CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
Features
• Supports 133-MHz bus operations • 1M x 36/2M x 18/512K x 72 common I/O • 3.3V core power supply • 2.5V or 3.3V I/O power supply • Fast clock-to-output times — 6.5 ns (133-MHz version) • Provide high-performance 2-1-1-1 access rate • User-selectable burst counter supporting Intel® Pentium® interleaved or linear burst sequences • Separate processor and controller address strobes • Synchronous self-timed write • Asynchronous output enable • CY7C1441AV33, CY7C1443AV33 available in JEDEC-standard lead-free 100-pin TQFP package, lead-free and non-lead-free 165-ball FBGA package. CY7C1447AV33 available in lead-free and non-lead-free 209-ball FBGA package • IEEE 1149.1 JTAG-Compatible Boundary Scan • “ZZ” Sleep Mode option
Functional Description[1]
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 are 3.3V, 1M x 36/2M x 18/512K x 72 Synchronous Flow-through SRAMs, respectively designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining Chip Enable (CE1), depth-expansion Chip Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write Enables (BWx, and BWE), and Global Write (GW). Asynchronous inputs include the Output Enable (OE) and the ZZ pin. The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst accesses can be initiated with the Processor Address Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address advancement is controlled by the Address Advancement (ADV) input. Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV). The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 operates from a +3.3V core power supply while all outputs may operate with either a +2.5 or +3.3V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.
Selection Guide
133 MHz Maximum Access Time Maximum Operating Current Maximum CMOS Standby Current 6.5 310 120 100 MHz 8.5 290 120 Unit ns mA mA
Note: 1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
Cypress Semiconductor Corporation Document #: 38-05357 Rev. *F
•
198 Champion Court
•
San Jose, CA 95134-1709 • 408-943-2600 Revised June 23, 2006
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
1
Logic Block Diagram – CY7C1441AV33 (1M x 36)
A0, A1, A
ADDRESS REGISTER A[1:0]
MODE
ADV CLK
BURST Q1 COUNTER AND LOGIC Q0 CLR
ADSC ADSP DQD, DQPD BWD BYTE WRITE REGISTER DQC, DQPC BYTE WRITE REGISTER DQB, DQPB BYTE WRITE REGISTER DQA, DQPA BWA BWE GW CE1 CE2 CE3 OE DQA, DQPA BYTE WRITE REGISTER BYTE WRITE REGISTER DQD, DQPD BYTE WRITE REGISTER DQC, DQPC BYTE WRITE REGISTER DQB, DQPB BWB BYTE WRITE REGISTER
BWC
MEMORY ARRAY
SENSE AMPS
OUTPUT BUFFERS
DQs DQPA DQPB DQPC DQPD
ENABLE REGISTER
INPUT REGISTERS
ZZ
SLEEP CONTROL
2
Logic Block Diagram – CY7C1443AV33 (2Mx 18)
A0,A1,A MODE
ADDRESS REGISTER
A[1:0]
ADV CLK
BURST Q1 COUNTER AND LOGIC CLR Q0
ADSC
ADSP DQB,DQPB WRITE REGISTER DQB,DQPB WRITE DRIVER
BWB
MEMORY ARRAY
SENSE AMPS
OUTPUT BUFFERS
BWA BWE GW
DQA,DQPA WRITE REGISTER
DQA,DQPA WRITE DRIVER INPUT REGISTERS
DQs DQPA DQPB
CE1 CE2 CE3
OE
ENABLE REGISTER
ZZ
SLEEP CONTROL
Document #: 38-05357 Rev. *F
Page 2 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Logic Block Diagram – CY7C1447AV33 (512K x 72)
A0, A1,A
ADDRESS REGISTER
A[1:0]
MODE ADV CLK Q1 BINARY COUNTER CLR Q0
ADSC ADSP
BWH
DQH, DQPH WRITE DRIVER DQF, DQPF WRITE DRIVER DQF, DQPF WRITE DRIVER DQE, DQPE WRITE DRIVER DQD, DQPD WRITE DRIVER
DQH, DQPH WRITE DRIVER DQG, DQPG WRITE DRIVER DQF, DQPF WRITE DRIVER DQE, DQPE BYTE “a” WRITE DRIVER DQD, DQPD WRITE DRIVER DQC, DQPC WRITE DRIVER
SENSE AMPS
BWG
BWF
BWE
MEMORY ARRAY
BWD
BWC
DQC, DQPC WRITE DRIVER
OUTPUT REGISTERS
BWB
DQB, DQPB WRITE DRIVER
DQB, DQPB WRITE DRIVER DQA, DQPA WRITE DRIVER
OUTPUT BUFFERS E
BWA BWE GW CE1 CE2 CE3 OE
DQA, DQPA WRITE DRIVER
ENABLE REGISTER
PIPELINED ENABLE
INPUT REGISTERS
DQs DQPA DQPB DQPC DQPD DQPE DQPF DQPG DQPH
ZZ
SLEEP CONTROL
Document #: 38-05357 Rev. *F
Page 3 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Pin Configurations 100-pin TQFP Pinout
A A CE1 CE2 BWD BWC BWB BWA CE3 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A A A CE1 CE2 NC NC BWB BWA CE3 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A
DQPB DQB DQB VDDQ VSSQ DQB DQB DQB DQB VSSQ VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSSQ DQA DQA DQA DQA VSSQ VDDQ DQA DQA DQPA NC NC NC VDDQ VSSQ NC NC DQB DQB VSSQ VDDQ DQB DQB NC VDD NC VSS DQB DQB VDDQ VSSQ DQB DQB DQPB NC VSSQ VDDQ NC NC NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
DQPC DQC DQC VDDQ VSSQ DQC DQC DQC DQC VSSQ VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD DQPD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CY7C1441AV33 (1Mx 36)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CY7C1443AV33 (2M x 18)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
A NC NC VDDQ VSSQ NC DQPA DQA DQA VSSQ VDDQ DQA DQA VSS NC VDD ZZ DQA DQA VDDQ VSSQ DQA DQA NC NC VSSQ VDDQ NC NC NC
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
MODE A A A A A1 A0 NC/72M A VSS VDD
MODE A A A A A1 A0 NC/72M A VSS VDD
A A A A A A A A A
Document #: 38-05357 Rev. *F
A A A A A A A A A
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Page 4 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Pin Configurations (continued) 165-ball FBGA (15 x 17 x 1.4 mm) Pinout CY7C1441AV33 (1M x 36)
1 A B C D E F G H J K L M N P R
NC/288M NC/144M DQPC DQC DQC DQC DQC NC DQD DQD DQD DQD DQPD NC MODE
2
A A NC DQC DQC DQC DQC NC DQD DQD DQD DQD NC NC/72M A
3
CE1 CE2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A
