0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY7C09369V-6AC

CY7C09369V-6AC

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

  • 描述:

    CY7C09369V-6AC - 3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM - Cypress Semiconductor

  • 数据手册
  • 价格&库存
CY7C09369V-6AC 数据手册
25/0251 CY7C09269V/79V/89V CY7C09369V/79V/89V 3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM Features • True Dual-Ported memory cells which allow simultaneous access of the same memory location • 6 Flow-Through/Pipelined devices — 16K x 16/18 organization (CY7C09269V/369V) — 32K x 16/18 organization (CY7C09279V/379V) — 64K x 16/18 organization (CY7C09289V/389V) • 3 Modes — Flow-Through — Pipelined — Burst • Pipelined output mode on both ports allows fast 100-MHz operation • 0.35-micron CMOS for optimum speed/power • High-speed clock to data access 6.5[1, 2]/7.5[2]/9/12 ns (max.) • 3.3V low operating power — Active = 115 mA (typical) — Standby = 10 µA (typical) • Fully synchronous interface for easier operation • Burst counters increment addresses internally — Shorten cycle times — Minimize bus noise • • • • • — Supported in Flow-Through and Pipelined modes Dual Chip Enables for easy depth expansion Upper and Lower Byte Controls for Bus Matching Automatic power-down Commercial and Industrial temperature ranges Available in 100-pin TQFP Logic Block Diagram R/WL UBL R/WR UBR CE0L CE1L LBL OEL 1 0/1 1 0/1 0 0 CE0R CE1R LBR OER FT/PipeL [3] 0/1 1b 0b 1a 0a b a 0a 1a 0b 1b a b 0/1 FT/PipeR 8/9 [3] 8/9 I/O8/9L–I/O15/17L [4] I/O8/9R–I/O15/17R 8/9 I/O Control I/O Control 8/9 14/15/16 I/O0L–I/O7/8L A0L–A13/14/15L CLKL ADSL CNTENL CNTRSTL [5] I/O0R–I/O7/8R 14/15/16 [4] Counter/ Address Register Decode True Dual-Ported RAM Array Counter/ Address Register Decode A0R–A13/14/15R CLKR ADSR CNTENR CNTRSTR [5] Notes: 1. Call for availability. 2. See page 6 for Load Conditions. 3. I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices. 4. I/O0–I/O7 for x16 devices. I/O0–I/O8 for x18 devices. 5. A0–A13 for 16K; A0–A14 for 32K; A0–A15 for 64K devices. For the most recent information, visit the Cypress web site at www.cypress.com Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 Document #: 38-06056 Rev. ** Revised September 21, 2001 CY7C09269V/79V/89V CY7C09369V/79V/89V Functional Description The CY7C09269V/79V/89V and CY7C09369V/79V/89V are high-speed 3.3V synchronous CMOS 16K, 32K, and 64K x 16/18 dual-port static RAMs. Two ports are provided, permitting independent, simultaneous access for reads and writes to any location in memory.[6] Registers on control, address, and data lines allow for minimal set-up and hold times. In pipelined output mode, data is registered for decreased cycle time. Clock to data valid tCD2 = 6.5 ns[1, 2] (pipelined). Flow-through mode can also be used to bypass the pipelined output register to eliminate access latency. In flow-through mode data will be available tCD1 = 18 ns after the address is clocked into the device. Pipelined output or flow-through mode is selected via the FT/Pipe pin. Each port contains a burst counter on the input address register. The internal write pulse width is independent of the LOW to HIGH transition of the clock signal. The internal write pulse is self-timed