PSoC™ 4: PSoC™ 4200
Features
•
•
•
•
•
•
32-bit MCU sub-system
Low power 1.71 V to 5.5 V operation
Capacitive sensing
Serial communication
Timing and pulse-width modulation
Up to 24 programmable GPIOs
Product validation
Qualified for automotive applications with higher temperature requirements. Product validation
according to AEC-Q100.
Description
PSoC™ 4 is a scalable and reconfigurable platform architecture for a family of mixed-signal programmable embedded system
controllers with an Arm® Cortex™-M0 CPU, while being AEC-Q100 compliant. It combines programmable and re-configurable
analog and digital blocks with flexible automatic routing. The PSoC™ 4200 product family, based on this platform, is a
combination of a microcontroller with digital programmable logic, high-performance analog-to-digital conversion, opamp with
Comparator mode, and standard communication and timing peripherals. The PSoC™ 4200 products will be fully upward
compatible with members of the PSoC™ 4 platform for new applications and design needs. The programmable analog and digital
subsystems allow flexibility and in-field tuning of the design.
Datasheet
www.infineon.com
Please read the sections "Important notice" and "Warnings" at the end of this document
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
Table of contents
Table of contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Detailed features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.5
4.5.1
4.5.2
4.6
4.7
4.7.1
4.7.2
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CPU and memory subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
System resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Power system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Clock system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IMO clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ILO clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Analog blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
12-bit SAR ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Opamp (CTBm block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Programmable digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Universal digital blocks (UDBs) and port interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fixed function digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Timer/Counter/PWM block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Serial Communication Blocks (SCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Special function peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
LCD segment drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CAPSENSE™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5
Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
6
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Datasheet
2
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
Table of contents
6.1
6.2
Unregulated external supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Regulated external supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
7.1
7.2
7.3
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Device-level specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
XRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SAR ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Timer/Counter/PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LCD direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
SPI specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
System resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Power-on-Reset (POR) with Brown Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Voltage monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
SWD interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Internal main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Internal low-speed oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9
9.1
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Part numbering conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12
Document conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Datasheet
3
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
1 Detailed features
1
Detailed features
32-bit MCU subsystem
•
Automotive Electronics Council (AEC) AEC-Q100 qualified
•
48 MHz Arm™ Cortex®-M0 CPU with single cycle multiply
•
Up to 32 kB of flash with Read Accelerator
•
Up to 4 kB of SRAM
Programmable analog
•
One opamp with reconfigurable high-drive external and high-bandwidth internal drive, Comparator mode, and
ADC input buffering capability
•
12-bit, 1-Msps SAR ADC with differential and single-ended modes; Channel Sequencer with signal averaging
•
Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin
•
Two low-power comparators that operate in Deep Sleep
Programmable digital
• Four programmable logic blocks called universal digital blocks, (UDBs), each with 8 Macrocells and data path
•
Infineon-provided peripheral component library, user-defined state machines, and Verilog input
Capacitive sensing
•
Infineon Capacitive Sigma-Delta (CSD) provides best-in-class SNR (>5:1) and water tolerance
•
Infineon-supplied software component makes capacitive sensing design easy
•
Automatic hardware tuning (SmartSense)
Segment LCD drive
• LCD drive supported on all pins (common or segment)
•
Operates in Deep Sleep mode with 4 bits per pin memory
Serial communication
• Two independent run-time reconfigurable serial communication blocks (SCBs) with reconfigurable I2C, SPI,
UART, or LIN Slave 1.3, 2.1/2.2 functionality
Timing and Pulse-Width modulation
• Four 16-bit Timer/Counter Pulse-Width Modulator (TCPWM) blocks
•
Center-aligned, Edge, and Pseudo-random modes
•
Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications
Up to 24 programmable GPIOs
•
28-pin SSOP package
•
Any GPIO pin can be CAPSENSE™, LCD, analog, or digital
•
Drive modes, strengths, and slew rates are programmable
Temperature ranges
•
A Grade: –40 °C to +85 °C
•
S Grade: –40 °C to +105 °C
PSoC Creator design environment
• Integrated Development Environment (IDE) provides schematic design entry and build (with analog and digital
automatic routing)
•
Applications Programming Interface (API) component for all fixed-function and programmable peripherals
Industry-standard tool compatibility
•
After schematic entry, development can be done with Arm-based industry-standard development tools
Datasheet
4
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
2 Block diagram
2
Block diagram
CPU Subsystem
PSoC 4200
SWD
32-bit
AHB-Lite
Cortex
M0
48 MHz
FLASH
Up to 32 kB
SRAM
Up to 4 kB
ROM
4 kB
FAST MUL
NVIC, IRQMX
Read Accelerator
SRAM Controller
ROM Controller
System Resources
SAR ADC
(12-bit)
UDB
x1
SMX
...
UDB
x4
CTBm
x1
1x OpAmp
2x LP Comparator
Programmable
Digital
LCD
Programmable
Analog
2x SCB-I2C/SPI/UART
Test
DFT Logic
DFT Analog
Peripheral Interconnect (MMIO)
PCLK
Capsense
Reset
Reset Control
XRES
Peripherals
4x TCPWM
Clock
Clock Control
WDT
IMO
ILO
System Interconnect (Single Layer AHB)
IOSS GPIO (5x ports)
Power
Sleep Control
WIC
POR
LVD
REF
BOD
PWRSYS
NVLatches
Port Interface & Digital System Interconnect (DSI)
High Speed I/O Matrix
Power Modes
Active/Sleep
Deep Sleep
Hibernate
24x GPIOs
IO Subsystem
Figure 1
Datasheet
Block diagram
5
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
3 Functional description
3
Functional description
The PSoC™ 4200 devices include extensive support for programming, testing, debugging, and tracing both hardware
and firmware. The Arm® Serial_Wire Debug (SWD) interface supports all programming and debug features of the
device. Complete debug-on-chip functionality enables full-device debugging in the final system using the standard
production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard
programming connections are required to fully support debug. The PSoC Creator IDE provides fully integrated
programming and debug support for the PSoC™ 4200 devices. The SWD interface is fully compatible with industrystandard third-party tools. With the ability to disable debug features, with very robust flash protection, and allowing
customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC™ 4200 family
provides a level of security not possible with multi-chip application solutions or with microcontrollers.
The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that
enables debugging.
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about
phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and
interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when
maximum device security is enabled, PSoC™ 4200 with device security enabled may not be returned for failure
analysis. This is a trade-off PSoC™ 4200 allows the customer to make.
Datasheet
6
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
4
Functional overview
4.1
CPU and memory subsystem
4.1.1
CPU
The Cortex-M0 CPU in PSoC™ 4200 is part of the 32-bit MCU subsystem, which is optimized for low-power operation
with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set.
This enables fully compatible binary upward migration of the code to higher performance processors such as the
Cortex-M3 and M4, thus enabling upward compatibility. The Infineon implementation includes a hardware multiplier
that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32
interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the
Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode.
The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not
in use for system functions requested by the user.
The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG; the
debug configuration used for PSoC™ 4200 has four break-point (address) comparators and two watchpoint (data)
comparators.
4.1.2
Flash
The PSoC™ 4200 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average
access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and
with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on
average. Part of the flash module can be used to emulate EEPROM operation if required.
The PSoC™ 4200 flash supports the following flash protection modes at the Memory subsystem level.
Open: No Protection. Factory default mode that the product is shipped in.
Protected: User may change from Open to Protected. This mode disables Debug interface accesses. The mode can be
set back to Open but only after completely erasing the flash.
Kill: User may change from Open to Kill. This mode disables all Debug accesses. The part cannot be erased externally
thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks.
This is an irrecvocable mode.
In addition, Row level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively
block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.
4.1.3
SRAM
SRAM memory is retained during Hibernate.
4.1.4
SROM
A supervisory ROM that contains boot and configuration routines is provided.
4.2
System resources
4.2.1
Power system
The power system is described in detail in the section Power. It provides assurance that voltage levels are as required
for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are
as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)).
Datasheet
7
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
PSoC™ 4200 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power
modes, transitions between which are managed by the power system. The PSoC™ 4200 provides Sleep, Deep Sleep,
Hibernate, and Stop low-power modes.
4.2.2
Clock system
The PSoC™ 4200 clock system is responsible for providing clocks to all subsystems that require clocks and for
switching between different clock sources without glitching. In addition, the clock system ensures that no metastable
conditions occur.
The clock system for PSoC™ 4200 consists of the IMO and the ILO internal oscillators and provision for an external
clock.
IMO
HFCLK
EXTCLK
ILO
HFCLK
LFCLK
Prescaler
UDB
Dividers
UDBn
Analog
Divider
SAR clock
Peripheral
Dividers
Figure 2
SYSCLK
PERXYZ_CLK
PSoC™ 4200 MCU clocking architecture
The HFCLK signal can be divided down (see Figure 2) to generate synchronous clocks for the UDBs, and the analog
and digital peripherals. There are a total of 12 clock dividers for PSoC™ 4200, each with 16-bit divide capability; this
allows eight to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to
allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of
flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator. When UDB-generated
Pulse Interrupts are used, SYSCLK must equal HFCLK.
4.2.3
IMO clock source
The IMO is the primary source of internal clocking in PSoC™ 4200. It is trimmed during testing to achieve the specified
accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to
compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of
1 MHz. IMO Tolerance with Infineon-provided calibration settings is ±2%.
Datasheet
8
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
4.2.4
ILO clock source
The ILO is a very low power oscillator, which is primarily used to generate clocks for peripheral operation in Deep
Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Infineon provides a software
component, which does the calibration.
4.2.5
Watchdog timer
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during
Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded
in the Reset Cause register.
4.2.6
Reset
PSoC™ 4200 can be reset from a variety of sources including a software reset. Reset events are asynchronous and
guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and
allows software to determine the cause of the Reset. An XRES pin is reserved for external reset to avoid complications
with configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pullup resistor that is always enabled.
4.2.7
Voltage reference
The PSoC™ 4200 reference system generates all internally required references. A 1% voltage reference spec is provided
for the 12-bit ADC. To allow better signal to noise ratios (SNR) and better absolute accuracy, it is possible to bypass
the internal reference using a GPIO pin or to use an external reference for the SAR.
4.3
Analog blocks
4.3.1
12-bit SAR ADC
The 12-bit 1 MSample/second SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18
clocks at that frequency to do a 12-bit conversion.
The block functionality is augmented for the user by adding a reference buffer to it (trimmable to ±1%) and by
providing the choice (for the PSoC™ 4200 case) of three internal voltage references: VDD, VDD/2, and VREF (nominally
1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable
allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time,
to be relaxed if required. System performance will be 65 dB for true 12-bit precision providing appropriate references
are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an
external bypass (through a fixed pin location) for the internal reference amplifier.
The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected
channels autonomously (sequencer scan) and does so with zero switching overhead (that is, aggregate sampling
bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer
switching is effected through a state machine or through firmware driven switching. A feature provided by the
sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with
varying source impedance and frequency, it is possible to have different sample times programmable for each
channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented
with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast
detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the
CPU to read the values and check for out-of-range values in software.
The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperaturedependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock
(up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.
Datasheet
9
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
AHB System Bus and Programmable Logic
Interconnect
SAR Sequencer
vminus vplus
Data and
Status Flags
POS
SARADC
NEG
External
Reference
and
Bypass
(optional)
Reference
Selection
P7
Port 2 (8 inputs)
SARMUX
P0
Sequencing
and Control
VDD/2
VDDD
VREF
Inputs from other Ports
Figure 3
4.3.2
SAR ADC system diagram
Opamp (CTBm block)
PSoC™ 4200 has an opamp with Comparator mode which allow most common analog functions to be performed onchip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers, and other
functions can be realized with external passives saving power, cost, and space. The on-chip opamp is designed with
enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.
4.3.3
Temperature sensor
PSoC™ 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can
be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces
a temperature value using Infineon supplied software that includes calibration and linearization.
4.3.4
Low-power comparators
PSoC™ 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes.
This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels
during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating
in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch
event.
4.4
Programmable digital
4.4.1
Universal digital blocks (UDBs) and port interfaces
PSoC™ 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows
signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB
array is shown in the following figure.
Datasheet
10
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
System
Interconnect
CPU
Sub-system
Clocks
8 to 32
4 to 8
BUS IF IRQ IF
Other Digital
Signals in Chip
Routing
Channels
DSI
CLK IF
Port
Port
PortIFIF
IF
DSI
UDB
UDB
UDB
UDB
DSI
High-Speed I/O Matrix
UDBIF
DSI
Programmable Digital Subsystem
Figure 4
UDB array
UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from
the DSI network directly or after synchronization.
A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the
UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to
the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same
port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to
be routed over DSI and used to register other inputs (see Figure 5).
The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to
connect to any pin on the chip through the DSI.
Datasheet
11
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
High speed I/O matrix
To Clock
tree
8
Input registers
7
Digital
GlobalClocks
3 DSI signals ,
1 I/O signal
9
4
6
...
0
6
...
0
3
2
1
0
[1]
4
8
[1]
[0]
To DSI
Figure 5
7
Enables
[1]
8
Reset selector 2
block from
UDB
4
Output registers
[0]
Clock selector 2
block from
UDB
8
8
From DSI
[1]
From DSI
Port interface
4.5
Fixed function digital
4.5.1
Timer/Counter/PWM block
The Timer/Counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a
Capture register to record the count value at the time of an event (which may be an I/O event), a period register which
is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers
to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and
complementary outputs with programmable offset between them to allow use as deadband programmable
complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is
used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off
immediately with no time for software intervention.
4.5.2
Serial Communication Blocks (SCB)
PSoC™ 4200 has two SCBs, which can each implement an I2C, UART, SPI, or LIN Slave interface.
I2C mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of multimaster
arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering
options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very
useful in the absence of DMA.
The I2C peripheral is compatible with the I2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in
the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain
modes. The I2C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data
connected to all nodes. Required Rise and Fall times for different I2C speeds are guaranteed by using appropriate pullup resistor values depending on VDD, Bus Capacitance, and resistor tolerance. For detailed information on how to
calculate the optimum pull-up resistor value for your design, please refer to the UM10204 I2C bus specification and
user manual, the newest revision is available at www.nxp.com.
PSoC™ 4200 is not completely compliant with the I2C spec in the following respects:
Datasheet
12
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
•
GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of
the rest of the I2C system.
•
Fast-mode Plus has an IOL specification of 20 mA at a VOL of 0.4 V. The GPIO cells can sink a maximum of 8 mA IOL
with a VOL maximum of 0.6 V.
