 Rev. *Q
Page 39 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Analog Output Buffer Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 31. 5 V DC Analog Output Buffer Specifications
Symbol
Description
Min
Typ
Max
Units
Notes
–
–
200
pF
This specification applies
to the external circuit that is
being driven by the analog
output buffer.
3
+6
–
12
20
VDD – 1.0
mV
V/°C
V
1
1
–
–
–
–
–
–
V
V
–
–
0.5 × VDD – 1.3
0.5 × VDD – 1.3
V
V
1.1
2.6
64
5.1
8.8
–
mA
mA
dB
CL
Load capacitance
VOSOB
TCVOSOB
VCMOB
ROUTOB
Input offset voltage (Absolute Value)
–
Average input offset voltage drift
–
Common-mode input voltage range
0.5
Output resistance
–
Power = Low
–
Power = High
High output voltage swing (Load = 32
to VDD/2)
Power = Low
0.5 × VDD + 1.3
Power = High
0.5 × VDD + 1.3
Low output voltage swing (Load = 32
to VDD/2)
Power = Low
–
Power = High
–
Supply current including bias cell
(No Load)
Power = Low
–
Power = High
–
Supply voltage rejection ratio
53
VOHIGHOB
VOLOWOB
ISOB
PSRROB
Document Number: 001-48111 Rev. *Q
(0.5 × VDD – 1.0) VOUT
(0.5 × VDD + 0.9).
Page 40 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 32. 3.3 V DC Analog Output Buffer Specifications
Symbol
CL
Description
Load Capacitance
VOSOB
TCVOSOB
VCMOB
ROUTOB
Min
Typ
Max
Units
Notes
–
–
200
pF
This specification applies to
the external circuit that is
being driven by the analog
output buffer.
3
+6
–
12
20
VDD – 1.0
mV
V/°C
V
1
1
–
–
–
–
–
–
V
V
–
–
0.5 × VDD – 1.0
0.5 × VDD – 1.0
V
V
0.8
2.0
2.0
4.3
mA
mA
64
–
dB
Input Offset Voltage (Absolute Value)
–
Average Input Offset Voltage Drift
–
Common-Mode Input Voltage Range
0.5
Output Resistance
Power = Low
–
Power = High
–
VOHIGHOB High Output Voltage Swing (Load = 1
k to VDD/2)
Power = Low
0.5 × VDD + 1.0
Power = High
0.5 × VDD + 1.0
VOLOWOB Low Output Voltage Swing (Load = 1
k to VDD/2)
–
Power = Low
–
Power = High
ISOB
Supply current including bias cell (No
–
Load)
–
Power = Low
Power = High
PSRROB Supply voltage rejection ratio
47
Document Number: 001-48111 Rev. *Q
(0.5 × VDD – 1.0) VOUT
(0.5 × VDD + 0.9).
Page 41 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Switch Mode Pump Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 33. DC Switch Mode Pump (SMP) Specifications
Symbol
VPUMP 5 V
Description
5 V output voltage
Min
4.75
Typ
5.0
Max
5.25
Units
Notes
V
Configuration of footnote.[14] Average,
neglecting ripple. SMP trip voltage is set
to 5.0 V.
V
Configuration of footnote.[14] Average,
neglecting ripple. SMP trip voltage is set
to 3.25 V.
Configuration of footnote.[14]
SMP trip voltage is set to 3.25 V.
mA
SMP trip voltage is set to 5.0 V.
mA
V
Configuration of footnote.[14] SMP trip
voltage is set to 5.0 V.
V
Configuration of footnote.[14] SMP trip
voltage is set to 3.25 V.
V
Configuration of footnote.[14]
VPUMP 3 V
3 V output voltage
3.00
3.25
3.60
IPUMP
VBAT5 V
Available output current
VBAT = 1.5 V, VPUMP = 3.25 V
VBAT = 1.8 V, VPUMP = 5.0 V
Input voltage range from battery
8
5
1.8
–
–
–
–
–
5.0
VBAT3 V
Input voltage range from battery
1.5
–
3.3
VBATSTART
2.6
–
–
VPUMP_Line
Minimum input voltage from battery to
start pump
Line regulation (over VBAT range)
–
5
–
VPUMP_Load
Load regulation
–
5
–
VPUMP_Ripple
–
100
–
E3
Output voltage ripple (depends on
capacitor/load)
Efficiency
35
50
–
%
FPUMP
DCPUMP
Switching frequency
Switching duty cycle
–
–
1.3
50
–
–
MHz
%
%VO Configuration of footnote.[14] VO is the
“VDD Value for PUMP Trip” specified by
the VM[2:0] setting in the DC POR and
LVD Specification, Table 40 on page 52.
