0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY7C68013A-56LTXIT

CY7C68013A-56LTXIT

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    56-VFQFN裸露焊盘

  • 描述:

    CY7C68013A-56LTXIT

  • 数据手册
  • 价格&库存
CY7C68013A-56LTXIT 数据手册
Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Features ■ USB 2.0 USB IF Hi-Speed certified (TID # 40460272) ■ Single-chip integrated USB 2.0 transceiver, smart SIE, and enhanced 8051 microprocessor ■ Fit-, form-, and function-compatible with the FX2 ❐ Pin-compatible0 ❐ Object-code-compatible ❐ Functionally compatible (FX2LP is a superset) ■ Ultra-low power: ICC no more than 85 mA in any mode ❐ Ideal for bus- and battery-powered applications ■ Software: 8051 code runs from: ❐ Internal RAM, which is downloaded through USB ❐ Internal RAM, which is loaded from EEPROM ❐ External memory device (128-pin package) ■ 3.3-V operation with 5-V tolerant inputs ■ Vectored USB interrupts and GPIF/FIFO interrupts ■ Separate data buffers for the setup and data portions of a CONTROL transfer ■ Integrated I2C controller; runs at 100 or 400 kHz[1] ■ Four integrated FIFOs ❐ Integrated glue logic and FIFOs lower system cost ❐ Automatic conversion to and from 16-bit buses ❐ Master or slave operation ❐ Uses external clock or asynchronous strobes ❐ Easy interface to ASIC and DSP ICs ■ Available in commercial and industrial temperature grades (all packages except VFBGA) Features (CY7C68013A/14A only) ■ 16 KB of on-chip code/data RAM ■ ■ Four programmable BULK, INTERRUPT, and ISOCHRONOUS endpoints ❐ Buffering options: Double, triple, and quad CY7C68014A: Ideal for battery-powered applications ❐ Suspend current: 100 A (typ) ■ CY7C68013A: Ideal for nonbattery-powered applications ❐ Suspend current: 300 A (typ) ■ Additional programmable (BULK/INTERRUPT) 64-byte endpoint ■ ■ 8-bit or 16-bit external data interface ■ Smart media standard ECC generation Available in five Pb-free packages with up to 40 GPIOs ❐ 128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs), 56-pin QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VFBGA (24 GPIOs) ■ GPIF™ (general programmable interface) ❐ Enables direct connection to most parallel interfaces ❐ Programmable waveform descriptors and configuration registers to define waveforms ❐ Supports multiple ready (RDY) inputs and control (CTL) outputs ■ Integrated, industry-standard, enhanced 8051 ❐ 48-MHz, 24-MHz, or 12-MHz CPU operation ❐ Four clocks per instruction cycle ❐ Two USARTs ❐ Three counter/timers ❐ Expanded interrupt system ❐ Two data pointers Features (CY7C68015A/16A only) ■ CY7C68016A: Ideal for battery-powered applications ❐ Suspend current: 100 A (typ) ■ CY7C68015A: Ideal for nonbattery-powered applications ❐ Suspend current: 300 A (typ) ■ Available in Pb-free 56-pin QFN package (26 GPIOs) ■ Two more GPIOs than CY7C68013A/14A enabling additional features in the same footprint Functional Description For a complete list of related resources, click here. Notes 1. The actual I2C clock frequency will be different. The measured I2C clock frequency when set for 100 kHz and 400 kHz is around 85 kHz and 300 kHz respectively. 2. For information on silicon errata, see “Errata” on page 68. Details include trigger conditions, devices affected, and proposed workaround. Cypress Semiconductor Corporation Document Number: 38-08032 Rev. AD • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised April 30, 2021 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A More Information Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the application note AN65209 - Getting Started with FX2LP. ■ Overview: USB Portfolio, USB Roadmap EZ-USB FX2LP Development Kit ■ USB 2.0 Product Selectors: FX2LP, AT2LP, NX2LP-Flex, SX2 The CY3684 EZ-USB FX2LP Development Kit is a complete development resource for FX2LP. Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FX2LP are: ❐ AN65209 - Getting Started with FX2LP ® ❐ AN15456 - Guide to Successful EZ-USB FX2LP™ and EZ-USB FX1™ Hardware Design and Debug ® ❐ AN50963 - EZ-USB FX1™/FX2LP™ Boot Options ® ❐ AN66806 - EZ-USB FX2LP™ GPIF Design Guide ❐ AN61345 - Implementing an FX2LP™- FPGA Interface ❐ AN57322 - Interfacing SRAM with FX2LP over GPIF ❐ AN4053 - Streaming Data through Isochronous/Bulk Endpoints on EZ-USB® FX2 and EZUSB FX2LP ® ❐ AN63787 - EZ-USB FX2LP™ GPIF and Slave FIFO Configuration Examples using 8-bit Asynchronous Interface For complete list of Application notes, click here. ■ ■ Code Examples: ❐ USB Hi-Speed ■ Technical Reference Manual (TRM): ❐ EZ-USB FX2LP Technical Reference Manual ■ Reference Designs: ❐ CY4661 - External USB Hard Disk Drives (HDD) with Fingerprint Authentication Security ❐ FX2LP DMB-T/H TV Dongle reference design ■ Models: IBIS Document Number: 38-08032 Rev. AD The CY3689 EZ-USB FX2LP Discovery Kit is a newly designed kit that helps beginners and experienced users to implement different applications using FX2LP The development kit contains collateral materials for the firmware, hardware, and software aspects of a design using FX2LP. GPIF™ Designer FX2LP™ General Programmable Interface (GPIF) provides an independent hardware unit, which creates the data and control signals required by an external interface. FX2LP GPIF Designer allows users to create and modify GPIF waveform descriptors for EZ-USB FX2/ FX2LP family of chips using a graphical user interface. Extensive discussion of general GPIF discussion and programming using GPIF Designer is included in FX2LP Technical Reference Manual and GPIF Designer User Guide, distributed with GPIF Designer. AN66806 - Getting Started with EZ-USB® FX2LP™ GPIF can be a good starting point. Page 2 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Logic Block Diagram High-performance micro using standard tools with lower-power options VCC x20 PLL /0.5 /1.0 /2.0 Data (8) Address (16) FX2LP I2C 8051 Core 12/24/48 MHz, four clocks/cycle Master 1.5k connected for full speed D+ D– USB 2.0 XCVR Integrated full speed and high speed XCVR CY Smart USB 1.1/2.0 Engine 16 KB RAM Address (16) / Data Bus (8) 24 MHz Ext. XTAL “Soft Configuration” Easy firmware changes Cypress’s EZ-USB® FX2LP™ (CY7C68013A/14A) is a low-power version of the EZ-USB FX2™(CY7C68013), which is a highly integrated, low-power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a cost-effective solution that provides superior time-to-market advantages with low power to enable bus-powered applications. The ingenious architecture of FX2LP results in data transfer rates of over 53 Mbytes per second (the maximum allowable USB 2.0 bandwidth), while still using a low-cost 8051 microcontroller in a package as small as a 56 VFBGA (5 mm × 5 mm). Because it incorporates the USB 2.0 transceiver, the FX2LP is more economical, providing a smaller-footprint solution than a USB 2.0 SIE or external transceiver implementations. Document Number: 38-08032 Rev. AD RDY (6) CTL (6) General programmable I/F to ASIC/DSP or bus standards such as ATAPI, EPP, etc. 8/16 Up to 96 MBytes/s burst rate ADDR (9) GPIF ECC 4 kB FIFO Enhanced USB core Simplifies 8051 code Abundant I/O including two USARTs Additional I/Os (24) FIFO and endpoint memory (master or slave operation) With EZ-USB FX2LP, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing the development time to ensure USB compatibility. The general programmable interface (GPIF) and Master/Slave Endpoint FIFO (8-bit or 16-bit data bus) provide an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors. The FX2LP draws less current than the FX2 (CY7C68013), has double the on-chip code/data RAM, and is fit, form, and function compatible with the 56-, 100-, and 128-pin FX2. Five packages are defined for the family: 56-ball VFBGA, 56-pin SSOP, 56-pin QFN, 100-pin TQFP, and 128-pin TQFP. Page 3 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Contents Applications ...................................................................... 5 Functional Overview ........................................................ 5 USB Signaling Speed .................................................. 5 8051 Microprocessor ................................................... 5 I2C Bus ........................................................................ 5 Buses .......................................................................... 5 USB Boot Methods ...................................................... 6 ReNumeration ............................................................. 6 Bus-Powered Applications .......................................... 6 Interrupt System .......................................................... 6 Reset and Wakeup ...................................................... 9 Program/Data RAM ................................................... 10 Register Addresses ................................................... 12 Endpoint RAM ........................................................... 13 External FIFO Interface ............................................. 15 GPIF .......................................................................... 15 ECC Generation ........................................................ 16 USB Uploads and Downloads ................................... 16 Autopointer Access ................................................... 16 I2C Controller ............................................................. 16 Compatible with Previous Generation EZ-USB FX2 .............................................................. 17 CY7C68013A/14A and CY7C68015A/16A Differences ................................................................ 17 Pin Assignments ............................................................ 18 CY7C68013A/15A Pin Descriptions .......................... 25 Register Summary .......................................................... 34 Absolute Maximum Ratings .......................................... 41 Operating Conditions ..................................................... 41 Thermal Characteristics ................................................. 41 DC Electrical Characteristics ........................................ 42 USB Transceiver ....................................................... 42 AC Electrical Characteristics ........................................ 43 USB Transceiver ....................................................... 43 Program Memory Read ............................................. 43 Document Number: 38-08032 Rev. AD Data Memory Read ..................................................................44 Data Memory Write ..................................................................45 PORTC Strobe Feature Timings ............................... 46 GPIF Synchronous Signals ....................................... 47 Slave FIFO Synchronous Read ................................. 48 Slave FIFO Asynchronous Read ............................... 49 Slave FIFO Synchronous Write ................................. 50 Slave FIFO Asynchronous Write ............................... 51 Slave FIFO Synchronous Packet End Strobe ........... 52 Slave FIFO Asynchronous Packet End Strobe ......... 54 Slave FIFO Output Enable ........................................ 54 Slave FIFO Address to Flags/Data ............................ 54 Slave FIFO Synchronous Address ............................ 55 Slave FIFO Asynchronous Address .......................... 55 Sequence Diagram .................................................... 56 Ordering Information ...................................................... 60 Ordering Code Definitions ......................................... 60 Package Diagrams .......................................................... 61 PCB Layout Recommendations .................................... 65 Quad Flat Package No Leads (QFN) Package Design Notes ................................................................... 66 Acronyms ........................................................................ 67 Document Conventions ................................................. 67 Units of Measure ....................................................... 67 Errata ............................................................................... 68 Part Numbers Affected .............................................. 68 CY7C68013A/14A/15A/16A Qualification Status ...... 68 CY7C68013A/14A/15A/16A Errata Summary ........... 68 Document History Page ................................................. 69 Sales, Solutions, and Legal Information ...................... 74 Worldwide Sales and Design Support ....................... 74 Products .................................................................... 74 PSoC® Solutions ....................................................... 74 Cypress Developer Community ................................. 74 Technical Support ..................................................... 74 Page 4 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Applications Figure 1. Crystal Configuration C1 24 MHz C2 ■ Portable video recorder ■ MPEG/TV conversion ■ DSL modems ■ ATA interface ■ Memory card readers ■ Legacy conversion devices ■ Cameras ■ Scanners ■ Wireless LAN ■ MP3 players The CLKOUT pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz. ■ Networking USARTs The “Reference Designs” section of the Cypress web site provides additional tools for typical USB 2.0 applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Visit www.cypress.com for more information. Functional Overview USB Signaling Speed FX2LP operates at two of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000: ■ Full speed, with a signaling bit rate of 12 Mbps ■ High speed, with a signaling bit rate of 480 Mbps FX2LP does not support the Low Speed signaling mode of 1.5 Mbps. 8051 Microprocessor The 8051 microprocessor embedded in the FX2LP family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs. 8051 Clock Frequency FX2LP has an on-chip oscillator circuit that uses an external 24-MHz (±100 ppm) crystal with the following characteristics: ■ Parallel resonant ■ Fundamental mode ■ 500-W drive level ■ 12-pF (5% tolerance) load capacitors An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY; internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically. 12 pF 12 pF 20 × PLL 12-pF capacitor values assume a trace capacitance of 3 pF per side on a four-layer FR4 PCA FX2LP contains two standard 8051 USARTs, addressed through Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multiplexed with port pins. UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230 KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12 MHz) such that it always presents the correct frequency for the 230-KBaud operation[3]. Special Function Registers Certain 8051 SFR addresses are populated to provide fast access to critical FX2LP functions. These SFR additions are shown in Table 1 on page 6. Bold type indicates nonstandard, enhanced 8051 registers. The two SFR rows that end with “0” and “8” contain bit-addressable registers. The four I/O ports A to D use the SFR addresses used in the standard 8051 for ports 0 to 3, which are not implemented in FX2LP. Because of the faster and more efficient SFR addressing, the FX2LP I/O ports are not addressable in external RAM space (using the MOVX instruction). I2C Bus FX2LP supports the I2C bus as a master only at 100/400 kHz[4]. SCL and SDA pins have open-drain outputs and hysteresis inputs. These signals must be pulled up to 3.3 V, even if no I2C device is connected. Buses All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multiplexed on I/O ports B and D. 128-pin package: adds 16-bit output-only 8051 address bus, 8-bit bidirectional data bus. Notes 3. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively. 4. The actual I2C clock frequency will be different.The measured I2C clock frequency when set for 100 kHz and 400 kHz is around 85 kHz and 300 kHz respectively. Document Number: 38-08032 Rev. AD Page 5 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 1. Special Function Registers x 8x 9x Ax Bx Cx Dx Ex Fx 0 IOA 1 SP IOB IOC IOD SCON1 PSW ACC B EXIF INT2CLR IOE SBUF1 – – – 2 DPL0 3 DPH0 MPAGE INT4CLR OEA – – – – – – OEB – – – – 4 5 DPL1 – – OEC – – – – DPH1 – – OED – – – – 6 DPS – – OEE – – – – 7 PCON – – – – – – – 8 TCON SCON0 IE IP T2CON EICON EIE EIP 9 TMOD SBUF0 – – – – – – A TL0 AUTOPTRH1 EP2468STAT EP01STAT RCAP2L – – – B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H – – – TL2 – – – GPIFSGLDATH TH2 – – – C TH0 reserved EP68FIFOFLGS D TH1 AUTOPTRH2 – E CKCON AUTOPTRL2 – GPIFSGLDATLX – – – – F – reserved AUTOPTRSET-UP GPIFSGLDATLNOX – – – – USB Boot Methods During the power-up sequence, internal logic checks the I2C port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0), or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2LP enumerates using internally stored descriptors. The default ID values for FX2LP are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip revision)[5]. Table 2. Default ID Values for FX2LP Default VID/PID/DID Vendor ID 0x04B4 Cypress Semiconductor Product ID 0x8613 Device release Depends on chip revision 0xAnnn (nnn = chip revision where first silicon = 001) EZ-USB FX2LP Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0. Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device handles device requests over endpoint zero: if RENUM = 0, the Default USB Device handles device requests; if RENUM = 1, the firmware services the requests. Bus-Powered Applications The FX2LP fully supports bus-powered designs by enumerating with less than 100 mA as required by the USB 2.0 specification. Interrupt System INT2 Interrupt Request and Enable Registers ReNumeration FX2LP implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more details. Because the FX2LP’s configuration is soft, one chip can take on the identities of multiple distinct USB devices. USB Interrupt Autovectors When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over the USB cable. Next, the FX2LP enumerates again, this time as a device defined by the downloaded information. This patented two step process called ReNumeration™ happens instantly when the device is plugged in, without a hint that the initial download step has occurred. The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that is required to identify the individual USB interrupt source, the FX2LP provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2LP pushes the program counter to its stack, and then jumps to the address 0x0043 where it expects to find a “jump” instruction to the USB interrupt service routine. Note 5. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly. Document Number: 38-08032 Rev. AD Page 6 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A The FX2LP jump instruction is encoded as follows: Table 3. INT2 USB Interrupts USB INTERRUPT TABLE FOR INT2 Priority INT2VEC Value Source Notes 1 00 SUDAV Setup data available 2 04 SOF Start of frame (or microframe) 3 08 SUTOK Setup token received 4 0C SUSPEND USB suspend request 5 10 USB RESET Bus reset 6 14 HISPEED Entered high speed operation 7 18 EP0ACK FX2LP ACK’d the CONTROL Handshake 8 1C 9 20 EP0-IN EP0-IN ready to be loaded with data 10 24 EP0-OUT EP0-OUT has USB data reserved 11 28 EP1-IN EP1-IN ready to be loaded with data 12 2C EP1-OUT EP1-OUT has USB data 13 30 EP2 IN: buffer available. OUT: buffer has data 14 34 EP4 IN: buffer available. OUT: buffer has data 15 38 EP6 IN: buffer available. OUT: buffer has data 16 3C EP8 IN: buffer available. OUT: buffer has data 17 40 IBN 18 44 IN-Bulk-NAK (any IN endpoint) reserved 19 48 EP0PING EP0 OUT was pinged and it NAK’d 20 4C EP1PING EP1 OUT was pinged and it NAK’d 21 50 EP2PING EP2 OUT was pinged and it NAK’d 22 54 EP4PING EP4 OUT was pinged and it NAK’d 23 58 EP6PING EP6 OUT was pinged and it NAK’d 24 5C EP8PING EP8 OUT was pinged and it NAK’d 25 60 ERRLIMIT Bus errors exceeded the programmed limit 26 64 – – 27 68 – Reserved 28 6C – Reserved 29 70 EP2ISOERR ISO EP2 OUT PID sequence error 30 74 EP4ISOERR ISO EP4 OUT PID sequence error 31 78 EP6ISOERR ISO EP6 OUT PID sequence error 32 7C EP8ISOERR ISO EP8 OUT PID sequence error If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high byte (“page”) of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page. Document Number: 38-08032 Rev. AD Page 7 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A FIFO/GPIF Interrupt (INT4) Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, similar to the USB Interrupt, can employ autovectoring. Table 4 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources. Table 4. Individual FIFO/GPIF Interrupt Sources Priority INT4VEC Value Source Notes 1 80 EP2PF Endpoint 2 programmable flag 2 84 EP4PF Endpoint 4 programmable flag 3 88 EP6PF Endpoint 6 programmable flag 4 8C EP8PF Endpoint 8 programmable flag 5 90 EP2EF Endpoint 2 empty flag [6] 6 94 EP4EF Endpoint 4 empty flag 7 98 EP6EF Endpoint 6 empty flag 8 9C EP8EF Endpoint 8 empty flag 9 A0 EP2FF Endpoint 2 full flag 10 A4 EP4FF Endpoint 4 full flag 11 A8 EP6FF Endpoint 6 full flag 12 AC EP8FF Endpoint 8 full flag 13 B0 GPIFDONE 14 B4 GPIFWF GPIF operation complete GPIF waveform If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), the FX 2LP substitutes its INT4VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter to its stack then jumps to address 0x0053, where it expects to find a “jump” instruction to the interrupt service routine (ISR). Note 6. Errata: In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. For more information, see the Errata on page 68. Document Number: 38-08032 Rev. AD Page 8 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Reset and Wakeup Reset Pin The input pin, RESET#, resets the FX2LP when asserted. This pin has hysteresis and is active LOW. When a crystal is used with the CY7C680xxA, the reset period must enable stabilization of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0 V. If the crystal input pin is driven by a clock signal, the internal PLL stabilizes in 200 s after VCC has reached 3.0 V[7]. Figure 2 shows a power-on reset condition and a reset applied during operation. A power-on reset is defined as the time reset that is asserted while power is being applied to the circuit. A powered reset is when the FX2LP is powered on and operating and the RESET# pin is asserted. Cypress provides an application note which describes and recommends power-on reset implementation. For more information about reset implementation for the FX2 family of products, visit http://www.cypress.com. Figure 2. Reset Timing Plots RESET# VIL RESET# VIL 3.3V 3.0V 3.3V VCC VCC 0V 0V TRESET TRESET Power on Reset Powered Reset Wakeup Pins Table 5. Reset Timing Values Condition TRESET Power-on reset with crystal 5 ms Power-on reset with external clock 200 s + clock stability time Powered reset 200 s The 8051 puts itself and the rest of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscillator restarts after the PLL stabilizes, and the 8051 receives a wakeup interrupt. This applies irrespective of whether FX2LP is connected to the USB. The FX2LP exits the power-down (USB suspend) state by using one of the following methods: ■ USB bus activity (if D+/D– lines are left floating, noise on these lines may indicate activity to the FX2LP and initiate a wakeup) ■ External logic asserts the WAKEUP pin ■ External logic asserts the PA3/WU2 pin The second wakeup pin, WU2, can also be configured as a general-purpose I/O pin. This enables a simple external R-C network to be used as a periodic wakeup source. WAKEUP is by default active LOW. Document Number: 38-08032 Rev. AD Page 9 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Program/Data RAM suppressed for memory spaces that exist inside the chip. This enables the user to connect a 64 KB memory without requiring address decodes to keep clear of internal memory spaces. Size The FX2LP has 16 KB of internal program/data RAM, where PSEN#/RD# signals are internally ORed to enable the 8051 to access it as both program and data memory. No USB control registers appears in this space. ■ USB download Two memory maps are shown in the following diagrams: ■ USB upload Figure 3 shows the Internal Code Memory, EA = 0. ■ Setup data pointer ■ I2C interface boot load Figure 4 on page 11 shows the External Code Memory, EA = 1. Only the internal 16 KB and scratch pad 0.5 KB RAM spaces have the following access: Internal Code Memory, EA = 0 External Code Memory, EA = 1 This mode implements the internal 16 KB block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are The bottom 16 KB of program memory is external and therefore the bottom 16 KB of internal RAM is accessible only as a data memory. Figure 3. Internal Code Memory, EA = 0 Inside FX2LP Outside FX2LP FFFF 7.5 KB USB regs and 4K FIFO buffers (RD#,WR#) E200 E1FF 0.5 KB RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 40 KB External Data Memory (RD#,WR#) 48 KB External Code Memory (PSEN#) 3FFF 16 KB RAM Code and Data (PSEN#,RD#,WR#)* (Ok to populate data memory here—RD#/WR# strobes are not active) (OK to populate program memory here— PSEN# strobe is not active) 0000 Data Code *SUDPTR, USB upload/download, I2C interface boot access Note 7. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 s. Document Number: 38-08032 Rev. AD Page 10 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 4. External Code Memory, EA = 1 Inside FX2LP Outside FX2LP FFFF 7.5 KB USB regs and 4K FIFO buffers (RD#,WR#) E200 E1FF 0.5 KB RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 40 KB External Data Memory (RD#,WR#) 64 KB External Code Memory (PSEN#) 3FFF 16 KB RAM Data (RD#,WR#)* (Ok to populate data memory here—RD#/WR# strobes are not active) 0000 Data Code *SUDPTR, USB upload/download, I2C interface boot access Document Number: 38-08032 Rev. AD Page 11 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Register Addresses FFFF 4 KB EP2-EP8 buffers (8 x 512) F000 EFFF 2 KB RESERVED E800 E7FF E7C0 E7BF E780 E77F E740 E73F E700 E6FF E500 E4FF E480 E47F E400 E3FF E200 E1FF 64 BEP1IN 64 Bytes EP1OUT 64 Bytes EP0 IN/OUT 64 Bytes RESERVED 8051 Addressable Registers (512) Reserved (128) 128 Bytes GPIF Waveforms Reserved (512) 512 Bytes E000 Document Number: 38-08032 Rev. AD 8051 xdata RAM Page 12 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Endpoint RAM Setup Data Buffer Size A separate 8-byte buffer at 0xE6B8-0xE6BF holds the setup data from a CONTROL transfer. ■ 3 × 64 bytes (Endpoints 0 and 1) ■ 8 × 512 bytes (Endpoints 2, 4, 6, 8) Endpoint Configurations (Hi-Speed Mode) Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either BULK or INTERRUPT. Organization ■ EP0 ■ Bidirectional endpoint zero, 64-byte buffer ■ EP1IN, EP1OUT ■ 64 byte buffers, bulk or interrupt ■ EP2, 4, 6, 8 ■ Eight 512-byte buffers, bulk, interrupt, or isochronous. EP4 and EP8 can be double buffered; EP2 and 6 can be either double, triple, or quad buffered. For Hi-Speed endpoint configuration options, see Figure 5. The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in the Full-Speed BULK mode, only the first 64 bytes of each buffer are used. For example, in Hi-Speed mode, the max packet size is 512 bytes, but in Full-Speed mode, it is 64 bytes. Even though a buffer is configured to a 512-byte buffer, in Full-Speed mode, only the first 64 bytes are used. The unused endpoint buffer space is not available for other operations. An example endpoint configuration is the EP2–1024 double-buffered; EP6–512 quad-buffered (column 8). Figure 5. Endpoint Configuration EP0 IN&OUT 64 64 64 EP1 IN 64 64 64 EP1 OUT 64 64 64 EP2 EP2 EP2 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 EP2 EP2 EP2 EP2 EP2 EP2 EP2 512 512 512 512 512 512 512 512 512 512 512 512 EP4 EP4 512 512 512 512 512 512 512 512 512 512 512 512 EP6 EP6 EP6 EP6 EP6 EP6 512 512 512 512 512 512 512 512 EP8 1024 512 512 512 1 2 1024 3 Document Number: 38-08032 Rev. AD 1024 1024 1024 1024 512 1024 512 512 512 512 4 5 1024 6 EP6 1024 512 EP6 EP6 512 512 512 512 EP6 512 1024 512 EP8 EP8 512 1024 1024 512 EP4 1024 1024 EP2 EP2 512 512 512 512 512 7 8 1024 9 1024 1024 EP8 EP8 512 512 512 512 10 11 1024 1024 1024 12 Page 13 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Default Full-Speed Alternate Settings Table 6. Default Full Speed Alternate Settings[8, 9] Alternate Setting 0 1 2 3 ep0 64 64 64 64 ep1out 0 64 bulk 64 int 64 int ep1in 0 64 bulk 64 int 64 int ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×) ep4 0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×) ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×) ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×) Default High Speed Alternate Settings Table 7. Default Hi-Speed Alternate Settings[8, 9] Alternate Setting 0 1 2 3 ep0 64 64 64 64 ep1out 0 512 bulk[10] 64 int 64 int ep1in 0 512 bulk[10] 64 int 64 int ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×) ep4 0 512 bulk out (2×) 512 bulk out (2×) 512 bulk out (2×) ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×) ep8 0 512 bulk in (2×) 512 bulk in (2×) 512 bulk in (2×) Notes 8. “0” means “not implemented.” 9. “2×” means “double buffered.” 10. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1. Document Number: 38-08032 Rev. AD Page 14 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A External FIFO Interface Architecture The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers. Master/Slave Control Signals The FX2LP endpoint FIFOs are implemented as eight physically distinct 25616 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB FIFOs” and “Slave FIFOs.” Because they are physically the same memory, no bytes are actually transferred between buffers. At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown. The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface. In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48 Hz IFCLK with 16-bit interface). In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signals SLRD, SLWR, SLOE, and PKTEND are gated by the signal SLCS#. GPIF and FIFO Clock Rates Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced. GPIF The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia. The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device. Six Control OUT Signals The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock). Six Ready IN Signals The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1. Nine GPIF Address OUT Signals Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used. Long Transfer Mode In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 232 transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction. An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Document Number: 38-08032 Rev. AD Page 15 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A ECC Generation [11] The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes. The ECC can correct any one-bit error or detect any two-bit error. ECC Implementation The two ECC configurations are selected by the ECCM bit: ECCM = 0 Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard. Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface. ECCM = 1 One 3-byte ECC calculated over a 512-byte block of data. Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again. USB Uploads and Downloads The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)[12]. Autopointer Access FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. Autopointers are available in external FX2LP registers under the control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B–0xE67C) enables the autopointer to access all internal and external RAM to the part. Also, autopointers can point to any FX2LP register or endpoint buffer space. When the autopointer access to external memory is enabled, locations 0xE67B and 0xE67C in XDATA and code space cannot be used. I2C Controller FX2LP has one I2C port that is driven by two internal controllers, the one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I2C devices. The I2C port operates in master mode only. I2C Port Pins The I2C pins SCL and SDA must have external 2.2-k pull-up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins. Table 8. Strap Boot EEPROM Address Lines to These Values Bytes Example EEPROM A2 A1 A0 16 24LC00[13] N/A N/A N/A 128 24LC01 0 0 0 256 24LC02 0 0 0 4K 24LC32 0 0 1 8K 24LC64 0 0 1 16K 24LC128 0 0 1 I2C Interface Boot Load Access At power-on reset, the I2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KB of program/data. The available RAM spaces are 16 KB from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I2C interface boot loads only occur after power-on reset. I2C Interface General-Purpose Access The 8051 can control peripherals connected to the I2C bus using the I2CTL and I2DAT registers. FX2LP provides I2C master control only; it is never an I2C slave. Notes 11. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation. 12. After the data is downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory. 13. This EEPROM does not have address pins. Document Number: 38-08032 Rev. AD Page 16 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Compatible with Previous Generation EZ-USB FX2 CY7C68013A/14A and CY7C68015A/16A Differences The EZ-USB FX2LP is form-, fit-, and with minor exceptions, functionally-compatible with its predecessor, the EZ-USB FX2. This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP. CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power-sensitive battery applications. For designers migrating from the FX2 to the FX2LP, a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled Migrating from EZ-USB FX2 to EZ-USB FX2LP available in the Cypress web site. Table 9. Part Number Conversion Table EZ-USB FX2 Part Number CY7C68013-56PVC EZ-USB FX2LP Part Number Package Description CY7C68013A-56PVXC or 56-pin CY7C68014A-56PVXC SSOP 56-pin CY7C68013A-56PVXCT or SSOP – CY7C68013-56PVCT CY7C68014A-56PVXCT Tape and Reel CY7C68013-56LFC CY7C68013A-56LFXC or 56-pin QFN CY7C68014A-56LFXC CY7C68013-100AC CY7C68013A-100AXC or 100-pin CY7C68014A-100AXC TQFP CY7C68013-128AC CY7C68013A-128AXC or 128-pin CY7C68014A-128AXC TQFP Document Number: 38-08032 Rev. AD CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package. USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power-control circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP. The CY7C68015A is only available in the 56-pin QFN package Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A IFCLK PE0 CLKOUT PE1 Page 17 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Pin Assignments Figure 6 on page 19 identifies all signals for the five package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-pin, 100-pin, and 56-pin packages. The signals on the left edge of the 56-pin package in Figure 6 on page 19 are common to all versions in the FX2LP family with the noted differences between the CY7C68013A/14A and the CY7C68015A/16A. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration. The 100-pin package adds functionality to the 56-pin package by adding these pins: ■ PORTC or alternate GPIFADR[7:0] address signals ■ PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals ■ Three GPIF Control signals ■ Four GPIF Ready signals ■ Nine 8051 signals (two USARTs, three timer inputs, INT4, and INT5#) ■ BKPT, RD#, WR#. The 128-pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version. In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting the PORTCSTB bit in the CPUCS register. PORTC Strobe Feature Timings on page 46 displays the timing diagram of the read and write strobing function on accessing PORTC. Document Number: 38-08032 Rev. AD Page 18 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 6. Signal Port XTALIN XTALOUT RESET# WAKEUP# SCL SDA 56 **PE0 replaces IFCLK & PE1 replaces CLKOUT on CY7C68015A/16A **PE0 **PE1 IFCLK CLKOUT DPLUS DMINUS GPIF Master PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 100 PE7/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RxD1OUT PE3/RxD0OUT PE2/T2OUT PE1/T1OUT PE0/T0OUT 128 Document Number: 38-08032 Rev. AD FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] RDY0 RDY1 SLRD SLWR CTL0 CTL1 CTL2 FLAGA FLAGB FLAGC INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 INT0#/ PA0 INT1#/ PA1 SLOE WU2/PA3 FIFOADR0 FIFOADR1 PKTEND PA7/FLAGD/SLCS# RxD0 TxD0 RxD1 TxD1 INT4 INT5# T2 T1 T0 RD# WR# CS# OE# PSEN# D7 D6 D5 D4 D3 D2 D1 D0 EA Slave FIFO CTL3 CTL4 CTL5 RDY2 RDY3 RDY4 RDY5 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC4/GPIFADR4 PORTC3/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR1 PORTC0/GPIFADR0 FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Page 19 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 7. CY7C68013A/CY7C68014A 128-Pin TQFP Pin Assignment 27 28 29 30 31 32 33 34 35 36 37 38 103 26 104 25 105 24 106 23 107 22 108 21 109 20 110 19 111 18 112 17 113 16 114 15 115 14 116 13 117 12 118 11 119 10 120 9 121 8 122 7 123 6 124 5 125 4 126 3 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND A4 A5 A6 A7 PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND A8 A9 A10 2 127 128 1 CLKOUT VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC AVCC DPLUS DMINUS AGND A11 A12 A13 A14 A15 VCC GND INT4 T0 T1 T2 *IFCLK RESERVED BKPT EA SCL SDA OE# PD0/FD8 *WAKEUP VCC RESET# CTL5 A3 A2 A1 A0 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 D7 D6 D5 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 GND CY7C68013A/CY7C68014A 128-pin TQFP 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 VCC D4 D3 D2 D1 D0 GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RXD1 TXD1 RXD0 TXD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC CS# WR# RD# PSEN# 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 * denotes programmable polarity Document Number: 38-08032 Rev. AD Page 20 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 8. CY7C68013A/CY7C68014A 100-Pin TQFP Pin Assignment 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND CLKOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC AVCC DPLUS DMINUS AGND VCC GND INT4 T0 T1 T2 *IFCLK RESERVED BKPT SCL SDA CY7C68013A/CY7C68014A 100-pin TQFP PD0/FD8 *WAKEUP VCC RESET# CTL5 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND VCC GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RXD1 TXD1 RXD0 TXD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC WR# RD# 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 * denotes programmable polarity Document Number: 38-08032 Rev. AD Page 21 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 9. CY7C68013A/CY7C68014A 56-Pin SSOP Pin Assignment CY7C68013A/CY7C68014A 56-pin SSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PD5/FD13 PD6/FD14 PD7/FD15 GND CLKOUT VCC GND RDY0/*SLRD RDY1/*SLWR AVCC XTALOUT XTALIN AGND AVCC DPLUS DMINUS AGND VCC GND *IFCLK RESERVED SCL SDA VCC PB0/FD0 PB1/FD1 PB2/FD2 PB3/FD3 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 *WAKEUP VCC RESET# GND PA7/*FLAGD/SLCS# PA6/PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA GND VCC GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 * denotes programmable polarity Document Number: 38-08032 Rev. AD Page 22 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 10. CY7C68013A/14A/15A/16A 56-Pin QFN Pin Assignment GND VCC CLKOUT/**PE1 GND PD7/FD15 PD6/FD14 PD5/FD13 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 *WAKEUP VCC 56 55 54 53 52 51 50 49 48 47 46 45 44 43 RDY0/*SLRD 1 42 RESET# RDY1/*SLWR 2 41 GND AVCC 3 40 PA7/*FLAGD/SLCS# XTALOUT 4 39 PA6/*PKTEND XTALIN 5 38 PA5/FIFOADR1 AGND 6 37 PA4/FIFOADR0 AVCC 7 36 PA3/*WU2 DPLUS 8 35 PA2/*SLOE DMINUS 9 34 PA1/INT1# AGND 10 33 PA0/INT0# VCC 11 32 VCC GND 12 31 CTL2/*FLAGC *IFCLK/**PE0 13 30 CTL1/*FLAGB RESERVED 14 29 CTL0/*FLAGA CY7C68013A/CY7C68014A & CY7C68015A/CY7C68016A 56-pin QFN 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCL SDA VCC PB0/FD0 PB1/FD1 PB2/FD2 PB3/FD3 PB4/FD4 PB5/FD5 PB6/FD6 PB7/FD7 GND VCC GND * denotes programmable polarity ** denotes CY7C68015A/CY7C68016A pinout Document Number: 38-08032 Rev. AD Page 23 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment – Top View 1 2 3 4 5 6 7 8 A 1A 2A 3A 4A 5A 6A 7A 8A B 1B 2B 3B 4B 5B 6B 7B 8B C 1C 2C 3C 4C 5C 6C 7C 8C D 1D 2D 7D 8D E 1E 2E 7E 8E F 1F 2F 3F 4F 5F 6F 7F 8F G 1G 2G 3G 4G 5G 6G 7G 8G H 1H 2H 3H 4H 5H 6H 7H 8H Document Number: 38-08032 Rev. AD Page 24 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A CY7C68013A/15A Pin Descriptions Table 11. FX2LP Pin Descriptions[14] 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA Name Type Default Reset[15] Description 10 9 10 3 2D AVCC Power N/A N/A Analog VCC. Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip. 17 16 14 7 1D AVCC Power N/A N/A Analog VCC. Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip. 13 12 13 6 2F AGND Ground N/A N/A Analog Ground. Connect to ground with as short a path as possible. 20 19 17 10 1F AGND Ground N/A N/A Analog Ground. Connect to ground with as short a path as possible. 19 18 16 9 1E DMINUS I/O/Z Z N/A USB D– Signal. Connect to the USB D– signal. 2E DPLUS USB D+ Signal. Connect to the USB D+ signal. 18 I/O/Z Z N/A 94 – 17 – 15 – 8 – A0 Output L L 95 – – – – A1 Output L L 96 – – – – A2 Output L L 97 – – – – A3 Output L L 117 – – – – A4 Output L L 118 – – – – A5 Output L L 119 – – – – A6 Output L L 120 – – – – A7 Output L L 126 – – – – A8 Output L L 127 – – – – A9 Output L L 128 – – – – A10 Output L L 21 – – – – A11 Output L L 22 – – – – A12 Output L L 23 – – – – A13 Output L L 24 – – – – A14 Output L L 25 – – – – A15 Output L L 59 – – – – D0 I/O/Z Z Z 60 – – – – D1 I/O/Z Z Z 61 – – – – D2 I/O/Z Z Z 62 – – – – D3 I/O/Z Z Z 63 – – – – D4 I/O/Z Z Z 86 – – – – D5 I/O/Z Z Z 87 – – – – D6 I/O/Z Z Z 88 – – – – D7 I/O/Z Z Z 39 – – – – PSEN# Output H H 8051 Address Bus. This bus is driven at all times. When the 8051 is addressing internal RAM it reflects the internal address. 8051 Data Bus. This bidirectional bus is high impedance when inactive, input for bus reads, and output for bus writes. The data bus is used for external 8051 program and data memory. The data bus is active only for external bus accesses, and is driven LOW in suspend. Program Store Enable. This active LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH. Notes 14. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in standby. Note also that no pins should be driven while the device is powered down. 15. The Reset column indicates the state of signals during reset (RESET# asserted) or during Power on Reset (POR). Document Number: 38-08032 Rev. AD Page 25 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA 34 28 – – 99 77 49 42 35 12 11 1 – 11 10 100 – 12 11 5 – 5 4 54 Name BKPT 8B – 1C RESET# EA XTALIN Type Default Reset[15] Description Output L L Breakpoint. This pin goes active (HIGH) when the 8051 address bus matches the BPADDRH/L registers and breakpoints are enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears the BREAK bit (by writing 1 to it) in the BREAKPT register. Input N/A N/A Active LOW Reset. Resets the entire chip. See section ”Reset and Wakeup” on page 9 for more details. N/A External Access. This pin determines where the 8051 fetches code between addresses 0x0000 and 0x3FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory. N/A Crystal Input. Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. It is also correct to drive XTALIN with an external 24-MHz square wave derived from another clock source. When driving from an external source, the driving signal should be a 3.3-V square wave. N/A Crystal Output. Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open. Input Input Output N/A N/A 2C XTALOUT N/A 2B CLKOUT on Clock CLKOUT: 12-, 24- or 48-MHz clock, phase-locked CY7C68013A O/Z 12 MHz Driven to the 24-MHz input clock. The 8051 defaults to and 12-MHz operation. The 8051 may three-state this CY7C68014A output by setting CPUCS.1 = 1. -------------------------------------------------------------------------------------------PE1 on ---------- ---------Z ------PE1 is a bidirectional I/O port pin. I CY7C68015A and I/O/Z CY7C68016A 8G Multiplexed pin whose function is selected by PORTACFG.0 PA0 is a bidirectional I/O port pin. INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either edge-triggered (IT0 = 1) or level-triggered (IT0 = 0). Port A 82 83 67 68 40 41 33 34 6G PA0 or INT0# PA1 or INT1# Document Number: 38-08032 Rev. AD I/O/Z I/O/Z I (PA0) I (PA1) Z (PA0) Z (PA1) Multiplexed pin whose function is selected by: PORTACFG.1 PA1 is a bidirectional I/O port pin. INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either edge-triggered (IT1 = 1) or level-triggered (IT1 = 0). Page 26 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA 84 85 89 90 91 92 69 70 71 72 73 74 42 43 44 45 46 47 35 36 37 38 39 40 8F 7F 6F 8C 7C Name PA2 or SLOE PA3 or WU2 PA4 or FIFOADR0 PA5 or FIFOADR1 PA6 or PKTEND 6C PA7 or FLAGD or SLCS# 3H PB0 or FD[0] 4F PB1 or FD[1] 4H PB2 or FD[2] Type I/O/Z I/O/Z I/O/Z I/O/Z I/O/Z Default Reset[15] I (PA2) I (PA3) I (PA4) I (PA5) I (PA6) Z (PA2) Description Multiplexed pin whose function is selected by two bits: IFCONFIG[1:0]. PA2 is a bidirectional I/O port pin. SLOE is an input-only output enable with programmable polarity (FIFOPINPOLAR.4) for the slave FIFOs connected to FD[7..0] or FD[15..0]. Z (PA3) Multiplexed pin whose function is selected by: WAKEUP.7 and OEA.3 PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB Wakeup, enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Asserting this pin inhibits the chip from suspending if WU2EN = 1. Z (PA4) Multiplexed pin whose function is selected by: IFCONFIG[1..0]. PA4 is a bidirectional I/O port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. Z (PA5) Multiplexed pin whose function is selected by: IFCONFIG[1..0]. PA5 is a bidirectional I/O port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. Z (PA6) Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits. PA6 is a bidirectional I/O port pin. PKTEND is an input used to commit the FIFO packet data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5. Z (PA7) Multiplexed pin whose function is selected by the IFCONFIG[1:0] and PORTACFG.7 bits. PA7 is a bidirectional I/O port pin. FLAGD is a programmable slave-FIFO output status flag signal. SLCS# gates all other slave FIFO enable/strobes I/O/Z I (PA7) I/O/Z I (PB0) I/O/Z I (PB1) Z (PB1) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB1 is a bidirectional I/O port pin. FD[1] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PB2) Z (PB2) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB2 is a bidirectional I/O port pin. FD[2] is the bidirectional FIFO/GPIF data bus. Port B 44 45 46 34 35 36 25 26 27 18 19 20 Document Number: 38-08032 Rev. AD Z (PB0) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB0 is a bidirectional I/O port pin. FD[0] is the bidirectional FIFO/GPIF data bus. Page 27 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA 47 54 55 56 57 37 44 45 46 47 28 29 30 31 32 21 22 23 24 25 Name 4G PB3 or FD[3] 5H PB4 or FD[4] 5G PB5 or FD[5] 5F PB6 or FD[6] 6H PB7 or FD[7] Type Default Reset[15] Description I/O/Z I (PB3) Z (PB3) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB3 is a bidirectional I/O port pin. FD[3] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PB4) Z (PB4) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB4 is a bidirectional I/O port pin. FD[4] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PB5) Z (PB5) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB5 is a bidirectional I/O port pin. FD[5] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PB6) Z (PB6) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB6 is a bidirectional I/O port pin. FD[6] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PB7) Z (PB7) Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. PB7 is a bidirectional I/O port pin. FD[7] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PC0) I/O/Z I (PC1) I/O/Z I (PC2) Z (PC2) Multiplexed pin whose function is selected by PORTCCFG.2 PC2 is a bidirectional I/O port pin. GPIFADR2 is a GPIF address output pin. I/O/Z I (PC3) Z (PC3) Multiplexed pin whose function is selected by PORTCCFG.3 PC3 is a bidirectional I/O port pin. GPIFADR3 is a GPIF address output pin. I/O/Z I (PC4) Z (PC4) Multiplexed pin whose function is selected by PORTCCFG.4 PC4 is a bidirectional I/O port pin. GPIFADR4 is a GPIF address output pin. I/O/Z I (PC5) Z (PC5) Multiplexed pin whose function is selected by PORTCCFG.5 PC5 is a bidirectional I/O port pin. GPIFADR5 is a GPIF address output pin. I/O/Z I (PC6) Z (PC6) Multiplexed pin whose function is selected by PORTCCFG.6 PC6 is a