4
BWC BWD VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS
A
5
BWB BWA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI
TMS
6
CE3 CLK
7
BWE GW
8
ADSC OE
9
ADV ADSP VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A
A
10
A A NC/1G DQB DQB DQB DQB NC DQA DQA DQA DQA NC A A
11
NC NC/576M DQPB DQB DQB DQB DQB ZZ DQA DQA DQA DQA DQPA A A
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
A
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK
VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS
A
A1 A0
A
A
CY7C1443AV33 (2M x 18)
1 A B C D E F G H J K L M N P R
NC/288M NC/144M NC NC NC NC NC NC DQB DQB DQB DQB DQPB NC MODE
2
A A NC DQB DQB DQB DQB NC NC NC NC NC NC NC/72M A
3
CE1 CE2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A
4
BWB NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS
A
5
NC BWA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI
TMS
6
CE3 CLK
7
BWE GW
8
ADSC OE
9
ADV ADSP VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A
A
10
A A NC/1G NC NC NC NC NC DQA DQA DQA DQA NC A A
11
A NC/576M DQPA DQA DQA DQA DQA ZZ NC NC NC NC NC A A
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
A
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK
VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS
A
A1 A0
A
A
Document #: 38-05357 Rev. *F
Page 5 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Pin Configurations (continued) 209-ball FBGA (14 x 22 x 1.76 mm) Pinout CY7C1447AV33 (512K × 72)
1 A B C D E F G H J K L M N P R T U V W 2 3
A BWSC BWSH VSS VDDQ VSS VDDQ VSS VDDQ CLK VDDQ VSS VDDQ VSS
4
CE2 BWSG
5
ADSP NC288M
6
ADSC BW
7
ADV A NC/576M GW VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC A A A
8
CE3 BWSB BWSE NC VDDQ VSS VDDQ VSS VDDQ NC VDDQ VSS VDDQ VSS VDDQ NC A A TDO
9
A BWSF BWSA VSS VDDQ VSS VDDQ VSS VDDQ NC VDDQ VSS VDDQ VSS VDDQ VSS A A TCK
10
11
DQG DQG DQG DQG DQPG DQC DQC DQC DQC
NC
DQG DQG DQG DQG DQPC DQC DQC DQC DQC
NC
DQB DQB DQB DQB DQPF DQF DQF DQF DQF
NC
DQB DQB DQB DQB DQPB DQF DQF DQF DQF
NC
BWSD NC/144M CE1 NC VDDQ VSS VDDQ VSS VDDQ NC VDDQ VSS VDDQ VSS VDDQ NC A A TDI NC/1G VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC A A A OE VDD NC NC NC NC VSS NC NC NC ZZ VDD MODE A A1 A0
DQH DQH DQH DQH DQPD DQD DQD DQD DQD
DQH DQH DQH DQH
DQA DQA DQA DQA DQPA DQE DQE DQE DQE
DQA DQA DQA DQA DQPE DQE DQE DQE DQE
DQPH VDDQ DQD DQD DQD DQD
VSS NC/72M A TMS
Document #: 38-05357 Rev. *F
Page 6 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Pin Definitions
Name A0, A1, A I/O InputSynchronous InputSynchronous Description Address Inputs used to select one of the address locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed the 2-bit counter. Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
BWA, BWB BWC, BWD, BWE, BWF, BWG, BWH GW
InputSynchronous InputClock InputSynchronous
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE). Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation. Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a new external address is loaded. Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1 and CE3 to select/deselect the device. CE2 is sampled only when a new external address is loaded. Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1 and CE2 to select/deselect the device. CE3 is assumed active throughout this document for BGA. CE3 is sampled only when a new external address is loaded. Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state. Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle. Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write. ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a non-time-critical “sleep” condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down. Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.The outputs are automatically tri-stated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE.
CLK
CE1
CE2
InputSynchronous InputSynchronous
CE3
OE
InputAsynchronous
ADV ADSP
InputSynchronous InputSynchronous
ADSC
InputSynchronous
BWE ZZ
InputSynchronous InputAsynchronous
DQs
I/OSynchronous
Document #: 38-05357 Rev. *F
Page 7 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Pin Definitions (continued)
Name DQPX I/O I/OSynchronous Input-Static Description Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs. During write sequences, DQPx is controlled by BW[A:H] correspondingly. Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode Pin has an internal pull-up. Power supply inputs to the core of the device. Power supply for the I/O circuitry. Ground for the core of the device. Ground for the I/O circuitry. Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG feature is not being utilized, this pin should be left unconnected. This pin is not available on TQFP packages. Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being utilized, this pin can be left floating or connected to VDD through a pull up resistor. This pin is not available on TQFP packages. Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being utilized, this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages. Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must be connected to VSS. This pin is not available on TQFP packages. No Connects. Not internally connected to the die. 72M, 144M and 288M are address expansion pins are not internally connected to the die. No Connects. Not internally connected to the die. NC/72M, NC/144M, NC/288M, NC/576M and NC/1G are address expansion pins are not internally connected to the die.