to allow the shortest possible cycle times. A HIGH on CE0 or LOW on CE1 for one clock cycle will power down the internal circuitry to reduce the static power consumption. The use of multiple Chip Enables allows easier banking of multiple chips for depth expansion configurations. In the pipelined mode, one cycle is required with CE0 LOW and CE1 HIGH to reactivate the outputs. Counter enable inputs are provided to stall the operation of the address input and utilize the internal address generated by the internal counter for fast interleaved memory applications. A port’s burst counter is loaded with the port’s Address Strobe (ADS). When the port’s Count Enable (CNTEN) is asserted, the address counter will increment on each LOW to HIGH transition of that port’s clock signal. This will read/write one word from/into each successive address location until CNTEN is deasserted. The counter can address the entire memory array and will loop back to the start. Counter Reset (CNTRST) is used to reset the burst counter. All parts are available in 100-pin Thin Quad Plastic Flatpack (TQFP) packages. Pin Configurations 100-Pin TQFP (Top View) CNTENR CNTENL ADSR CLKR ADSL CLKL GND A0R A1R A2R A3R A4R A5R A6R A7R A8R 75 74 73 72 71 70 69 68 67 66 A8L A7L A6L A5L A4L A3L A2L A1L A0L 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 A9L A10L A11L A12L A13L [7] [8] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A9R A10R A11R A12R A13R A14R A15R NC NC LBR UBR CE0R CE1R CNTRSTR GND R/WR OER FT/PIPER GND I/O15R I/O14R I/O13R I/O12R I/O11R I/O10R [9] [7] [8] A14L A15L NC NC LBL UBL CE0L CE1L CNTRSTL VCC R/WL OEL [9] CY7C09289V (64K x 16) CY7C09279V (32K x 16) CY7C09269V (16K x 16) 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 FT/PIPEL GND I/O15L I/O14L I/O13L I/O12L I/O11L I/O10L I/01R GND GND VCC I/O2R I/O3R I/O4R I/O5R I/O6R VCC I/O7R I/O8R Notes: 6. When writing simultaneously to the same location, the final value cannot be guaranteed. 7. This pin is NC for CY7C09269V. 8. This pin is NC for CY7C09269V and CY7C09279V. 9. For CY7C09269V and CY7C09279V, pin #18 connected to VCC is pin compatible to an IDT 5V x16 pipelined device; connecting pin #18 and #58 to GND is pin compatible to an IDT 5V x16 flow-through device. Document #: 38-06056 Rev. ** I/O0R I/O9R I/O3L I/O2L I/O1L I/O9L I/O8L I/O7L I/O6L I/O5L I/O4L I/O0L NC Page 2 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Pin Configurations (continued) 100-Pin TQFP (Top View) CNTENR CNTENL ADSR CLKR ADSL CLKL GND GND A0R A1R A2R A3R A4R A5R A6R A7R 75 74 73 72 71 70 69 68 67 66 A8L A7L A6L A5L A4L A3L A2L A1L A0L 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 A9L A10L A11L A12L A13L [10] [11] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A8R A9R A10R A11R A12R A13R A14R A15R LBR UBR CE0R CE1R CNTRSTR R/WR GND OER FT/PIPER I/O17R GND I/O16R I/O15R I/O14R I/O13R I/O12R I/O11R [10] [11] A14L A15L LBL UBL CE0L CE1L CY7C09389V (64K x 18) CY7C09379V (32K x 18) CY7C09369V (16K x 18) 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 CNTRSTL R/WL OEL VCC FT/PIPEL I/O17L I/O16L GND I/O15L I/O14L I/O13L 1/012L I/O11L I/O10L I/O9L I/O8L I/O7L I/O6L I/O5L I/O4L I/O3L I/O2L I/O1L I/O0L I/01R I/O0R I/O2R I/O3R I/O4R I/O5R I/O6R I/O7R I/O8R