bidirectional I/O port pin. GPIFADR6 is a GPIF address output pin. I/O/Z I (PC7) Z (PC7) Multiplexed pin whose function is selected by PORTCCFG.7 PC7 is a bidirectional I/O port pin. GPIFADR7 is a GPIF address output pin. PORT C 72 73 74 75 76 77 78 79 57 58 59 60 61 62 63 64 – – – – – – – – – – – – – – – – – – – PC0 or GPIFADR0 PC1 or GPIFADR1 PC2 or GPIFADR2 – PC3 or GPIFADR3 – PC4 or GPIFADR4 – PC5 or GPIFADR5 – PC6 or GPIFADR6 – PC7 or GPIFADR7 Document Number: 38-08032 Rev. AD Z (PC0) Z (PC1) Multiplexed pin whose function is selected by PORTCCFG.0 PC0 is a bidirectional I/O port pin. GPIFADR0 is a GPIF address output pin. Multiplexed pin whose function is selected by PORTCCFG.1 PC1 is a bidirectional I/O port pin. GPIFADR1 is a GPIF address output pin. Page 28 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA Name Type Default Reset[15] Description PORT D 102 103 104 105 121 122 123 124 80 81 82 83 95 96 97 98 52 53 54 55 56 1 2 3 45 46 47 48 49 50 51 52 8A PD0 or FD[8] 7A PD1 or FD[9] 6B PD2 or FD[10] 6A PD3 or FD[11] 3B PD4 or FD[12] 3A PD5 or FD[13] 3C PD6 or FD[14] 2A PD7 or FD[15] I/O/Z I (PD0) Z (PD0) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD1) Z (PD1) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD2) Z (PD2) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD3) Z (PD3) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD4) Z (PD4) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD5) Z (PD5) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD6) Z (PD6) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus. I/O/Z I (PD7) Z (PD7) Multiplexed pin whose function is selected by the IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus. Z (PE0) Multiplexed pin whose function is selected by the PORTECFG.0 bit. PE0 is a bidirectional I/O port pin. T0OUT is an active-HIGH signal from 8051 Timer-counter0. T0OUT outputs a high level for one CLKOUT clock cycle when Timer0 overflows. If Timer0 is operated in Mode 3 (two separate timer/counters), T0OUT is active when the low byte timer/counter overflows. Z (PE1) Multiplexed pin whose function is selected by the PORTECFG.1 bit. PE1 is a bidirectional I/O port pin. T1OUT is an active HIGH signal from 8051 Timer-counter1. T1OUT outputs a high level for one CLKOUT clock cycle when Timer1 overflows. If Timer1 is operated in Mode 3 (two separate timer/counters), T1OUT is active when the low byte timer/counter overflows. Port E 108 109 86 87 – – – – – – PE0 or T0OUT PE1 or T1OUT Document Number: 38-08032 Rev. AD I/O/Z I/O/Z I (PE0) I (PE1) Page 29 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA 110 111 112 113 114 115 4 88 89 90 91 92 93 3 – – – – – – 8 – – – – – – 1 – – – – Name PE2 or T2OUT PE3 or RXD0OUT PE4 or RXD1OUT PE5 or INT6 – PE6 or T2EX – PE7 or GPIFADR8 1A 5 4 9 2 1B 6 5 – – – RDY0 or SLRD Type I/O/Z I/O/Z I/O/Z I/O/Z Default Reset[15] I (PE2) I (PE3) I (PE4) I (PE5) Description Z (PE2) Multiplexed pin whose function is selected by the PORTECFG.2 bit. PE2 is a bidirectional I/O port pin. T2OUT is the active HIGH output signal from 8051 Timer2. T2OUT is active (HIGH) for one clock cycle when Timer/Counter 2 overflows. Z (PE3) Multiplexed pin whose function is selected by the PORTECFG.3 bit. PE3 is a bidirectional I/O port pin. RXD0OUT is an active HIGH signal from 8051 UART0. If RXD0OUT is selected and UART0 is in Mode 0, this pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1. Z (PE4) Multiplexed pin whose function is selected by the PORTECFG.4 bit. PE4 is a bidirectional I/O port pin. RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH. Z (PE5) Multiplexed pin whose function is selected by the PORTECFG.5 bit. PE5 is a bidirectional I/O port pin. INT6 is the 8051 INT6 interrupt request input signal. The INT6 pin is edge-sensitive, active HIGH. I/O/Z I (PE6) Z (PE6) Multiplexed pin whose function is selected by the PORTECFG.6 bit. PE6 is a bidirectional I/O port pin. T2EX is an active HIGH input signal to the 8051 Timer2. T2EX reloads timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON. I/O/Z I (PE7) Z (PE7) Multiplexed pin whose function is selected by the PORTECFG.7 bit. PE7 is a bidirectional I/O port pin. GPIFADR8 is a GPIF address output pin. N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY0 is a GPIF input signal. SLRD is the input-only read strobe with programmable polarity (FIFOPINPOLAR.3) for the slave FIFOs connected to FD[7..0] or FD[15..0]. Input N/A RDY1 or SLWR Input N/A N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY1 is a GPIF input signal. SLWR is the input-only write strobe with programmable polarity (FIFOPINPOLAR.2) for the slave FIFOs connected to FD[7..0] or FD[15..0]. RDY2 Input N/A N/A RDY2 is a GPIF input signal. Document Number: 38-08032 Rev. AD Page 30 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA Name Type Default Reset[15] Description 7 6 – – – RDY3 Input N/A N/A RDY3 is a GPIF input signal. 8 7 – – – RDY4 Input N/A N/A RDY4 is a GPIF input signal. 9 8 – – – RDY5 Input N/A N/A RDY5 is a GPIF input signal. 69 70 54 55 36 37 29 30 7H 7G CTL0 or FLAGA CTL1 or FLAGB O/Z O/Z H H L Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins. L Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins. CTL2 or FLAGC O/Z H L Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins. – CTL3 O/Z H L CTL3 is a GPIF control output. – – CTL4 Output H L CTL4 is a GPIF control output. – – CTL5 Output H L CTL5 is a GPIF control output. 71 56 38 31 8H 66 51 – – 67 52 – 98 76 – IFCLK on CY7C68013A and CY7C68014A Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1. -----------------PE0 on ---------- ---------- ---------- ---------------------------------------------------------------------CY7C68015A – I Z PE0 is a bidirectional I/O port pin. and I/O/Z CY7C68016A I/O/Z Z Z 32 26 20 13 2G 28 22 – – – INT4 Input N/A N/A INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH. 106 84 – – – INT5# Input N/A N/A INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW. N/A T2 is the active HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When C/T2 = 0, Timer2 does not use this pin. 31 25 – – – T2 Document Number: 38-08032 Rev. AD Input N/A Page 31 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA Name Type Default Reset[15] Description 30 24 – – – T1 Input N/A N/A T1 is the active HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit. 29 23 – – – T0 Input N/A N/A T0 is the active HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit. 53 43 – – – RXD1 Input N/A N/A RXD1is an active HIGH input signal for 8051 UART1, which provides data to the UART in all modes. 52 42 – – – TXD1 Output H L TXD1is an active HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode. 51 41 – – – RXD0 Input N/A N/A RXD0 is the active HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes. 50 40 – – – TXD0 Output H L TXD0 is the active HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode. – – – CS# Output H H CS# is the active LOW chip select for external memory. 42 41 32 – – – WR# Output H H WR# is the active LOW write strobe output for external memory. 40 31 – – – RD# Output H H RD# is the active LOW read strobe output for external memory. – – – OE# Output H H OE# is the active LOW output enable for external memory. 21 14 2H Input N/A N/A Reserved. Connect to ground. N/A USB Wakeup. If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB chip from suspending. This pin has programmable polarity (WAKEUP.4). 38 33 101 36 27 79 29 51 22 44 15 7B 3F Reserved WAKEUP SCL Input OD N/A Z Z Clock for the I2C interface. Connect to VCC with a (if 2.2-k resistor, even if no I2C peripheral is booting attached. is done) Z Data for I2C compatible interface. Connect to (if VCC with a 2.2-k resistor, even if no I2C booting compatible peripheral is attached. is done) 37 30 23 16 3G SDA OD Z 2 1 6 55 5A VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 26 20 18 11 1G VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 43 33 24 17 7E VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 48 38 – – – VCC Power N/A N/A VCC. Connect to 3.3-V power source. 64 49 34 27 8E VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 68 53 – – – VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 81 66 39 32 5C VCC Power N/A N/A VCC. Connect to the 3.3-V power source. Document Number: 38-08032 Rev. AD Page 32 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 11. FX2LP Pin Descriptions[14] (continued) 128 100 56 56 56 TQFP TQFP SSOP QFN VFBGA Name Type Default Reset[15] Description 100 78 50 43 5B VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 107 85 – – – VCC Power N/A N/A VCC. Connect to the 3.3-V power source. 3 2 7 56 4B GND Ground N/A N/A Ground 27 21 19 12 1H GND Ground N/A N/A Ground 49 39 – – – GND Ground N/A N/A Ground 58 48 33 26 7D GND Ground N/A N/A Ground 65 50 35 28 8D GND Ground N/A N/A Ground 80 65 – – – GND Ground N/A N/A Ground 93 75 48 41 4C GND Ground N/A N/A Ground 116 94 – – – GND Ground N/A N/A Ground 125 99 4 53 4A GND Ground N/A N/A Ground 14 13 – – – NC N/A N/A N/A No Connect. This pin must be left open. 15 14 – – – NC N/A N/A N/A No Connect. This pin must be left open. 16 15 – – – NC N/A N/A N/A No Connect. This pin must be left open. Document Number: 38-08032 Rev. AD Page 33 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Register Summary FX2LP register bit definitions are described in the FX2LP TRM in greater detail. Table 12. FX2LP Register Summary Hex Size Name Description b7 GPIF Waveform Memories E400 128 WAVEDATA GPIF Waveform D7 Descriptor 0, 1, 2, 3 data E480 128 reserved GENERAL CONFIGURATION E50D GPCR2 General Purpose Configu- reserved ration Register 2 E600 1 E601 1 CPUCS IFCONFIG E602 1 PINFLAGSAB[16] E603 1 [16] PINFLAGSCD E604 1 FIFORESET[16] E605 E606 E607 E608 BREAKPT BPADDRH BPADDRL UART230 1 1 1 1 E609 1 FIFOPINPOLAR[16] E60A 1 REVID E60B 1 REVCTL[16] E60C 1 3 E610 1 E611 1 E612 E613 E614 E615 1 1 1 1 2 E618 1 E619 1 E61A 1 E61B 1 E61C 4 E620 1 E621 1 E622 1 E623 1 E624 1 E625 1 E626 1 E627 1 E628 1 E629 1 E62A 1 CPU Control & Status Interface Configuration (Ports, GPIF, slave FIFOs) Slave FIFO FLAGA and FLAGB Pin Configuration Slave FIFO FLAGC and FLAGD Pin Configuration Restore FIFOS to default state Breakpoint Control Breakpoint Address H Breakpoint Address L 230 Kbaud internally generated ref. clock Slave FIFO Interface pins polarity Chip Revision Chip Revision Control UDMA GPIFHOLDAMOUNT MSTB Hold Time (for UDMA) reserved ENDPOINT CONFIGURATION EP1OUTCFG Endpoint 1-OUT Configuration EP1INCFG Endpoint 1-IN Configuration EP2CFG Endpoint 2 Configuration EP4CFG Endpoint 4 Configuration EP6CFG Endpoint 6 Configuration EP8CFG Endpoint 8 Configuration reserved EP2FIFOCFG[16] Endpoint 2 / slave FIFO configuration [16] EP4FIFOCFG Endpoint 4 / slave FIFO configuration [16] EP6FIFOCFG Endpoint 6 / slave FIFO configuration EP8FIFOCFG[16] Endpoint 8 / slave FIFO configuration reserved [16 EP2AUTOINLENH Endpoint 2 AUTOIN Packet Length H [16] EP2AUTOINLENL Endpoint 2 AUTOIN Packet Length L EP4AUTOINLENH[16] Endpoint 4 AUTOIN Packet Length H EP4AUTOINLENL[16] Endpoint 4 AUTOIN Packet Length L EP6AUTOINLENH[16] Endpoint 6 AUTOIN Packet Length H EP6AUTOINLENL[16] Endpoint 6 AUTOIN Packet Length L EP8AUTOINLENH[16] Endpoint 8 AUTOIN Packet Length H EP8AUTOINLENL[16] Endpoint 8 AUTOIN Packet Length L ECCCFG ECC Configuration ECCRESET ECC Reset ECC1B0 ECC1 Byte 0 Address b6 b5 D6 D5 reserved reserved b4 D4 b3 D3 b2 b1 b0 Default Access D2 D1 D0 xxxxxxxx RW reserved reserved reserved 00000000 R CLKINV GSTATE CLKOE IFCFG1 8051RES IFCFG0 00000010 rrbbbbbr 10000000 RW 0 IFCLKSRC 0 3048MHZ FULL_reserved SPEED_ONLY PORTCSTB CLKSPD1 CLKSPD0 IFCLKOE IFCLKPOL ASYNC FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 00000000 RW NAKALL 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W 0 A15 A7 0 0 A14 A6 0 0 A13 A5 0 0 A12 A4 0 BREAK A11 A3 0 BPPULSE A10 A2 0 BPEN A9 A1 230UART1 0 A8 A0 230UART0 00000000 xxxxxxxx xxxxxxxx 00000000 0 0 PKTEND SLOE SLRD SLWR EF FF 00000000 rrbbbbbb rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 0 0 0 0 0 0 dyn_out enh_pkt RevA R 00000001 00000000 rrrrrrbb 0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr VALID VALID VALID VALID DIR DIR DIR DIR TYPE1 TYPE1 TYPE1 TYPE1 TYPE0 TYPE0 TYPE0 TYPE0 SIZE 0 SIZE 0 0 0 0 0 BUF1 0 BUF1 0 BUF0 0 BUF0 0 10100010 10100000 11100010 11100000 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 x LINE15 0 x LINE14 0 x LINE13 0 x LINE12 0 x LINE11 0 x LINE10 0 x LINE9 ECCM x LINE8 00000000 rrrrrrrb 00000000 W 00000000 R rrrrbbbr RW RW rrrrrrbb bbbbbrbb bbbbrrrr bbbbbrbb bbbbrrrr Note 16. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay.” Document Number: 38-08032 Rev. AD Page 34 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex E62B E62C E62D E62E E62F E630 H.S. E630 F.S. E631 H.S. E631 F.S E632 H.S. E632 F.S E633 H.S. E633 F.S E634 H.S. E634 F.S E635 H.S. E635 F.S E636 H.S. E636 F.S E637 H.S. E637 F.S Size 1 1 1 1 1 1 Name ECC1B1 ECC1B2 ECC2B0 ECC2B1 ECC2B2 EP2FIFOPFH[17] 1 EP2FIFOPFH[17] 1 EP2FIFOPFL[17] 1 EP2FIFOPFL [17] 1 EP4FIFOPFH[17] 1 EP4FIFOPFH [17] 1 EP4FIFOPFL[17] 1 EP4FIFOPFL[17] 1 EP6FIFOPFH [17] 1 EP6FIFOPFH[17] 1 EP6FIFOPFL[17] 1 EP6FIFOPFL[17] 1 EP8FIFOPFH [17] 1 EP8FIFOPFH[17] 1 EP8FIFOPFL[17] 1 EP8FIFOPFL[17] 8 E640 1 reserved EP2ISOINPKTS E641 1 EP4ISOINPKTS E642 1 EP6ISOINPKTS E643 1 EP8ISOINPKTS E644 4 E648 1 E649 7 E650 1 reserved INPKTEND[17] OUTPKTEND[17] INTERRUPTS EP2FIFOIE[17] E651 1 EP2FIFOIRQ[17,18] E652 1 EP4FIFOIE[17] E653 1 [17,18] EP4FIFOIRQ [17] E654 1 EP6FIFOIE E655 1 EP6FIFOIRQ[17,18] E656 1 EP8FIFOIE[17] [17,18] E657 1 EP8FIFOIRQ E658 1 IBNIE E659 1 IBNIRQ[18] E65A 1 NAKIE E65B 1 NAKIRQ[18] E65C 1 USBIE Description ECC1 Byte 1 Address ECC1 Byte 2 Address ECC2 Byte 0 Address ECC2 Byte 1 Address ECC2 Byte 2 Address Endpoint 2 / slave FIFO Programmable Flag H Endpoint 2 / slave FIFO Programmable Flag H Endpoint 2 / slave FIFO Programmable Flag L Endpoint 2 / slave FIFO Programmable Flag L Endpoint 4 / slave FIFO Programmable Flag H Endpoint 4 / slave FIFO Programmable Flag H Endpoint 4 / slave FIFO Programmable Flag L Endpoint 4 / slave FIFO Programmable Flag L Endpoint 6 / slave FIFO Programmable Flag H Endpoint 6 / slave FIFO Programmable Flag H Endpoint 6 / slave FIFO Programmable Flag L Endpoint 6 / slave FIFO Programmable Flag L Endpoint 8 / slave FIFO Programmable Flag H Endpoint 8 / slave FIFO Programmable Flag H Endpoint 8 / slave FIFO Programmable Flag L Endpoint 8 / slave FIFO Programmable Flag L b7 LINE7 COL5 LINE15 LINE7 COL5 DECIS b6 LINE6 COL4 LINE14 LINE6 COL4 PKTSTAT b4 LINE4 COL2 LINE12 LINE4 COL2 IN:PKTS[1] OUT:PFC11 OUT:PFC11 b3 LINE3 COL1 LINE11 LINE3 COL1 IN:PKTS[0] OUT:PFC10 OUT:PFC10 b2 LINE2 COL0 LINE10 LINE2 COL0 0 b1 LINE1 LINE17 LINE9 LINE1 0 PFC9 b0 LINE0 LINE16 LINE8 LINE0 0 PFC8 Default 00000000 00000000 00000000 00000000 00000000 10001000 PKTSTAT b5 LINE5 COL3 LINE13 LINE5 COL3 IN:PKTS[2] OUT:PFC12 OUT:PFC12 DECIS Access R R R R R bbbbbrbb 0 PFC9 10001000 bbbbbrbb PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 IN:PKTS[2] OUT:PFC8 PFC0 IN:PKTS[1] OUT:PFC7 DECIS IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 0 PFC8 10001000 bbrbbrrb DECIS PKTSTAT 0 IN: PKTS[1] IN: PKTS[0] 0 OUT:PFC10 OUT:PFC9 OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW IN: PKTS[1] OUT:PFC7 DECIS PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW IN:PKTS[1] IN:PKTS[0] 0 OUT:PFC11 OUT:PFC10 OUT:PFC11 OUT:PFC10 0 PFC9 PFC8 00001000 bbbbbrbb DECIS IN: PKTS[0] PFC5 OUT:PFC6 PKTSTAT IN:PKTS[2] OUT:PFC12 PKTSTAT OUT:PFC12 PFC9 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 IN:PKTS[2] OUT:PFC8 PFC0 00001000 bbbbbrbb PFC7 IN:PKTS[1] OUT:PFC7 DECIS IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 PFC8 00001000 bbrbbrrb PKTSTAT 0 IN: PKTS[1] IN: PKTS[0] 0 OUT:PFC10 OUT:PFC9 OUT:PFC10 OUT:PFC9 0 0 DECIS 0 PFC8 00001000 bbrbbrrb PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW IN: PKTS[1] OUT:PFC7 IN: PKTS[0] PFC5 OUT:PFC6 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW EP2 (if ISO) IN Packets per frame (1-3) EP4 (if ISO) IN Packets per frame (1-3) EP6 (if ISO) IN Packets per frame (1-3) EP8 (if ISO) IN Packets per frame (1-3) AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr Force IN Packet End Force OUT Packet End Skip Skip 0 0 0 0 0 0 EP3 EP3 EP2 EP2 EP1 EP1 EP0 EP0 xxxxxxxx W xxxxxxxx W Endpoint 2 slave FIFO Flag Interrupt Enable Endpoint 2 slave FIFO Flag Interrupt Request Endpoint 4 slave FIFO Flag Interrupt Enable Endpoint 4 slave FIFO Flag Interrupt Request Endpoint 6 slave FIFO Flag Interrupt Enable Endpoint 6 slave FIFO Flag Interrupt Request Endpoint 8 slave FIFO Flag Interrupt Enable Endpoint 8 slave FIFO Flag Interrupt Request IN-BULK-NAK Interrupt Enable IN-BULK-NAK interrupt Request Endpoint Ping-NAK / IBN Interrupt Enable Endpoint Ping-NAK / IBN Interrupt Request USB Int Enables 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000 RW 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx rrbbbbbb EP8 EP6 EP4 EP2 EP1 EP0 0 IBN 00000000 RW EP8 EP6 EP4 EP2 EP1 EP0 0 IBN xxxxxx0x bbbbbbrb 0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 00000000 RW 00000000 RW 00000000 RW Notes 17. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”. 18. The register can only be reset; it cannot be set. Document Number: 38-08032 Rev. AD Page 35 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name E65D 1 USBIRQ[19] E65E 1 EPIE E65F 1 EPIRQ[19] E660 1 E661 1 E662 1 GPIFIE[20] GPIFIRQ[20] USBERRIE E663 1 USBERRIRQ[19] E664 1 E665 1 E666 1 ERRCNTLIM CLRERRCNT INT2IVEC E667 1 INT4IVEC E668 1 E669 7 E670 1 INTSET-UP reserved INPUT / OUTPUT PORTACFG E671 1 PORTCCFG E672 1 PORTECFG E673 4 E677 1 E678 1 reserved reserved I2CS E679 1 I2DAT E67A 1 I2CTL E67B 1 XAUTODAT1 E67C 1 XAUTODAT2 E680 E681 E682 E683 E684 E685 E686 E687 E688 1 1 1 1 1 1 1 1 2 UDMA CRC UDMACRCH[20] UDMACRCL[20] UDMACRCQUALIFIER USB CONTROL USBCS SUSPEND WAKEUPCS TOGCTL USBFRAMEH USBFRAMEL MICROFRAME FNADDR reserved E68A E68B E68C E68D 1 1 1 1 ENDPOINTS EP0BCH[20] EP0BCL[20] reserved EP1OUTBC E68E E68F E690 E691 E692 E694 E695 E696 E698 E699 1 1 1 1 2 1 1 2 1 1 reserved EP1INBC EP2BCH[20] EP2BCL[20] reserved EP4BCH[20] EP4BCL[20] reserved EP6BCH[20] EP6BCL[20] E67D 1 E67E 1 E67F 1 Description b7 USB Interrupt Requests 0 Endpoint Interrupt EP8 Enables Endpoint Interrupt EP8 Requests GPIF Interrupt Enable 0 GPIF Interrupt Request 0 USB Error Interrupt ISOEP8 Enables USB Error Interrupt ISOEP8 Requests USB Error counter and limit EC3 Clear Error Counter EC3:0 x Interrupt 2 (USB) 0 Autovector Interrupt 4 (slave FIFO & 1 GPIF) Autovector Interrupt 2&4 setup 0 b6 EP0ACK EP6 b5 HSGRANT EP4 b4 URES EP2 b3 SUSP EP1OUT b2 SUTOK EP1IN b1 SOF EP0OUT b0 SUDAV EP0IN Default Access 0xxxxxxx rbbbbbbb 00000000 RW EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 0 0 0 ISOEP6 0 0 ISOEP4 0 0 ISOEP2 0 0 0 0 0 0 GPIFWF GPIFWF 0 GPIFDONE GPIFDONE ERRLIMIT 00000000 RW 000000xx RW 00000000 RW ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 0000000x bbbbrrrb EC2 x I2V4 EC1 x I2V3 EC0 x I2V2 LIMIT3 x I2V1 LIMIT2 x I2V0 LIMIT1 x 0 LIMIT0 x 0 xxxx0100 rrrrbbbb xxxxxxxx W 00000000 R 0 I4V3 I4V2 I4V1 I4V0 0 0 10000000 R 0 0 0 AV2EN 0 INT4SRC AV4EN 00000000 RW I/O PORTA Alternate Configuration I/O PORTC Alternate Configuration I/O PORTE Alternate Configuration FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW I²C Bus Control & Status I²C Bus Data I²C Bus Control Autoptr1 MOVX access, when APTREN=1 Autoptr2 MOVX access, when APTREN=1 START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW 0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW UDMA CRC MSB UDMA CRC LSB UDMA CRC Qualifier CRC15 CRC7 QENABLE CRC14 CRC6 0 CRC13 CRC5 0 CRC12 CRC4 0 CRC11 CRC3 QSTATE CRC10 CRC2 QSIGNAL2 CRC9 CRC1 QSIGNAL1 CRC8 CRC0 QSIGNAL0 01001010 RW 10111010 RW 00000000 brrrbbbb USB Control & Status Put chip into suspend Wakeup Control & Status Toggle Control USB Frame count H USB Frame count L Microframe count, 0-7 USB Function address HSM x WU2 Q 0 FC7 0 0 0 x WU S 0 FC6 0 FA6 0 x WU2POL R 0 FC5 0 FA5 0 x WUPOL I/O 0 FC4 0 FA4 DISCON x 0 EP3 0 FC3 0 FA3 NOSYNSOF x DPEN EP2 FC10 FC2 MF2 FA2 RENUM x WU2EN EP1 FC9 FC1 MF1 FA1 SIGRSUME x WUEN EP0 FC8 FC0 MF0 FA0 x0000000 xxxxxxxx xx000101 x0000000 00000xxx xxxxxxxx 00000xxx 0xxxxxxx Endpoint 0 Byte Count H Endpoint 0 Byte Count L (BC15) (BC7) (BC14) BC6 (BC13) BC5 (BC12) BC4 (BC11) BC3 (BC10) BC2 (BC9) BC1 (BC8) BC0 xxxxxxxx RW xxxxxxxx RW Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW Endpoint 1 IN Byte Count 0 Endpoint 2 Byte Count H 0 Endpoint 2 Byte Count L BC7/SKIP BC6 0 BC6 BC5 0 BC5 BC4 0 BC4 BC3 0 BC3 BC2 BC10 BC2 BC1 BC9 BC1 BC0 BC8 BC0 0xxxxxxx RW 00000xxx RW xxxxxxxx RW Endpoint 4 Byte Count H Endpoint 4 Byte Count L 0 BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 0 BC2 BC9 BC1 BC8 BC0 000000xx RW xxxxxxxx RW Endpoint 6 Byte Count H Endpoint 6 Byte Count L 0 BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 BC10 BC2 BC9 BC1 BC8 BC0 00000xxx RW xxxxxxxx RW RW rrrrbbbb W bbbbrbbb rrrbbbbb R R R R Notes 19. The register can only be reset; it cannot be set. 20. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”. Document Number: 38-08032 Rev. AD Page 36 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex E69A E69C E69D E69E E6A0 Size 2 1 1 2 1 Name reserved EP8BCH[21] EP8BCL[21] reserved EP0CS E6A1 1 EP1OUTCS E6A2 1 EP1INCS E6A3 1 EP2CS E6A4 1 EP4CS E6A5 1 EP6CS E6A6 1 EP8CS E6A7 1 EP2FIFOFLGS E6A8 1 EP4FIFOFLGS E6A9 1 EP6FIFOFLGS E6AA 1 EP8FIFOFLGS E6AB 1 EP2FIFOBCH E6AC 1 EP2FIFOBCL E6AD 1 EP4FIFOBCH E6AE 1 EP4FIFOBCL E6AF 1 EP6FIFOBCH E6B0 1 EP6FIFOBCL E6B1 1 EP8FIFOBCH E6B2 1 EP8FIFOBCL E6B3 1 SUDPTRH E6B4 1 SUDPTRL E6B5 1 SUDPTRCTL 2 E6B8 8 reserved SET-UPDAT E6C0 1 E6C1 1 GPIF GPIFWFSELECT GPIFIDLECS E6C2 E6C3 E6C4 E6C5 1 1 1 1 E6C6 1 GPIFIDLECTL GPIFCTLCFG GPIFADRH[21] GPIFADRL[21] FLOWSTATE FLOWSTATE E6C7 1 E6C8 1 FLOWLOGIC FLOWEQ0CTL Description Endpoint 8 Byte Count H Endpoint 8 Byte Count L b7 0 BC7/SKIP b6 b5 b4 b3 b2 b1 b0 Default Access 0 BC6 0 BC5 0 BC4 0 BC3 0 BC2 BC9 BC1 BC8 BC0 000000xx RW xxxxxxxx RW Endpoint 0 Control and Sta- HSNAK tus Endpoint 1 OUT Control 0 and Status Endpoint 1 IN Control and 0 Status Endpoint 2 Control and Sta- 0 tus Endpoint 4 Control and Sta- 0 tus Endpoint 6 Control and Sta- 0 tus Endpoint 8 Control and Sta- 0 tus Endpoint 2 slave FIFO 0 Flags Endpoint 4 slave FIFO 0 Flags Endpoint 6 slave FIFO 0 Flags Endpoint 8 slave FIFO 0 Flags Endpoint 2 slave FIFO 0 total byte count H Endpoint 2 slave FIFO BC7 total byte count L Endpoint 4 slave FIFO 0 total byte count H Endpoint 4 slave FIFO BC7 total byte count L Endpoint 6 slave FIFO 0 total byte count H Endpoint 6 slave FIFO BC7 total byte count L Endpoint 8 slave FIFO 0 total byte count H Endpoint 8 slave FIFO BC7 total byte count L Setup Data Pointer high A15 address byte Setup Data Pointer low ad- A7 dress byte Setup Data Pointer Auto 0 Mode 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb 0 0 0 0 PF EF FF 00000010 R 0 0 0 0 PF EF FF 00000010 R 0 0 0 0 PF EF FF 00000110 R 0 0 0 0 PF EF FF 00000110 R 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 0 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 BC11 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 0 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW A6 A5 A4 A3 A2 A1 0 xxxxxxx0 bbbbbbbr 0 0 0 0 0 0 SDPAUTO 00000001 RW 8 bytes of setup data D7 SET-UPDAT[0] = bmRequestType SET-UPDAT[1] = bmRequest SET-UPDAT[2:3] = wValue SET-UPDAT[4:5] = wIndex SET-UPDAT[6:7] = wLength D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R Waveform Selector GPIF Done, GPIF IDLE drive mode Inactive Bus, CTL states CTL Drive Type GPIF Address H GPIF Address L SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 DONE 0 0 0 0 FIFOWR0 0 FIFORD1 0 FIFORD0 IDLEDRV 11100100 RW 10000000 RW 0 TRICTL 0 GPIFA7 0 0 0 GPIFA6 CTL5 CTL5 0 GPIFA5 CTL4 CTL4 0 GPIFA4 CTL3 CTL3 0 GPIFA3 CTL2 CTL2 0 GPIFA2 CTL1 CTL1 0 GPIFA1 CTL0 CTL0 GPIFA8 GPIFA0 11111111 00000000 00000000 00000000 Flowstate Enable and Selector Flowstate Logic CTL-Pin States in Flowstate (when Logic = 0) FSE 0 0 0 0 FS2 FS1 FS0 00000000 brrrrbbb LFUNC1 CTL0E3 LFUNC0 CTL0E2 TERMA2 CTL0E1/ CTL5 TERMA1 CTL0E0/ CTL4 TERMA0 CTL3 TERMB2 CTL2 TERMB1 CTL1 TERMB0 CTL0 00000000 RW 00000000 RW RW RW RW RW Note 21. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”. Document Number: 38-08032 Rev. AD Page 37 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name E6C9 1 FLOWEQ1CTL E6CA 1 E6CB 1 FLOWHOLDOFF FLOWSTB E6CC 1 FLOWSTBEDGE E6CD 1 E6CE 1 FLOWSTBPERIOD GPIFTCB3[22] E6CF 1 GPIFTCB2[22] E6D0 1 GPIFTCB1[22] E6D1 1 GPIFTCB0[22] 2 E6D2 1 E6D3 1 E6D4 1 3 E6DA 1 E6DB 1 E6DC 1 3 E6E2 1 E6E3 1 E6E4 1 3 E6EA 1 E6EB 1 E6EC 1 3 E6F0 1 E6F1 1 E6F2 1 E6F3 1 E6F4 1 E6F5 1 E6F6 2 E740 E780 E7C0 E800 F000 64 64 64 2048 1024 F400 512 F600 512 Description CTL-Pin States in Flowstate (when Logic = 1) Holdoff Configuration Flowstate Strobe Configuration Flowstate Rising/Falling Edge Configuration Master-Strobe Half-Period GPIF Transaction Count Byte 3 GPIF Transaction Count Byte 2 GPIF Transaction Count Byte 1 GPIF Transaction Count Byte 0 reserved reserved reserved EP2GPIFFLGSEL[22] Endpoint 2 GPIF Flag select EP2GPIFPFSTOP Endpoint 2 GPIF stop transaction on prog. flag [22] EP2GPIFTRIG Endpoint 2 GPIF Trigger reserved reserved reserved EP4GPIFFLGSEL[22] Endpoint 4 GPIF Flag select EP4GPIFPFSTOP Endpoint 4 GPIF stop transaction on GPIF Flag [22] EP4GPIFTRIG Endpoint 4 GPIF Trigger reserved reserved reserved EP6GPIFFLGSEL[22] Endpoint 6 GPIF Flag select EP6GPIFPFSTOP Endpoint 6 GPIF stop transaction on prog. flag [22] EP6GPIFTRIG Endpoint 6 GPIF Trigger reserved reserved reserved EP8GPIFFLGSEL[22] Endpoint 8 GPIF Flag select EP8GPIFPFSTOP Endpoint 8 GPIF stop transaction on prog. flag [22] EP8GPIFTRIG Endpoint 8 GPIF Trigger reserved XGPIFSGLDATH GPIF Data H (16-bit mode only) XGPIFSGLDATLX Read/Write GPIF Data L & trigger transaction XGPIFSGLDATLNOX Read GPIF Data L, no transaction trigger GPIFREADYCFG Internal RDY, Sync/Async, RDY pin states GPIFREADYSTAT GPIF Ready Status GPIFABORT Abort GPIF Waveforms reserved ENDPOINT BUFFERS EP0BUF EP0-IN/-OUT buffer EP10UTBUF EP1-OUT buffer EP1INBUF EP1-IN buffer reserved EP2FIFOBUF 512/1024 byte EP 2 / slave FIFO buffer (IN or OUT) EP4FIFOBUF 512 byte EP 4 / slave FIFO buffer (IN or OUT) reserved b7 CTL0E3 b6 CTL0E2 b5 CTL0E1/ CTL5 HOPERIOD3 HOPERIOD2 HOPERIOD1 SLAVE RDYASYNC CTLTOGL b4 b3 CTL0E0/ CTL3 CTL4 HOPERIOD0 HOSTATE SUSTAIN 0 b2 CTL2 b1 CTL1 CTL0 b0 Default Access 00000000 RW HOCTL2 MSTB2 HOCTL1 MSTB1 HOCTL0 MSTB0 00010010 RW 00100000 RW 0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb D7 TC31 D6 TC30 D5 TC29 D4 TC28 D3 TC27 D2 TC26 D1 TC25 D0 TC24 00000010 RW 00000000 RW TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000 RW TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW 00000000 RW 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO2FLAG 00000000 RW x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO4FLAG 00000000 RW x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO6FLAG 00000000 RW x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO8FLAG 00000000 RW x x x x x x x x xxxxxxxx W D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R INTRDY SAS TCXRDY5 0 0 0 0 0 00000000 bbbrrrrr 0 x 0 x RDY5 x RDY4 x RDY3 x RDY2 x RDY1 x RDY0 x 00xxxxxx R xxxxxxxx W D7 D7 D7 D6 D6 D6 D5 D5 D5 D4 D4 D4 D3 D3 D3 D2 D2 D2 D1 D1 D1 D0 D0 D0 D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW xxxxxxxx RW xxxxxxxx RW RW xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW Note 22. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”. Document Number: 38-08032 Rev. AD Page 38 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name F800 1024 EP6FIFOBUF FC00 512 EP8FIFOBUF Description 512/1024 byte EP 6 / slave D7 FIFO buffer (IN or OUT) 512 byte EP 8 / slave FIFO D7 buffer (IN or OUT) FE00 512 reserved xxxx I²C Configuration Byte 80 81 82 83 84 85 86 87 88 1 1 1 1 1 1 1 1 1 89 1 8A 8B 8C 8D 8E 8F 90 91 92 1 1 1 1 1 1 1 1 1 93 98 5 1 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A8 1 1 1 1 1 1 1 1 1 1 5 1 A9 AA 1 1 AB 1 AC 1 AD AF B0 B1 2 1 1 1 B2 B3 B4 B5 B6 B7 B8 1 1 1 1 1 1 1 B9 1 Special Function Registers (SFRs) IOA[24] Port A (bit addressable) SP Stack Pointer DPL0 Data Pointer 0 L DPH0 Data Pointer 0 H [24] DPL1 Data Pointer 1 L [24] DPH1 Data Pointer 1 H DPS[24] Data Pointer 0/1 select PCON Power Control TCON Timer/Counter Control (bit addressable) TMOD Timer/Counter Mode Control TL0 Timer 0 reload L TL1 Timer 1 reload L TH0 Timer 0 reload H TH1 Timer 1 reload H CKCON[24] Clock Control reserved [24] IOB Port B (bit addressable) EXIF[24] External Interrupt Flag(s) MPAGE[24] Upper Addr Byte of MOVX using @R0 / @R1 reserved SCON0 Serial Port 0 Control (bit addressable) SBUF0 Serial Port 0 Data Buffer [24] AUTOPTRH1 Autopointer 1 Address H AUTOPTRL1[24] Autopointer 1 Address L reserved AUTOPTRH2[24] Autopointer 2 Address H AUTOPTRL2[24] Autopointer 2 Address L reserved [24] IOC Port C (bit addressable) INT2CLR[24] Interrupt 2 clear INT4CLR[24] Interrupt 4 clear reserved IE Interrupt Enable (bit addressable) reserved EP2468STAT[24] Endpoint 2,4,6,8 status flags EP24FIFOFLGS Endpoint 2,4 slave FIFO [24] status flags EP68FIFOFLGS Endpoint 6,8 slave FIFO [24] status flags reserved AUTOPTRSETUP[24] Autopointer 1&2 setup IOD[24] Port D (bit addressable) IOE[24] Port E (NOT bit addressable) [24] OEA Port A Output Enable [24] OEB Port B Output Enable OEC[24] Port C Output Enable OED[24] Port D Output Enable OEE[24] Port E Output Enable reserved IP Interrupt Priority (bit addressable) reserved b7 D6 b6 D5 b5 D4 b4 D3 b3 D2 b2 D1 b1 D0 b0 Default Access xxxxxxxx RW D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW 0 DISCON 0 0 0 0 0 400KHZ xxxxxxxx n/a D7 D7 A7 A15 A7 A15 0 SMOD0 TF1 D6 D6 A6 A14 A6 A14 0 x TR1 D5 D5 A5 A13 A5 A13 0 1 TF0 D4 D4 A4 A12 A4 A12 0 1 TR0 D3 D3 A3 A11 A3 A11 0 x IE1 D2 D2 A2 A10 A2 A10 0 x IT1 D1 D1 A1 A9 A1 A9 0 x IE0 D0 D0 A0 A8 A0 A8 SEL IDLE IT0 xxxxxxxx 00000111 00000000 00000000 00000000 00000000 00000000 00110000 00000000 GATE CT M1 M0 GATE CT M1 M0 00000000 RW D7 D7 D15 D15 x D6 D6 D14 D14 x D5 D5 D13 D13 T2M D4 D4 D12 D12 T1M D3 D3 D11 D11 T0M D2 D2 D10 D10 MD2 D1 D1 D9 D9 MD1 D0 D0 D8 D8 MD0 00000000 00000000 00000000 00000000 00000001 D7 IE5 A15 D6 IE4 A14 D5 I²CINT A13 D4 USBNT A12 D3 1 A11 D2 0 A10 D1 0 A9 D0 0 A8 xxxxxxxx RW 00001000 RW 00000000 RW SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW D7 A15 A7 D6 A14 A6 D5 A13 A5 D4 A12 A4 D3 A11 A3 D2 A10 A2 D1 A9 A1 D0 A8 A0 00000000 RW 00000000 RW 00000000 RW A15 A7 A14 A6 A13 A5 A12 A4 A11 A3 A10 A2 A9 A1 A8 A0 00000000 RW 00000000 RW D7 x x D6 x x D5 x x D4 x x D3 x x D2 x x D1 x x D0 x x xxxxxxxx RW xxxxxxxx W xxxxxxxx W EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW EP8F EP8E EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R 0 EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF 00100010 R 0 EP8PF EP8EF EP8FF 0 EP6PF EP6EF EP6FF 01100110 R 0 D7 D7 0 D6 D6 0 D5 D5 0 D4 D4 0 D3 D3 APTR2INC D2 D2 APTR1INC D1 D1 APTREN D0 D0 00000110 RW xxxxxxxx RW xxxxxxxx RW D7 D7 D7 D7 D7 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 D4 D4 D4 D4 D4 D3 D3 D3 D3 D3 D2 D2 D2 D2 D2 D1 D1 D1 D1 D1 D0 D0 D0 D0 D0 00000000 00000000 00000000 00000000 00000000 1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000 RW [23] RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW Notes 23. If no EEPROM is detected by the SIE then the default is 00000000. 