•
Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong
mode can help meet this spec depending on the Bus Load.
•
When the SCB is an I2C Master, it interposes an IDLE state between NACK and Repeated Start; the I2C spec defines
Bus free as following a Stop condition so other Active Masters do not intervene but a Master that has just become
activated may start an Arbitration cycle.
•
When the SCB is in I2C Slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with
operation in the internally clocked mode (EC_OP = 0), then its I2C address must be even.
UART mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN),
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART
protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over
common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported.
An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not
supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.
SPI mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI
Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI
mode in which data interchange is reduced to reading and writing an array in memory.
LIN Slave mode: The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN
slave is compliant with LIN v1.3 and LIN v2.1/2.2 specification standards. It is certified by C&S GmbH based on the
standard protocol and data link layer conformance tests. LIN slave can be operated at baud rates of up to ~20 Kbps
with a maximum of 40-meter cable length. PSoC Creator software supports up to two LIN slave interfaces in the
PSoC™ 4 device, providing built-in application programming interfaces (APIs) based on the LIN specification standard.
4.6
GPIO
PSoC™ 4200 has 24 GPIOs. The GPIO block implements the following:
• Eight drive strength modes:
- Analog input mode (input and output buffers disabled)
- Input only
- Weak pull-up with strong pull-down
- Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
• Input threshold select (CMOS or LVTTL).
• Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
• Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
• Selectable slew rates for dV/dt related noise control to improve EMI.
The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks
are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing
network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O
pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these
signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB
through the DSI network.
Datasheet
13
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
4 Functional overview
Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins
themselves.
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt
service routine (ISR) vector associated with it (5 for PSoC™ 4200).
4.7
Special function peripherals
4.7.1
LCD segment drive
PSoC™ 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital
methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are
referred to as digital correlation and PWM.
Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate
the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN
displays but may result in reduced contrast with TN (cheaper) displays.
PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the
integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power
consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep
refreshing a small display buffer (4 bits; 1 32-bit register per port).
4.7.2
CAPSENSE™
CAPSENSE™ is supported on all pins in PSoC™ 4200 through a CapSense Sigma-Delta (CSD) block that can be
connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch.
CapSense function can thus be provided on any pin or group of pins in a system under software control. A component
is provided for the CAPSENSE™ block to make it easy for the user.
Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by
driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the
sensed input.
The CAPSENSE™ block has two IDACs which can be used for general purposes if CAPSENSE™ is not being used.(both
IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available).
Datasheet
14
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
5 Pinouts
5
Pinouts
The following is the pin-list for PSoC™ 4200. Port 2 comprises of the high-speed Analog inputs for the SAR Mux. P1.7 is
the optional external input and bypass for the SAR reference. Ports 3 and 4 contain the Digital Communication
channels. All pins support CSD CapSense and Analog Mux Bus connections.
Pins
28-SSOP
Alternate functions for pins
Pin description
Name Type
Pin
Name Analog
Alt 1
Alt 2
Alt 3
Alt 4
VSSD
Power
DN
–
–
–
–
–
–
Digital Ground
P2.2
GPIO
5
P2.2
sarmux.2 –
–
–
–
Port 2 Pin 2: gpio,
lcd, csd, sarmux
P2.3
GPIO
6
P2.3
sarmux.3 –
–
–
–
Port 2 Pin 3: gpio,
lcd, csd, sarmux
P2.4
GPIO
7
P2.4
sarmux.4 tcpwm0_p[ –
1]
–
–
Port 2 Pin 4: gpio,
lcd, csd, sarmux,
pwm
P2.5
GPIO
8
P2.5
sarmux.5 tcpwm0_n[ –
1]
–
–
Port 2 Pin 5: gpio,
lcd, csd, sarmux,
pwm
P2.6
GPIO
9
P2.6
sarmux.6 tcpwm1_p[ –
1]
–
–
Port 2 Pin 6: gpio,
lcd, csd, sarmux,
pwm
P2.7
GPIO
10
P2.7
sarmux.7 tcpwm1_n[ –
1]
–
–
Port 2 Pin 7: gpio,
lcd, csd, sarmux,
pwm
P3.0
GPIO
11
P3.0
–
tcpwm0_p[ scb1_uart_ scb1_i2c_scl[ scb1_spi_mo Port 3 Pin 0: gpio,
0]
rx[0]
0]
si[0]
lcd, csd, pwm,
scb1
P3.1
GPIO
12
P3.1
–
tcpwm0_n[ scb1_uart_ scb1_i2c_sd
0]
tx[0]
a[0]
scb1_spi_mis Port 3 Pin 1: gpio,
o[0]
lcd, csd, pwm,
scb1
P3.2
GPIO
13
P3.2
–
tcpwm1_p[ –
0]
swd_io
scb1_spi_clk[ Port 3 Pin 2: gpio,
0]
lcd, csd, pwm,
scb1, swd
P3.3
GPIO
14
P3.3
–
tcpwm1_n[ –
0]
swd_clk
scb1_spi_ssel Port 3 Pin 3: gpio,
_0[0]
lcd, csd, pwm,
scb1, swd
P4.0
GPIO
15
P4.0
–
–
scb0_uart_ scb0_i2c_scl
rx
P4.1
GPIO
16
P4.1
–
–
scb0_uart_ scb0_i2c_sda scb0_spi_mis Port 4 Pin 1: gpio,
tx
o
lcd, csd, scb0
P4.2
GPIO
17
P4.2
csd_c_m –
od
–
–
scb0_spi_clk
P4.3
GPIO
18
P4.3
csd_c_sh –
_tank
–
–
scb0_spi_ssel Port 4 Pin 3: gpio,
_0
lcd, csd, scb0
Datasheet
15
scb0_spi_mo Port 4 Pin 0: gpio,
si
lcd, csd, scb0
Port 4 Pin 2: gpio,
lcd, csd, scb0
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
5 Pinouts
Pins
28-SSOP
Alternate functions for pins
Name Type
Pin
Name Analog
P0.0
GPIO
19
P0.0
P0.1
GPIO
20
P0.2
GPIO
P0.3
Alt 1
Pin description
Alt 2
Alt 3
Alt 4
comp1_i –
np
–
–
scb0_spi_ssel Port 0 Pin 0: gpio,
_1
lcd, csd, scb0,
comp
P0.1
comp1_i –
nn
–
–
scb0_spi_ssel Port 0 Pin 1: gpio,
_2
lcd, csd, scb0,
comp
21
P0.2
comp2_i –
np
–
–
scb0_spi_ssel Port 0 Pin 2: gpio,
_3
lcd, csd, scb0,
comp
GPIO
22
P0.3
comp2_i –
nn
–
–
–
P0.6
GPIO
23
P0.6
–
ext_clk
–
–
scb1_spi_clk[ Port 0 Pin 6: gpio,
1]
lcd, csd, scb1,
ext_clk
P0.7
GPIO
24
P0.7
–
–
–
wakeup
scb1_spi_ssel Port 0 Pin 7: gpio,
_0[1]
lcd, csd, scb1,
wakeup
XRES
XRES
25
XRES
–
–
–
–
–
Chip reset, active
low
VCCD
Power
26
VCCD
–
–
–
–
–
Regulated
supply, connect
to 1 µF cap or 1.8
V
VDDD
Power
27
VDDD
–
–
–
–
–
Common power
supply (Analog
and Digital) 1.8
V–5.5 V
VSSA
Power
28( VSS
DN)
–
–
–
–
–
Analog Ground
P1.0
GPIO
1
P1.0
ctb.oa0.i tcpwm2_p[ –
np
1]
–
–
Port 1 Pin 0: gpio,
lcd, csd, ctb,
pwm
P1.1
GPIO
2
P1.1
ctb.oa0.i tcpwm2_n[ –
nm
1]
–
–
Port 1 Pin 1: gpio,
lcd, csd, ctb,
pwm
P1.2
GPIO
3
P1.2
ctb.oa0.
out
–
–
Port 1 Pin 2: gpio,
lcd, csd, ctb,
pwm
P1.7
GPIO
4
P1.7
ctb.oa1.i –
np_alt
ext_vref
–
–
Port 1 Pin 7: gpio,
lcd, csd, ext_ref
tcpwm3_p[ –
1]
–
Port 0 Pin 3: gpio,
lcd, csd, comp
Notes:
Datasheet
16
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
5 Pinouts
1.
2.
tcpwm_p and tcpwm_n refer to tcpwm non-inverted and inverted outputs respectively.
P3.2 and P3.3 are SWD pins after boot (reset).
Descriptions of the pin functions are as follows:
VDDD: Power supply for both analog and digital sections (where there is no VDDA pin).
VDDA: Analog VDD pin where package pins allow; shorted to VDDD otherwise.
VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise
VSS: Ground pin.
VCCD: Regulated Digital supply (1.8 V ±5%).
Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to
AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.
The following package is supported: 28-pin SSOP.
(GPIO)P1[0]
(GPIO)P1[1]
(GPIO)P1[2]
(GPIO)P1[7]
(GPIO)P2[2]
(GPIO)P2[3]
(GPIO)P2[4]
(GPIO)P2[5]
(GPIO)P2[6]
(GPIO)P2[7]
(GPIO)P3[0]
(GPIO)P3[1]
(GPIO)P3[2]
(GPIO)P3[3]
Figure 6
Datasheet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SSOP
(Top View)
28
27
26
25
24
23
22
21
20
19
18
17
16
15
VSS
VDDD
VCCD
XRES
(GPIO)P0[7]
(GPIO)P0[6]
(GPIO)P0[3]
(GPIO)P0[2]
(GPIO)P0[1]
(GPIO)P0[0]
(GPIO)P4[3]
(GPIO)P4[2]
(GPIO)P4[1]
(GPIO)P4[0]
28-pin SSOP pinout
17
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
6 Power
6
Power
The following power system diagram shows the minimum set of power supply pins as implemented for PSoC™ 4200.
The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits
run directly from the VDDA input. There are separate regulators for the Deep Sleep and Hibernate (lowered power
supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is
1.71 to 5.5 V with all functions and circuits operating over that range.
Digital
Domain
VDDD
VDDD
VCCD
1.8 Volt
Reg
VSSD
Figure 7
PSoC™ 4 power supply
The PSoC™ 4200 family allows two distinct modes of power supply operation: Unregulated External Supply, and
Regulated External Supply modes.
6.1
Unregulated external supply
In this mode, the PSoC™ 4200 is powered by an External Power Supply that can be anywhere in the range of 1.8 to
5.5V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery
system that starts at 3.5V and works down to 1.8V. In this mode, the internal regulator of the PSoC™ 4200 supplies the
internal logic and the VCCD output of the PSoC™ 4200 must be bypassed to ground via an external Capacitor (in the
range of 1 to 1.6 µF; X5R ceramic or better).
Bypass capacitors must be used from VDDD to ground, typical practice for systems in this frequency range is to use a
capacitor in the 1 µF range in parallel with a smaller capacitor (0.1 µF for example). Note that these are simply rules of
thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should
be simulated to design and obtain optimal bypassing.
Power supply
Bypass capacitors
VDDD–VSS
0.1 µF ceramic capacitor (C2) plus bulk capacitor 1 to 10
µF (C1). Total Capacitance may be greater than 10 µF.
VCCD–VSS
1 µF ceramic capacitor at the VCCD pin (C3)
VREF–VSS (optional)
The internal bandgap may be bypassed with a 1 µF to 10
µF capacitor. Total capacitance may be greater than 10
µF.
Datasheet
18
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
6 Power
Power supply
Bypass capacitors
VSS
0.1 µF C 2
C1 1µF
VSS
(GPIO )P1[0]
( GPIO )P1[1]
(GPIO )P1[2]
( GPIO) P1[7]
( GPIO) P2[2]
(GPIO ) P2[3]
(GPIO ) P2[4]
(GPIO ) P2[5]
(GPIO) P2[6]
( GPIO) P2[7]
( GPIO) P3[0]
(GPIO )P3[1]
(GPIO )P3[2]
(GPIO )P3[3]
Figure 8
6.2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SSOP
( Top View)
VSS 28
VDDD 27
VCCD26
25
24
23
22
21
20
19
18
17
16
15
XRES
( GPIO) P0[7]
( GPIO) P0[6]
( GPIO) P0[3]
( GPIO) P0[2]
( GPIO) P0[1]
( GPIO) P0[0]
( GPIO) P4[3]
( GPIO)P4[2]
( GPIO)P4[1]
( GPIO)P4[0]
C3 1µF
VSS
28-pin SSOP example
Regulated external supply
In this mode, PSoC™ 4200 is powered by an external power supply that must be within the range of 1.71 to 1.89 V (1.8 ±
5%); note that this range needs to include power supply ripple too. In this mode, VCCD, and VDDD pins are all shorted
together and bypassed. The internal regulator is disabled in firmware.
Datasheet
19
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
7 Development support
7
Development support
The PSoC™ 4200 family has a rich set of documentation, development tools, and online resources to assist you during
your development process. Visit webpage to find out more.
7.1
Documentation
A suite of documentation supports the PSoC™ 4200 family to ensure that you can find answers to your questions
quickly. This section contains a list of some of the key documents.
Software user guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC
Creator build process works in detail, how to use source control with PSoC Creator, and much more.
Component datasheets: The flexibility of PSoC™ allows the creation of new peripherals (components) long after the
device has gone into production. Component data sheets provide all of the information needed to select and use a
particular component, including a functional description, API documentation, example code, and AC/DC
specifications.
Application notes: PSoC™ application notes discuss a particular application of PSoC™ in depth; examples include
brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the
application note document.
Technical reference manual: The technical reference manual (TRM) contains all the technical detail you need to use
a PSoC™ device, including a complete description of all PSoC™ registers. The TRM is available in the Documentation
section in webpage.
7.2
Online
In addition to print documentation, the Infineon PSoC™ forums connect you with fellow PSoC™ users and experts in
PSoC™ from around the world, 24 hours a day, 7 days a week.
7.3
Tools
With industry standard cores, programming, and debugging interfaces, the PSoC™ 4200 family is part of a
development tool ecosystem. Visit us at PSoC Creator for the latest information on the revolutionary, easy to use
PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.