Selection Guide CY7C09269V/79V/89V CY7C09269V/79V/89V CY7C09269V/79V/89V CY7C09269V/79V/89V CY7C09369V/79V/89V CY7C09369V/79V/89V CY7C09369V/79V/89V CY7C09369V/79V/89V -6[1, 2] -7[2] -9 -12 fMAX2 (MHz) (Pipelined) Max. Access Time (ns) (Clock to Data, Pipelined) Typical Operating Current ICC (mA) Typical Standby Current for ISB1 (mA) (Both Ports TTL Level) Typical Standby Current for ISB3 (µA) (Both Ports CMOS Level) 100 6.5 83 7.5 67 9 50 12 175 25 155 25 135 20 I/O9R I/10R VCC GND GND VCC 115 20 10 µA 10 µA 10 µA 10 µA Notes: 10. This pin is NC for CY7C09369V. 11. This pin is NC for CY7C09369V and CY7C09379V. Document #: 38-06056 Rev. ** Page 3 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Pin Definitions Left Port A0L–A15L ADSL Right Port A0R–A15R ADSR Description Address Inputs (A0–A14 for 32K, A0–A13 for 16K devices). Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to access the part using an externally supplied address. Asserting this signal LOW also loads the burst counter with the address present on the address pins. Chip Enable Input. To select either the left or right port, both CE0 AND CE1 must be asserted to their active states (CE0 ≤ VIL and CE1 ≥ VIH). Clock Signal. This input can be free running or strobed. Maximum clock input rate is fMAX. Counter Enable Input. Asserting this signal LOW increments the burst address counter of its respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted LOW. Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective port to zero. CNTRST is not disabled by asserting ADS or CNTEN. Data Bus Input/Output (I/O0–I/O15 for x16 devices). Lower Byte Select Input. Asserting this signal LOW enables read and write operations to the lower byte. (I/O0–I/O8 for x18, I/O0–I/O7 for x16) of the memory array. For read operations both the LB and OE signals must be asserted to drive output data on the lower byte of the data pins. Upper Byte Select Input. Same function as LB, but to the upper byte (I/O8/9L–I/O15/17L). Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read operations. Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For read operations, assert this pin HIGH. Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For pipelined mode operation, assert this pin HIGH. Ground Input. No Connect. Power Input. Output Current into Outputs (LOW)............................. 20 mA Static Discharge Voltage ........................................... >1100V Latch-Up Current...................................................... >200mA CE0L,CE1L CLKL CNTENL CE0R,CE1R CLKR CNTENR CNTRSTL I/O0L–I/O17L LBL CNTRSTR I/O0R–I/O17R LBR UBL OEL R/WL FT/PIPEL GND NC VCC UBR OER R/WR FT/PIPER Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ................................. –65°C to +150°C Ambient Temperature with Power Applied............................................. –55°C to +125°C Supply Voltage to Ground Potential ............... –0.5V to +4.6V DC Voltage Applied to Outputs in High Z State ........................... –0.5V to VCC+0.5V DC Input Voltage...................................... –0.5V to VCC+0.5V Operating Range Range Commercial Industrial Ambient Temperature 0°C to +70°C –40°C to +85°C VCC 3.3V ± 300 mV 3.3V ± 300 mV Document #: 38-06056 Rev. ** Page 4 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Electrical Characteristics Over the Operating Range CY7C09269V/79V/89V CY7C09369V/79V/89V -6[1, 2] Max. Min. Min. Typ. Parameter VOH VOL VIH VIL IOZ ICC Description Output HIGH Voltage (VCC = Min. lOH = –4.0 mA) Output LOW Voltage (VCC = Min. lOH = +4.0 mA) Input HIGH Voltage Input LOW Voltage Output Leakage Current Operating Current (VCC = Max, IOUT = 0 mA) Outputs Disabled Com’l. Indust. 