CY74FCT2245T
8-BIT TRANSCEIVER
WITH 3-STATE OUTPUTS
SCCS037B – JULY 1994 – REVISED NOVEMBER 2001
D
D
D
D
D
D
D
D
P, Q, OR SO PACKAGE
(TOP VIEW)
Function and Pinout Compatible With FCT
and F Logic
25-Ω Output Series Resistors to Reduce
Transmission-Line Reflection Noise
Edge-Rate Control Circuitry for
Significantly Improved Noise
Characteristics
Ioff Supports Partial-Power-Down Mode
Operation
Fully Compatible With TTL Input and
Output Logic Levels
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
12-mA Output Sink Current
15-mA Output Source Current
3-State Outputs
T/R
A0
A1
A2
A3
A4
A5
A6
A7
GND
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
OE
B0
B1
B2
B3
B4
B5
B6
B7
description
The CY74FCT2245T contains eight noninverting, bidirectional buffers with 3-state outputs intended for
bus-oriented applications. On-chip termination resistors at the outputs reduce system noise caused by
reflections. For this reason, the CY74FCT2245T can replace the CY74FCT245T in an existing design. The
CY74FCT2245T current-sinking capability is 12 mA at the A and B ports.
The transmit/receive (T/R) input determines the direction of data flow through the bidirectional transceiver.
Transmit (active high) enables data from A ports to B ports; receive (active low) enables data from B ports to
A ports. The output-enable (OE) input, when high, disables both the A and B ports by putting them in the
high-impedance state.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
PACKAGE†
TA
QSOP – Q
ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
Tape and reel
4.1
CY74FCT2245CTQCT
Tube
4.1
CY74FCT2245CTSOC
Tape and reel
4.1
CY74FCT2245CTSOCT
DIP – P
Tube
4.6
CY74FCT2245ATPC
74FCT2245ATPC
QSOP – Q
Tape and reel
4.6
CY74FCT2245ATQCT
FCT2245A
Tube
4.6
CY74FCT2245ATSOC
Tape and reel
4.6
CY74FCT2245ATSOCT
Tape and reel
7.0
CY74FCT2245TQCT
Tube
7.0
CY74FCT2245TSOC
Tape and reel
7.0
CY74FCT2245TSOCT
SOIC – SO
–40°C
40°C to 85°C
SPEED
(ns)
SOIC – SO
QSOP – Q
SOIC – SO
FCT2245
FCT2245
FCT2245A
FCT2245
FCT2245
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
CY74FCT2245T
8-BIT TRANSCEIVER
WITH 3-STATE OUTPUTS
SCCS037B – JULY 1994 – REVISED NOVEMBER 2001
FUNCTION TABLE
INPUTS
OE
OUTPUT
T/R
L
L
Bus B data to bus A
L
H
Bus A data to bus B
H
X
Z
H = High logic level, L = Low logic level,
X = Don’t care, Z = High-impedance state
logic diagram (positive logic)
T/R
1
19
A0
OE
2
18
B0
To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range to ground potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC output current (maximum sink current/pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 mA
Package thermal impedance, θJA (see Note 1): P package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W
Q package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68°C/W
SO package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
Ambient temperature range with power applied, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 135°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 2)
NOM
MAX
UNIT
5
5.25
V
Supply voltage
VIL
IOH
Low-level input voltage
0.8
V
High-level output current
–15
mA
IOL
TA
Low-level output current
12
mA
85
°C
High-level input voltage
2
Operating free-air temperature
–40
NOTE 2: All unused inputs of the device must be held at VCC or GND to ensure proper device operation.
2
MIN
4.75
VCC
VIH
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
CY74FCT2245T
8-BIT TRANSCEIVER
WITH 3-STATE OUTPUTS
SCCS037B – JULY 1994 – REVISED NOVEMBER 2001
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
VOH
VCC = 4.75,
VCC = 4.75,
IIN = –18 mA
IOH = –15 mA
VOL
Rout
VCC = 4.75,
VCC = 4.75,
IOL = 12 mA
IOL = 12 mA
Vhys
II
All inputs
IIH
IIL
IOZH
IOZL
IOS‡
Ioff
ICC
∆ICC
ICCD¶
IC#
MIN
2.4
20
TYP†
MAX
UNIT
–0.7
–1.2
V
3.3
V
0.3
0.55
V
25
40
Ω
5
µA
±1
µA
±1
µA
10
µA
0.2
VCC = 5.25 V,
VCC = 5.25 V,
VIN = VCC
VIN = 2.7 V
VCC = 5.25 V,
VCC = 5.25 V,
VIN = 0.5 V
VOUT = 2.7 V
VCC = 5.25 V,
VCC = 5.25 V,
VOUT = 0.5 V
VOUT = 0 V
–60
VCC = 0 V,
VCC = 5.25 V,
–120
V
–10
µA
–225
mA
±1
µA
VOUT = 4.5 V
VIN ≤ 0.2 V,
VIN ≥ VCC – 0.2 V
VCC = 5.25 V, VIN = 3.4 V§, f1 = 0, Outputs open
0.1
0.2
mA
0.5
2
mA
VCC = 5.25 V, One input switching at 50% duty cycle, Outputs open,
T/R = OE = GND, VIN ≤ 0.2 V or VIN ≥ VCC – 0.2 V
0.06
0.12
mA/
MHz
0.7
1.4
1
2.4
1.3
2.6||
3.3
10.6||
5
10
VCC = 5.25 V,
Outputs open,
open
T/R = OE = GND
One input switching
at f1 = 10 MHz
at 50% duty cycle
Eight bits switching
at f1 = 2.5 MHz
at 50% duty cycle
VIN ≤ 0.2 V or
VIN ≥ VCC – 0.2 V
VIN = 3.4 V or GND
VIN ≤ 0.2 V or
VIN ≥ VCC – 0.2 V
VIN = 3.4 V or GND
Ci
mA
pF
Co
9
12
pF
† Typical values are at VCC = 5 V, TA = 25°C.