Datasheet
20
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8
Electrical specifications
8.1
Absolute maximum ratings
Table 1
Absolute maximum ratings
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID1
VDDD_ABS
Digital
supply
relative to
Vssd
–0.5
–
6
V
Absolute
max
SID2
VCCD_ABS
Direct digital –0.5
core voltage
input
relative to
Vssd
–
1.95
V
Absolute
max
SID3
VGPIO_ABS
GPIO voltage –0.5
–
VDD+0.5
V
Absolute
max
SID4
IGPIO_ABS
Maximum
current per
GPIO
–25
–
25
mA
Absolute
max
SID5
IGPIO_injection
GPIO
–0.5
injection
current, Max
for VIH >
VDDD, and
Min for VIL <
VSS
–
0.5
mA
Absolute
max, current
injected per
pin
BID44
ESD_HBM
Electrostatic 2200
discharge
human body
model
–
–
V
BID45
ESD_CDM
Electrostatic 500
discharge
charged
device
model
–
–
V
BID46
LU
Pin current
for latch-up
–
200
mA
Note:
Datasheet
–200
Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the
device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability.
The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High
Temperature Storage Life. When used below absolute maximum conditions but above normal operating
conditions, the device may not operate to specification.
21
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.2
Device-level specifications
All specifications are valid for –40 °C ≤ TA ≤ 85 °C for A grade devices and –40 °C ≤ TA ≤ 105 °C for S grade devices, except
where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.
Table 2
DC specifications
Spec ID#
Parameter
Description
SID53
VDD
SID255
Min
Typ
Max
Units
Details/
conditions
Power
1.8
supply input
voltage(VDDA
= VDDD = VDD)
–
5.5
V
With
regulator
enabled
VDDD
Power
1.71
supply input
voltage
unregulated
1.8
1.89
V
Internally
unregulated
supply
SID54
VCCD
Output
voltage (for
core logic)
–
1.8
–
V
SID55
CEFC
External
regulator
voltage
bypass
1
1.3
1.6
μF
X5R ceramic
or better
SID56
CEXC
Power
supply
decoupling
capacitor
–
1
–
μF
X5R ceramic
or better
Active Mode, VDD = 1.71 V to 5.5 V. Typical values measured at VDD = 3.3 V
SID9
IDD4
Execute from –
Flash; CPU at
6 MHz
–
2.8
mA
SID10
IDD5
Execute from –
Flash; CPU at
6 MHz
2.2
–
mA
T = 25 °C
SID12
IDD7
Execute from –
Flash; CPU at
12 MHz
–
4.2
mA
SID13
IDD8
Execute from –
Flash; CPU at
12 MHz
3.7
–
mA
T = 25 °C
SID16
IDD11
Execute from –
Flash; CPU at
24 MHz
6.7
–
mA
T = 25 °C
SID17
IDD12
Execute from –
Flash; CPU at
24 MHz
–
7.2
mA
(table continues...)
Datasheet
22
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 2
(continued) DC specifications
Spec ID#
Parameter
Description
SID19
IDD14
SID20
IDD15
Min
Typ
Max
Units
Details/
conditions
Execute from –
Flash; CPU at
48 MHz
12.8
–
mA
T = 25 °C
Execute from –
Flash; CPU at
48 MHz
–
13.8
mA
Sleep Mode, VDD = 1.7 V to 5.5 V
SID25
IDD20
I2C wakeup, –
WDT, and
Comparators
on. 6 MHz
1.3
1.8
mA
VDD = 1.71 V
to 5.5 V
SID25A
IDD20A
I2C wakeup, –
WDT, and
Comparators
on. 12 MHz
1.7
2.2
mA
VDD = 1.71 V
to 5.5 V
μA
Deep Sleep Mode, VDD = 1.8 V to 3.6V (Regulator on)
SID31
IDD26
I2C wakeup
and WDT on
–
1.3
–
SID32
IDD27
I2C wakeup
and WDT on
–
–
45
μA
–
1.5
15
μA
μA
Deep Sleep Mode, VDD = 3.6 V to 5.5 V
SID34
IDD29
I2C wakeup
and WDT on
Deep Sleep Mode, VDD = 1.71 V to 1.89 V (Regulator bypassed)
T = 25 °C
T = 85 °C
Typ at 25 °C
Max at 85 °C
SID37
IDD32
I2C wakeup
and WDT on
–
1.7
–
SID38
IDD33
I2C wakeup
and WDT on
–
–
60
μA
T = 85 °C
Deep Sleep Mode, +105 °C
T = 25 °C
SID33Q
IDD28Q
I2C wakeup –
and WDT on.
Regulator
Off.
–
135
μA
VDD = 1.71 V
to 1.89 V
SID34Q
IDD29Q
I2C wakeup
and WDT on
–
–
180
μA
VDD = 1.8 V to
3.6 V
SID35Q
IDD30Q
I2C wakeup
and WDT on
–
–
140
μA
VDD = 3.6 V to
5.5 V
Hibernate Mode, VDD = 1.8 V to 3.6 V (Regulator on)
(table continues...)