MODE
VDD VDDQ VSS VSSQ TDO
Power Supply I/O Power Supply Ground I/O Ground JTAG serial output Synchronous JTAG serial input Synchronous JTAG serial input Synchronous JTAG-Clock
TDI
TMS
TCK
NC NC/72M, NC/144M, NC/288M, NC/576M NC/1G
-
Document #: 38-05357 Rev. *F
Page 8 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Functional Overview
All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t CDV) is 6.5 ns (133-MHz device). The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486™ processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user-selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access. Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BWx) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry. Three synchronous Chip Selects (CE1, CE2, CE3) and an asynchronous Output Enable (OE) provide for easy bank selection and output tri-state control. ADSP is ignored if CE1 is HIGH. Single Read Accesses A single read access is initiated when the following conditions are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted active, and (2) ADSP or ADSC is asserted LOW (if the access is initiated by ADSC, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter/control logic and presented to the memory core. If the OE input is asserted LOW, the requested data will be available at the data outputs a maximum to tCDV after clock rise. ADSP is ignored if CE1 is HIGH. Single Write Accesses Initiated by ADSP This access is initiated when the following conditions are satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BWE, and BWX)are ignored during this first clock cycle. If the write inputs are asserted active (see Write Cycle Descriptions table for appropriate states that indicate a write) on the next clock rise, the appropriate data will be latched and written into the device. Byte writes are allowed. All I/Os are tri-stated during a byte write.Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of OE. Single Write Accesses Initiated by ADSC This write access is initiated when the following conditions are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted active, (2) ADSC is asserted LOW, (3) ADSP is deasserted HIGH, and (4) the write input signals (GW, BWE, and BWX) indicate a write access. ADSC is ignored if ADSP is active LOW. The addresses presented are loaded into the address register and the burst counter/control logic and delivered to the memory core. The information presented to DQS will be written into the specified address location. Byte writes are allowed. All I/Os are tri-stated when a write is detected, even a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of OE. Burst Sequences The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by A[1:0], and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE will select a linear burst sequence. A HIGH on MODE will select an interleaved burst order. Leaving MODE unconnected will cause the device to default to a interleaved burst sequence.
Interleaved Burst Address Table (MODE = Floating or VDD)
First Address A1: A0 00 01 10 11 Second Address A1: A0 01 00 11 10 Third Address A1: A0 10 11 00 01 Fourth Address A1: A0 11 10 01 00
Linear Burst Address Table (MODE = GND)
First Address A1: A0 00 01 10 11 Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation “sleep” mode. Two clock cycles are required to enter into or exit from this “sleep” mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the “sleep” mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must remain inactive for the duration of tZZREC after the ZZ input returns LOW. Second Address A1: A0 01 10 11 00 Third Address A1: A0 10 11 00 01 Fourth Address A1: A0 11 00 01 10
Document #: 38-05357 Rev. *F
Page 9 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
ZZ Mode Electrical Characteristics
Parameter IDDZZ tZZS tZZREC tZZI tRZZI Description Sleep mode standby current Device operation to ZZ ZZ recovery time ZZ active to sleep current ZZ Inactive to exit sleep current Test Conditions ZZ > VDD – 0.2V ZZ > VDD – 0.2V ZZ < 0.2V This parameter is sampled This parameter is sampled Min. Max. 100 2tCYC 2tCYC 2tCYC 0 Unit mA ns ns ns ns
Truth Table[2, 3, 4, 5, 6]
Cycle Description Deselected Cycle, Power-down Deselected Cycle, Power-down Deselected Cycle, Power-down Deselected Cycle, Power-down Deselected Cycle, Power-down Sleep Mode, Power-down Read Cycle, Begin Burst Read Cycle, Begin Burst Write Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst ADDRESS Used CE1 CE2 CE3 ZZ ADSP ADSC None H X X L X L None None None None None External External External External External Next Next Next Next Next Next Current Current Current Current Current Current L L L X X L L L L L X X H H X H X X H H X H L X L X X H H H H H X X X X X X X X X X X X X H X X X L L L L L X X X X X X X X X X X X L L L L H L L L L L L L L L L L L L L L L L L L H H X L L H H H H H X X H X H H X X H X X X L L X X X L L L H H H H H H H H H H H H ADV WRITE OE CLK X X X X X X X X X X X L L L L L L H H H H H H X X X X X X X X L H H H H H H L L H H H H L L X X X X X X L H X L H L H L H X X L H L H X X L-H L-H L-H L-H L-H X L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H DQ Tri-State Tri-State Tri-State Tri-State Tri-State Tri-State Q Tri-State D Q Tri-State Q Tri-State Q Tri-State D D Q Tri-State Q Tri-State D D
Notes: 2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. 3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H. 4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. 5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BWX. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the write cycle. 6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
Document #: 38-05357 Rev. *F
Page 10 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Partial Truth Table for Read/Write[2, 7]
Function (CY7C1441AV33) Read Read Write Byte A (DQA, DQPA) Write Byte B(DQB, DQPB) Write Bytes A, B (DQA, DQB, DQPA, DQPB) Write Byte C (DQC, DQPC) Write Bytes C, A (DQC, DQA, DQPC, DQPA) Write Bytes C, B (DQC, DQB, DQPC, DQPB) Write Bytes C, B, A (DQC, DQB, DQA, DQPC, DQPB, DQPA) Write Byte D (DQD, DQPD) Write Bytes D, A (DQD, DQA, DQPD, DQPA) Write Bytes D, B (DQD, DQA, DQPD, DQPA) Write Bytes D, B, A (DQD, DQB, DQA, DQPD, DQPB, DQPA) Write Bytes D, B (DQD, DQB, DQPD, DQPB) Write Bytes D, B, A (DQD, DQC, DQA, DQPD, DQPC, DQPA) Write Bytes D, C, A (DQD, DQB, DQA, DQPD, DQPB, DQPA) Write All Bytes Write All Bytes GW H H H H H H H H H H H H H H H H H L BWE H L L L L L L L L L L L L L L L L X BWD X H H H H H H H H L L L L L L L L X BWC X H H H H L L L L H H H H L L L L X BWB X H H L L H H L L H H L L H H L L X BWA X H L H L H L H L H L H L H L H L X
Truth Table for Read/Write[2]
Function (CY7C1443AV33) Read Read Write Byte A - (DQA and DQPA) Write Byte B - (DQB and DQPB) Write All Bytes Write All Bytes GW H H H H H L BWE H L L L L X BWB X H H L L X BWA X H L H L X
Truth Table for Read/Write[2, 8]
Function (CY7C1447AV33) Read Read Write Byte x – (DQx and DQPx) Write All Bytes Write All Bytes GW H H H H L BWE H L L L X BWX X All BW = H L All BW = L X
Notes: 7. Table only lists a partial listing of the byte write combinations. Any Combination of BWX is valid Appropriate write will be done based on which byte write is active. 8. BWx represents any byte write signal BW[A..H].To enable any byte write BWx, a Logic LOW signal should be applied at clock rise.Any number of bye writes can be enabled at the same time for any given write.