25 95 –10 2.0 0.8 10 175 320 –10 -7[2] Max. Min. Typ. -9 Max. Min. Typ. -12 Max. 0.4 2.0 0.8 –10 135 185 20 35 95 105 10 10 85 95 10 230 300 75 85 155 165 250 250 115 125 75 10 250 85 20 70 –10 115 0.8 10 Unit pF pF Typ. Unit V V V V µA mA mA mA 140 mA mA µA µA 100 mA mA 2.4 0.4 2.4 0.4 2.0 0.8 10 155 275 275 390 25 85 115 175 85 120 2.4 0.4 2.0 2.4 180 mA ISB1 Standby Current (Both Com’l. Ports TTL Level)[12] CEL & Indust. CER ≥ VIH, f = fMAX Standby Current (One Port Com’l. TTL Level)[12] CEL | CER ≥ Indust. VIH, f = fMAX Standby Current (Both Com’l. Ports CMOS Level)[12] CEL Indust. & CER ≥ VCC – 0.2V, f = 0 Standby Current (One Port Com’l. CMOS Level)[12] CEL | CER Indust. ≥ VIH, f = fMAX ISB2 105 165 165 210 ISB3 10 250 10 10 250 250 125 ISB4 105 135 95 125 170 Capacitance Parameter CIN COUT Description Input Capacitance Output Capacitance Test Conditions TA = 25°C, f = 1 MHz, VCC = 3.3V Max. 10 10 Note: 12. CEL and CER are internal signals. To select either the left or right port, both CE0 and CE1 must be asserted to their active states (CE0 ≤ VIL and CE1 ≥ VIH). Document #: 38-06056 Rev. ** Page 5 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V AC Test Loads 3.3V 3.3V R1 = 590Ω OUTPUT C = 30 pF R2 = 435Ω OUTPUT C = 30 pF VTH = 1.4V RTH = 250Ω R1 = 590Ω OUTPUT C = 5 pF R2 = 435Ω (a) Normal Load (Load 1) (b) Thévenin Equivalent (Load 1) (c) Three-State Delay (Load 2) (Used for tCKLZ, tOLZ, & tOHZ including scope and jig) AC Test Loads (Applicable to -6 and -7 only)[13] Z0 = 50Ω C VTH = 1.4V R = 50Ω 3.0V GND 10% 90% ALL INPUT PULSES 90% 10% OUTPUT ≤ 3 ns ≤ 3 ns (a) Load 1 (-6 and -7 only) 0. 60 0. 50 ∆ (ns) for all -7 access times 0. 40 0. 30 0. 20 0. 1 0 0. 00 10 15 20 25 30 35 Capacitance (pF) (b) Load Derating Curve Note: 13. Test Conditions: C = 10 pF. Document #: 38-06056 Rev. ** Page 6 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Characteristics Over the Operating Range CY7C09269V/79V/89V CY7C09369V/79V/89V -6[1, 2] Max. Min. Parameter fMAX1 fMAX2 tCYC1 tCYC2 tCH1 tCL1 tCH2 tCL2 tR tF tSA tHA tSC tHC tSW tHW tSD tHD tSAD tHAD tSCN tHCN tSRST tHRST tOE tOLZ[14,15] tOHZ[14,15] tCD1 tCD2 tDC tCKZ[14,15] tCKZ[14,15] tCWDD tCCS Description fMax Flow-Through fMax Pipelined Clock Cycle Time - Flow-Through Clock Cycle Time - Pipelined Clock HIGH Time - Flow-Through Clock LOW Time - Flow-Through Clock HIGH Time - Pipelined Clock LOW Time - Pipelined Clock Rise Time Clock Fall Time Address Set-Up Time Address Hold Time Chip Enable Set-Up Time Chip Enable Hold Time R/W Set-Up Time R/W Hold Time Input Data Set-Up Time Input Data Hold Time ADS Set-Up Time ADS Hold Time CNTEN Set-Up Time CNTEN Hold Time CNTRST Set-Up Time CNTRST Hold Time Output Enable to Data Valid OE to Low Z OE to High Z Clock to Data Valid - Flow-Through Clock to