%VO Configuration of footnote.[14] VO is the
“VDD Value for PUMP Trip” specified by
the VM[2:0] setting in the DC POR and
LVD Specification, Table 40 on page 52.
mVpp Configuration of footnote.[14] Load is 5mA.
Configuration of footnote.[14] Load is
5 mA. SMP trip voltage is set to 3.25 V.
Figure 9. Basic Switch Mode Pump Circuit
D1
Vdd
L1
V BAT
+
V PUMP
C1
SMP
Battery
PSoC TM
Vss
Note
14. L1 = 2 µH inductor, C1 = 10 µF capacitor, D1 = Schottky diode. See Figure 9.
Document Number: 001-48111 Rev. *Q
Page 42 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Analog Reference Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power
levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each
Analog Continuous Time PSoC block adds a maximum of 10mV additional offset error to guaranteed AGND specifications from the
local AGND buffer. Reference control power can be set to medium or high unless otherwise noted.
Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling
of the digital signal may appear on the AGND.
Table 34. 5-V DC Analog Reference Specifications
Reference
ARF_CR
[5:3]
0b000
Reference Power
Settings
Symbol
RefPower = High
VREFHI
Opamp bias = High
Reference
Description
Min
Typ
Max
Units
Ref high
VDD/2 + Bandgap
VDD/2 +
1.214
VDD/2 +
1.279
VDD/2 +
1.341
V
VAGND
AGND
VDD/2
VDD/2 –
0.018
VDD/2 –
0.004
VDD/2 + 0.01
V
VREFLO
Ref low
VDD/2 – Bandgap
VDD/2 –
1.328
VDD/2 –
1.301
VDD/2 –
1.273
V
Ref high
VDD/2 + Bandgap
VDD/2 +
0.228
VDD/2 +
1.284
VDD/2 +
1.344
V
VAGND
AGND
VDD/2
VDD/2 –
0.015
VDD/2 –
0.002
VDD/2 +
0.011
V
VREFLO
Ref low
VDD/2 – Bandgap
VDD/2 –
1.329
VDD/2 –
1.303
VDD/2 –
1.275
V
Ref high
VDD/2 + Bandgap
VDD/2 +
1.224
VDD/2 +
1.287
VDD/2 +
1.345
V
AGND
VDD/2
VDD/2 –
0.014
VDD/2 –
0.001
VDD/2 +
0.012
V
Ref low
VDD/2 – Bandgap
VDD/2 –
1.328
VDD/2 –
1.304
VDD/2 –
1.275
V
Ref high
VDD/2 + Bandgap
VDD/2 +
1.226
VDD/2 +
1.288
VDD/2 +
1.346
V
AGND
VDD/2
VDD/2 –
0.014
VDD/2 –
0.001
VDD/2 +
0.012
V
Ref low
VDD/2 – Bandgap
VDD/2 –
1.328
VDD/2 –
1.304
VDD/2 –
1.276
V
RefPower = High VREFHI
Opamp bias = Low
RefPower =
VREFHI
Medium
Opamp bias = High V
AGND
VREFLO
RefPower =
VREFHI
Medium
Opamp bias = Low V
AGND
VREFLO
Note
15. AGND tolerance includes the offsets of the local buffer in the PSoC block.
Document Number: 001-48111 Rev. *Q
Page 43 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
0b001
Reference Power
Settings
Symbol
RefPower = High
VREFHI
Opamp bias = High
Description
Min
Typ
Max
Units
Ref high
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6]
VDD/2, P2[6] = 1.3 V) – 0.055
– 0.019
+ 0.019
V
VAGND
AGND
P2[4]
–
VREFLO
Ref low
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6]
+ 0.005
+ 0.035
VDD/2, P2[6] = 1.3 V) – 0.030
V
Ref high
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6]
– 0.015
+ 0.021
VDD/2, P2[6] = 1.3 V) – 0.05
V
RefPower = High VREFHI
Opamp bias = Low
P2[4]
AGND
P2[4]
Ref low
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6]
VDD/2, P2[6] = 1.3 V) – 0.033
+ 0.001
+ 0.031
V
Ref high
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6]
VDD/2, P2[6] = 1.3 V) – 0.048
– 0.013
+ 0.022
V
AGND
P2[4]
–
Ref low
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6]