Document #: 38-05357 Rev. *F
Page 11 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
IEEE 1149.1 Serial Boundary Scan (JTAG)
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 incorporates a serial boundary scan test access port (TAP). This part is fully compliant with 1149.1. The TAP operates using JEDEC-standard 3.3V or 2.5V I/O logic levels. The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull-up resistor. TDO should be left unconnected. Upon power-up, the device will come up in a reset state which will not interfere with the operation of the device. Test Data-In (TDI) The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See Tap Controller Block Diagram.) Test Data-Out (TDO) The TDO output ball is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See Tap Controller State Diagram.)
TAP Controller Block Diagram
0 Bypass Register
210
TAP Controller State Diagram
1 TEST-LOGIC RESET 0 0 RUN-TEST/ IDLE 1 SELECT DR-SCAN 0 1 CAPTURE-DR 0 SHIFT-DR 1 EXIT1-DR 0 PAUSE-DR 1 0 EXIT2-DR 1 UPDATE-DR 1 0 0 0 1 0 1 1 SELECT IR-SCAN 0 CAPTURE-IR 0 SHIFT-IR 1 EXIT1-IR 0 PAUSE-IR 1 EXIT2-IR 1 UPDATE-IR 1 0 0 1 0 1
TDI
Selection Circuitry
Instruction Register
31 30 29 . . . 2 1 0
Selection Circuitry
TDO
Identification Register
x. . . . .210
Boundary Scan Register
TCK TMS TAP CONTROLLER
Performing a TAP Reset A RESET is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power-up, the TAP is reset internally to ensure that TDO comes up in a High-Z state.
The 0/1 next to each state represents the value of TMS at the rising edge of TCK. Test Access Port (TAP) Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. Test MODE SELECT (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level.
TAP Registers Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in the Tap Controller Block Diagram. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section.
Document #: 38-05357 Rev. *F
Page 12 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board-level serial test data path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed. Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions table. TAP Instruction Set Overview Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Instruction Codes table. Three of these instructions are listed as RESERVED and should not be used. The other five instructions are described in detail below. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state. IDCODE The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. SAMPLE Z The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High-Z state until the next command is given during the “Update IR” state. SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible. To guarantee that the boundary scan register will capture the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture set-up plus hold times (tCS and tCH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. PRELOAD allows an initial data pattern to be placed at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required—that is, while data captured is shifted out, the preloaded data can be shifted in. BYPASS When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. EXTEST The EXTEST instruction enables the preloaded data to be driven out through the system output pins. This instruction also selects the boundary scan register to be connected for serial access between the TDI and TDO in the shift-DR controller state. EXTEST OUTPUT BUS TRI-STATE IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tri-state mode. The boundary scan register has a special bit located at bit #89 (for 165-FBGA package) or bit #138 (for 209-FBGA package). Document #: 38-05357 Rev. *F Page 13 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
When this scan cell, called the “extest output bus tri-state”, is latched into the preload register during the “Update-DR” state in the TAP controller, it will directly control the state of the output (Q-bus) pins, when the EXTEST is entered as the current instruction. When HIGH, it will enable the output buffers to drive the output bus. When LOW, this bit will place the output bus into a High-Z condition. This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the “Shift-DR” state. During “Update-DR”, the value loaded into that shift-register cell will latch into the preload register. When the EXTEST instruction is entered, this bit will directly control the output Q-bus pins. Note that this bit is pre-set HIGH to enable the output when the device is powered-up, and also when the TAP controller is in the “Test-Logic-Reset” state. Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions.
TAP Timing
1 Test Clock (TCK)
t TMSS
2
3
4
5
6
t TH t TMSH
t TL
t CYC
Test Mode Select (TMS)
t TDIS t TDIH
Test Data-In (TDI)
t TDOV t TDOX
Test Data-Out (TDO) DON’T CARE UNDEFINED
TAP AC Switching Characteristics Over the Operating Range[9, 10]
Parameter Clock tTCYC tTF tTH tTL tTDOV tTDOX tTMSS tTDIS tCS Hold Times tTMSH tTDIH tCH TMS Hold after TCK Clock Rise TDI Hold after Clock Rise Capture Hold after Clock Rise 5 5 5 ns ns ns TCK Clock Cycle Time TCK Clock Frequency TCK Clock HIGH time TCK Clock LOW time TCK Clock LOW to TDO Valid TCK Clock LOW to TDO Invalid TMS Set-up to TCK Clock Rise TDI Set-up to TCK Clock Rise Capture Set-up to TCK Rise 0 5 5 5 20 20 10 50 20 ns MHz ns ns ns ns ns ns ns Description Min. Max. Unit
Output Times
Set-up Times
Notes: 9. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register. 10. Test conditions are specified using the load in TAP AC test Conditions. tR/tF = 1 ns.
Document #: 38-05357 Rev. *F
Page 14 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
3.3V TAP AC Test Conditions
Input pulse levels ............................................... .VSS to 3.3V Input rise and fall times ................................................... 1 ns Input timing reference levels ...........................................1.5V Output reference levels...................................................1.5V Test load termination supply voltage...............................1.5V
2.5V TAP AC Test Conditions
Input pulse levels................................................. VSS to 2.5V Input rise and fall time .....................................................1 ns Input timing reference levels......................................... 1.25V Output reference levels ................................................ 1.25V Test load termination supply voltage ............................ 1.25V
3.3V TAP AC Output Load Equivalent
1.5V 50Ω TDO Z O= 50Ω 20pF
2.5V TAP AC Output Load Equivalent
1.25V 50Ω TDO Z O= 50Ω 20pF
TAP DC Electrical Characteristics And Operating Conditions
(0°C < TA < +70°C; VDD = 3.135V to 3.6V unless otherwise noted)[11] Parameter VOH1 VOH2 VOL1 VOL2 VIH VIL IX Description Description IOH = –1.0 mA Output HIGH Voltage IOH = –100 µA Output LOW Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input Load Current GND < VIN < VDDQ IOL = 8.0 mA IOL = 1.0 mA IOL = 100 µA Conditions VDDQ = 3.3V VDDQ = 2.5V VDDQ = 3.3V VDDQ = 2.5V VDDQ = 3.3V VDDQ = 2.5V VDDQ = 3.3V VDDQ = 2.5V VDDQ = 3.3V VDDQ = 2.5V VDDQ = 3.3V VDDQ = 2.5V 2.0 1.7 –0.3 –0.3 –5 Min. 2.4 2.0 2.9 2.1 0.4 0.4 0.2 0.2 VDD + 0.3 VDD + 0.3 0.8 0.7 5 Max. Unit V V V V V V V V V V V V µA Output HIGH Voltage IOH = –4.0 mA
Note: 11. All voltages referenced to VSS (GND).
Document #: 38-05357 Rev. *F
Page 15 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Identification Register Definitions
Instruction Field Revision Number (31:29) Device Depth (28:24) Architecture/Memory Type(23:18)[12] Bus Width/Density(17:12) Cypress JEDEC ID Code (11:1) ID Register Presence Indicator (0) CY7C1441AV33 CY7C1443AV33 CY7C1447AV33 (1M x 36) (2M x 18) (512K x 72) 000 01011 000001 100111 00000110100 1 000 01011 000001 010111 00000110100 1 000 01011 000001 110111 00000110100 1 Description Describes the version number. Reserved for Internal Use Defines memory type and architecture Defines width and density Allows unique identification of SRAM vendor. Indicates the presence of an ID register.
Scan Register Sizes
Register Name Instruction Bypass ID Boundary Scan Order (165-ball FBGA package) Boundary Scan Order (209-ball FBGA package) Bit Size (x36) 3 1 32 89 Bit Size (x18) 3 1 32 89 Bit Size (x18) 3 1 32 138
Identification Codes
Instruction EXTEST IDCODE SAMPLE Z RESERVED SAMPLE/PRELOAD RESERVED RESERVED BYPASS Code 000 001 010 011 100 101 110 111 Captures I/O ring contents. Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations. Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state. Do Not Use: This instruction is reserved for future use. Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. Do Not Use: This instruction is reserved for future use. Do Not Use: This instruction is reserved for future use. Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. Description
Note: 12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.
Document #: 38-05357 Rev. *F
Page 16 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
165-ball FBGA Boundary Scan Order[13,14]
CY7C1441AV33 (1M x 36), CY7C1443AV33 (2M x 18) Bit # Ball ID Bit # Ball ID 1 26 E11 N6 2 27 D11 N7 3 N10 28 G10 4 P11 29 F10 5 P8 30 E10 6 R8 31 D10 7 R9 32 C11 8 P9 33 A11 9 P10 34 B11 10 R10 35 A10 11 R11 36 B10 12 H11 37 A9 13 N11 38 B9 14 M11 39 C10 15 L11 40 A8 16 K11 41 B8 17 J11 42 A7 18 M10 43 B7 19 L10 44 B6 20 K10 45 A6 21 J10 46 B5 22 H9 47 A5 23 H10 48 A4 24 G11 49 B4 25 F11 50 B3
Notes: 13. Balls which are NC (No Connect) are preset LOW. 14. Bit# 89 is preset HIGH.
Bit # 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Ball ID A3 A2 B2 C2 B1 A1 C1 D1 E1 F1 G1 D2 E2 F2 G2 H1 H3 J1 K1 L1 M1 J2 K2 L2 M2
Bit # 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Ball ID N1 N2 P1 R1 R2 P3 R3 P2 R4 P4 N5 P6 R6 Internal
Document #: 38-05357 Rev. *F
Page 17 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
209-ball FBGA Boundary Scan Order [13,15]
CY7C1447AV33 (512K x 72) Bit # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Ball ID W6 V6 U6 W7 V7 U7 T7 V8 U8 T8 V9 U9 P6 W11 W10 V11 V10 U11 U10 T11 T10 R11 R10 P11 P10 N11 N10 M11 M10 L11 L10 K11 M6 L6 J6 Bit # 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Ball ID F6 K8 K9 K10 J11 J10 H11 H10 G11 G10 F11 F10 E10 E11 D11 D10 C11 C10 B11 B10 A11 A10 C9 B9 A9 D7 C8 B8 A8 D8 C7 B7 A7 D6 G6 Bit # 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 Ball ID H6 C6 B6 A6 A5 B5 C5 D5 D4 C4 A4 B4 C3 B3 A3 A2 A1 B2 B1 C2 C1 D2 D1 E1 E2 F2 F1 G1 G2 H2 H1 J2 J1 K1 N6 Bit # 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 Ball ID K3 K4 K6 K2 L2 L1 M2 M1 N2 N1 P2 P1 R2 R1 T2 T1 U2 U1 V2 V1 W2 W1 T6 U3 V3 T4 T5 U4 V4 5W 5V 5U Internal
Note: 15. Bit# 138 is preset HIGH.