Data Valid - Pipelined Data Output Hold After Clock HIGH Clock HIGH to Output High Z Clock HIGH to Output Low Z Write Port Clock HIGH to Read Data Delay Clock to Clock Set-Up Time -7[2] Max. Min. -9 Max. Min. -12 Max. 33 50 30 20 12 12 8 8 3 3 4 1 4 1 4 1 4 1 4 1 5 1 4 1 9 2 1 7 18 7.5 9 2 1 10 7 20 9 9 2 1 4 1 4 1 4 1 4 1 4 1 5 1 4 1 12 7 25 12 9 3 3 40 15 Min. Unit MHz MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 53 100 19 10 6.5 6.5 4 4 3 3 3.5 0 3.5 0 3.5 0 3.5 0 3.5 0 3.5 0 3.5 0 8 2 1 7 15 6.5 9 4 0 4 0 4 0 4 0 4 0 4.5 0 4 0 22 12 7.5 7.5 5 5 45 83 25 15 12 12 6 6 3 3 40 67 2 2 2 2 2 2 2 2 2 2 2 2 Port to Port Delays 30 9 35 10 40 15 Notes: 14. Test conditions used are Load 2. 15. This parameter is guaranteed by design, but it is not production tested. Document #: 38-06056 Rev. ** Page 7 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms Read Cycle for Flow-Through Output (FT/PIPE = VIL)[16, 17, 18, 19] tCH1 CLK tCYC1 tCL1 CE0 tSC CE1 tHC tSC tHC R/W tSW tSA ADDRESS DATAOUT tCKLZ tOHZ OE tOE tOLZ An tCD1 tHW tHA An+1 tDC Qn Qn+1 An+2 An+3 tCKHZ Qn+2 tDC Read Cycle for Pipelined Operation (FT/PIPE = VIH)[16, 17, 18, 19] tCH2 CLK tCYC2 tCL2 CE0 tSC CE1 tHC tSC tHC R/W tSW tSA ADDRESS DATAOUT An 1 Latency tHW tHA An+1 tCD2 Qn tCKLZ OE tOE Notes: 16. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge. 17. ADS = VIL, CNTEN and CNTRST = VIH. 18. The output is disabled (high-impedance state) by CE0=VIH or CE1 = VIL following the next rising edge of the clock. 19. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK. Numbers are for reference only. An+2 tDC Qn+1 tOHZ An+3 Qn+2 tOLZ Document #: 38-06056 Rev. ** Page 8 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Bank Select Pipelined Read[20, 21] tCH2 CLKL tSA ADDRESS(B1) tSC CE0(B1) tCD2 DATAOUT(B1) tSA ADDRESS(B2) A0 tHA A1 tSC CE0(B2) tSC DATAOUT(B2) tCKLZ tHC tCD2 D2 tCKLZ tCKHZ tCD2 D4 tSC D0 tDC A2 tHC tHC tCD2 D1 tDC A3 A4 tCKLZ A5 tCKHZ tCD2 D3 tCKHZ A0 tHC tHA A1 A2 A3 A4 A5 tCYC2 tCL2 Left Port Write to Flow-Through Right Port Read[22, 23, 24, 25] CLKL tSW R/WL tSA ADDRESSL tSD DATAINL CLKR R/WR ADDRESSR tSW tSA tHW tHA NO MATCH tCWDD DATAOUTR tDC VALID tDC tCD1 VALID VALID tCCS tCD1 MATCH tHD tHA NO MATCH tHW MATCH Notes: 20. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this datasheet. ADDRESS(B1) = ADDRESS(B2). 21. UB, LB, OE and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and CNTRST = VIH. 22. The same waveforms apply for a right port write to flow-through left port read. 23. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. 24. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to. 25. It tCCS ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tCWDD. If tCCS>maximum specified, then data is not valid until tCCS + tCD1. tCWDD does not apply in this case. Document #: 38-06056 Rev. ** Page 9 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Pipelined Read-to-Write-to-Read (OE = VIL)[19, 26, 27, 28] tCH2 CLK tCYC2 tCL2 CE0 tSC CE1 tSW R/W tSW ADDRESS tSA DATAIN An tHA tCD2 Qn READ NO OPERATION [19, 26, 27, 28] tHC tHW tHW An+1 An+2 An+2 tSD tHD tCKHZ Dn+2 tCKLZ tCD2 Qn+3 WRITE READ An+3 An+4 DATAOUT Pipelined Read-to-Write-to-Read (OE Controlled) tCH2 CLK tCYC2 tCL2 CE0 tSC tHC CE1 tSW tHW R/W tSW An tHW An+1 tHA An+2 tSD tHD Dn+2 tCD2 Dn+3 tCKLZ Qn tOHZ tCD2 Qn+4 An+3 An+4 An+5 ADDRESS tSA DATAIN DATAOUT OE READ WRITE READ Notes: 26. Output state (High, LOW, or high impedance) is determined by the previous cycle control signals. 27. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. 28. During “No Operation”, data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity. Document #: 38-06056 Rev. ** Page 10 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Flow-Through Read-to-Write-to-Read (OE = VIL)[17, 19, 27, 28] tCH1 CLK tCYC1 tCL1 CE0 tSC CE1 tSW R/W tSW ADDRESS tSA DATAIN tCD1 Qn tDC READ An tHA tCD1 Qn+1 tCKHZ NO OPERATION tCKLZ WRITE tHW An+1 An+2 tSD Dn+2 tCD1 Qn+3 tDC READ tCD1 An+2 tHD An+3 An+4 tHW tHC DATAOUT Flow-Through Read-to-Write-to-Read (OE Controlled)[17, 19, 26, 27, 28] tCH1 CLK tCYC1 tCL1 CE0 tSC CE1 tSW R/W tSW An ADDRESS tSA DATAIN tCD1 Qn tOHZ tCKLZ tHA tDC tSD Dn+2 tHD Dn+3 tOE tCD1 Qn+4 tDC tCD1 tHW An+1 An+2 An+3 An+4 An+5 tHW tHC DATAOUT OE READ WRITE READ Document #: 38-06056 Rev. ** Page 11 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Pipelined Read with Address Counter Advance[29] tCH2 CLK tSA ADDRESS tSAD ADS tSAD CNTEN tSCN DATAOUT Qx-1 READ EXTERNAL ADDRESS tHCN Qx tDC READ WITH COUNTER tCD2 Qn tSCN Qn+1 COUNTER HOLD tHCN Qn+2 Qn+3 tHAD An tHAD tHA tCYC2 tCL2 READ WITH COUNTER Flow-Through Read with Address Counter Advance[29] tCH1 CLK tSA ADDRESS tSAD ADS tSAD CNTEN tSCN tHCN tCD1 Qx tDC Qn Qn+1 Qn+2 tSCN tHCN tHAD An tHAD tHA tCYC1 tCL1 DATAOUT Qn+3 READ EXTERNAL ADDRESS READ WITH COUNTER COUNTER HOLD READ WITH COUNTER Note: 29. CE0 and OE = VIL; CE1, R/W and CNTRST = VIH. Document #: 38-06056 Rev. ** Page 12 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Write with Address Counter Advance (Flow-Through or Pipelined Outputs)[30, 31] tCH2 CLK tSA ADDRESS An tHA tCYC2 tCL2 INTERNAL ADDRESS tSAD ADS tHAD An An+1 An+2 An+3 An+4 CNTEN tSCN DATAIN tSD Dn tHD WRITE EXTERNAL ADDRESS tHCN Dn+1 WRITE WITH COUNTER Dn+1 Dn+2 Dn+3 Dn+4 WRITE COUNTER HOLD WRITE WITH COUNTER Notes: 30. CE0, UB, LB, and R/W = VIL; CE1 and CNTRST = VIH. 31. The “Internal Address” is equal to the “External Address” when ADS = VIL and equals the counter output when ADS = VIH. Document #: 38-06056 Rev. ** Page 13 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Switching Waveforms (continued) Counter Reset (Pipelined Outputs)[19, 26, 32, 33] tCH2 CLK tSA ADDRESS INTERNAL ADDRESS AX tSW tHW 0 1 An An tHA An+1 An+1 tCYC2 tCL2 R/W tSAD ADS tSCN CNTEN tSRST CNTRST DATAIN tHRST tSD D0 Q0 COUNTER RESET WRITE ADDRESS 0 READ ADDRESS 0 READ ADDRESS 1 Q1 READ ADDRESS n Qn tHD tHCN tHAD DATAOUT Notes: 32. CE0, UB, and LB = VIL; CE1 = VIH. 33. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset. Document #: 38-06056 Rev. ** Page 14 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Read/Write and Enable Operation[34, 35, 36] Inputs OE X X X L H X CLK CE0 H X L L L CE1 X L H H H R/W X X L H X Outputs I/O0–I/O17 High-Z High-Z DIN DOUT High-Z Deselected Operation [37] Deselected[37] Write Read[35] Outputs Disabled Address Counter Control Operation[34, 38, 39, 40] Address X An X X Previous Address X X An An CLK ADS X L H H CNTEN X X H L CNTRST L H H H I/O Dout(0) Dout(n) Dout(n) Dout(n+1) Mode Reset Load Hold Increment Operation Counter Reset to Address 0 Address Load into Counter External Address Blocked—Counter Disabled Counter Enabled—Internal Address Generation Notes: 34. “X” = “Don’t Care”, “H” = VIH, “L” = VIL. 35. ADS, CNTEN, CNTRST = “Don’t Care”. 36. OE is an asynchronous input signal. 37. When CE changes state In the pipelined mode, deselection and read happen in the following clock cycle. 38. CE0 and OE = VIL; CE1 and R/W = VIH. 39. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle. 40. Counter operation is independent of CE0 and CE1. Document #: 38-06056 Rev. ** Page 15 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Ordering Information 16K x16 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5 [1, 2] Ordering Code CY7C09269V-6AC CY7C09269V-7AC CY7C09269V-9AC CY7C09269V-9AI CY7C09269V-12AC Package Name A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Commercial Industrial Commercial 7.5[2] 9 12 32K x16 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5 [1, 2] Ordering Code CY7C09279V-6AC CY7C09279V-7AC CY7C09279V-9AC CY7C09279V-9AI CY7C09279V-12AC Package Name A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Commercial Industrial Commercial 7.5[2] 9 12 64K x16 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5[1, 2] 7.5[2] 9 12 Ordering Code CY7C09289V-6AC CY7C09289V-7AC CY7C09289V-9AC CY7C09289V-9AI CY7C09289V-12AC Package Name A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Commercial Industrial Commercial 16K x18 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5[1, 2] 7.5[2] 7.5[2] 9 12 Ordering Code CY7C09369V-6AC CY7C09369V-7AC CY7C09369V-7AI CY7C09369V-9AC CY7C09369V-9AI CY7C09369V-12AC Package Name A100 A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Industrial Commercial Industrial Commercial 32K x18 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5[1, 2] 7.5[2] 9 12 Ordering Code CY7C09379V-6AC CY7C09379V-7AC CY7C09379V-9AC CY7C09379V-9AI CY7C09379V-12AC Package Name A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Commercial Industrial Commercial Document #: 38-06056 Rev. ** Page 16 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V 64K x18 3.3V Synchronous Dual-Port SRAM Speed (ns) 6.5 [1, 2] Ordering Code CY7C09389V-6AC CY7C09389V-7AC CY7C09389V-9AC CY7C09389V-9AI CY7C09389V-12AC Package Name A100 A100 A100 A100 A100 Package Type 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack 100-Pin Thin Quad Flat Pack Operating Range Commercial Commercial Commercial Industrial Commercial 7.5[2] 9 12 Document #: 38-06056 Rev. ** Page 17 of 19 CY7C09269V/79V/89V CY7C09369V/79V/89V Package Diagram 100-Pin Thin Plastic Quad Flat Pack (TQFP) A100 51-85048-B Document #: 38-06056 Rev. ** Page 18 of 19 © Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. CY7C09269V/79V/89V CY7C09369V/79V/89V Document Title: CY7C09269V/79V/89V CY7C09369V/79V/89V 3.3V 16K/32K/64K X 16/18 Synchronous Dual Port Static RAM Document Number: 38-06056 REV. ** ECN NO. 110215 Issue Date 12/18/01 Orig. of Change SZV Description of Change Change from Spec number: 38-00668 to 38-06056 Document #: 38-06056 Rev. ** Page 19 of 19
CY7C09369V-6AC 价格&库存

很抱歉,暂时无法提供与“CY7C09369V-6AC”相匹配的价格&库存,您可以联系我们找货

免费人工找货