‡ Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus
and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise,
prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In
any sequence of parameter tests, IOS tests should be performed last.
§ Per TTL-driven input (VIN = 3.4 V); all other inputs at VCC or GND
¶ This parameter is derived for use in total power-supply calculations.
# IC
= ICC + ∆ICC × DH × NT + ICCD (f0/2 + f1 × N1)
Where:
IC
= Total supply current
ICC = Power-supply current with CMOS input levels
∆ICC = Power-supply current for a TTL high input (VIN = 3.4 V)
DH
= Duty cycle for TTL inputs high
NT
= Number of TTL inputs at DH
ICCD = Dynamic current caused by an input transition pair (HLH or LHL)
f0
= Clock frequency for registered devices, otherwise zero
f1
= Input signal frequency
N1
= Number of inputs changing at f1
All currents are in milliamperes and all frequencies are in megahertz.
|| Values for these conditions are examples of the ICC formula.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
CY74FCT2245T
8-BIT TRANSCEIVER
WITH 3-STATE OUTPUTS
SCCS037B – JULY 1994 – REVISED NOVEMBER 2001
switching characteristics over operating free-air temperature range (see Figure 1)
4
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
An or Bn
Bn or An
tPZH
tPZL
OE
A or B
tPHZ
tPLZ
OE
A or B
POST OFFICE BOX 655303
CY74FCT2245T
CY74FCT2245AT
CY74FCT2245CT
MIN
MAX
MIN
MAX
MIN
MAX
1.5
7
1.5
4.6
1.5
4.1
1.5
7
1.5
4.6
1.5
4.1
1.5
9.5
1.5
6.2
1.5
5.8
1.5
9.5
1.5
6.2
1.5
5.8
1.5
7.5
1.5
5
1.5
4.5
1.5
7.5
1.5
5
1.5
4.5
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
CY74FCT2245T
8-BIT TRANSCEIVER
WITH 3-STATE OUTPUTS
SCCS037B – JULY 1994 – REVISED NOVEMBER 2001
PARAMETER MEASUREMENT INFORMATION
7V
From Output
Under Test
From Output
Under Test
Test
Point
CL = 50 pF
(see Note A)
Open
TEST
GND
CL = 50 pF
(see Note A)
500 Ω
S1
500 Ω
S1
Open
7V
Open
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
500 Ω
LOAD CIRCUIT FOR
3-STATE OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
3V
1.5 V
Timing Input
0V
tw
tsu
3V
1.5 V
Input
1.5 V
th
3V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
1.5 V
Input
1.5 V
0V
tPLH
tPHL
1.5 V
1.5 V
VOL
tPHL
Out-of-Phase
Output
tPLZ
≈3.5 V
1.5 V
tPZH
VOH
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
Output
Waveform 1
(see Note B)
tPLH
1.5 V
1.5 V
tPZL
VOH
In-Phase
Output
3V
Output
Control
Output
Waveform 2
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. The outputs are measured one at a time with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
11-Nov-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74FCT2245ATSOCTE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74FCT2245ATSOCTG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74FCT2245CTSOCTE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74FCT2245CTSOCTG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATPC
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CY74FCT2245ATPCE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CY74FCT2245ATPWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATPWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATPWRG4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATQCT
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245ATQCTE4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245ATQCTG4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245ATSOC
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATSOCE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATSOCG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245ATSOCT
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245CTQCT
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245CTQCTE4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245CTQCTG4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245CTSOCT
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245TQCT
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245TQCTG4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CY74FCT2245TSOC
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245TSOCE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245TSOCG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
11-Nov-2009
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CY74FCT2245TSOCT
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245TSOCTE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT2245TSOCTG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CY74FCT2245ATPWR
TSSOP
PW
20
2000
330.0
16.4
6.95
7.1
1.6
8.0
16.0
Q1
CY74FCT2245ATQCT
SSOP/
QSOP
DBQ
20
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CY74FCT2245ATSOCT
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
CY74FCT2245CTQCT
SSOP/
QSOP
DBQ
20
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CY74FCT2245CTSOCT
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
CY74FCT2245TQCT
SSOP/
QSOP
DBQ
20
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CY74FCT2245TSOCT
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CY74FCT2245ATPWR
TSSOP
PW
20
2000
367.0
367.0
38.0
CY74FCT2245ATQCT
SSOP/QSOP
DBQ
20
2500
367.0
367.0
38.0
CY74FCT2245ATSOCT
SOIC
DW
20
2000
367.0
367.0
45.0
CY74FCT2245CTQCT
SSOP/QSOP
DBQ
20
2500
367.0
367.0
38.0
CY74FCT2245CTSOCT
SOIC
DW
20
2000
367.0
367.0
45.0
CY74FCT2245TQCT
SSOP/QSOP
DBQ
20
2500
367.0
367.0
38.0
CY74FCT2245TSOCT
SOIC
DW
20
2000
367.0
367.0
45.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated