0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY8C240093-24LTXI

CY8C240093-24LTXI

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    VFQFN48

  • 描述:

    IC MCU 8BIT 32KB FLASH 48QFN

  • 数据手册
  • 价格&库存
CY8C240093-24LTXI 数据手册
CY8C24X93 PSoC® Programmable System-on-Chip PSoC® Programmable System-on-Chip Features ■ Powerful Harvard-architecture processor ❐ M8C CPU with a max speed of 24 MHz ■ Operating Range: 1.71 V to 5.5 V ❐ Standby Mode 1.1 μA (Typ) ❐ Deep Sleep 0.1 μA (Typ) ■ Operating Temperature range: –40 °C to +85 °C ■ Flexible on-chip memory ❐ 8 KB flash, 1 KB SRAM ❐ 16 KB flash, 2 KB SRAM ❐ 32 KB flash, 2 KB SRAM ❐ Read while Write with EEPROM emulation ❐ 50,000 flash erase/write cycles ❐ In-system programming simplifies manufacturing process ■ Four Clock Sources ❐ Internal main oscillator (IMO): 6/12/24 MHz ❐ Internal low-speed oscillator (ILO) at 32 kHz for watchdog and sleep timers ❐ External 32 KHz Crystal Oscillator ❐ External Clock Input ■ Programmable pin configurations ❐ Up to 36 general purpose dual mode GPIO (Analog inputs and Digital I/O supported) ❐ High sink current of 25 mA per GPIO • Max sink current 120 mA for all GPIOs ❐ Source Current • 5 mA on ports 0 and 1 • 1 mA on ports 2,3 and 4 ❐ Configurable internal pull-up, high-Z and open drain modes ❐ Selectable, regulated digital I/O on port 1 ❐ Configurable input threshold on port 1 Cypress Semiconductor Corporation Document Number: 001-86894 Rev. *D • ■ Versatile Analog functions ❐ Internal Low-Dropout voltage regulator for high power supply rejection ratio (PSRR) ■ Full-Speed USB ❐ 12 Mbps USB 2.0 compliant ❐ Eight unidirectional endpoints ❐ One bidirectional endpoint ❐ Dedicated 512 byte SRAM ❐ No external crystal required ■ Additional system resources ❐ I2C Slave: • Selectable to 50 kHz, 100 kHz, or 400 kHz ❐ Configurable up to 12 MHz SPI master and slave ❐ Three 16-bit timers ❐ Watchdog and sleep timers ❐ Integrated supervisory circuit ❐ 10-bit incremental analog-to-digital converter (ADC) with internal voltage reference ❐ Two general-purpose Comparators • 3 Voltage References (0.8 V, 1 V, 1.2 V) • Any pin to either comparator inputs • Low-power operation at 10 µA ❐ One 8-bit IDAC with full scale range of 512 µA ❐ One 8-bit Software PWM ■ Development Platform ❐ PSoC Designer™ IDE ■ GPIOs and Package options ❐ 13 GPIOs - QFN 16 ❐ 28 GPIOs - QFN 32 ❐ 34 GPIOs - QFN 48 ❐ 36 GPIOs - QFN 48 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised April 27, 2017 CY8C24X93 Logic Block Diagram Port 4 Port 3 Port 2 Port 1 Port 0 1.8/2.5/3V LDO [1] PWRSYS (Regulator) PSoC CORE SYSTEM BUS Global Analog Interconnect 1K/2K SRAM Supervisory ROM (SROM) Interrupt Controller 8K/16K/32K Flash Nonvolatile Memory Sleep and Watchdog CPU Core (M8C) 6/12/24 MHz Internal Main Oscillator (IMO) Internal Low Speed Oscillator (ILO) Multiple Clock Sources ANALOG SYSTEM Analog Reference ADC Two Comparators Analog Mux IDAC SYSTEM BUS USB I2C Slave Internal Voltage References System Resets POR and LVD SPI Master/ Slave Three 16-Bit Programmable Timers Digital Clocks SYSTEM RESOURCES Note 1. Internal voltage regulator for internal circuitry. Document Number: 001-86894 Rev. *D Page 2 of 65 CY8C24X93 More Information Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article “How to Design with PSoC® 1, PowerPSoC®, and PLC – KBA88292”. ■ Overview: PSoC Portfolio, PSoC Roadmap ■ Product Selectors: PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP. In addition, PSoC Designer includes a device selection tool. ■ Application Notes and Code Examples: Cover a broad range of topics, from basic to advanced level. Many of the application notes include code examples. ■ Technical Reference Manuals (TRM): The TRM provides complete detailed descriptions of the internal architecture of the PSoC 1 devices. ■ Development Kits: ❐ CY3215A-DK In-Circuit Emulation Lite Development Kit includes an in-circuit emulator (ICE). While the ICE-Cube is primarily used to debug PSoC 1 devices, it can also program PSoC 1 devices using ISSP. ❐ CY3210-PSOCEVAL1 Kit enables you to evaluate and experiment Cypress’s PSoC 1 programmable system-on-chip design methodology and architecture. The MiniProg1 and MiniProg3 device provides an interface for flash programming. PSoC Designer PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. Note: This is not the default view. 1. Global Resources – all device hardware settings. 2. Parameters – the parameters of the currently selected User Modules. 3. Pinout – information related to device pins. 4. Chip-Level Editor – a diagram of the resources available on the selected chip. 5. Datasheet – the datasheet for the currently selected UM 6. User Modules – all available User Modules for the selected device. 7. Device Resource Meter – device resource usage for the current project configuration. 8. Workspace – a tree level diagram of files associated with the project. 9. Output – output from project build and debug operations. Note: For detailed information on PSoC Designer, go to PSoC® Designer > Help > Documentation > Designer Specific Documents > IDE User Guide. Figure 1. PSoC Designer Layout Document Number: 001-86894 Rev. *D Page 3 of 65 CY8C24X93 Contents PSoC® Functional Overview ............................................ 6 PSoC Core .................................................................. 6 Analog system ............................................................. 6 Additional System Resources ..................................... 6 Getting Started .................................................................. 7 Silicon Errata ............................................................... 7 Development Kits ........................................................ 7 Training ....................................................................... 7 CYPros Consultants .................................................... 7 Solutions Library .......................................................... 7 Technical Support ....................................................... 7 Development Tools .......................................................... 8 PSoC Designer Software Subsystems ........................ 8 Designing with PSoC Designer ....................................... 9 Select User Modules ................................................... 9 Configure User Modules .............................................. 9 Organize and Connect ................................................ 9 Generate, Verify, and Debug ....................................... 9 Pinouts ............................................................................ 10 16-pin QFN (13 GPIOs) [2] ........................................ 10 32-pin QFN (28 GPIOs) [6] ........................................ 11 32-pin QFN (28 GPIOs) [10] ...................................... 12 48-pin QFN (34 GPIOs) [14] ...................................... 13 48-pin QFN (36 GPIOs (With USB)) [19] ................... 14 48-pin QFN (OCD) (36 GPIOs) [23] .......................... 15 Electrical Specifications (CY8C24193/493) ............................................................. 16 Absolute Maximum Ratings (CY8C24193/493) ............................................................. 16 Operating Temperature (CY8C24193/493) ............................................................. 16 DC Chip-Level Specifications (CY8C24193/493) ............................................................. 17 DC GPIO Specifications (CY8C24193/493) ............................................................. 18 DC Analog Mux Bus Specifications (CY8C24193/493) ............................................................. 21 DC Low Power Comparator Specifications (CY8C24193/493) ............................................................. 21 Comparator User Module Electrical Specifications (CY8C24193/493) ............................................................. 21 ADC Electrical Specifications (CY8C24193/493) ............................................................. 22 DC POR and LVD Specifications (CY8C24193/493) ............................................................. 23 DC Programming Specifications (CY8C24193/493) ............................................................. 23 DC I2C Specifications (CY8C24193/493) ............................................................. 24 Shield Driver DC Specifications (CY8C24193/493) ............................................................. 24 DC IDAC Specifications (CY8C24193/493) ............................................................. 24 Document Number: 001-86894 Rev. *D AC Chip-Level Specifications (CY8C24193/493) ............................................................. 25 AC General Purpose I/O Specifications (CY8C24193/493) ............................................................. 26 AC Comparator Specifications (CY8C24193/493) ............................................................. 26 AC External Clock Specifications (CY8C24193/493) ............................................................. 26 AC Programming Specifications (CY8C24193/493) ............................................................. 27 AC I2C Specifications (CY8C24193/493) ............................................................. 28 Electrical Specifications (CY8C24093/293/393/693) ............................................... 31 Absolute Maximum Ratings (CY8C24093/293/393/693) ............................................... 31 Operating Temperature (CY8C24093/293/393/693) ............................................... 31 DC Chip-Level Specifications (CY8C24093/293/393/693) ............................................... 32 DC GPIO Specifications (CY8C24093/293/393/693) ............................................... 33 DC Analog Mux Bus Specifications (CY8C24093/293/393/693) ............................................... 35 DC Low Power Comparator Specifications (CY8C24093/293/393/693) ............................................... 35 Comparator User Module Electrical Specifications (CY8C24093/293/393/693) ............................................... 36 ADC Electrical Specifications (CY8C24093/293/393/693) ............................................... 36 DC POR and LVD Specifications (CY8C24093/293/393/693) ............................................... 37 DC Programming Specifications (CY8C24093/293/393/693) ............................................... 37 DC I2C Specifications (CY8C24093/293/393/693) ............................................... 38 DC Reference Buffer Specifications (CY8C24093/293/393/693) ............................................... 38 DC IDAC Specifications (CY8C24093/293/393/693) ............................................... 38 AC Chip-Level Specifications (CY8C24093/293/393/693) ............................................... 39 AC GPIO Specifications (CY8C24093/293/393/693) ............................................... 40 AC Comparator Specifications (CY8C24093/293/393/693) ............................................... 41 AC External Clock Specifications (CY8C24093/293/393/693) ............................................... 41 AC Programming Specifications (CY8C24093/293/393/693) ............................................... 42 AC I2C Specifications (CY8C24093/293/393/693) ............................................... 43 Page 4 of 65 CY8C24X93 Packaging Information ................................................... 46 Thermal Impedances ................................................. 49 Capacitance on Crystal Pins ..................................... 49 Solder Reflow Specifications ..................................... 49 Development Tool Selection ......................................... 50 Software .................................................................... 50 Development Kits ...................................................... 50 Evaluation Tools ........................................................ 50 Device Programmers ................................................. 50 Ordering Information ...................................................... 51 Ordering Code Definitions ......................................... 51 Acronyms ........................................................................ 52 Document Conventions ................................................. 53 Units of Measure ....................................................... 53 Reference Documents .................................................... 53 Numeric Naming ............................................................. 53 Glossary .......................................................................... 54 Document Number: 001-86894 Rev. *D Appendix A: Silicon Errata for the CY8C24093/293/393/693 Family ........................ 55 CY8C24093/293/393/693 Qualification Status .......... 55 CY8C24093/293/393/693 Errata Summary ............... 55 Appendix B: Silicon Errata for the PSoC® CY8C24193/493 Families ...................... 60 CY8C24193/493 Qualification Status ........................ 60 CY8C24193/493 Errata Summary ............................. 60 Document History Page ................................................. 64 Sales, Solutions, and Legal Information ...................... 65 Worldwide Sales and Design Support ....................... 65 Products .................................................................... 65 PSoC®Solutions ....................................................... 65 Cypress Developer Community ................................. 65 Technical Support ..................................................... 65 Page 5 of 65 CY8C24X93 PSoC® Functional Overview Comparator The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts. The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas: The CY8C24x93 family has two high-speed, low-power comparators. The comparators have three voltage references, 0.8 V, 1.0 V and 1.2 V. Comparator inputs can be connected from any pin through the analog mux bus. The comparator output can be read in firmware for processing or routed out via specific pins (P1_0 or P1_4). The output of the two comparators can be combined with 2-input logic functions. The combinatorial output can be optionally combined with a latched value and routed to a pin output or to the interrupt controller. The input multiplexers and the comparator are controller through the CMP User Module. Analog Multiplexer System The Analog Mux Bus can connect to every GPIO pin and can be internally connected to the ADC, Comprators or the IDAC. ■ The Core ■ Analog System ■ System Resources (including a full-speed USB port). A common, versatile bus allows connection between I/O and the analog system. Depending on the PSoC package, up to 36 GPIO are included in the CY8C24x93 PSoC device. The GPIO provides access to the MCU and analog mux. PSoC Core The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor. Other multiplexer applications include: ■ Chip-wide mux that allows analog input from any I/O pin. ■ Crosspoint connection between any I/O pin combinations. Additional System Resources System resources provide additional capability, such as configurable USB and I2C slave, SPI master/slave communication interface, three 16-bit programmable timers, software 8-bit PWM, low voltage detect, power on reset, and various system resets supported by the M8C. The merits of each system resource are listed here: ■ Analog system The analog system is composed of an ADC, two comparators and an IDAC. It has an internal 0.8 V, 1 V or 1.2 V analog reference. All the pins can be configured to connect to the analog system. ADC The ADC in the CY8C24x93 device is an incremental analog-to-digital converter with a range of 8 to 10 bits supporting signed and unsigned data formats. The input to the ADC can be from any pin. IDAC The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock). ■ Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on-reset (POR) circuit eliminates the need for a system supervisor. ■ A register-controlled bypass mode allows the user to disable the LDO regulator. ■ An 8-bit Software PWM is provided for applications like buzzer control or lighting control. A 16-bit Timer acts as the input clock to the PWM. The ISR increments a software counter (8-bit), checks for PWM compare condition and toggles a GPIO accordingly. PWM Output is available on all GPIOs. The IDAC can provide current source up to 512 µA to any GPIO pin. In the CY8C24x93 family of devices 4 ranges of current source can be implemented that can vary in 255 steps, and are connected to analog mux bus. Table 1. IDAC Ranges Range Full Scale Range in µA 1x 64 2x 128 4x 256 8x 512 Document Number: 001-86894 Rev. *D Page 6 of 65 CY8C24X93 Getting Started The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. Training Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs. CYPros Consultants For in depth information, along with detailed programming details, see the Technical Reference Manual for the PSoC devices. Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site. For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc. Solutions Library Silicon Errata Errata documents known issues with silicon including errata trigger conditions, scope of impact, available workarounds and silicon revision applicability. Development Kits PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. Document Number: 001-86894 Rev. *D Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly. Technical Support Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736. Page 7 of 65 CY8C24X93 Development Tools PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes: Code Generation Tools The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two. Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing. ■ Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration ■ Extensive user module catalog C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality. ■ Integrated source-code editor (C and assembly) Debugger ■ Free C compiler with no size restrictions or time limits ■ Built-in debugger ■ In-circuit emulation PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest. Built-in support for communication interfaces: 2 ❐ Hardware and software I C slaves and masters ❐ Full-speed USB 2.0 ❐ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7. ■ PSoC Designer Software Subsystems Online Help System The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer. Design Entry In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application. The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC’s resources for an application. Document Number: 001-86894 Rev. *D In-Circuit Emulator A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices. The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation. Page 8 of 65 CY8C24X93 Designing with PSoC Designer The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is: 10.Select user modules. 11.Configure user modules. 12.Organize and connect. 13.Generate, verify, and debug. Select User Modules PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called “user modules”. User modules make selecting and implementing peripheral devices, both analog and digital, simple. Configure User Modules Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the Document Number: 001-86894 Rev. *D internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design. Organize and Connect Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources. Generate, Verify, and Debug When you are ready to test the hardware configuration or move on to developing code for the project, perform the “Generate Configuration Files” step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed. A complete code development environment lets you to develop and customize your applications in C, assembly language, or both. The last step in the development process takes place inside PSoC Designer’s Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals. Page 9 of 65 CY8C24X93 Pinouts 16-pin QFN (13 GPIOs) [2] Table 2. Pin Definitions – CY8C24093 [3] I/O I P2[5] Crystal output (XOut) 2 I/O I P2[3] Crystal input (XIn) 3 IOHR I P1[7] I2C SCL, SPI SS 2 4 IOHR I P1[5] I C SDA, SPI MISO 5 IOHR I P1[3] SPI CLK 6 IOHR I P1[1] ISSP CLK[4], I2C SCL, SPI MOSI 7 Power VSS IOHR I P1[0] ISSP DATA[4], I2C SDA, SPI CLK[5] 9 IOHR I P1[2] 10 IOHR I P1[4] Optional external clock (EXTCLK) 12 13 Input IOH P0[1], AI P0[3], AI P0[7], AI VDD AI , XOut, P2[5] AI , XIn, P2[3] AI , I2 C SCL, SPI SS, P1[7] AI , I2 C SDA, SPI MISO, P1[5] Ground connection 8 11 Figure 2. CY8C24093 Device Description XRES Active high external reset with internal pull-down I P0[4] Power VDD 14 IOH I P0[7] 15 IOH I P0[3] 16 IOH I P0[1] 1 2 14 13 1 Name 16 15 Analog 12 11 (Top View) 10 3 9 4 QFN 5 6 7 8 Digital P0[4] , AI XRES P1[4] , EXTCLK, AI P1[2] , AI AI, SPI CLK , P1[3] AI, ISSP CLK, SPI MOSI, P1[1] VSS AI, ISSP DATA , I2C SDA, SPI CLK , P1[0] Type Pin No. Supply voltage LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output. Notes 2. No center pad. 3. 13 GPIOs. 4. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 5. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 10 of 65 CY8C24X93 32-pin QFN (28 GPIOs) [6] Table 3. Pin Definitions – CY8C24193 [7] I P0[1] I/O I P2[7] 3 I/O I P2[5] Crystal output (XOut) 4 I/O I P2[3] Crystal input (XIn) 5 I/O I P2[1] 6 I/O I P3[3] 7 I/O I P3[1] 8 IOHR I P1[7] I2C SCL, SPI SS 9 IOHR I P1[5] I2C SDA, SPI MISO 10 IOHR I P1[3] SPI CLK. 11 IOHR I P1[1] ISSP CLK[8], I2C SCL, SPI MOSI. P1[0] 14 IOHR I P1[2] 15 IOHR I P1[4] 16 IOHR 17 I Input ISSP DATA[8], I2C SDA, SPI CLK[9] Optional external clock input (EXTCLK) P1[6] XRES I/O I P3[0] 19 I/O I P3[2] 20 I/O I P2[0] 21 I/O I P2[2] 22 I/O I P2[4] 23 I/O I P2[6] 24 IOH I P0[0] 25 IOH I P0[2] 26 IOH I P0[4] 27 IOH I P0[6] 9 30 29 10 11 12 P0[0] , AI P2[6] , AI P2[4] , AI P2[2] , AI P2[0] , AI P3[2] , AI P3[0] , AI XRES [8] 18 Active high external reset with internal pull-down 32 31 Vss P0 [3], AI P0 [5], AI Ground connection. 15 16 I AI, E XTCLK, P 1[4] AI, P 1[6] VSS IOHR QFN (Top View) 24 23 22 21 20 19 18 17 13 14 Power 13 1 2 3 4 5 6 7 8 A I,ISSP CLK , I2C SCL, SPI MOSI, P1[1] Vss [8] AI , ISSP DATA , I2C SDA, SPI CLK, P1[0] AI, P 1[2] 12 AI , P0[1] AI , P2[7] AI, XOut, P2[5] AI , XIn, P2[3] AI , P2[1] AI , P3[3] AI , P3[1] AI , I2 C SCL, SPI SS, P1[7] P0 [4], AI P0 [2], AI IOH 2 Figure 3. CY8C24193 Description 26 25 1 Name P0 [7], AI Vd d P0 [6], AI Analog 28 27 Digital AI, I2C SDA, SPI MISO, P 1[5] AI, SPI CLK, P 1[3] Type Pin No. 28 Power VDD 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Supply voltage 32 Power VSS Ground connection CP Power VSS Center pad must be connected to ground LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output. Notes 6. 28 GPIOs. 7. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 8. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 9. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 11 of 65 CY8C24X93 32-pin QFN (28 GPIOs) [10] Table 4. Pin Definitions – CY8C24293 [11] P2[5] Crystal output (XOut) 3 I/O I P2[3] Crystal input (XIn) 4 I/O I P2[1] 5 I/O I P4[3] 6 I/O I P3[3] 7 I/O I P3[1] 8 IOHR I P1[7] I2C SCL, SPI SS 9 IOHR I P1[5] I2C SDA, SPI MISO 10 IOHR I P1[3] SPI CLK. 11 IOHR I P1[1] ISSP CLK [12], I2C SCL, SPI MOSI. 12 Power VSS Ground connection 13 IOHR I P1[0] ISSP DATA[12], I2C SDA, SPI CLK[13] 14 IOHR I P1[2] 15 IOHR I P1[4] 16 IOHR I P1[6] 17 Input 18 I/O I P3[0] 19 I/O I P3[2] 20 I/O I P4[0] 21 I/O I P4[2] 22 I/O I P2[0] 23 I/O I P2[2] 24 I/O I P2[4] 25 IOH I P0[0] 26 IOH I P0[2] 27 IOH I P0[4] 28 IOH I P0[6] 29 Power 30 IOH I P0[7] 31 IOH I P0[3] 32 Power VSS Ground connection CP Power VSS Center pad must be connected to ground AI , XOut ,P0[1] AI , XIn ,P2[5] AI ,P2[3] AI ,P2[ 1] AI ,P4[3] AI ,P3[3] AI ,P3[1] AI ,I2 C SCL, SPI SS,P1[7] Optional external clock input (EXTCLK) Active high external reset with internal pull-down P0 [4 ], AI P0 [2 ], AI P0 [0 ], AI P0[1] I 1 2 3 4 5 6 7 8 QFN (Top View) 24 23 22 21 20 19 18 17 P2[4] ,AI P2[2] ,AI P2[0] ,AI P4[2] ,AI P4[0] ,AI P3[2] ,AI P3[0] ,AI XRES AI, EXTCLK, P 1[ 4] AI, P 1[ 6] I I/O Vss P0 [3 ], AI P0 [7 ], AI VDD P0[6], AI IOH 2 32 31 30 29 28 27 26 25 1 XRES Figure 4. CY8C24293 Device Description 9 Name 10 11 12 13 14 15 16 Analog AI, I2C SDA , SPI MI SO, P 1[ 5] A I, SP I CLK, P 1[ 3] AI ,ISSP CLK , I2C SCL, SPI MOSI, P1[1] Vss [12] AI ,ISSP DATA , I2C SDA, SPI CLK, P1[0] AI, P 1[ 2] Digital [12] Pin No. VDD LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output. Notes 10. 28 GPIOs. 11. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 12. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 13. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 12 of 65 CY8C24X93 48-pin QFN (34 GPIOs) [14] Table 5. Pin Definitions – CY8C24393, CY8C24693 [15, 16] Power 22 IOHR I P1[0] 23 24 IOHR IOHR I I P1[2] P1[4] 25 26 IOHR Input I P1[6] XRES 27 28 29 30 31 32 33 34 35 I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I I I I I I I AI , XIn ,P2[3] AI ,P2[1] AI ,P4[3] AI ,P4[1] AI ,P3[7] AI ,P3[5] AI ,P3[3] AI P3[1] AI ,I2 C SCL, SPI SS,P1[7] I2C SCL, SPI SS I2C SDA, SPI MISO No connection No connection SPI CLK ISSP CLK[17], I2C SCL, SPI MOSI Ground connection No connection No connection Supply voltage Optional external clock input (EXTCLK) Active high external reset with internal pull-down P3[0] P3[2] P3[4] P3[6] P4[0] P4[2] P2[0] P2[2] P2[4] Pin No. 36 Digital Analog 5 6 Name IOH IOH I I P0[0] P0[2] 39 40 IOH IOH I I P0[4] P0[6] 41 42 43 44 45 46 47 48 CP Power IOH Power IOH Power I I P0[2], AI P0[0], AI (Top View) 37 38 I Vd d P0[6], AI P0[4], AI QFN 7 8 9 10 11 12 36 35 34 33 32 31 3 4 NC IOH 38 37 1 2 42 41 40 39 NC AI ,P2[7] AI , XOut,P2[5] NC , P0[7], AI NC NC ISSP DATA[17], I2C SDA, SPI CLK[18] Crystal output (XOut) Crystal input (XIn) 46 45 44 43 I I No connection 15 16 17 18 19 20 21 22 23 24 IOHR IOHR Power NC P2[7] P2[5] P2[3] P2[1] P4[3] P4[1] P3[7] P3[5] P3[3] P3[1] P1[7] P1[5] NC NC P1[3] P1[1] VSS NC NC VDD P0[1], AI Vss P0[3], AI I I I I I I I I I I I I Figure 5. CY8C24393, CY8C24693 Device Description 48 47 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O IOHR IOHR Name 13 14 Analog 30 29 28 27 26 25 NC P2[ 4], AI P2[ 2], AI P2[ 0], AI P4[ 2], AI P4[ 0], AI P3[ 6], AI P3[ 4], AI P3[ 2], AI P3[0], AI XRES P1[ 6], AI NC NC SPI C LK, A I, P1[3] AI, ISSP C LK, I2C SCL, SPI MOSI, P1[1] Vss NC NC Vdd 1 AI, ISSP DATA , I2C SDA, SPI CLK, P1[0] AI, P1 [2 ] AI, EXTCL K, P1[4] Digital I2 C SD A, SPI MIS O, A I, P1[5] Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 VDD NC NC P0[7] NC P0[3] VSS P0[1] VSS Description No connection Supply voltage No connection No connection No connection Ground connection Center pad must be connected to ground LEGENDA = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output. Notes 14. 38 GPIOs. 15. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes. 16. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 17. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 18. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 13 of 65 CY8C24X93 48-pin QFN (36 GPIOs (With USB)) [19] Table 6. Pin Definitions – CY8C24493 [20, 21] IOHR I IOHR I Power I/O I/O Power IOHR I NC P2[7] P2[5] P2[3] P2[1] P4[3] P4[1] P3[7] P3[5] P3[3] P3[1] P1[7] P1[5] NC NC P1[3] P1[1] VSS D+ DVDD P1[0] 23 24 IOHR IOHR P1[2] P1[4] 25 26 IOHR I Input I I P1[6] XRES 27 28 29 I/O I/O I/O I I I P3[0] P3[2] P3[4] 30 31 32 33 34 35 36 37 38 39 I/O I/O I/O I/O I/O I/O I/O IOH IOH IOH I I I I I I I I I I P3[6] P4[0] P4[2] P2[0] P2[2] P2[4] P2[6] P0[0] P0[2] P0[4] No connection Crystal output (XOut) Crystal input (XIn) NC AI , P2[7] AI , XOut, P2[5] AI , XIn , P2[3] AI , P2[1] AI , P4[3] AI , P4[1] AI , P3[7] AI , P3[5] AI , P3[3] AI , P3[1] AI , I2 C SCL, SPI SS, P1[7] I2C SCL, SPI SS I2C SDA, SPI MISO No connection No connection SPI CLK ISSP CLK[20], I2C SCL, SPI MOSI Ground connection USB D+ USB DSupply voltage ISSP DATA[20], I2C SDA, SPI CLK[22] Vss P0[3], AI P0[5 ], AI P0[7], AI NC NC Vdd P0[6], AI P0[4], AI P0[2], AI P0[0], AI I I I I I I I I I I I I Figure 6. CY8C24493 Description P0[1], AI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O IOHR IOHR Name 48 47 46 45 44 43 42 41 40 39 38 37 Analog 1 2 3 4 5 6 7 8 9 10 11 12 QFN (Top View) 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Digital 36 35 34 33 32 31 30 29 28 27 26 25 P2[6] , AI P2[4] ,AI P2[2] ,AI P2[0] ,AI P4[2] ,AI P4[0] ,AI P3[6] ,AI P3[4] , AI P3[2] ,AI P3[0] , AI XRES P1[6] , AI I2C SDA, SPI MISO, A I, P1[5] NC NC SPI CLK, A I, P1[3] [20] AI,ISSP CLK , I2C SCL, SPI MOSI, P1[1] Vss D+ DVdd [20, 22] AI,ISSP DATA, I2C SDA, SPI CLK, P1[0] AI, P1[2] AI, EXTCLK, P1[4] Pin No. Optional external clock input (EXTCLK) Active high external reset with internal pull-down Pin No. 40 41 42 43 44 45 46 47 48 CP Digital IOH IOH IOH IOH Analog I Power I I I Power IOH I Power Name P0[6] VDD NC NC P0[7] P0[5] P0[3] VSS P0[1] VSS Description Supply voltage No connection No connection Ground connection Center pad must be connected to ground LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output. Notes 19. 36 GPIOs. 20. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 21. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 22. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 14 of 65 CY8C24X93 48-pin QFN (OCD) (36 GPIOs) [23] The 48-pin QFN part is for the CY8C240093 On-Chip Debug (OCD). Note that this part is only used for in-circuit debugging. Table 7. Pin Definitions – CY8C240093 [24, 25] 18 19 20 21 22 Power IOHR I VSS D+ DVDD P1[0] 23 IOHR I P1[2] 24 IOHR I P1[4] 25 26 IOHR I Input 27 28 29 30 31 32 33 34 35 36 Power I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I I I I I I I I P1[6] XRES Crystal output (XOut) Crystal input (XIn) OCDO A E , P2[7] I AI , XOut, P2[5] AI , XIn , P2[3] AI , P2[1] AI , P4[3] AI , P4[1] AI , P3[7] AI , P3[5] AI , P3[3] AI , P3[1] AI , I2 C SCL, SPI SS, P1[7] I2C SCL, SPI SS I2C SDA, SPI MISO OCD CPU clock output OCD high speed clock output SPI CLK. ISSP CLK[27], I2C SCL, SPI MOSI Ground connection USB D+ USB DSupply voltage ISSP DATA[27], I2C SDA, SPI CLK[28] Optional external clock input (EXTCLK) Active high external reset with internal pull-down P3[0] P3[2] P3[4] P3[6] P4[0] P4[2] P2[0] P2[2] P2[4] P2[6] OCDO Vdd P0[6], AI P0[4], AI P0[2], AI P0[0], AI I I OCD mode direction pin Vss P0[3], AI P0[5 ], AI P0[7], AI OCDE IOHR IOHR OCDOE P2[7] P2[5] P2[3] P2[1] P4[3] P4[1] P3[7] P3[5] P3[3] P3[1] P1[7] P1[5] CCLK HCLK P1[3] P1[1] P0[1], AI I I I I I I I I I I I I Figure 7. CY8C240093 Description 48 47 46 45 44 43 42 41 40 39 38 37 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O IOHR IOHR Name 1 2 3 4 5 6 7 8 9 10 11 12 QFN (Top View) 13 14 15 16 17 18 19 20 21 22 23 24 1[26] 2 3 4 5 6 7 8 9 10 11 12 13 14[26] 15[26] 16 17 Digital Analog 36 35 34 33 32 31 30 29 28 27 26 25 P2[6] , AI P2[4] , AI P2[2] , AI P2[0] , AI P4[2] , AI P4[0] , AI P3[6] , AI P3[4] , AI P3[2] , AI P3[0] , AI XRES P1[6] , AI I2C SDA, SPI MISO, AI, P1[5] CCLK HCLK SPI CLK, A I, P1[3] [27] AI,ISSP CLK6, I2C SCL, SPI MOSI, P1[1] Vss D+ DVdd [27, 28] AI,ISSP DATA1 , I2C SDA, SPI CLK, P1[0] AI, P1[2] AI, EXTCLK, P1[4] Pin No. Pin No. 37 Digital Analog IOH I P0[0] 38 39 IOH IOH I I P0[2] P0[4] 40 41 42[26] 43[26] 44 45 46 47 48 CP IOH I P0[6] VDD OCDO OCDE P0[7] P0[5] P0[3] VSS P0[1] VSS Power IOH IOH IOH I I I Power IOH I Power Name Description Supply voltage OCD even data I/O OCD odd data output Ground connection Center pad must be connected to ground LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output. Notes 23. 