VDD/2, P2[6] = 1.3 V) – 0.034
– 0.001
+ 0.031
V
Ref high
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6]
VDD/2, P2[6] = 1.3 V) – 0.047
– 0.012
+ 0.023
V
VREFHI
RefPower =
Medium
Opamp bias = Low V
AGND
VREFLO
RefPower = High
VREFHI
Opamp bias = High V
AGND
VREFLO
RefPower = High VREFHI
Opamp bias = Low V
AGND
VREFLO
RefPower =
VREFHI
Medium
V
Opamp bias = High AGND
VREFLO
RefPower =
VREFHI
Medium
V
Opamp bias = Low AGND
VREFLO
Document Number: 001-48111 Rev. *Q
P2[4]
P2[4]
P2[4]
P2[4]
VAGND
VREFLO
P2[4]
P2[4]
VREFLO
RefPower =
VREFHI
Medium
Opamp bias = High V
AGND
0b010
Reference
P2[4]
P2[4]
P2[4]
–
P2[4]
AGND
P2[4]
Ref low
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6]
– 0.002
+ 0.030
VDD/2, P2[6] = 1.3 V) – 0.036
V
Ref high
VDD
VDD
V
AGND
VDD/2
VDD – 0.028 VDD – 0.010
VDD/2 –
VDD/2 –
0.014
0.002
VDD/2 +
0.012
V
Ref low
VSS
VSS
Ref high
VDD
AGND
VDD/2
VDD – 0.021 VDD – 0.007
VDD/2 –
VDD/2 –
0.014
0.001
Ref low
VSS
VSS
Ref high
VDD
AGND
VDD/2
VDD – 0.019 VDD – 0.006
VDD/2 –
VDD/2 –
0.014
0.001
Ref low
VSS
VSS
VSS + 0.004
V
Ref high
VDD
VDD
V
AGND
VDD/2
VDD – 0.017 VDD – 0.005
VDD/2 –
VDD/2 –
0.014
0.001
VDD/2 +
0.013
V
Ref low
VSS
VSS
VSS + 0.003
V
VSS + 0.004
VSS + 0.002
VSS + 0.002
VSS + 0.001
P2[4]
–
VSS + 0.008
V
VDD
V
VDD/2 +
0.012
V
VSS + 0.005
V
VDD
V
VDD/2 +
0.012
V
Page 44 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
0b011
Reference Power
Settings
Symbol
RefPower = High VREFHI
Opamp bias = High V
AGND
VREFLO
RefPower = High VREFHI
Opamp bias = Low V
AGND
VREFLO
0b100
Reference
Description
Min
Typ
Max
Units
Ref high
3 × Bandgap
3.736
3.887
4.030
V
AGND
2 × Bandgap
2.525
2.598
2.667
V
Ref low
Bandgap
1.265
1.302
1.335
V
Ref high
3 × Bandgap
3.747
3.894
4.034
V
AGND
2 × Bandgap
2.528
2.601
2.668
V
Ref low
Bandgap
1.264
1.302
1.335
V
VREFHI
RefPower =
Medium
V
Opamp bias = High AGND
VREFLO
Ref high
3 × Bandgap
3.749
3.897
4.035
V
AGND
2 × Bandgap
2.529
2.602
2.668
V
Ref low
Bandgap
1.264
1.302
1.335
V
VREFHI
RefPower =
Medium
V
Opamp bias = Low AGND
VREFLO
Ref high
3 × Bandgap
3.751
3.899
4.037
V
AGND
2 × Bandgap
2.530
2.603
2.669
V
Ref low
Bandgap
1.264
1.302
1.335
RefPower = High
VREFHI
Opamp bias = High
Ref high
2 × Bandgap + P2[6] 2.483 – P2[6] 2.578 – P2[6] 2.669 – P2[6]
(P2[6] = 1.3 V)
V
VAGND
AGND
2 × Bandgap
V
VREFLO
Ref low
2 × Bandgap – P2[6] 2.512 – P2[6] 2.602 – P2[6] 2.684 – P2[6]
(P2[6] = 1.3 V)
V
Ref high
2 × Bandgap + P2[6] 2.495 – P2[6] 2.586 – P2[6] 2.673 – P2[6]
(P2[6] = 1.3 V)
V
VAGND
AGND
2 × Bandgap
VREFLO
Ref low
2 × Bandgap – P2[6] 2.510 – P2[6] 2.602 – P2[6] 2.685 – P2[6]
(P2[6] = 1.3 V)
V
Ref high
2 × Bandgap + P2[6] 2.498 – P2[6] 2.589 – P2[6] 2.674 – P2[6]
(P2[6] = 1.3 V)
V
AGND
2 × Bandgap
V
Ref low
2 × Bandgap – P2[6] 2.509 – P2[6] 2.601 – P2[6] 2.685 – P2[6]
(P2[6] = 1.3 V)
V
Ref high
2 × Bandgap + P2[6] 2.500 – P2[6] 2.591 – P2[6] 2.675 – P2[6]
(P2[6] = 1.3 V)
V
AGND
2 × Bandgap
Ref low
2 × Bandgap – P2[6] 2.508 – P2[6] 2.601 – P2[6] 2.686 – P2[6]
(P2[6] = 1.3 V)
RefPower = High VREFHI
Opamp bias = Low
RefPower =
VREFHI
Medium
Opamp bias = High V
AGND
VREFLO
VREFHI
RefPower =
Medium
Opamp bias = Low V
AGND
VREFLO
Document Number: 001-48111 Rev. *Q
2.525
2.528
2.529
2.530
2.598
2.601
2.601
2.603
V
2.666
2.668
V
2.668
2.669
V
V
Page 45 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
0b101
Reference Power
Settings
Symbol
RefPower = High
VREFHI
Opamp bias = High
Description
Min
Typ
Max
Units
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.218 P2[4] + 1.283 P2[4] + 1.344
V
VAGND
AGND
P2[4]
P2[4]
–
VREFLO
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.329 P2[4] – 1.297 P2[4] – 1.265
V
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.225 P2[4] + 1.287 P2[4] + 1.346
V
RefPower = High VREFHI
Opamp bias = Low
P2[4]
AGND
P2[4]
P2[4]
VREFLO
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.330 P2[4] – 1.301 P2[4] – 1.271
V
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.226 P2[4] + 1.288 P2[4] + 1.346
V
AGND
P2[4]
P2[4]
–
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.330 P2[4] – 1.302 P2[4] – 1.272
V
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.227 P2[4] + 1.289 P2[4] + 1.347
V
VREFLO
VREFHI
RefPower =
Medium
Opamp bias = Low V
AGND
VREFLO
RefPower = High VREFHI
Opamp bias = High V
AGND
VREFLO
RefPower = High VREFHI
Opamp bias = Low V
AGND
VREFLO
P2[4]
P2[4]
VAGND
RefPower =
VREFHI
Medium
Opamp bias = High V
AGND
0b110
Reference
P2[4]
P2[4]
P2[4]
–
P2[4]
AGND
P2[4]
P2[4]
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.331 P2[4] – 1.303 P2[4] – 1.273
P2[4]
V
–
Ref high
2 × Bandgap
2.506
2.597
2.674
V
AGND
Bandgap
1.263
1.302
1.336
V
Ref low
VSS
VSS
VSS + 0.006
VSS + 0.014
V
Ref high
2 × Bandgap
2.508
2.595
2.675
V
AGND
Bandgap
1.263
1.302
1.336
V
Ref low
VSS
VSS
VSS + 0.003
VSS + 0.008
V
RefPower =
VREFHI
Medium
V
Opamp bias = High AGND
VREFLO
Ref high
2 × Bandgap
2.508
2.595
2.676
V
AGND
Bandgap
1.263
1.302
1.336
V
Ref low
VSS
VSS
VSS + 0.002
VSS + 0.005
V
RefPower =
VREFHI
Medium
V
Opamp bias = Low AGND
VREFLO
Ref high
2 × Bandgap
2.508
2.596
2.677
V
AGND
Bandgap
1.263
1.302
1.336
V
Ref low
VSS
VSS
VSS + 0.001
VSS + 0.003
V
Document Number: 001-48111 Rev. *Q
Page 46 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
0b111
Reference Power
Settings
Symbol
RefPower = High VREFHI
Opamp bias = High V
AGND
VREFLO
RefPower = High VREFHI
Opamp bias = Low V
AGND
VREFLO
Reference
Description
Min
Typ
Max
Units
Ref high
3.2 × Bandgap
4.056
4.155
4.222
V
AGND
1.6 × Bandgap
2.012
2.083
2.168
V
Ref low
VSS
VSS
VSS + 0.01
VSS + 0.035
V
Ref high
3.2 × Bandgap
4.061
4.153
4.223
V
AGND
1.6 × Bandgap
2.023
2.082
2.145
V
Ref low
VSS
VSS
VSS + 0.006
VSS + 0.022
V
VREFHI
RefPower =
Medium
V
Opamp bias = High AGND
VREFLO
Ref high
3.2 × Bandgap
4.063
4.154
4.224
V
AGND
1.6 × Bandgap
2.020
2.083
2.152
V
Ref low
VSS
VSS
VSS + 0.006
VSS + 0.024
V
VREFHI
RefPower =
Medium
V
Opamp bias = Low AGND
VREFLO
Ref high
3.2 × Bandgap
4.061
4.154
4.225
V
AGND
1.6 × Bandgap
2.026
2.081
2.140
V
Ref low
VSS
VSS
VSS + 0.004
VSS + 0.017
V
Table 35. 3.3-V DC Analog Reference Specifications
Reference
Reference Power
ARF_CR
Settings
[5:3]
0b000
Symbol
RefPower = High
VREFHI
Opamp bias = High
VAGND
VREFLO
RefPower = High
VREFHI
Opamp bias = Low
VAGND
VREFLO
Reference
Description
Min
Typ
Max
Units
Ref high
VDD/2 + Bandgap
VDD/2 + 1.223
VDD/2 + 1.283
VDD/2 + 1.343 V
AGND
VDD/2
VDD/2 – 0.013
VDD/2 – 0.003
VDD/2 + 0.005 V
Ref low
VDD/2 – Bandgap
VDD/2 – 1.322
VDD/2 – 1.297
VDD/2 – 1.270 V
Ref high
VDD/2 + Bandgap
VDD/2 + 1.228
VDD/2 + 1.288
VDD/2 + 1.345 V
AGND
VDD/2
VDD/2 – 0.008
VDD/2 – 0.002
VDD/2 + 0.005 V
Ref low
VDD/2 – Bandgap
VDD/2 – 1.322
VDD/2 – 1.298
VDD/2 – 1.271 V
RefPower =
VREFHI
Medium
V
Opamp bias = High AGND
VREFLO
Ref high
VDD/2 + Bandgap
VDD/2 + 1.232
VDD/2 + 1.290
VDD/2 + 1.346 V
AGND
VDD/2
VDD/2 – 0.008
VDD/2 – 0.001
VDD/2 + 0.006 V
Ref low
VDD/2 – Bandgap
VDD/2 – 1.322
VDD/2 – 1.299
VDD/2 – 1.272 V
RefPower =
VREFHI
Medium
V
AGND
Opamp bias = Low
VREFLO
Ref high
VDD/2 + Bandgap
VDD/2 + 1.233
VDD/2 + 1.291
VDD/2 + 1.347 V
AGND
VDD/2
VDD/2 – 0.006
VDD/2
VDD/2 + 0.006 V
Ref low
VDD/2 – Bandgap
VDD/2 – 1.322
VDD/2 – 1.299
VDD/2 – 1.272 V
Document Number: 001-48111 Rev. *Q
Page 47 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 35. 3.3-V DC Analog Reference Specifications (continued)
Reference
Reference Power
ARF_CR
Settings
[5:3]
0b001
Symbol
RefPower = High
VREFHI
Opamp bias = High
Description
Ref high
P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
VAGND
AGND
VREFLO
Ref low
Min
Typ
Max
Units
P2[4] + P2[6] – P2[4] + P2[6] –
0.045
0.017
P2[4] + P2[6] + V
0.016
P2[4]
P2[4]
P2[4]
P2[4]
P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] – P2[6] –
0.019
P2[4] – P2[6] +
0.004
P2[4] – P2[6] + V
0.023
Ref high
P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] + P2[6] – P2[4] + P2[6] –
0.036
0.012
P2[4] + P2[6] + V
0.013
VAGND
AGND
P2[4]
P2[4]
P2[4]
P2[4]
VREFLO
Ref low
P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] – P2[6] –
0.021
P2[4] – P2[6] –
0.001
P2[4] – P2[6] + V
0.021
Ref high
P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] + P2[6] – P2[4] + P2[6] –
0.034
0.011
P2[4] + P2[6] + V
0.013
AGND
P2[4]
P2[4]
P2[4]
P2[4]
Ref low
P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] – P2[6] –
0.023
P2[4] – P2[6] –
0.002
P2[4] – P2[6] + V
0.016
Ref high
P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] + P2[6] – P2[4] + P2[6] –
0.033
0.009
P2[4] + P2[6] + V
0.014
AGND
P2[4]
P2[4]
P2[4]
P2[4]
Ref low
P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V)
P2[4] – P2[6] –
0.024
P2[4] – P2[6] –
0.003
P2[4] – P2[6] + V
0.020
Ref high
VDD
VDD – 0.042
VDD – 0.008
VDD
AGND
VDD/2
VDD/2 – 0.035
VDD/2 – 0.001
VDD/2 + 0.031 V
Ref low
VSS
VSS
VSS + 0.003
VSS + 0.0165 V
V
Ref high
VDD
VDD – 0.035
VDD – 0.005
VDD
AGND
VDD/2
VDD/2 – 0.031
VDD/2 – 0.001
VDD/2 + 0.028 V
RefPower = High
VREFHI
Opamp bias = Low
RefPower =
VREFHI
Medium
Opamp bias = High
VAGND
VREFLO
RefPower =
VREFHI
Medium
Opamp bias = Low
VAGND
VREFLO
0b010
Reference
RefPower = High
VREFHI
Opamp bias = High
VAGND
VREFLO
RefPower = High
VREFHI
Opamp bias = Low
VAGND
VREFLO
–
–
–
–
V
V
Ref low
VSS
VSS
VSS + 0.002
VSS + 0.012
V
RefPower =
VREFHI
Medium
V
Opamp bias = High AGND
VREFLO
Ref high
VDD
VDD – 0.044
VDD – 0.005
VDD
V
AGND
VDD/2
VDD/2 – 0.052
VDD/2
VDD/2 + 0.046 V
Ref low
VSS
VSS
VSS + 0.002
VSS + 0.014
V
RefPower =
VREFHI
Medium
Opamp bias = Low VAGND
VREFLO
Ref high
VDD
VDD – 0.036
VDD – 0.004
VDD
V
VDD/2 + 0.029 V
0b011
All power settings.