24. SFRs not part of the standard 8051 architecture. Document Number: 38-08032 Rev. AD Page 39 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name BA 1 EP01STAT[25] BB 1 GPIFTRIG[25, 26] BC BD 1 1 reserved GPIFSGLDATH[25] BE BF 1 1 C0 1 GPIFSGLDATLX[25] GPIFSGLDATLNOX[25] SCON1[25] C1 C2 C8 1 6 1 SBUF1[25] C9 CA 1 1 reserved RCAP2L CB 1 RCAP2H CC CD CE D0 1 1 2 1 TL2 TH2 reserved PSW D1 D8 D9 E0 7 1 7 1 reserved EICON[25] reserved ACC E1 E8 7 1 reserved EIE[25] E9 F0 F1 F8 7 1 7 1 reserved B reserved EIP[25] F9 7 reserved reserved T2CON Description Endpoint 0&1 Status Endpoint 2,4,6,8 GPIF slave FIFO Trigger b7 0 DONE 0 0 0 0 0 0 0 0 b2 EP1INBSY RW b1 b0 EP1OUTBSY EP0BSY EP1 EP0 Default Access 00000000 R 10000xxx brrrrbbb GPIF Data H (16-bit mode D15 only) GPIF Data L w/ Trigger D7 GPIF Data L w/ No Trigger D7 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 xxxxxxxx RW xxxxxxxx R Serial Port 1 Control (bit addressable) Serial Port 1 Data Buffer SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Timer/Counter 2 Control (bit addressable) TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW Capture for Timer 2, auto-reload, up-counter Capture for Timer 2, auto-reload, up-counter Timer 2 reload L Timer 2 reload H D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW D7 D15 D6 D14 D5 D13 D4 D12 D3 D11 D2 D10 D1 D9 D0 D8 00000000 RW 00000000 RW Program Status Word (bit CY addressable) AC F0 RS1 RS0 OV F1 P 00000000 RW External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW Accumulator (bit address- D7 able) D6 D5 D4 D3 D2 D1 D0 00000000 RW External Interrupt Enable(s) 1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW External Interrupt Priority 1 Control b6 b5 b4 b3 R = all bits read-only W = all bits write-only r = read-only bit w = write-only bit b = both read/write bit Notes 25. SFRs not part of the standard 8051 architecture. 26. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”. Document Number: 38-08032 Rev. AD Page 40 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Absolute Maximum Ratings Operating Conditions Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. TA (ambient temperature under bias) Commercial ................................................... 0 °C to +70 °C Storage temperature ................................ –65 °C to +150 °C TA (ambient temperature under bias) Industrial .................................................. –40 °C to +105 °C Ambient temperature with power supplied (Commercial)......................... 0 °C to +70 °C Ambient temperature with power supplied (Industrial) ...................... –40 °C to +105 °C Supply voltage to ground potential ..............–0.5 V to +4.0 V Supply voltage .........................................+3.00 V to +3.60 V Ground voltage ................................................................ 0 V FOSC (oscillator or crystal frequency) .... 24 MHz ± 100 ppm, parallel resonant DC input voltage to any input pin[27] ........................... 5.25 V DC voltage applied to outputs in high Z state .................................... –0.5 V to VCC + 0.5 V Power dissipation .................................................... 300 mW Static discharge voltage .......................................... >2000 V Max output current, per I/O port ................................. 10 mA Max output current, all five I/O ports (128-pin and 100-pin packages) ................................. 50 mA Thermal Characteristics Maximum junction temperature ................................. 125 °C The following table displays the thermal characteristics of various packages: Table 13. Thermal Characteristics Package Ambient Temperature (°C) Jc Junction to Case Thermal Resistance (°C/W) Ja Junction to Ambient Thermal Resistance (°C/W) 70 24.4 47.7 56 SSOP 100 TQFP 70 11.9 45.9 128 TQFP 70 15.5 43.2 56 QFN 70 10.6 25.2 56 VFBGA 70 30.9 58.6 The junction temperature j, can be calculated using the following equation: j = P*Ja + a Where, P = Power Ja = Junction to ambient temperature (Jc + Ca) a = Ambient temperature (70 °C) The case temperature c, can be calculated using the following equation: c = P*Ca + a where, P = Power Ca = Case to ambient temperature a = Ambient temperature (70 °C) Note 27. Do not power I/O with the chip power OFF. Document Number: 38-08032 Rev. AD Page 41 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A DC Electrical Characteristics Table 14. DC Characteristics Parameter Min Typ Max Unit – 3.00 3.3 3.60 V VCC Ramp Up 0 to 3.3 V – 200 – – s VIH Input HIGH voltage – 2 – 5.25 V VIL Input LOW voltage – –0.5 – 0.8 V VIH_X Crystal input HIGH voltage – 2 – 5.25 V VIL_X Crystal input LOW voltage – –0.5 – 0.8 V II Input leakage current 0< VIN < VCC – – ±10 A VOH Output voltage HIGH IOUT = 4 mA 2.4 – – V VOL Output LOW voltage IOUT = –4 mA – – 0.4 V VCC Description Supply voltage Conditions IOH Output current HIGH – – – 4 mA IOL Output current LOW – – – 4 mA CIN Input pin capacitance ISUSP ICC TRESET Except D+/D– – – 10 pF D+/D– – – 15 pF Suspend current Connected – 300 380[28] A CY7C68014/CY7C68016 Disconnected – 100 150[28] A mA mA Suspend current Connected – 0.5 1.2[28] CY7C68013/CY7C68015 Disconnected – 0.3 1.0[28] Supply current Reset time after valid power Pin reset after powered on 8051 running, connected to USB HS – 50 85 mA 8051 running, connected to USB FS – 35 65 mA VCC min = 3.0 V 5.0 – – ms 200 – – s USB Transceiver USB 2.0 compliant in Full Speed and Hi-Speed modes. Note 28. Measured at Max VCC, 25 °C. Document Number: 38-08032 Rev. AD Page 42 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A AC Electrical Characteristics USB Transceiver USB 2.0 compliant in Full-Speed and Hi-Speed modes. Program Memory Read Figure 12. Program Memory Read Timing Diagram tCL CLKOUT[29] tAV tAV A[15..0] tSTBH tSTBL PSEN# tDH [30] tACC1 D[7..0] data in tSOEL OE# tSCSL CS# Table 15. Program Memory Read Parameters Parameter Description Min Typ Max Unit Notes – 20.83 – ns 48 MHz – 41.66 – ns 24 MHz tCL 1/CLKOUT frequency – 83.2 – ns 12 MHz tAV Delay from clock to valid address 0 – 10.7 ns – tSTBL Clock to PSEN LOW 0 – 8 ns – tSTBH Clock to PSEN HIGH 0 – 8 ns – tSOEL Clock to OE LOW – – 11.1 ns – tSCSL Clock to CS LOW – – 13 ns – tDSU Data setup to clock 9.6 – – ns – tDH Data hold time 0 – – ns – Notes 29. CLKOUT is shown with positive polarity. 30. tACC1 is computed from these parameters as follows: tACC1(24 MHz) = 3*tCL – tAV – tDSU = 106 ns. tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns. Document Number: 38-08032 Rev. AD Page 43 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Data Memory Read[31] Figure 13. Data Memory Read Timing Diagram tCL Stretch = 0 CLKOUT[29] tAV tAV A[15..0] tSTBH tSTBL RD# tSCSL CS# tSOEL OE# [32] tDSU tDH tACC2 D[7..0] data in Stretch = 1 tCL CLKOUT[29] tAV A[15..0] RD# CS# tDSU tACC3 [32] D[7..0] tDH data in Table 16. Data Memory Read Parameters Parameter tCL Description 1/CLKOUT frequency Min Typ Max Unit Notes – 20.83 – ns 48 MHz – 41.66 – ns 24 MHz – 83.2 – ns 12 MHz tAV Delay from clock to valid address – – 10.7 ns – tSTBL Clock to RD LOW – – 11 ns – tSTBH Clock to RD HIGH – – 11 ns – tSCSL Clock to CS LOW – – 13 ns – tSOEL Clock to OE LOW – – 11.1 ns – tDSU Data setup to clock 9.6 – – ns – tDH Data hold time 0 – – ns – When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value. Notes 31. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these. 32. tACC2 and tACC3 are computed from these parameters as follows: tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns. Document Number: 38-08032 Rev. AD Page 44 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Data Memory Write[33] Figure 14. Data Memory Write Timing Diagram tCL CLKOUT tAV tSTBL tSTBH tAV A[15..0] WR# tSCSL CS# tON1 tOFF1 data out D[7..0] Stretch = 1 tCL CLKOUT tAV A[15..0] WR# CS# tON1 tOFF1 data out D[7..0] Table 17. Data Memory Write Parameters Parameter Description Min Max Unit Notes tAV Delay from clock to valid address 0 10.7 ns – tSTBL Clock to WR pulse LOW 0 11.2 ns – tSTBH Clock to WR pulse HIGH 0 11.2 ns – tSCSL Clock to CS pulse LOW – 13.0 ns – tON1 Clock to data turn-on 0 13.1 ns – tOFF1 Clock to data hold time 0 13.1 ns – When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value. Note 33. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these. Document Number: 38-08032 Rev. AD Page 45 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A PORTC Strobe Feature Timings The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register. The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed. The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 16. As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for two clock cycles after three clock cycles from the point when the 8051 has performed a read function on PORTC. The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself; it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read. The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC. Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Data Memory Read[31] on page 44 and Data Memory Write[33] on page 45 for details on propagation delay of RD# and WR# signals. Figure 16. WR# Strobe Function when PORTC is Accessed by 8051 tCLKOUT CLKOUT PORTC IS UPDATED tSTBL tSTBH WR# Figure 17. RD# Strobe Function when PORTC is Accessed by 8051 tCLKOUT CLKOUT 8051 READS PORTC DATA CAN BE UPDATED BY EXTERNAL LOGIC DATA MUST BE HELD FOR 3 CLK CYLCES tSTBL tSTBH RD# Document Number: 38-08032 Rev. AD Page 46 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A GPIF Synchronous Signals Figure 18. GPIF Synchronous Signals Timing Diagram[34] tIFCLK IFCLK tSGA GPIFADR[8:0] RDYX tSRY tRYH DATA(input) valid tSGD tDAH CTLX tXCTL DATA(output) N N+1 tXGD Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[34, 35] Parameter Description Min Max 20.83 8.9 Typ Unit Min Max – – – ns – – – ns 0 – – – ns 9.2 – – – ns tIFCLK IFCLK Period tSRY RDYX to clock setup time tRYH RDYX Hold Time tSGD GPIF data to clock setup time tDAH GPIF data hold time 0 – – – ns tSGA Clock to GPIF address propagation delay – 7.5 – – ns tXGD Clock to GPIF data output propagation delay – 10 – – ns tXCTL Clock to CTLX output propagation delay – 6.7 – – ns tIFCLKR IFCLK rise time – – – 900 ps tIFCLKF IFCLK fall time – – – 900 ps tIFCLKOD IFCLK output duty cycle – – 49 51 % tIFCLKJ IFCLK jitter peak to peak – – – 300 ps Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[35] Parameter Description Min Max Unit 20.83 200 ns RDYX to clock setup time 2.9 – ns RDYX Hold Time 3.7 – ns tSGD GPIF data to clock setup time 3.2 – ns tDAH GPIF data hold time 4.5 – ns tSGA Clock to GPIF address propagation delay – 11.5 ns tXGD Clock to GPIF data output propagation delay – 15 ns tXCTL Clock to CTLX output propagation delay – 10.7 ns tIFCLK IFCLK period[36] tSRY tRYH Notes 34. Dashed lines denote signals with programmable polarity. 35. GPIF asynchronous RDYx signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK. 36. IFCLK must not exceed 48 MHz. Document Number: 38-08032 Rev. AD Page 47 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Synchronous Read Figure 19. Slave FIFO Synchronous Read Timing Diagram [37] tIFCLK IFCLK tSRD tRDH SLRD tXFLG FLAGS DATA N+1 N tOEon tXFD tOEoff SLOE Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[38] Parameter Description Min Max Typ Min Max Unit tIFCLK IFCLK period 20.83 – – – ns tSRD SLRD to clock setup time 18.7 – – – ns tRDH Clock to SLRD hold time 0 – – – ns tOEon SLOE turn on to FIFO data valid – 10.5 – – ns tOEoff SLOE turn off to FIFO data hold – 10.5 – – ns tXFLG Clock to FLAGS output propagation delay – 9.5 – – ns tXFD Clock to FIFO data output propagation delay – 11 – – ns tIFCLKR IFCLK rise time – – – 900 ps tIFCLKF IFCLK fall time – – – 900 ps tIFCLKOD IFCLK output duty cycle – – 49 51 % tIFCLKJ IFCLK jitter peak to peak – – – 300 ps Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[38] Parameter Description Min Max Unit tIFCLK IFCLK period 20.83 200 ns tSRD SLRD to clock setup time 12.7 – ns tRDH Clock to SLRD hold time 3.7 – ns tOEon SLOE turn on to FIFO data valid – 10.5 ns tOEoff SLOE turn off to FIFO data hold – 10.5 ns tXFLG Clock to FLAGS output propagation delay – 13.5 ns tXFD Clock to FIFO data output propagation delay – 15 ns Notes 37. Dashed lines denote signals with programmable polarity. 38. GPIF asynchronous RDYx signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK. Document Number: 38-08032 Rev. AD Page 48 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Asynchronous Read Figure 20. Slave FIFO Asynchronous Read Timing Diagram [39] tRDpwh SLRD tRDpwl FLAGS tXFD tXFLG DATA SLOE N N+1 tOEon tOEoff Table 22. Slave FIFO Asynchronous Read Parameters[40] Min Max Unit tRDpwl Parameter SLRD pulse width LOW Description 50 – ns tRDpwh SLRD pulse width HIGH 50 – ns tXFLG SLRD to FLAGS output propagation delay – 70 ns tXFD SLRD to FIFO data output propagation delay – 15 ns tOEon SLOE turn-on to FIFO data valid – 10.5 ns tOEoff SLOE turn-off to FIFO data hold – 10.5 ns Notes 39. Dashed lines denote signals with programmable polarity. 40. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document Number: 38-08032 Rev. AD Page 49 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Synchronous Write Figure 21. Slave FIFO Synchronous Write Timing Diagram [41] tIFCLK IFCLK SLWR DATA tSWR tWRH N Z tSFD Z tFDH FLAGS tXFLG Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[42] Parameter Description Min Max Unit tIFCLK IFCLK period 20.83 – ns tSWR SLWR to clock setup time 10.4 – ns tWRH Clock to SLWR hold time 0 – ns tSFD FIFO data to clock setup time 9.2 – ns tFDH Clock to FIFO data hold time 0 – ns tXFLG Clock to FLAGS output propagation time – 9.5 ns Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[42] Min Max Unit tIFCLK Parameter IFCLK Period Description 20.83 200 ns tSWR SLWR to clock setup time 12.1 – ns tWRH Clock to SLWR hold time 3.6 – ns tSFD FIFO data to clock setup time 3.2 – ns tFDH Clock to FIFO data hold time 4.5 – ns tXFLG Clock to FLAGS output propagation time – 13.5 ns Notes 41. Dashed lines denote signals with programmable polarity. 42. GPIF asynchronous RDYx signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK. Document Number: 38-08032 Rev. AD Page 50 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Asynchronous Write Figure 22. Slave FIFO Asynchronous Write Timing Diagram [43] tWRpwh SLWR SLWR/SLCS# tWRpwl tSFD tFDH DATA tXFD FLAGS Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK[44] Parameter Description Min Max Unit tWRpwl SLWR pulse LOW 50 – ns tWRpwh SLWR pulse HIGH 70 – ns tSFD SLWR to FIFO DATA setup time 10 – ns tFDH FIFO DATA to SLWR hold time 10 – ns tXFD SLWR to FLAGS output propagation delay – 70 ns Notes 43. Dashed lines denote signals with programmable polarity. 44. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document Number: 38-08032 Rev. AD Page 51 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Synchronous Packet End Strobe Figure 23. Slave FIFO Synchronous Packet End Strobe Timing Diagram [45] IFCLK tPEH PKTEND tSPE FLAGS tXFLG Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[46] Parameter Description Min Max Unit tIFCLK IFCLK period 20.83 – ns tSPE PKTEND to clock setup time 14.6 – ns tPEH Clock to PKTEND hold time 0 – ns tXFLG Clock to FLAGS output propagation delay – 9.5 ns Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[46] Parameter Description Min Max Unit 20.83 200 ns tIFCLK IFCLK period tSPE PKTEND to clock setup time 8.6 – ns tPEH Clock to PKTEND hold time 2.5 – ns tXFLG Clock to FLAGS output propagation delay – 13.5 ns Notes 45. Dashed lines denote signals with programmable polarity. 46. GPIF asynchronous RDYx signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK. Document Number: 38-08032 Rev. AD Page 52 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A There is no specific timing requirement that should be met for asserting the PKTEND pin to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs or thereafter. The setup time tSPE and the hold time tPEH must be met. Although there are no specific timing requirements for PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND pin to commit a one byte or word packet. There is an additional timing requirement that needs to be met when the FIFO is configured to operate in auto mode and it is required to send two packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this scenario, the user must ensure to assert PKTEND, at least one clock cycle after the rising edge that caused the last byte or word to be clocked into the previous auto committed packet. Figure 24 shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode. Figure 24 shows a scenario where two packets are committed. The first packet gets committed automatically when the number of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND. Note that there is at least one IFCLK cycle timing between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the packet to be committed automatically). Failing to adhere to this timing results in the FX2 failing to send the one byte or word short packet. Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram[47] tIFCLK IFCLK tSFA tFAH FIFOADR >= tWRH >= tSWR SLWR tSFD DATA tFDH tSFD X-4 X-3 tFDH tSFD X-2 tFDH tSFD X-1 tFDH tSFD X tFDH tSFD tFDH 1 At least one IFCLK cycle tSPE tPEH PKTEND Note 47. Dashed lines denote signals with programmable polarity. Document Number: 38-08032 Rev. AD Page 53 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Asynchronous Packet End Strobe Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[48] tPEpwh PKTEND tPEpwl FLAGS tXFLG Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[49] Parameter Description Min Max Unit tPEpwl PKTEND pulse width LOW 50 – ns tPWpwh PKTEND pulse width HIGH 50 – ns tXFLG PKTEND to FLAGS output propagation delay – 115 ns Slave FIFO Output Enable Figure 26. Slave FIFO Output Enable Timing Diagram[48] SLOE tOEoff tOEon DATA Table 29. Slave FIFO Output Enable Parameters Min Max Unit tOEon Parameter SLOE assert to FIFO DATA output Description – 10.5 ns tOEoff SLOE deassert to FIFO DATA hold – 10.5 ns Slave FIFO Address to Flags/Data Figure 27. Slave FIFO Address to Flags/Data Timing Diagram[48] FIFOADR [1.0] tXFLG FLAGS tXFD DATA N N+1 Table 30. Slave FIFO Address to Flags/Data Parameters Min Max Unit tXFLG Parameter FIFOADR[1:0] to FLAGS output propagation delay Description – 10.7 ns tXFD FIFOADR[1:0] to FIFODATA output propagation delay – 14.3 ns Notes 48. Dashed lines denote signals with programmable polarity. 49. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document Number: 38-08032 Rev. AD Page 54 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Slave FIFO Synchronous Address Figure 28. Slave FIFO Synchronous Address Timing Diagram[50] IFCLK SLCS/FIFOADR [1:0] tSFA tFAH Table 31. Slave FIFO Synchronous Address Parameters[51] Parameter Description Min Max Unit 20.83 200 ns FIFOADR[1:0] to clock setup time 25 – ns Clock to FIFOADR[1:0] hold time 10 – ns Min Max Unit tIFCLK Interface clock period tSFA tFAH Slave FIFO Asynchronous Address Figure 29. Slave FIFO Asynchronous Address Timing Diagram [50] SLCS/FIFOADR [1:0] tSFA tFAH SLRD/SLWR/PKTEND Table 32. Slave FIFO Asynchronous Address Parameters[52] Parameter Description tSFA FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time 10 – ns tFAH RD/WR/PKTEND to FIFOADR[1:0] hold time 10 – ns Notes 50. Dashed lines denote signals with programmable polarity. 51. GPIF asynchronous RDYx signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK. 52. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document Number: 38-08032 Rev. AD Page 55 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Sequence Diagram Single and Burst Synchronous Read Example Figure 30. Slave FIFO Synchronous Read Sequence and Timing Diagram[53] tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSRD T=0 tRDH >= tSRD >= tRDH SLRD t=3 t=2 T=3 T=2 SLCS tXFLG FLAGS tXFD tXFD Data Driven: N DATA N+1 N+1 N+2 N+3 tOEon tOEoff tOEon tXFD tXFD N+4 tOEoff SLOE t=4 T=4 T=1 t=1 Figure 31. Slave FIFO Synchronous Sequence of Events Diagram IFCLK FIFO POINTER N IFCLK IFCLK N N+1 FIFO DATA BUS Not Driven Driven: N N+1 N+1 Not Driven ■ At t = 0, the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied LOW in some applications). Note that tSFA has a minimum of 25 ns. This means that when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle. ■ At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is prefetched and is driven on the bus when SLOE is asserted. At t = 2, SLRD is asserted. SLRD must meet the setup time of tSRD (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of tRDH (time from the IFCLK edge to the deassertion of the SLRD signal). If the SLCS signal is used, it must be asserted before SLRD is IFCLK N+2 IFCLK N+3 IFCLK N+4 SLRD SLOE Figure 30 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read. ■ N+1 SLOE SLRD SLRD SLOE IFCLK IFCLK N+1 IFCLK N+4 SLRD N+2 N+3 N+4 IFCLK N+4 SLOE N+4 Not Driven asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition). ■ The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of tXFD (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted. The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5. Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and incremented to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus. Note 53. Dashed lines denote signals with programmable polarity. Document Number: 38-08032 Rev. AD Page 56 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Single and Burst Synchronous Write Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram[54] tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSWR tWRH >= tWRH >= tSWR T=0 SLWR t=2 T=2 t=3 T=5 SLCS tXFLG tXFLG FLAGS tFDH tSFD tSFD N+1 N DATA t=1 tFDH T=1 tSFD tSFD tFDH N+3 N+2 T=3 tFDH T=4 tSPE tPEH PKTEND Figure 32 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin. FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 32, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal. ■ At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied LOW in some applications) Note that tSFA has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle. ■ At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of tSFD before the rising edge of IFCLK. ■ At t = 2, SLWR is asserted. The SLWR must meet the setup time of tSWR (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of tWRH (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition). There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time tSPE and the hold time tPEH must be met. In the scenario of Figure 32, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion. ■ While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of tXFLG from the rising edge of the clock. The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5. Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exist when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet (‘full’ defined as the number of bytes in the FIFO meeting the level set in the AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 24 on page 53 for further details on this timing. Note 54. Dashed lines denote signals with programmable polarity. Document Number: 38-08032 Rev. AD Page 57 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Sequence Diagram of a Single and Burst Asynchronous Read Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram[55] tSFA tFAH tSFA tFAH FIFOADR t=0 tRDpwl tRDpwh tRDpwl T=0 tRDpwh tRDpwl tRDpwl tRDpwh tRDpwh SLRD t=3 t=2 T=3 T=2 T=5 T=4 T=6 SLCS tXFLG tXFLG FLAGS tXFD Data (X) Driven DATA tXFD tXFD N N tXFD N+3 N+2 tOEon tOEoff tOEon N+1 tOEoff SLOE t=4 t=1 T=7 T=1 Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram SLOE FIFO POINTER N FIFO DATA BUS Not Driven SLRD SLRD SLOE SLOE SLRD SLRD SLRD SLRD SLOE N N N+1 N+1 N+1 N+1 N+2 N+2 N+3 N+3 Driven: X N N Not Driven N N+1 N+1 N+2 N+2 Not Driven Figure 33 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read. ■ The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of tXFD from the activating edge of SLRD. In Figure 33, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together. ■ At t = 0, the FIFO address is stable and the SLCS signal is asserted. ■ At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is the previous data, the data that was in the FIFO from an earlier read cycle. The same sequence of events is also shown for a burst read marked with T = 0 through 5. At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of tRDpwl and minimum de-active pulse width of tRDpwh. If SLCS is used, then SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.) Note In the burst read mode, during SLOE is asserted, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented. ■ Note 55. Dashed lines denote signals with programmable polarity. Document Number: 38-08032 Rev. AD Page 58 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Sequence Diagram of a Single and Burst Asynchronous Write Figure 35. Slave FIFO Asynchronous Write Sequence and Timing Diagram[56] tSFA tFAH tSFA tFAH FIFOADR t=0 tWRpwl tWRpwh T=0 tWRpwl tWRpwl tWRpwh tWRpwl tWRpwh tWRpwh SLWR t=3 t =1 T=1 T=3 T=4 T=6 T=7 T=9 SLCS tXFLG tXFLG FLAGS tSFD tFDH tSFD tFDH tSFD tFDH tSFD tFDH N+1 N+2 N+3 N DATA t=2 T=2 T=5 T=8 tPEpwl tPEpwh PKTEND Figure 35 shows the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of 3 bytes and committing the 4byte short packet using PKTEND. ■ At t = 0 the FIFO address is applied, ensuring that it meets the setup time of tSFA. If SLCS is used, it must also be asserted (SLCS may be tied LOW in some applications). ■ At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of tWRpwl and minimum de-active pulse width of tWRpwh. If the SLCS is used, it must be asserted with SLWR or before SLWR is asserted. ■ At t = 2, data must be present on the bus tSFD before the deasserting edge of SLWR. ■ At t = 3, deasserting SLWR causes the data to be written from the data bus to the FIFO and then increments the FIFO pointer. The FIFO flag is also updated after tXFLG from the deasserting edge of SLWR. The same sequence of events is shown for a burst write and is indicated by the timing marks of T = 0 through 5. Note In the burst write mode, after SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented. In Figure 35, after the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host using PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines have to held constant during the PKTEND assertion. Note 56. Dashed lines denote signals with programmable polarity. Document Number: 38-08032 Rev. AD Page 59 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Ordering Information Table 33. Ordering Information Ordering Code Package Type RAM Size Address # Prog I/Os 8051 /Data Bus Serial Debug[57] Ideal for Battery Powered Applications CY7C68014A-128AXC 128 TQFP – Pb-free 16K 40 16-/8-bit Y CY7C68014A-100AXC 100 TQFP – Pb-free 16K 40 – Y CY7C68014A-56PVXC 56 SSOP – Pb-free 16K 24 – N CY7C68014A-56LTXC 56 QFN - Pb-free 16K 24 – N CY7C68016A-56LTXC 56 QFN - Pb-free 16K 26 – N CY7C68016A-56LTXCT 56 QFN - Pb-free 16K 26 – N Ideal for Non Battery Powered Applications CY7C68013A-128AXC 128 TQFP – Pb-free 16K 40 16-/8-bit Y CY7C68013A-128AXI 128 TQFP – Pb-free (Industrial) 16K 40 16-/8-bit Y CY7C68013A-100AXC 100 TQFP – Pb-free 16K 40 – Y CY7C68013A-100AXI 100 TQFP – Pb-free (Industrial) 16K 40 – Y CY7C68013A-56PVXC 56 SSOP – Pb-free 16K 24 – N CY7C68013A-56PVXCT 56 SSOP – Pb-free 16K 24 – N CY7C68013A-56PVXI 56 SSOP – Pb-free (Industrial) 16K 24 – N CY7C68013A-56BAXC 56 VFBGA – Pb-free 16K 24 – N CY7C68013A-56BAXCT 56 VFBGA – Pb-free 16K 24 – N CY7C68013A-56LTXC 56 QFN – Pb-free 16K 24 – N CY7C68013A-56LTXCT 56 QFN – Pb-free 16K 24 – N CY7C68013A-56LTXI 56 QFN – Pb-free (Industrial) 16K 24 – N CY7C68015A-56LTXC 56 QFN – Pb-free 16K 26 – N Development Tool Kit CY3684 EZ-USB FX2LP development kit CY3689 EZ-USB FX2LP Discovery Kit Reference Design Kit CY4611B USB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP Ordering Code Definitions CY 7 C 68 XXXX - XXXXX (C, I) (T) Tape and Reel Thermal Rating: C = Commercial I = Industrial Package Type: LTX = QFN (Saw Type) Pb-free LFX = QFN (Punch Type) Pb-free Part Number Family Code: 68 = USB Technology Code: C = CMOS Marketing Code: 7 = Cypress Products Company ID: CY = Cypress Note 57. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible. Document Number: 38-08032 Rev. AD Page 60 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Package Diagrams The FX2LP is available in five packages: ■ 56-pin SSOP ■ 56-pin QFN ■ 100-pin TQFP ■ 128-pin TQFP ■ 56-ball VFBGA Figure 36. 56-pin SSOP (300 Mils) Package Outline, 51-85062 51-85062 *F Document Number: 38-08032 Rev. AD Page 61 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 37. 56-pin QFN ((8 × 8 × 1 mm) 4.5 × 5.2 E-Pad (Sawn)) Package Outline, 001-53450 001-53450 *E Figure 38. 100-pin TQFP (14 × 20 × 1.4 mm) Package Outline, 51-85050 ș2 ș1 ș SYMBOL DIMENSIONS MIN. NOM. MAX. A 1.60 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. BODY LENGTH DIMENSION DOES NOT A1 0.05 A2 1.35 1.40 1.45 D 15.80 16.00 16.20 MOLD PROTRUSION/END FLASH SHALL D1 13.90 14.00 14.10 E 21.80 22.00 22.20 NOT EXCEED 0.0098 in (0.25 mm) PER SIDE. BODY LENGTH DIMENSIONS ARE MAX PLASTIC E1 19.90 20.00 20.10 R1 0.08 0.20 R2 0.08 0.20 ș 0° 0° ș2 11° 0.20 b 0.22 0.30 0.38 0.45 0.60 0.75 L2 L3 e BODY SIZE INCLUDING MOLD MISMATCH. 3. JEDEC SPECIFICATION NO. REF: MS-026. 13° 12° L L1 INCLUDE MOLD PROTRUSION/END FLASH. 7° ș1 c Document Number: 38-08032 Rev. AD 0.15 NOTE: 1.00 REF 0.25 BSC 0.20 0.65 TYP 51-85050 *G Page 62 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 39. 128-pin TQFP (14 × 20 × 1.4 mm) Package Outline, 51-85101 51-85101 *F Document Number: 38-08032 Rev. AD Page 63 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Figure 40. 56-ball VFBGA (5 × 5 × 1.0 mm) 0.50 Pitch, 0.30 Ball Package Outline, 001-03901 001-03901 *F Document Number: 38-08032 Rev. AD Page 64 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A PCB Layout Recommendations ■ Bypass and flyback caps on VBUS, near connector, are recommended. Follow these recommendations to ensure reliable high-performance operation:[58] ■ DPLUS and DMINUS trace lengths should be kept to within 2 mm of each other in length, with preferred length of 20 to 30 mm. ■ Maintain a solid ground plane under the DPLUS and DMINUS traces. Do not allow the plane to split under these traces. ■ Do not place vias on the DPLUS or DMINUS trace routing. ■ Isolate the DPLUS and DMINUS traces from all other signal traces by no less than 10 mm. ■ Four-layer, impedance-controlled boards are required to maintain signal quality. ■ Specify impedance targets (ask your board vendor what they can achieve). ■ To control impedance, maintain trace widths and trace spacing. ■ Minimize stubs to minimize reflected signals. ■ Connections between the USB connector shell and signal ground must be near the USB connector. Note 58. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com and High Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf. Document Number: 38-08032 Rev. AD Page 65 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Quad Flat Package No Leads (QFN) Package Design Notes Electrical contact of the part to the PCB is made by soldering the leads on the bottom surface of the package to the PCB. Therefore, special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. Design a copper (Cu) fill in the PCB as a thermal pad under the package. Heat is transferred from the FX2LP through the device’s metal paddle on the bottom side of the package. Heat from here is conducted to the PCB at the thermal pad. It is then conducted from the thermal pad to the PCB inner ground plane by a 5 × 5 array of via. A via is a plated-through hole in the PCB with a finished diameter of 13 mil. The QFN’s metal die paddle must be soldered to the PCB’s thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process. For further information on this package design, refer to application notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website http://www.amkor.com. This application note provides detailed information about board mounting guidelines, soldering flow, rework process, etc. Figure 41 shows a cross-sectional area underneath the package. The cross section is of only one via. The solder paste template should be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 mil. Use the No Clean type 3 solder paste for mounting the part. Nitrogen purge is recommended during reflow. Figure 42 is a plot of the solder mask pattern and Figure 43 displays an X-Ray image of the assembly (darker areas indicate solder). Figure 41. Cross-section of the Area Underneath the QFN Package 0.017” dia Solder Mask Cu Fill Cu Fill PCB Material Via hole for thermally connecting the QFN to the circuit board ground plane. 