36 GPIOs. 24. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes. 25. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 26. This pin (associated with OCD part only) is required for connecting the device to ICE-Cube In-Circuit Emulator for firmware debugging purpose. To know more about the usage of ICE-Cube, refer to CY3215-DK PSoC® IN-CIRCUIT EMULATOR KIT GUIDE. 27. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 28. Alternate SPI clock. Document Number: 001-86894 Rev. *D Page 15 of 65 CY8C24X93 Electrical Specifications (CY8C24193/493) This section presents the DC and AC electrical specifications of the CY8C24193/493 PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc. Figure 8. Voltage versus CPU Frequency 5.5 V VDD Voltage li d ng Va rati n e io Op Reg 1.71 V 750 kHz 3 MHz CPU 24 MHz Frequency Absolute Maximum Ratings (CY8C24193/493) Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Table 8. Absolute Maximum Ratings Symbol Description Conditions Min Typ Max Units TSTG Storage temperature Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability. –55 +25 +125 °C VDD Supply voltage relative to VSS – –0.5 – +6.0 V VIO DC input voltage – VSS – 0.5 – VDD + 0.5 V VIOZ DC voltage applied to tristate – VSS – 0.5 – VDD + 0.5 V IMIO Maximum current into any port pin – –25 – +50 mA ESD Electro static discharge voltage Human body model ESD 2000 – – V LU Latch up current In accordance with JESD78 standard – – 200 mA Min Typ Max Units – +85 °C 70 °C +100 °C Operating Temperature (CY8C24193/493) Table 9. Operating Temperature Symbol Description Conditions TA Ambient temperature – –40 TC Commercial temperature range – 0 TJ Operational die temperature The temperature rise from ambient to junction is package specific. See the Thermal Impedances on page 49. The user must limit the power consumption to comply with this requirement. Document Number: 001-86894 Rev. *D –40 – Page 16 of 65 CY8C24X93 DC Chip-Level Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 10. DC Chip-Level Specifications Symbol VDD [29, 43] Description Supply voltage Conditions See table DC POR and LVD Specifications (CY8C24093/293/393/693) on page 37 Min Typ Max Units 1.71 – 5.50 V IDD24 Supply current, IMO = 24 MHz Conditions are VDD  3.0 V, TA = 25 °C, CPU = 24 MHz. – 2.88 4.00 mA IDD12 Supply current, IMO = 12 MHz Conditions are VDD  3.0 V, TA = 25 °C, CPU = 12 MHz. – 1.71 2.60 mA IDD6 Supply current, IMO = 6 MHz Conditions are VDD  3.0 V, TA = 25 °C, CPU = 6 MHz. – 1.16 1.80 mA ISB0 Deep sleep current VDD  3.0 V, TA = 25 °C, I/O regulator turned off – 0.10 1.1 A ISB1 Standby current with POR, LVD VDD  3.0 V, TA = 25 °C, I/O regulator turned and sleep timer off – 1.07 1.50 A ISBI2C Standby current with I2C enabled – 1.64 – A Conditions are VDD = 3.3 V, TA = 25 °C and CPU = 24 MHz Notes 29. When VDD remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter. 30. If powering down in standby sleep mode, to properly detect and recover from a VDD brown out condition any of the following actions must be taken: a. Bring the device out of sleep before powering down. b. Assure that VDD falls below 100 mV before powering back up. c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep. d. Increase the buzz rate to assure that the falling edge of VDD is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows VDD brown out conditions to be detected and resets the device when VDD goes lower than 1.1 V at edge rates slower than 1 V/ms. Document Number: 001-86894 Rev. *D Page 17 of 65 CY8C24X93 DC GPIO Specifications (CY8C24193/493) The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C  TA  85 °C, 2.4 V to 3.0 V and –40 °C  TA  85 °C, or 1.71 V to 2.4 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 11. 3.0 V to 5.5 V DC GPIO Specifications Symbol Description Conditions Min Typ Max Units RPU Pull-up resistor – 4 5.60 8 k VOH1 High output voltage Port 2 or 3 pins IOH < 10 A, maximum of 10 mA source current in all I/Os VDD – 0.20 – – V VOH2 High output voltage Port 2 or 3 Pins IOH = 1 mA, maximum of 20 mA source current in all I/Os VDD – 0.90 – – V VOH3 High output voltage IOH < 10 A, maximum of 10 mA source Port 0 or 1 pins with LDO regulator Disabled current in all I/Os for port 1 VDD – 0.20 – – V VOH4 High output voltage IOH = 5 mA, maximum of 20 mA source Port 0 or 1 pins with LDO regulator Disabled current in all I/Os for port 1 VDD – 0.90 – – V VOH5 IOH < 10 A, VDD > 3.1 V, maximum of High output voltage Port 1 Pins with LDO Regulator Enabled for 4 I/Os all sourcing 5 mA 3 V out 2.85 VOH6 High output voltage IOH = 5 mA, VDD > 3.1 V, maximum of 20 mA Port 1 pins with LDO regulator enabled for source current in all I/Os 3 V out 2.20 VOH7 High output voltage IOH < 10 A, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os 2.35 VOH8 High output voltage IOH = 2 mA, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os 1.90 VOH9 High output voltage IOH < 10 A, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os 1.60 VOH10 High output voltage IOH = 1 mA, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os 1.20 – – V VOL Low output voltage IOL = 25 mA, VDD > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]) – – 0.75 V VIL Input low voltage – – – 0.80 V 3.00 3.30 – – 2.50 2.75 – – 1.80 2.10 V V V V V VIH Input high voltage – 2.00 – – V VH Input hysteresis voltage – – 80 – mV IIL Input leakage (Absolute Value) – – 0.00 1 1 A CPIN Pin capacitance Package and pin dependent Temp = 25 °C 0.50 1.70 7 pF VILLVT3.3 Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold set, Enable for Port1 voltage of Port1 input 0.8 V – – VIHLVT3.3 Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold set, Enable for Port1 voltage of Port1 input 1.4 – – V VILLVT5.5 Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold set, Enable for Port1 voltage of Port1 input 0.8 V – – VIHLVT5.5 Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold set, Enable for Port1 voltage of Port1 input 1.7 – – V Document Number: 001-86894 Rev. *D Page 18 of 65 CY8C24X93 Table 12. 2.4 V to 3.0 V DC GPIO Specifications Symbol Description Conditions Min Typ Max Units 4 5.60 8 k IOH < 10 A, maximum of 10 mA source VDD - 0.20 current in all I/Os – – V High output voltage Port 2 or 3 Pins IOH = 0.2 mA, maximum of 10 mA source current in all I/Os VDD - 0.40 – – V VOH3 High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1 IOH < 10 A, maximum of 10 mA source VDD - 0.20 current in all I/Os – – V VOH4 High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1 IOH = 2 mA, maximum of 10 mA source VDD - 0.50 current in all I/Os – – V VOH5A IOH < 10 A, VDD > 2.4 V, maximum of High output voltage Port 1 pins with LDO enabled for 1.8 V 20 mA source current in all I/Os out 1.50 1.80 2.10 V VOH6A High output voltage IOH = 1 mA, VDD > 2.4 V, maximum of Port 1 pins with LDO enabled for 1.8 V 20 mA source current in all I/Os out 1.20 – – V VOL Low output voltage IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]) – – 0.75 V VIL Input low voltage – – – 0.72 V VIH Input high voltage – 1.40 – VH Input hysteresis voltage – – 80 – mV IIL Input leakage (absolute value) – – 1 1000 nA CPIN Capacitive load on pins Package and pin dependent Temp = 25 C 0.50 1.70 7 pF VILLVT2.5 Input Low Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 0.7 V – VIHLVT2.5 Input High Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 1.2 RPU Pull-up resistor – VOH1 High output voltage Port 2 or 3 pins VOH2 Document Number: 001-86894 Rev. *D V – V Page 19 of 65 CY8C24X93 Table 13. 1.71 V to 2.4 V DC GPIO Specifications Symbol Description Conditions Min Typ Max Units 4 5.60 8 k IOH = 10 A, maximum of 10 mA VDD – 0.20 source current in all I/Os – – V High output voltage Port 2 or 3 pins IOH = 0.5 mA, maximum of 10 mA VDD – 0.50 source current in all I/Os – – V VOH3 High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1 IOH = 100 A, maximum of 10 mA VDD – 0.20 source current in all I/Os – – V VOH4 High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1 IOH = 2 mA, maximum of 10 mA source VDD – 0.50 current in all I/Os – – V VOL Low output voltage IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]) – – 0.40 V VIL Input low voltage – – – 0.30 × VDD V VIH Input high voltage – 0.65 × VDD – – V VH Input hysteresis voltage – – 80 – mV IIL Input leakage (absolute value) – – 1 1000 nA CPIN Capacitive load on pins Package and pin dependent temp = 25 C 0.50 1.70 7 pF RPU Pull-up resistor – VOH1 High output voltage Port 2 or 3 pins VOH2 Table 14. GPIO Current Sink and Source Specifications Supply Voltage Mode Port 1 per I/O (max) Port 2/3/4 per I/O (max) Total Current Even Pins (max) Total Current Odd Pins (max) Units 1.71 – 2.4 Sink 5 5 20 30 mA 2.4 – 3.0 3.0 – 5.0 Source 2 0.5 Sink 10 10 Source 2 0.2 Sink 25 25 Source 5 1 10[31] 30 mA 30 mA 60 mA 10[31] 60 20[31] mA mA Note 31. Total current (odd + even ports) Document Number: 001-86894 Rev. *D Page 20 of 65 CY8C24X93 DC Analog Mux Bus Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 15. DC Analog Mux Bus Specifications Symbol Description Conditions Min Typ Max Units RSW Switch resistance to common analog bus – – – 800  RGND Resistance of initialization switch to VSS – – – 800  The maximum pin voltage for measuring RSW and RGND is 1.8 V DC Low Power Comparator Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 16. DC Comparator Specifications Symbol Description Conditions Min Typ Max Units 0.2 – 1.8 V VLPC Low power comparator (LPC) common Maximum voltage limited to VDD mode ILPC LPC supply current – – 10 80 A VOSLPC LPC voltage offset – – 2.5 30 mV Comparator User Module Electrical Specifications (CY8C24193/493) The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C  TA  85 °C, 1.71 V  VDD  5.5 V. Table 17. Comparator User Module Electrical Specifications Symbol Min Typ Max Units 50 mV overdrive – 70 100 ns Offset Valid from 0.2 V to 1.5 V – 2.5 30 mV Current Average DC current, 50 mV overdrive – 20 80 µA Supply voltage > 2 V Power supply rejection ratio – 80 – dB Supply voltage < 2 V Power supply rejection ratio – 40 – dB 1.5 V TCOMP PSRR Description Comparator response time Input range Document Number: 001-86894 Rev. *D Conditions – 0.2 Page 21 of 65 CY8C24X93 ADC Electrical Specifications (CY8C24193/493) Table 18. ADC User Module Electrical Specifications Symbol Description Conditions Min Typ Max Units 0 – VREFADC V Input VIN Input voltage range – CIIN Input capacitance – RIN Input resistance Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution ADC reference voltage FCLK – – 5 pF 1/(500fF × data clock) 1/(400fF × data clock) 1/(300fF × data clock)  – 1.14 – 1.26 V Data clock Source is chip’s internal main oscillator. See AC Chip-Level Specifications on page 25 for accuracy 2.25 – 6 MHz S8 8-bit sample rate Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock) – 23.43 – ksps S10 10-bit sample rate Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock) – 5.85 – ksps Reference VREFADC Conversion Rate DC Accuracy RES Resolution Can be set to 8, 9, or 10 bit 8 – 10 bits DNL Differential nonlinearity – –1 – +2 LSB INL Integral nonlinearity – –2 – +2 LSB EOFFSET Offset error 8-bit resolution 0 3.20 19.20 LSB 10-bit resolution 0 12.80 76.80 LSB EGAIN Gain error For any resolution –5 – +5 %FSR IADC Operating current – – 2.10 2.60 mA PSRR Power supply rejection ratio Power Document Number: 001-86894 Rev. *D PSRR (VDD > 3.0 V) – 24 – dB PSRR (VDD < 3.0 V) – 30 – dB Page 22 of 65 CY8C24X93 DC POR and LVD Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 19. DC POR and LVD Specifications Symbol VPOR0 Description Conditions Min Typ Max Units 1.61 – 1.66 1.71 V 2.36 2.41 – 2.60 2.66 – 2.82 2.95 VPOR2 1.66 V selected in PSoC Designer VDD must be greater than or equal to 1.71 V 2.36 V selected in PSoC Designer during startup, reset from the XRES pin, or reset from watchdog. 2.60 V selected in PSoC Designer VPOR3 2.82 V selected in PSoC Designer VLVD0 2.45 V selected in PSoC Designer – 2.40 2.45 2.51 VLVD1 2.71 V selected in PSoC Designer 2.64[46] 2.71 2.78 VLVD2 2.92 V selected in PSoC Designer 2.85[47] 2.92 2.99 VLVD3 3.02 V selected in PSoC Designer 2.95[48] 3.02 3.09 VLVD4 3.13 V selected in PSoC Designer 3.06 3.13 3.20 VLVD5 1.90 V selected in PSoC Designer 1.84 1.90 2.32 VLVD6 1.80 V selected in PSoC Designer 1.75[49] 1.80 1.84 VLVD7 4.73 V selected in PSoC Designer 4.62 4.73 4.83 VPOR1 V DC Programming Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 20. DC Programming Specifications Symbol Description VDDIWRITE Supply voltage for flash write operations IDDP Supply current during programming or verify VILP Input low voltage during programming or verify VIHP Input high voltage during programming or verify IILP Input current when Applying VILP to P1[0] or P1[1] during programming or verify IIHP Input current when applying VIHP to P1[0] or P1[1] during programming or verify VOLP Output low voltage during programming or verify VOHP Output high voltage during programming or verify FlashENPB Flash write endurance FlashDR Flash data retention – Conditions Min 1.71 Typ – Max 5.25 Units V – – 5 25 mA See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33 See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33 Driving internal pull-down resistor – – VIL V VIH – – V – – 0.2 mA – – 1.5 mA – – VSS + 0.75 V VOH – VDD V 50,000 20 – – – – – Years Driving internal pull-down resistor See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33. For VDD > 3V use VOH4 in Table 36 on page 33. Erase/write cycles per block Following maximum Flash write cycles; ambient temperature of 55 °C Notes 32. Always greater than 50 mV above VPPOR1 voltage for falling supply. 33. Always greater than 50 mV above VPPOR2 voltage for falling supply. 34. Always greater than 50 mV above VPPOR3 voltage for falling supply. 35. Always greater than 50 mV above VPPOR0 voltage for falling supply. Document Number: 001-86894 Rev. *D Page 23 of 65 CY8C24X93 DC I2C Specifications (CY8C24193/493) The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C  TA  85 °C, 2.4 V to 3.0 V and –40 °C  TA  85 °C, or 1.71 V to 2.4 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 21. DC I2C Specifications[36] Symbol VILI2C VIHI2C Description Input low level Input high level Conditions 3.1 V ≤ VDD ≤ 5.5 V Min – Typ – Max Units 0.25 × VDD V 2.5 V ≤ VDD ≤ 3.0 V – – 0.3 × VDD V 1.71 V ≤ VDD ≤ 2.4 V – – 0.3 × VDD V 1.71 V ≤ VDD ≤ 5.5 V 0.65 × VDD – VDD + 0.7 V[37] V Shield Driver DC Specifications (CY8C24193/493) The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C  TA  85 °C, 2.4 V to 3.0 V and –40 °C  TA  85 °C, or 1.71 V to 2.4 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 22. Shield Driver DC Specifications VRef Reference buffer output 1.7 V ≤ VDD ≤ 5.5 V 0.942 – 1.106 Unit s V VRefHi Reference buffer output 1.7 V ≤ VDD ≤ 5.5 V 1.104 – 1.296 V Symbol Description Conditions Min Typ Max DC IDAC Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 23. DC IDAC Specifications (8-bit IDAC) Symbol Description Min Typ Max Units Notes IDAC_DNL Differential nonlinearity –1 – 1 LSB IDAC_DNL Integral nonlinearity –2 – 2 LSB IDAC_Current Range = 4x 138 – 169 µA DAC setting = 127 dec Range = 8x 138 – 169 µA DAC setting = 64 dec Table 24. DC IDAC Specifications (7-bit IDAC) Symbol IDAC_DNL Description Differential nonlinearity Min Typ Max Units –1 – 1 LSB Notes IDAC_DNL Integral nonlinearity –2 – 2 LSB IDAC_Current Range = 4x 137 – 168 µA DAC setting = 127 dec Range = 8x 138 – 169 µA DAC setting = 64 dec Notes 36. Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C24x93 power supply. See the CY8C24x93 Silicon Errata document for more details. 