Not allowed for
3.3 V.
0b100
All power settings.
Not allowed for
3.3 V.
AGND
VDD/2
VDD/2 – 0.032
VDD/2
Ref low
VSS
VSS
VSS + 0.001
VSS + 0.012
V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Document Number: 001-48111 Rev. *Q
Page 48 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
Table 35. 3.3-V DC Analog Reference Specifications (continued)
Reference
Reference Power
ARF_CR
Settings
[5:3]
0b101
Symbol
RefPower = High
VREFHI
Opamp bias = High
Min
P2[4] + Bandgap
(P2[4] = VDD/2)
VAGND
AGND
P2[4]
VREFLO
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.232
VAGND
AGND
P2[4]
VREFLO
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
AGND
RefPower =
VREFHI
Medium
Opamp bias = High
VAGND
VREFLO
RefPower =
VREFHI
Medium
Opamp bias = Low
VAGND
VREFLO
RefPower = High
VREFHI
Opamp bias = High
VAGND
VREFLO
RefPower = High
VREFHI
Opamp bias = Low
VAGND
VREFLO
0b111
Description
Ref high
RefPower = High
VREFHI
Opamp bias = Low
0b110
Reference
P2[4] + 1.226
Typ
Max
Units
P2[4] + 1.286
P2[4] + 1.343 V
P2[4]
P2[4]
P2[4]
–
P2[4] – 1.323
P2[4] – 1.293
P2[4] –1.262
V
P2[4] + 1.29
P2[4] + 1.344 V
P2[4]
P2[4]
P2[4]
P2[4] – 1.324
P2[4] – 1.296
P2[4] – 1.267 V
P2[4] + 1.233
P2[4] + 1.291
P2[4] + 1.345 V
P2[4]
P2[4]
P2[4]
P2[4]
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.324
P2[4] – 1.298
P2[4] – 1.269 V
Ref high
P2[4] + Bandgap
(P2[4] = VDD/2)
P2[4] + 1.234
P2[4] + 1.292
P2[4] +1.345
V
AGND
P2[4]
P2[4]
P2[4]
P2[4]
–
Ref low
P2[4] – Bandgap
(P2[4] = VDD/2)
P2[4] – 1.324
P2[4] – 1.299
P2[4] – 1.270 V
Ref high
2 × Bandgap
2.504
2.595
2.672
AGND
Bandgap
1.262
1.301
1.336
V
Ref low
VSS
VSS
VSS + 0.006
VSS + 0.013
V
Ref high
2 × Bandgap
2.506
2.593
2.674
V
AGND
Bandgap
1.262
1.301
1.336
V
–
–
V
Ref low
VSS
VSS
VSS + 0.003
VSS + 0.008
V
RefPower =
VREFHI
Medium
Opamp bias = High VAGND
VREFLO
Ref high
2 × Bandgap
2.506
2.594
2.675
V
AGND
Bandgap
1.262
1.301
1.335
V
Ref low
VSS
VSS
VSS + 0.002
VSS + 0.007
V
RefPower =
VREFHI
Medium
Opamp bias = Low VAGND
VREFLO
Ref high
2 × Bandgap
2.507
2.595
2.675
V
AGND
Bandgap
1.262
1.301
1.335
V
Ref low
VSS
VSS
VSS + 0.001
VSS + 0.005
V
All power settings.