0.013” dia PCB Material This figure only shows the top three layers of the circuit board: Top Solder, PCB Dielectric, and the Ground Plane Figure 42. Plot of the Solder Mask (White Area) Figure 43. X-ray Image of the Assembly Document Number: 38-08032 Rev. AD Page 66 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Acronyms Document Conventions Table 34. Acronyms Used in this Document Units of Measure Acronym Description Table 35. Units of Measure ASIC application-specific integrated circuit ATA advanced technology attachment kHz DID device identifier mA milliamperes DSL digital service line Mbps megabits per second DSP digital signal processor MBPs megabytes per second ECC error correction code MHz megahertz EEPROM electrically erasable programmable read only memory uA microamperes V volts EPP enhanced parallel port FIFO first in first out GPIF general programmable interface GPIO general purpose input output I/O input output LAN local area network MPEG moving picture experts group PCMCIA personal computer memory card international association PID product identifier PLL phase locked loop QFN quad flat no leads RAM random access memory SIE serial interface engine SOF start of frame SSOP super small outline package TQFP thin quad flat pack USART universal serial asynchronous receiver/transmitter USB universal serial bus UTOPIA universal test and operations physical-layer interface VFBGA very fine ball grid array VID vendor identifier Document Number: 38-08032 Rev. AD Symbol Unit of Measure kilohertz Page 67 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Errata This section describes the errata for the EZ-USB® FX2LP™ CY7C68013A/14A/15A/16A Rev. B silicon. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions. Part Numbers Affected Part Number Package Type Operating Range CY7C68013A All Commercial CY7C68014A All Commercial CY7C68015A All Commercial CY7C68016A All Commercial CY7C68013A/14A/15A/16A Qualification Status In production CY7C68013A/14A/15A/16A Errata Summary This table defines the errata for available CY7C68013A/14A/15A/16A family devices. An “X” indicates that the errata pertain to the selected device. Items CY7C68013A/14A/15A/16A Silicon Revision [1.]. Empty Flag Assertion X B Fix Status No silicon fix planned currently. Use the workaround. 1. Empty Flag Assertion ■ Problem Definition In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. ■ Parameters Affected NA ■ Trigger Condition(S) In Slave FIFO Asynchronous Word Wide Mode, after firmware boot and initialization, EP2 OUT endpoint empty flag indicates the status as ‘Empty’. When data is received in EP2, the status changes to ‘Not-Empty’. However, if data transferred to EP2 is a single word, then asserting SLRD with FIFOADR pointing to any other endpoint changes ‘Not-Empty’ status to ‘Empty’ for EP2 even though there is a word data (or it is untouched). This is noticed only when the single word is sent as the first transaction and not if it follows a multi-word packet as the first transaction. ■ Scope of Impact External interface does not see data available in EP2 OUT endpoint and can end up waiting for data to be read. ■ Workaround One of the following workarounds can be used: • Send a pulse signal to the SLWR pin, with FIFOADR pins pointing to an endpoint other than EP2, after firmware initialization and before or after transferring the data to EP2 from the host • Set the length of the first data to EP2 to be more than a word • Prioritize EP2 read from the Master for multiple OUT EPs and single word write to EP2 • Write to an IN EP, if any, from the Master before reading from other OUT EPs (other than EP2) from the Master. ■ Fix Status There is no silicon fix planned for this currently; use the workarounds provided. Document Number: 38-08032 Rev. AD Page 68 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Document History Page Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 Rev. ECN No. Submission Date ** 124316 03/17/2003 New data sheet (Advance Information). *A 128461 09/02/2003 Updated Document Title to read as “CY7C68013A/CY7C68015A, EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller”. Changed status from Advance Information to Final. Added CY7C68015A part related information in all instances across the document. Replaced I2C-compatible with I2C in all instances across the document. Updated Logic Block Diagram (Added ECC block and fixed errors). Updated Functional Overview: Updated 8051 Microprocessor: Updated 8051 Clock Frequency: Added Figure 1. Updated Reset and Wakeup: Updated Reset Pin: Updated description; added Figure 2; and also added Table 5. Updated Register Addresses: Updated figure below the heading. Updated Endpoint RAM: Updated Endpoint Configurations (Hi-Speed Mode): Updated Figure 5 (for clarity). Added ECC Generation. Updated I2C Controller: Added “I2C Software Reset”. Updated Compatible with Previous Generation EZ-USB FX2: Updated description; and also updated Table 9. Added CY7C68013A/14A and CY7C68015A/16A Differences. Updated Register Summary: Updated Table 12. Updated Package Diagrams: spec 51-85144 – Changed revision from *B to *D. Minor grammatical edits across the document. Description of Change *B 130335 10/09/2003 Changed status from Final to Preliminary. *C 131673 02/12/2004 Updated Functional Overview: Updated Reset and Wakeup: Updated Reset Pin: Updated description; added Note 7 and referred the same note at the end of sentence “If the crystal input pin is driven by a clock signal the internal PLL stabilizes in 200 μs after VCC has reached 3.0 Volts”. Updated Endpoint RAM: Updated Endpoint Configurations (Hi-Speed Mode): Updated description (Replaced column 9 with column 8 in last paragraph). Updated ECC Generation: Updated description. Removed “ECC Features”. Updated ECC Implementation: Updated description. Updated Register Summary: Updated Table 12. *C (cont.) 131673 02/12/2004 Updated DC Electrical Characteristics: Updated Table 14: Added VIH_X, VIL_X parameters and their corresponding details. Updated USB Transceiver: Replaced “certified” with “compliant”. Updated AC Electrical Characteristics: Updated USB Transceiver: Replaced “certified” with “compliant”. Updated Data Memory Write[33]: Updated Figure 14. Added Sequence Diagram. Updated Ordering Information: Updated Table 33: Updated part numbers. *D 230713 06/09/2004 Updated Ordering Information: Updated Table 33: Updated part numbers (Changed Lead free MPNs as per spec change in 28-00054). Document Number: 38-08032 Rev. AD Page 69 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Document History Page (continued) Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 Rev. ECN No. Submission Date *E 242398 07/13/2004 Minor Change: Post to external web, *F 271169 10/07/2004 Updated Features: Added “USB 2.0–USB-IF high speed certified (TID # 40440111)”. Added Features (CY7C68013A/14A only). Added Features (CY7C68015A/16A only). Updated Logic Block Diagram (Added USB 2.0 logo). Updated Absolute Maximum Ratings: Replaced TBD with values for “Power Dissipation”. Updated DC Electrical Characteristics: Updated Table 14: Updated minimum and maximum values of VCC parameter. Replaced TBD with values for VIH_X, VIL_X, ISUSP, ICC parameters. Updated AC Electrical Characteristics: Updated Slave FIFO Asynchronous Packet End Strobe: Updated Table 28: Changed maximum value of tXFLG parameter from 70 ns to 115 ns. Updated Ordering Information: Updated Table 33: Updated part numbers. *G 316313 02/04/2005 Updated Document Title to read as “CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller”. Changed status from Preliminary to Final. Added CY7C68014A, CY7C68016A part related information in all instances across the document. Updated DC Electrical Characteristics: Updated Table 14: Added VCC Ramp Up parameter and its corresponding details. Updated AC Electrical Characteristics: Updated Slave FIFO Synchronous Packet End Strobe: Added description; and also added Figure 24. Updated Ordering Information: Updated Table 33: Updated part numbers. *H 338901 04/18/2005 Updated Register Summary: Updated Table 12. Updated AC Electrical Characteristics: Updated Data Memory Read[31]: Added description. Updated Data Memory Write[33]: Added description. Updated Slave FIFO Synchronous Read: Updated Table 20: Replaced TBD with “–” under “Min” column corresponding to tXFD parameter. Updated Ordering Information: Updated Table 33: Updated part numbers. *I 371097 06/09/2005 Updated AC Electrical Characteristics: Added PORTC Strobe Feature Timings. *J 397239 09/19/2005 Added 56-pin VFBGA Package related information in all instances across the document. Updated Register Summary: Updated Table 12. Updated DC Electrical Characteristics: Updated Table 14: Updated minimum and maximum values of VCC parameter. Updated Ordering Information: Updated Table 33: Updated part numbers. Updated Package Diagrams: Added spec 001-03901 *B. Document Number: 38-08032 Rev. AD Description of Change Page 70 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Document History Page (continued) Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 Rev. ECN No. Submission Date *K 420505 02/09/2006 Updated Pin Assignments: Updated description (Replaced “four package types” with “five package types”). Updated Absolute Maximum Ratings: Added “Ambient Temperature with Power Supplied (Industrial)” and its corresponding details. Added Thermal Characteristics. Updated AC Electrical Characteristics: Updated Slave FIFO Asynchronous Write: Updated Figure 22 (Remove SLCS). Updated Sequence Diagram: Updated Single and Burst Synchronous Write: Updated description. Updated Sequence Diagram of a Single and Burst Asynchronous Read: Updated description. Updated to new template. *L 2064406 02/04/2008 Updated Features: Replaced “TID # 40440111” with “TID # 40460272”. Updated Functional Overview: Updated CY7C68013A/14A and CY7C68015A/16A Differences: Updated Table 10 (Removed T0OUT and T1OUT in “CY7C68015A/CY7C68016A” column). Updated AC Electrical Characteristics: Updated Slave FIFO Synchronous Write: Updated Table 23 (Updated minimum value of tSWR parameter). Updated Package Diagrams: spec 51-85144 – Changed revision from *D to *G. *M 2710327 05/22/2009 Updated Operating Conditions: Changed value of FOSC (oscillator or crystal frequency) from “24 MHz ± 100 ppm, Parallel Resonant” to “24 MHz ± 10 ppm, Parallel Resonant”. Updated Ordering Information: Updated Table 33: Updated part numbers. Updated Package Diagrams: Added spec 51-85187 *C. *N 2727334 07/01/2009 Updated Package Diagrams: spec 51-85187 – Changed revision from *C to *D. Fixed Typo in Document History Page (Removed sentence on E-Pad size change from *F revision). *O 2756202 08/26/2009 Updated Ordering Information: Updated Table 33: No change in part numbers. Added a column “Serial Debug” and added details under the column. Added Note 57 and referred the same note in “Serial Debug”. *P 2785207 10/12/2009 Updated Ordering Information: Updated Table 33: No change in part numbers. Updated details in “Package Type” column (Added information on Pb-free parts). *Q 2811890 11/20/2009 Updated Ordering Information: Updated Table 33: Updated part numbers. Updated details under “# Program I/Os” column for CY7C68016A-56LTXC and CY7C68016A-56LTXCT MPNs. *R 2896281 03/19/2010 Updated Ordering Information: Updated Table 33: Updated part numbers. Updated Package Diagrams: spec 51-85062 – Changed revision from *C to *D. spec 51-85144 – Changed revision from *G to *H. spec 51-85187 – Changed revision from *D to *E. spec 51-85050 – Changed revision from *B to *C. spec 51-85101 – Changed revision from *C to *D. Updated to new template. Document Number: 38-08032 Rev. AD Description of Change Page 71 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Document History Page (continued) Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 Rev. ECN No. Submission Date *S 3035980 09/22/2010 Updated Operating Conditions: Changed value of FOSC (oscillator or crystal frequency) from “24 MHz + 10 ppm, Parallel Resonant” to “24 MHz + 100 ppm, Parallel Resonant”. Updated Ordering Information: Updated Table 33: No change in part numbers. Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated to new template. *T 3161410 02/03/2011 Updated Package Diagrams: Removed spec 51-85144 *H. Added spec 001-12921 *A. Removed spec 51-85187 *E. Added spec 001-53450 *B. spec 51-85050 – Changed revision from *C to *D. spec 51-85101 – Changed revision from *D to *E. Completing Sunset Review. *U 3195232 03/14/2011 Updated table numbering. Updated Thermal Characteristics: Updated Table 13 (Removed column “Ca Case to Ambient Temperature (°C/W)”). Updated AC Electrical Characteristics: Updated GPIF Synchronous Signals: Updated Table 18 (Added a column “Typ” and added values in that column). Updated Slave FIFO Synchronous Read: Updated Table 20 (Added a column “Typ” and added values in that column). Updated Package Diagrams: spec 001-12921 – Changed revision from *A to *B. spec 001-03901 – Changed revision from *C to *D. *V 3512313 02/01/2012 Updated Ordering Information: Updated Table 33: Updated part numbers. Updated Package Diagrams: spec 51-85062 – Changed revision from *D to *E. Removed spec 001-12921 *B. spec 001-03901 – Changed revision from *D to *E. Completing Sunset Review. *W 3998554 07/19/2013 Added Errata footnote (Note 6). Updated Functional Overview: Updated Interrupt System: Updated FIFO/GPIF Interrupt (INT4): Added Note 6 and referred the same note in “Endpoint 2 empty flag” in Table 4. Updated Package Diagrams: spec 51-85062 – Changed revision from *E to *F. spec 001-53450 – Changed revision from *B to *C. Added Errata. Updated to new template. *X 4617527 01/15/2015 Added More Information. Updated Pin Assignments: Updated CY7C68013A/15A Pin Descriptions: Updated Table 11 (Added a column “Reset” and added details in that column). Updated AC Electrical Characteristics: Updated Data Memory Read[31]: Added Note 31 and referred the same note in heading. Updated Figure 13. Updated Data Memory Write[33]: Added Note 31 and referred the same note in heading. Updated Package Diagrams: spec 001-53450 – Changed revision from *C to *D. spec 51-85050 – Changed revision from *D to *E. spec 51-85101 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review. *Y 5317277 06/28/2016 Updated to new template. Document Number: 38-08032 Rev. AD Description of Change Page 72 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Document History Page (continued) Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 Rev. ECN No. Submission Date *Z 5713641 04/26/2017 Updated Package Diagrams: spec 51-85050 – Changed revision from *E to *G. Updated to new template. AA 5930426 11/09/2017 Updated AC Electrical Characteristics: Updated GPIF Synchronous Signals: Updated Table 18. Updated Table 19. AB 6403695 12/06/2018 Updated Features: Added Note 1 and referred the note at the end in “Integrated I2C controller; runs at 100 or 400 kHz”. Updated Functional Overview: Updated I2C Bus: Added Note 4 and referred the note at the end in “FX2LP supports the I2C bus as a master only at 100/400 kHz”. Updated Thermal Characteristics: Added “Maximum junction temperature” and its corresponding details. Updated Package Diagrams: spec 001-53450 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review. AC 6637530 07/26/2019 Updated to new template. AD 7113265 04/30/2021 Updated EZ-USB FX2LP Development Kit in More Information. Added “CY3689” in Ordering Information. Document Number: 38-08032 Rev. AD Description of Change Page 73 of 74 CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Arm® Cortex® Microcontrollers Automotive cypress.com/arm Clocks & Buffers Interface PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/automotive Cypress Developer Community cypress.com/clocks Community | Code Examples | Projects | Video | Blogs | Training | Components cypress.com/interface Internet of Things Memory cypress.com/iot Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Touch Sensing USB Controllers Wireless Connectivity Technical Support cypress.com/memory cypress.com/support cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation, 2003-2021. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 38-08032 Rev. AD Revised April 30, 2021 FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation. Page 74 of 74
CY7C68013A-56LTXIT 价格&库存

很抱歉,暂时无法提供与“CY7C68013A-56LTXIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货