Document #: 38-05357 Rev. *F
Page 18 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ................................. –65°C to +150°C Ambient Temperature with Power Applied............................................. –55°C to +125°C Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V Supply Voltage on VDDQ Relative to GND ...... –0.3V to +VDD DC Voltage Applied to Outputs in Tri-State........................................... –0.5V to VDDQ + 0.5V Range Commercial Industrial DC Input Voltage ................................... –0.5V to VDD + 0.5V Current into Outputs (LOW)......................................... 20 mA Static Discharge Voltage........................................... >2001V (per MIL-STD-883, Method 3015) Latch-up Current..................................................... >200 mA
Operating Range
Ambient Temperature 0°C to +70°C –40°C to +85°C VDD 3.3V –5%/+10% VDDQ 2.5V –5% to VDD
Electrical Characteristics Over the Operating Range[16, 17]
DC Electrical Characteristics Over the Operating Range Parameter VDD VDDQ VOH VOL VIH VIL IX Description Power Supply Voltage I/O Supply Voltage Output HIGH Voltage Output LOW Voltage Input HIGH Voltage[16] Input LOW Voltage[16] for 3.3V I/O for 2.5V I/O for 3.3V I/O, IOH = –4.0 mA for 2.5V I/O, IOH = –1.0 mA for 3.3V I/O, IOL = 8.0 mA for 2.5V I/O, IOL = 1.0 mA for 3.3V I/O for 2.5V I/O for 3.3V I/O for 2.5V I/O Input Leakage Current except ZZ and MODE GND ≤ VI ≤ VDDQ 2.0 1.7 –0.3 –0.3 –5 –30 5 –5 30 –5 7.5-ns cycle, 133 MHz 10-ns cycle, 100 MHz All Speeds 5 310 290 180 Test Conditions Min. 3.135 3.135 2.375 2.4 2.0 0.4 0.4 VDD + 0.3V VDD + 0.3V 0.8 0.7 5 Max. 3.6 VDD 2.625 Unit V V V V V V V V V V V µA µA µA µA µA µA mA mA mA
Input Current of MODE Input = VSS Input = VDD Input Current of ZZ IOZ IDD ISB1 Input = VSS Input = VDD Output Leakage Current GND ≤ VI ≤ VDDQ, Output Disabled VDD Operating Supply Current Automatic CE Power-down Current—TTL Inputs VDD = Max., IOUT = 0 mA, f = fMAX = 1/tCYC Max. VDD, Device Deselected, VIN ≥ VIH or VIN ≤ VIL, f = fMAX, inputs switching
ISB2
Automatic CE Max. VDD, Device Deselected, Power-down VIN ≥ VDD – 0.3V or VIN ≤ 0.3V, Current—CMOS Inputs f = 0, inputs static Automatic CE Max. VDD, Device Deselected, Power-down VIN ≥ VDDQ – 0.3V or VIN ≤ 0.3V, Current—CMOS Inputs f = fMAX, inputs switching Automatic CE Power-down Current—TTL Inputs Max. VDD, Device Deselected, VIN ≥ VDD – 0.3V or VIN ≤ 0.3V, f = 0, inputs static
All speeds
120
mA
ISB3
All Speeds
180
mA
ISB4
All Speeds
135
mA
Notes: 16. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC) > –2V (Pulse width less than tCYC/2). 17. TPower-up: Assumes a linear ramp from 0V to VDD(min.) within 200 ms. During this time VIH < VDD and VDDQ < VDD
Document #: 38-05357 Rev. *F
Page 19 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Capacitance[18]
Parameter CIN CCLK CI/O Description Input Capacitance Clock Input Capacitance Input/Output Capacitance Test Conditions TA = 25°C, f = 1 MHz, VDD = 3.3V VDDQ = 2.5V 100 TQFP Max. 6.5 3 5.5 165 FBGA 209 FBGA Max. Max. 7 7 6 5 5 7 Unit pF pF pF
Thermal Resistance[18]
Parameter ΘJA ΘJC Description Thermal Resistance (Junction to Ambient) Thermal Resistance (Junction to Case) Test Conditions Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA/JESD51. 100 TQFP Package 25.21 2.28 165 FBGA Package 20.8 3.2 209 FBGA Package 25.31 4.48 Unit °C/W °C/W
AC Test Loads and Waveforms
3.3V I/O Test Load
OUTPUT Z0 = 50Ω 3.3V OUTPUT RL = 50Ω 5 pF R = 351Ω R = 317Ω ALL INPUT PULSES VDDQ 10% GND ≤ 1 ns 90% 90% 10% ≤ 1 ns
VT = 1.5V
(a) 2.5V I/O Test Load
OUTPUT Z0 = 50Ω 2.5V
INCLUDING JIG AND SCOPE
(b)
(c)
R = 1667Ω VDDQ 10% 5 pF GND R = 1538Ω ≤ 1 ns ALL INPUT PULSES 90% 90% 10% ≤ 1 ns
OUTPUT RL = 50Ω VT = 1.25V
(a)
INCLUDING JIG AND SCOPE
(b)
(c)
Note: 18. Tested initially and after any design or process change that may affect these parameters.