Not allowed for
3.3 V.
–
–
–
–
–
–
–
Document Number: 001-48111 Rev. *Q
Page 49 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Analog PSoC Block Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 36. DC Analog PSoC Block Specifications
Symbol
RCT
CSC
Description
Resistor Unit Value (Continuous Time)
Capacitor Unit Value (Switch Cap)
Min
–
–
Typ
12.24
80
Max
–
–
Units
k
fF
Notes
DC Analog Mux Bus Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 37. DC Analog Mux Bus Specifications
Symbol
RSW
RVSS
Description
Switch Resistance to Common Analog Bus
Resistance of Initialization Switch to VSS
Min
–
–
Typ
–
–
Max
400
800
Units
Notes
VDD 3.0 V
DC SAR10 ADC Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 38. DC SAR10 ADC Specifications
Symbol
INLSAR10
DNLSAR10
ISAR10
IVREFSAR10
VVREFSAR10
VOSSAR10
SARIMP
Description
Integral nonlinearity for VREF 3 V
Integral nonlinearity for VREF < 3 V
Differential nonlinearity for VREF 3 V
Differential nonlinearity for VREF < 3 V
Active current consumption
Input current into P2[5] when configured as
the SAR10 ADC’s VREF input.
Input reference voltage at P2[5] when
configured as the SAR10 ADC’s external
voltage reference.
Offset voltage
SAR input impedence
Document Number: 001-48111 Rev. *Q
Min
–2.5
–5
–1.5
–4
0.08
–
Typ
–
–
–
–
0.5
–
Max
2.5
5
1.5
4
0.497
0.5
Units
LSB
LSB
LSB
LSB
mA
mA
2.7
–
VDD –
0.3 V
V
5
–
7.7
1.64
10
–
mV
M
Notes
10-bit resolution
10-bit resolution
10-bit resolution
10-bit resolution
The internal voltage reference buffer is
disabled in this configuration.
When VREF is buffered inside the
SAR10 ADC, the voltage level at P2[5]
(when configured as the external
reference voltage) must always be at
least 300 mV less than the chip supply
voltage level on the VDD pin.
(VVREFSAR10 < (VDD – 300 mV)).
Frequency dependant = 1/ Fs °C.
142.9 kHz (maximum) and Cin = 4.28 pF
(typical)
Page 50 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC IDAC Specifications
Table 39. DC IDAC Specifications
Symbol
Description
Min
Typ
Max
Units
Notes
IDAC_DNL
Differential nonlinearity
–5.0
2.0
5.0
LSB
Valid for all 3 current ranges
IDAC_INL
Integral nonlinearity
–5.0
2.0
5.0
LSB
Valid for all 3 current ranges
IDAC_Gain
Gain per bit – Range 1 (91 µA)
283
357
447
nA
Gain per bit – Range 2 (318 µA)
985
1250
1532
nA
Gain per bit – Range 3 (637 µA)
1959
IDACOffset
2500
3056
nA
Offset at Code 0 vs LSB Ideal – Range 1
(91 µA)
2.0%
20%
%
Offset at Code 0 vs LSB Ideal – Range 2
(318 µA)
1.0%
10%
%
Offset at Code 0 vs LSB Ideal – Range 3
(637 µA)
1.0%
10%
%
Document Number: 001-48111 Rev. *Q
Measured at full scale
Measured as a % of LSB (Current @
Code 0)/(LSB Ideal Current)
Page 51 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC POR and LVD Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual
for CY8C28xxx PSoC devices, for more information on the VLT_CR register.
Table 40. DC POR and LVD Specifications
Symbol
VPPOR0R
VPPOR1R
VPPOR2R
VPPOR0
VPPOR1
VPPOR2
VPH0
VPH1
VPH2
VLVD0
VLVD1
VLVD2
VLVD3
VLVD4
VLVD5
VLVD6
VLVD7
VPUMP0
VPUMP1
VPUMP2
VPUMP3
VPUMP4
VPUMP5
VPUMP6
VPUMP7
Description
VDD Value for PPOR Trip (positive ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
VDD Value for PPOR Trip (negative ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
PPOR Hysteresis
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
VDD Value for LVD Trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b
VDD Value for PUMP Trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b
Min
Typ
Max
Units
–
–
–
2.91
4.39
4.55
2.985
4.49
4.65
V
V
V
–
–
–
2.82
4.39
4.55
2.90
4.49
4.64
V
V
V
–
–
–
92
0
0
–
–
–
mV
mV
mV
2.83
2.93
3.04
3.90
4.38
4.54
4.62
4.71
2.91
3.01
3.12
3.99
4.47
4.63
4.71
4.80
3.00[16]
3.10
3.21
4.09
4.58
4.74[17]
4.83
4.92
V
V
V
V
V
V
V
V
2.93
3.00
3.16
4.09
4.53
4.61
4.70
4.88
3.01
3.08
3.24
4.17
4.62
4.71
4.80
4.98
3.10
3.17
3.33
4.28
4.74
4.82
4.91
5.10
V
V
V
V
V
V
V
V
Notes
VDD must be greater than or equal
to 2.5 V during startup, reset from
the XRES pin, or reset from
Watchdog.