37. Please refer to Item # 6 of the CY8C24x93 Family. Document Number: 001-86894 Rev. *D Page 24 of 65 CY8C24X93 AC Chip-Level Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 25. AC Chip-Level Specifications Min Typ Max Units FIMO24 Symbol IMO frequency at 24 MHz Setting Description – Conditions 22.8 24 25.2 MHz FIMO12 IMO frequency at 12 MHz setting – 11.4 12 12.6 MHz FIMO6 IMO frequency at 6 MHz setting – 5.7 6.0 6.3 MHz FCPU CPU frequency – 0.75 – 25.20 MHz F32K1 ILO frequency – 15 32 50 kHz F32K_U ILO untrimmed frequency – 13 32 82 kHz DCIMO Duty cycle of IMO – 40 50 60 % DCILO ILO duty cycle – 40 50 60 % VDD slew rate during power-up – – 250 V/ms After supply voltage is valid 1 – – ms Applies after part has booted 10 – – s SRPOWER_UP Power supply slew rate tXRST External reset pulse width at power-up tXRST2 tJIT_IMO External reset pulse width after [39] power-up[50] 6 MHz IMO cycle-to-cycle jitter (RMS) – – 0.7 6.7 ns 6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32 – – 4.3 29.3 ns 6 MHz IMO period jitter (RMS) – – 0.7 3.3 ns 12 MHz IMO cycle-to-cycle jitter (RMS) – – 0.5 5.2 ns 12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32 – – 2.3 5.6 ns 12 MHz IMO period jitter (RMS) – – 0.4 2.6 ns 24 MHz IMO cycle-to-cycle jitter (RMS) – – 1.0 8.7 ns 24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32 – – 1.4 6.0 ns 24 MHz IMO period jitter (RMS) – – 0.6 4.0 ns Note 38. The minimum required XRES pulse length is longer when programming the device (see Table 55 on page 42). 39. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information. Document Number: 001-86894 Rev. *D Page 25 of 65 CY8C24X93 AC General Purpose I/O Specifications (CY8C24193/493) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 26. AC GPIO Specifications Symbol FGPIO Description GPIO operating frequency Conditions Normal strong mode Port 0, 1 Min 0 0 tRISE23 tRISE23L tRISE01 tRISE01L tFALL tFALLL Rise time, strong mode, Cload = 50 pF Ports 2 or 3 Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3 Rise time, strong mode, Cload = 50 pF Ports 0 or 1 Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1 Fall time, strong mode, Cload = 50 pF all ports Fall time, strong mode low supply, Cload = 50 pF, all ports Typ Max Units – 6 MHz for MHz 1.71 V 3.1 V, maximum of 4 I/Os Port 1 Pins with LDO Regulator Enabled all sourcing 5 mA for 3 V out 2.85 3.00 3.30 V VOH6 High output voltage IOH = 5 mA, VDD > 3.1 V, maximum of 20 mA Port 1 pins with LDO regulator enabled for source current in all I/Os 3 V out 2.20 – – V VOH7 High output voltage IOH < 10 A, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os 2.35 2.50 2.75 V VOH8 High output voltage IOH = 2 mA, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os 1.90 – – V VOH9 High output voltage IOH < 10 A, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os 1.60 1.80 2.10 V VOH10 High output voltage IOH = 1 mA, VDD > 2.7 V, maximum of 20 mA Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os 1.20 – – V VOL Low output voltage – – 0.75 V IOL = 25 mA, VDD > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]) VIL Input low voltage – – – 0.80 V VIH Input high voltage – 2.00 – – V VH Input hysteresis voltage – – 80 – mV IIL Input leakage (Absolute Value) – – 0.001 1 A CPIN Pin capacitance Package and pin dependent Temp = 25 °C 0.50 1.70 7 pF VILLVT3.3 Input Low Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 0.8 V – – VIHLVT3.3 Input High Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 1.4 – – V VILLVT5.5 Input Low Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 0.8 V – – VIHLVT5.5 Input High Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 1.7 – – V Document Number: 001-86894 Rev. *D Page 33 of 65 CY8C24X93 Table 37. 2.4 V to 3.0 V DC GPIO Specifications Symbol Description Conditions Min Typ Max Units 4 5.60 8 k IOH < 10 A, maximum of 10 mA source current in all I/Os VDD – 0.20 – – V High output voltage Port 2 or 3 or 4 pins IOH = 0.2 mA, maximum of 10 mA source current in all I/Os VDD – 0.40 – – V VOH3 High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1 IOH < 10 A, maximum of 10 mA source current in all I/Os VDD – 0.20 – – V VOH4 High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1 IOH = 2 mA, maximum of 10 mA source current in all I/Os VDD – 0.50 – – V VOH5A High output voltage IOH < 10 A, VDD > 2.4 V, maximum of Port 1 pins with LDO enabled for 1.8 V out 20 mA source current in all I/Os 1.50 1.80 2.10 V VOH6A High output voltage IOH = 1 mA, VDD > 2.4 V, maximum of 20 mA Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os 1.20 – – V VOL Low output voltage – – 0.75 V VIL Input low voltage – – – 0.72 VIH Input high voltage – 1.40 – VH Input hysteresis voltage – – 80 – mV IIL Input leakage (absolute value) – – 1 1000 nA CPIN Capacitive load on pins Package and pin dependent Temp = 25 C 0.50 1.70 7 pF VILLVT2.5 Input Low Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 0.7 V – VIHLVT2.5 Input High Voltage with low threshold enable set, Enable for Port1 Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input 1.2 RPU Pull-up resistor – VOH1 High output voltage Port 2 or 3 or 4 pins VOH2 IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]) V V – V Table 38. 1.71 V to 2.4 V DC GPIO Specifications Symbol Description Conditions Min Typ Max Units 4 RPU Pull-up resistor – 5.60 8 k VOH1 High output voltage Port 2 or 3 or 4 pins IOH = 10 A, maximum of 10 mA VDD – 0.20 source current in all I/Os – – V VOH2 High output voltage Port 2 or 3 or 4 pins IOH = 0.5 mA, maximum of 10 mA VDD – 0.50 source current in all I/Os – – V VOH3 High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1 IOH = 100 A, maximum of 10 mA VDD – 0.20 source current in all I/Os – – V VOH4 High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1 IOH = 2 mA, maximum of 10 mA source VDD – 0.50 current in all I/Os – – V VOL Low output voltage IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]) – 0.40 V Document Number: 001-86894 Rev. *D – Page 34 of 65 CY8C24X93 Table 38. 1.71 V to 2.4 V DC GPIO Specifications (continued) Symbol Description Conditions Min Typ Max Units VIL Input low voltage – – – 0.30 × VDD V VIH Input high voltage – 0.65 × VDD – – V VH Input hysteresis voltage – – 80 – mV IIL Input leakage (absolute value) – – 1 1000 nA CPIN Capacitive load on pins Package and pin dependent temp = 25 °C 0.50 1.70 7 pF Min Typ Max Units Table 39. DC Characteristics – USB Interface Symbol Description Conditions RUSBI USB D+ pull-up resistance With idle bus 900 – 1575  RUSBA USB D+ pull-up resistance While receiving traffic 1425 – 3090  VOHUSB Static output high – 2.8 – 3.6 V VOLUSB Static output low – – – 0.3 V VDI Differential input sensitivity – 0.2 – VCM Differential input common mode range – 0.8 – 2.5 V VSE Single ended receiver threshold – 0.8 – 2.0 V CIN Transceiver capacitance – – – 50 pF V IIO High Z state data line leakage On D+ or D- line –10 – +10 A RPS2 PS/2 pull-up resistance – 3000 5000 7000  REXT External USB series resistor In series with each USB pin 21.78 22.0 22.22  DC Analog Mux Bus Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 40. DC Analog Mux Bus Specifications Symbol RSW Description Conditions Switch resistance to common analog bus – RGND Resistance of initialization switch to VSS The maximum pin voltage for measuring RSW and RGND is 1.8 V – Min Typ Max Units – – 800  – – 800  DC Low Power Comparator Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 41. DC Comparator Specifications Conditions Min Typ Max Units VLPC Symbol Low power comparator (LPC) common mode Description Maximum voltage limited to VDD 0.0 – 1.8 V ILPC LPC supply current – – 10 40 A VOSLPC LPC voltage offset – – 3 30 mV Document Number: 001-86894 Rev. *D Page 35 of 65 CY8C24X93 Comparator User Module Electrical Specifications (CY8C24093/293/393/693) The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C  TA  85 °C, 1.71 V  VDD  5.5 V. Table 42. Comparator User Module Electrical Specifications Symbol Min Typ Max Units 50 mV overdrive – 70 100 ns Offset Valid from 0.2 V to VDD – 0.2 V – 2.5 30 mV Current Average DC current, 50 mV overdrive – 20 80 µA Supply voltage > 2 V Power supply rejection ratio – 80 – dB Supply voltage < 2 V Power supply rejection ratio – 40 – dB – 0 1.5 V tCOMP PSRR Description Comparator response time Input range Conditions ADC Electrical Specifications (CY8C24093/293/393/693) Table 43. ADC User Module Electrical Specifications Symbol Description Conditions Min Typ Max Units 0 – VREFADC V – – 5 pF Input VIN Input voltage range CIIN Input capacitance – RIN Input resistance Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution ADC reference voltage – 1.14 – 1.26 V 2.25 – 6 MHz – 1/(500fF × 1/(400fF × 1/(300fF × data clock) data clock) data clock)  Reference VREFADC Conversion Rate FCLK Data clock Source is chip’s internal main oscillator. See AC Chip-Level Specifications for accuracy S8 8-bit sample rate Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock) – 23.43 – ksps S10 10-bit sample rate Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock) – 5.85 – ksps RES Resolution Can be set to 8-, 9-, or 10-bit 8 – 10 bits DC Accuracy DNL Differential nonlinearity – –1 – +2 LSB INL Integral nonlinearity – –2 – +2 LSB EOFFSET Offset error 8-bit resolution 0 3.20 19.20 LSB 10-bit resolution 0 12.80 76.80 LSB Gain error For any resolution –5 – +5 %FSR IADC Operating current – – 2.10 2.60 mA PSRR Power supply rejection ratio PSRR (VDD > 3.0 V) – 24 – dB PSRR (VDD < 3.0 V) – 30 – dB EGAIN Power Document Number: 001-86894 Rev. *D Page 36 of 65 CY8C24X93 DC POR and LVD Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 44. DC POR and LVD Specifications Symbol Description Conditions Min VPOR0 1.66 V selected in PSoC Designer 2.36 V selected in PSoC Designer – VPOR2 2.60 V selected in PSoC Designer VDD must be greater than or equal to 1.71 V during startup, reset from the XRES pin, or reset from watchdog. 1.61 VPOR1 – 2.60 2.66 VPOR3 2.82 V selected in PSoC Designer – 2.82 2.95 VLVD0 2.45 V selected in PSoC Designer 2.40 2.45 2.51 VLVD1 2.71 V selected in PSoC Designer 2.64[46] 2.71 2.78 VLVD2 2.92 V selected in PSoC Designer 2.85[47] 2.92 2.99 VLVD3 3.02 V selected in PSoC Designer 2.95[48] 3.02 3.09 VLVD4 3.13 V selected in PSoC Designer 3.06 3.13 3.20 VLVD5 1.90 V selected in PSoC Designer 1.84 1.90 2.32 VLVD6 1.80 V selected in PSoC Designer 1.75[49] 1.80 1.84 VLVD7 4.73 V selected in PSoC Designer 4.62 4.73 4.83 – Typ Max Units 1.66 1.71 V 2.36 2.41 V DC Programming Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 45. DC Programming Specifications Symbol VDDIWRITE IDDP VILP VIHP IILP IIHP VOLP VOHP FlashENPB FlashDR Description Supply voltage for flash write operations Supply current during programming or verify Input low voltage during programming or verify – Conditions Min 1.71 Typ – Max 5.25 Units V – – 5 25 mA – – VIL V VIH – – V – – 0.2 mA – – 1.5 mA – – VSS + 0.75 V VOH – VDD V 50,000 20 – – – – – Years See the appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33 Input high voltage during See the appropriate DC GPIO programming or verify Specifications (CY8C24093/293/393/693) on page 33 Input current when Applying VILP Driving internal pull-down resistor to P1[0] or P1[1] during programming or verify Input current when applying VIHP Driving internal pull-down resistor to P1[0] or P1[1] during programming or verify Output low voltage during programming or verify Output high voltage during See appropriate DC GPIO Specifications programming or verify (CY8C24093/293/393/693) on page 33. For VDD > 3 V use VOH4 in Table 34 on page 31. Flash write endurance Erase/write cycles per block Flash data retention Following maximum Flash write cycles; ambient temperature of 55 °C Notes 46. Always greater than 50 mV above VPPOR1 voltage for falling supply. 47. Always greater than 50 mV above VPPOR2 voltage for falling supply. 48. Always greater than 50 mV above VPPOR3 voltage for falling supply. 49. Always greater than 50 mV above VPPOR0 voltage for falling supply. Document Number: 001-86894 Rev. *D Page 37 of 65 CY8C24X93 DC I2C Specifications (CY8C24093/293/393/693) The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C  TA  85 °C, 2.4 V to 3.0 V and –40 °C  TA  85 °C, or 1.71 V to 2.4 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 46. DC I2C Specifications Symbol VILI2C VIHI2C Description Input low level Input high level Conditions 3.1 V ≤ VDD ≤ 5.5 V Min – Typ – Max Units 0.25 × VDD V 2.5 V ≤ VDD ≤ 3.0 V – – 0.3 × VDD V 1.71 V ≤ VDD ≤ 2.4 V – – 0.3 × VDD V 1.71 V ≤ VDD ≤ 5.5 V 0.65 × VDD – – V DC Reference Buffer Specifications (CY8C24093/293/393/693) The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C  TA  85 °C, 2.4 V to 3.0 V and –40 °C  TA  85 °C, or 1.71 V to 2.4 V and –40 °C  TA  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 47. DC Reference Buffer Specifications Symbol VRef Description Reference buffer output Conditions 1.7 V ≤ VDD ≤ 5.5 V Min 1 Typ – Max 1.05 Units V VRefHi Reference buffer output 1.7 V ≤ VDD ≤ 5.5 V 1.2 – 1.25 V DC IDAC Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 48. DC IDAC Specifications Symbol IDAC_DNL IDAC_INL IDAC_Gain (Source) Description Differential nonlinearity Integral nonlinearity Range = 0.5x Range = 1x Range = 2x Range = 4x Range = 8x Document Number: 001-86894 Rev. *D Min –4.5 –5 6.64 14.5 42.7 91.1 184.5 Typ – – – – – – – Max +4.5 +5 22.46 47.8 92.3 170 426.9 Units Notes LSB LSB µA DAC setting = 128 dec µA µA µA DAC setting = 128 dec µA DAC setting = 128 dec Page 38 of 65 CY8C24X93 AC Chip-Level Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 49. AC Chip-Level Specifications Min Typ Max Units FIMO24 Symbol IMO frequency at 24 MHz Setting – 22.8 24 25.2 MHz FIMO12 IMO frequency at 12 MHz setting – 11.4 12 12.6 MHz FIMO6 IMO frequency at 6 MHz setting – 5.7 6.0 6.3 MHz FCPU CPU frequency – 0.75 – 25.20 MHz F32K1 ILO frequency – 15 32 50 kHz F32K_U ILO untrimmed frequency – 13 32 82 kHz DCIMO Duty cycle of IMO – 40 50 60 % DCILO ILO duty cycle – 40 50 60 % SRPOWER_UP Power supply slew rate VDD slew rate during power-up – – 250 V/ms tXRST External reset pulse width at power-up After supply voltage is valid 1 – – ms tXRST2 External reset pulse width after power-up[50] Applies after part has booted 10 – – s Startup time of ECO – – 1 – s N=32 6 MHz IMO cycle-to-cycle jitter (RMS) – 0.7 6.7 ns 6 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS) – 4.3 29.3 ns 6 MHz IMO period jitter (RMS) – 0.7 3.3 ns 12 MHz IMO cycle-to-cycle jitter (RMS) – 0.5 5.2 ns 12 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS) – 2.3 5.6 ns tOS tJIT_IMO [51] Description Conditions 12 MHz IMO period jitter (RMS) – 0.4 2.6 ns 24 MHz IMO cycle-to-cycle jitter (RMS) – 1.0 8.7 ns 24 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS) – 1.4 6.0 ns 24 MHz IMO period jitter (RMS) – 0.6 4.0 ns Notes 50. The minimum required XRES pulse length is longer when programming the device (see Table 55 on page 42). 51. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products for more information. Document Number: 001-86894 Rev. *D Page 39 of 65 CY8C24X93 AC GPIO Specifications (CY8C24093/293/393/693) The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 50. AC GPIO Specifications Symbol FGPIO tRISE23 tRISE23L tRISE01 tRISE01L tFALL tFALLL Description GPIO operating frequency Conditions Normal strong mode Port 0, 1 Rise time, strong mode, Cload = 50 pF Port 2 or 3 or 4 pins Rise time, strong mode low supply, Cload = 50 pF, Port 2 or 3 or 4 pins Rise time, strong mode, Cload = 50 pF Ports 0 or 1 Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1 Fall time, strong mode, Cload = 50 pF all ports Fall time, strong mode low supply, Cload = 50 pF, all ports Min 0 Typ – Max Units 6 MHz for MHz 1.71 V
CY8C240093-24LTXI 价格&库存

很抱歉,暂时无法提供与“CY8C240093-24LTXI”相匹配的价格&库存,您可以联系我们找货

免费人工找货