Document #: 38-05357 Rev. *F
Page 20 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Switching Characteristics Over the Operating Range[23, 24]
–133 Parameter tPOWER Clock tCYC tCH tCL Output Times tCDV tDOH tCLZ tCHZ tOEV tOELZ tOEHZ Set-up Times tAS tADS tADVS tWES tDS tCES Hold Times tAH tADH tWEH tADVH tDH tCEH Address Hold After CLK Rise ADSP, ADSC Hold After CLK Rise GW, BWE, BWX Hold After CLK Rise ADV Hold After CLK Rise Data Input Hold After CLK Rise Chip Enable Hold After CLK Rise 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ns ns ns ns ns ns Address Set-up Before CLK Rise ADSP, ADSC Set-up Before CLK Rise ADV Set-up Before CLK Rise GW, BWE, BWX Set-up Before CLK Rise Data Input Set-up Before CLK Rise Chip Enable Set-up 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ns ns ns ns ns ns Data Output Valid After CLK Rise Data Output Hold After CLK Rise Clock to Low-Z
[20, 21, 22]
–100 Min. 1 10 3.0 3.0 6.5 8.5 2.5 2.5 3.8 3.0 0 0 3.0 4.0 4.5 3.8 Max. Unit ms ns ns ns ns ns ns ns ns ns ns
Description VDD (Typical) to the first Access Clock Cycle Time Clock HIGH Clock LOW
[19]
Min. 1 7.5 2.5 2.5
Max.
2.5 2.5
Clock to High-Z[20, 21, 22] OE LOW to Output Valid OE LOW to Output OE HIGH to Output Low-Z[20, 21, 22] High-Z[20, 21, 22] 0
Notes: 19. This part has a voltage regulator internally; tPOWER is the time that the power needs to be supplied above VDD(minimum) initially, before a read or write operation can be initiated. 20. tCHZ, tCLZ,tOELZ, and tOEHZ are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage. 21. At any given voltage and temperature, tOEHZ is less than tOELZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High-Z prior to Low-Z under the same system conditions. 22. This parameter is sampled and not 100% tested. 23. Timing reference level is 1.5V when VDDQ = 3.3V and is 1.25V when VDDQ = 2.5V. 24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.
Document #: 38-05357 Rev. *F
Page 21 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Timing Diagrams
Read Cycle Timing[25]
tCYC
CLK
t
CH
t CL
tADS
tADH
ADSP
tADS tADH
ADSC
tAS tAH
ADDRESS
A1
t WES t WEH
A2
GW, BWE,BW
X tCES t CEH
Deselect Cycle
CE
t t ADVS ADVH
ADV ADV suspends burst OE
t OEV t CLZ t OEHZ t OELZ
tCDV tDOH t CHZ
Data Out (Q)
High-Z
Q(A1)
t CDV
Q(A2)
Q(A2 + 1)
Q(A2 + 2)
Q(A2 + 3)
Q(A2)
Q(A2 + 1)
Q(A2 + 2)
Burst wraps around to its initial state
Single READ DON’T CARE
BURST READ UNDEFINED
Note: 25. On this diagram, when CE is LOW: CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH: CE1 is HIGH or CE2 is LOW or CE3 is HIGH.
Document #: 38-05357 Rev. *F
Page 22 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Timing Diagrams (continued)
Write Cycle Timing[25, 26]
t CYC
CLK
t
CH
t
CL
tADS
tADH
ADSP
tADS tADH
ADSC extends burst
tADS tADH
ADSC
tAS tAH
ADDRESS
A1
A2
Byte write signals are ignored for first cycle when ADSP initiates burst
A3
tWES tWEH
BWE, BWX
t t WES WEH
GW
tCES tCEH
CE
tADVS tADVH
ADV
ADV suspends burst
OE
t DS t DH D(A2) D(A2 + 1) D(A2 + 1) D(A2 + 2) D(A2 + 3) D(A3) D(A3 + 1) D(A3 + 2)
Data in (D)
High-Z
t OEHZ
D(A1)
Data Out (Q) BURST READ Single WRITE BURST WRITE Extended BURST WRITE
DON’T CARE
UNDEFINED
Note: 26. Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BWX LOW.
Document #: 38-05357 Rev. *F
Page 23 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Timing Diagrams (continued)
Read/Write Cycle Timing[25, 27, 28]
tCYC
CLK
t CH tADS tADH
t CL
ADSP
ADSC
tAS tAH
ADDRESS
A1
A2
A3
t t WES WEH
A4
A5
A6
BWE, BWX
tCES tCEH
CE
ADV
OE
tDS tDH tOELZ
Data In (D) Data Out (Q)
High-Z
t OEHZ
D(A3)
tCDV
D(A5)
D(A6)
Q(A1)
Q(A2) Single WRITE DON’T CARE
Q(A4)
Q(A4+1)
Q(A4+2)
Q(A4+3) Back-to-Back WRITEs
Back-to-Back READs
BURST READ UNDEFINED
Notes: 27. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC. 28. GW is HIGH.
Document #: 38-05357 Rev. *F
Page 24 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Timing Diagrams (continued)
ZZ Mode Timing[29, 30]
CLK
t ZZ t ZZREC
ZZ
t ZZI
I
SUPPLY I DDZZ t RZZI DESELECT or READ Only
ALL INPUTS (except ZZ)
Outputs (Q)
High-Z
DON’T CARE
Notes: 29. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 30. DQs are in high-Z when exiting ZZ sleep mode.
Document #: 38-05357 Rev. *F
Page 25 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Ordering Information
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit www.cypress.com for actual products offered. Speed (MHz) 133 Ordering Code CY7C1441AV25-133AXC CY7C1443AV33-133AXC CY7C1441AV25-133BZC CY7C1443AV33-133BZC CY7C1441AV25-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free CY7C1443AV33-133BZXC CY7C1447AV33-133BGC CY7C1447AV33-133BGXC CY7C1441AV25-133AXI CY7C1443AV33-133AXI CY7C1441AV25-133BZI CY7C1443AV33-133BZI CY7C1441AV25-133BZXI CY7C1443AV33-133BZXI CY7C1447AV33-133BGI CY7C1447AV33-133BGXI 100 CY7C1441AV25-100AXC CY7C1443AV33-100AXC CY7C1441AV25-100BZC CY7C1443AV33-100BZC CY7C1441AV25-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free CY7C1443AV33-100BZXC CY7C1447AV33-100BGC CY7C1447AV33-100BGXC CY7C1441AV25-100AXI CY7C1443AV33-100AXI CY7C1441AV25-100BZI CY7C1443AV33-100BZI CY7C1441AV25-100BZXI CY7C1443AV33-100BZXI CY7C1447AV33-100BGI CY7C1447AV33-100BGXI 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free lndustrial 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free Commercial 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free lndustrial 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Package Diagram Part and Package Type Operating Range Commercial
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Document #: 38-05357 Rev. *F
Page 26 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Package Diagrams
100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)
16.00±0.20 14.00±0.10
100 1 81 80
1.40±0.05
0.30±0.08
22.00±0.20
20.00±0.10
0.65 TYP.
30 31 50 51
12°±1° (8X)
SEE DETAIL
A
0.20 MAX. 1.60 MAX. 0° MIN. SEATING PLANE 0.25 GAUGE PLANE STAND-OFF 0.05 MIN. 0.15 MAX.
NOTE: 1. JEDEC STD REF MS-026 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 3. DIMENSIONS IN MILLIMETERS
0°-7°
R 0.08 MIN. 0.20 MAX.
0.60±0.15 0.20 MIN. 1.00 REF.
DETAIL
51-85050-*B
A
Document #: 38-05357 Rev. *F
0.10
R 0.08 MIN. 0.20 MAX.
Page 27 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Package Diagrams (continued)
165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)
TOP VIEW Ø0.05 M C PIN 1 CORNER Ø0.25 M C A B Ø0.45±0.05(165X)
1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1
BOTTOM VIEW
PIN 1 CORNER
A B
A B
D E F G
1.00
C
C D E F G
17.00±0.10
H J K
14.00
H J K
M N P R
7.00
L
L M N P R
A 5.00 10.00 0.53±0.05 0.25 C
+0.05 -0.10
1.00
0.35
0.15 C
B 0.15(4X)
15.00±0.10
SEATING PLANE C 0.36 1.40 MAX.
51-85165-*A
Document #: 38-05357 Rev. *F
Page 28 of 31
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Package Diagrams (continued)
209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)
51-85167-**
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.
Document #: 38-05357 Rev. *F
Page 29 of 31
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Document History Page
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM Document Number: 38-05357 REV. ** *A Orig. of ECN NO. Issue Date Change 124459 254910 03/06/03 See ECN CJM SYT New Data Sheet Part number changed from previous revision. New and old part number differ by the letter “A” Modified Functional Block diagrams Modified switching waveforms Added Footnote #13 (32-Bit Vendor I.D Code changed) Added Boundary scan information Added IDD, IX and ISB values in the DC Electrical Characteristics Added tPOWER specifications in Switching Characteristics table Removed 119 PBGA Package Changed 165 FBGA Package from BB165C (15 x 17 x 1.20 mm) to BB165 (15 x 17 x 1.40 mm) Changed 209-Lead PBGA BG209 (14 x 22 x 2.20 mm) to BB209A (14 x 22 x 1.76 mm) Removed 150 and 117 MHz Speed Bins Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W respectively for TQFP Package on Pg # 21 Added lead-free information for 100-pin TQFP, 165 FBGA and 209 BGA Packages. Added comment of ‘Lead-free BG and BZ packages availability’ below the Ordering Information Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209 FBGA Changed the test condition from VDD = Min. to VDD = Max for VOL in the Electrical Characteristics table. Replaced the TBD’s for IDD, ISB1, ISB2, ISB3 and ISB4 to their respective values. Replaced TBD’s for ΘJA and ΘJC to their respective values for 165 fBGA and 209 fBGA packages on the Thermal Resistance table. Changed CIN,CCLK and CI/O to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP Package. Removed “Lead-free BG and BZ packages availability” comment below the Ordering Information Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA Packages as per JEDEC standards and updated the Pin Definitions accordingly Modified VOL, VOH test conditions Replaced TBD to 100 mA for IDDZZ Changed CIN, CCLK and CI/O to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA Package. Added Industrial Temperature Grade Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively Updated the Ordering Information by shading and unshading MPNs as per availability Converted from Preliminary to Final. Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901 North First Street” to “198 Champion Court”. Changed IX current value in MODE from –5 & 30 µA to –30 & 5 µA respectively and also Changed IX current value in ZZ from –30 & 5 µA to –5 & 30 µA respectively on page# 19. Modified test condition in note# 8 from VIH < VDD to VIH < VDD. Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the Electrical Characteristics Table. Replaced Package Name column with Package Diagram in the Ordering Information table. Replaced Package Diagram of 51-85050 from *A to *B Updated the Ordering Information. Page 30 of 31 Description of Change
*B
300131
See ECN
SYT
*C
320813
See ECN
SYT
*D
331551
See ECN
SYT
*E
417547
See ECN
RXU
Document #: 38-05357 Rev. *F
[+] [+] Feedback
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM Document Number: 38-05357 REV. *F Orig. of ECN NO. Issue Date Change 473650 See ECN VKN Description of Change Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND. Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC Switching Characteristics table. Updated the Ordering Information table.
Document #: 38-05357 Rev. *F
Page 31 of 31
[+] [+] Feedback