VDD must be greater than or equal
to 2.5 V during startup, reset from
the XRES pin, or reset from
Watchdog.
Notes
16. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
17. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.
Document Number: 001-48111 Rev. *Q
Page 52 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC Programming Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 41. DC Programming Specifications
Symbol
VDDP
Description
VDD for programming and erase
Min
4.5
Typ
5
Max
5.5
VDDLV
VDDHV
Low VDD for verify
3
3.1
3.2
High VDD for verify
5.1
5.2
5.3
VDDIWRITE Supply Voltage for Flash write operation
3
–
5.25
IDDP
VILP
–
–
5
–
25
0.8
2.2
–
–
V
–
–
0.21
mA
–
–
1.5
mA
–
–
0.75
V
VDD – 1.0
–
VDD
V
50,000[18]
1,800,000
–
–
–
–
–
–
10
–
–
Years
Supply Current During Programming or Verify
Input Low Voltage During Programming or
Verify
VIHP
Input High Voltage During Programming or
Verify
IILP
Input Current when Applying Vilp to P1[0] or
P1[1] During Programming or Verify
IIHP
Input Current when Applying Vihp to P1[0] or
P1[1] During Programming or Verify
VOLV
Output Low Voltage During Programming or
Verify
VOHV
Output High Voltage During Programming or
Verify
FlashENPB Flash Endurance (per block)
FlashENT Flash Endurance (total)[19]
FlashDR
Flash Data Retention
Units
Notes
V
This specification applies to
the functional requirements of
external programmer tools.
V
This specification applies to
the functional requirements of
external programmer tools.
V
This specification applies to
the functional requirements of
external programmer tools.
V
This specification applies to
this device when it is executing
internal flash writes.
mA
V
Driving internal pull-down
resistor.
Driving internal pull-down
resistor.
Erase/write cycles per block.
Erase/write cycles. Must be
programmed and read at the
same voltage to meet this.
Notes
18. The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V
to 5.25 V.
19. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2
blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever
sees more than 50,000 cycles).
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.
Refer to the AN2015 - PSoC® 1 - Getting Started with Flash & E2PROMfor more information.
Document Number: 001-48111 Rev. *Q
Page 53 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
DC I2C Specifications
Table 42 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –
40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and
are for design guidance only.
Table 42. DC I2C Specifications[20]
Symbol
VILI2C
Input low level
Description
VIHI2C
VOLI2C
Input high level
Output low level
Min
–
–
0.7 × VDD
–
–
Typ
Max
–
0.3 × VDD
–
0.25 × VDD
–
–
–
0.4
–
0.6
Units
V
V
V
V
V
Notes
3.0 V VDD 3.6 V
4.75 V VDD 5.25 V
3.0 V VDD 5.25 V
at sink current of 3 mA
at sink current of 6 mA
Note
20. All GPIOs meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I2C GPIO pins also meet the above specs.
Document Number: 001-48111 Rev. *Q
Page 54 of 86
CY8C28243/CY8C284xx
CY8C285xx/CY8C286xx
AC Electrical Characteristics
AC Chip-Level Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 43. AC Chip-Level Specifications
Symbol
FIMO
Description
Internal Main Oscillator Frequency
Min
23.4
Typ
24
Max
24.6[21]
Units
MHz
FIMO6
Internal Main Oscillator Frequency for
6 MHz
5.5
6
6.5[21]
MHz
FCPU1
CPU Frequency (5 V Nominal)
0.091
24
24.6[21]
MHz
FCPU2
CPU Frequency (3.3 V Nominal)
0.091
12
12.3[22]
MHz
FBLK5
FBLK33
F32K1
Digital PSoC Block Frequency
Digital PSoC Block Frequency
Internal Low Speed Oscillator
Frequency
External Crystal Oscillator
0
0
15
–
24
32
49.2[21, 23]
24.6[23]
64
MHz
MHz
kHz
–
32.768
–
kHz
Internal Low Speed Oscillator
Untrimmed Frequency
5
–
100
kHz
–
0.5
0.5
23.986
–
–
–
10
50
MHz
ms
ms
–
1700
2620
ms
–
2800
3800
ms
F32K2
F32K_U
FPLL
PLL Frequency
tPLLSLEW
PLL Lock Time
tPLLSLEWSLO PLL Lock Time for Low Gain Setting
Notes
Trimmed. Utilizing factory trim
values. SLIMO Mode = 0.
Trimmed for 5 V or 3.3 V operation
using factory trim values. SLIMO
Mode = 1.
Trimmed. Utilizing factory trim
values. SLIMO mode = 0.
Trimmed. Utilizing factory trim
values. SLIMO mode = 0.
4.75 V< VDD