Datasheet
23
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 2
(continued) DC specifications
Spec ID#
Parameter
Description
SID40
IDD35
SID41
SID43
Min
Typ
Max
Units
Details/
conditions
GPIO & Reset –
active
150
–
nA
T = 25 °C
IDD36
GPIO & Reset –
active
–
1000
nA
T = 85 °C
IDD38
GPIO & Reset –
active
150
–
nA
T = 25 °C
Hibernate Mode, VDD = 1.71 V to 1.89 V (Regulator bypassed)
SID46
IDD41
GPIO & Reset –
active
150
–
nA
T = 25 °C
SID47
IDD42
GPIO & Reset –
active
–
1000
nA
T = 85 °C
Hibernate Mode, +105 °C
SID42Q
IDD37Q
Regulator Off –
–
19.4
µA
VDD = 1.71 V
to 1.89 V
SID43Q
IDD38Q
–
–
17
µA
VDD = 1.8 V to
3.6 V
SID44Q
IDD39Q
–
–
16
µA
VDD = 3.6 V to
5.5 V
IDD43A
Stop Mode
current; VDD
= 3.3 V
–
20
80
nA
Typ at 25 °C
Max at 85 °C
Stop Mode
current; VDD
= 5.5 V
–
20
750
nA
Typ at 25 °C
Max at 85 °C
IDD43AQ
Stop Mode
current; VDD
= 3.6 V
–
–
5645
nA
IDD_XR
Supply
–
current while
XRES
asserted
2
5
mA
Stop Mode
SID304
Stop Mode, +105 °C
SID304Q
XRES current
SID307
Datasheet
24
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 3
AC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
Conditions
SID48
FCPU
CPU
frequency
DC
–
48
MHz
1.71 ≤ VDD ≤
5.5
SID49
TSLEEP
Wakeup
from sleep
mode
–
0
–
µs
Guaranteed
by
characterizat
ion
SID50
TDEEPSLEEP
Wakeup
from Deep
Sleep mode
–
–
25
µs
24-MHz IMO.
Guaranteed
by
characterizat
ion
SID51
THIBERNATE
Wakeup
from
Hibernate
and Stop
modes
–
–
2
ms
Guaranteed
by
characterizat
ion
SID52
TRESETWIDTH
External
reset pulse
width
1
–
–
µs
Guaranteed
by
characterizat
ion
8.2.1
GPIO
Min
Typ
Max
Units
Details/
conditions
Table 4
GPIO DC specifications
Spec ID#
Parameter
Description
SID57
VIH1)
Input voltage 0.7 × VDDD
high
threshold
–
–
V
CMOS Input
SID58
VIL
Input voltage –
low
threshold
–
0.3 × VDDD
V
CMOS Input
SID241
VIH1)
LVTTL input, 0.7× VDDD
VDDD < 2.7 V
–
–
V
SID242
VIL
LVTTL input, –
VDDD < 2.7 V
–
0.3 × VDDD
V
SID243
VIH1)
LVTTL input, 2.0
VDDD ≥ 2.7 V
–
–
V
SID244
VIL
LVTTL input, –
VDDD ≥ 2.7 V
–
0.8
V
(table continues...)
Datasheet
25
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 4
(continued) GPIO DC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID59
VOH
Output
voltage high
level
VDDD –0.6
–
–
V
IOH = 4 mA at
3 V VDDD
SID60
VOH
Output
voltage high
level
VDDD –0.5
–
–
V
IOH = 1 mA at
1.8 V VDDD
SID61
VOL
Output
voltage low
level
–
–
0.6
V
IOL = 4 mA at
1.8 V VDDD
SID62
VOL
Output
voltage low
level
–
–
0.6
V
IOL = 8 mA at
3 V VDDD
SID62A
VOL
Output
voltage low
level
–
–
0.4
V
IOL = 3 mA at
3 V VDDD
SID63
RPULLUP
Pull-up
resistor
3.5
5.6
8.5
kΩ
SID64
RPULLDOWN
Pull-down
resistor
3.5
5.6
8.5
kΩ
SID65
IIL
Input
leakage
current
(absolute
value)
–
–
2
nA
25 °C, VDDD =
3.0 V
SID65A
IIL_CTBM
Input
leakage
current
(absolute
value) for
CTBM pins
–
–
4
nA
SID66
CIN
Input
capacitance
–
–
7
pF
SID67
VHYSTTL
Input
hysteresis
LVTTL
25
40
–
mV
VDDD ≥ 2.7 V.
Guaranteed
by
characterizat
ion
SID68
VHYSCMOS
Input
hysteresis
CMOS
0.05 × VDDD
–
–
mV
Guaranteed
by
characterizat
ion
(table continues...)
Datasheet
26
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 4
(continued) GPIO DC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID69
IDIODE
Current
through
protection
diode to
VDD/VSS
–
–
100
µA
Guaranteed
by
characterizat
ion
SID69A
ITOT_GPIO
Maximum
–
Total Source
or Sink Chip
Current
–
200
mA
Guaranteed
by
characterizat
ion
SID70
TRISEF
Rise time in
fast strong
mode
2
–
12
ns
3.3 V VDDD,
Cload = 25
pF
SID71
TFALLF
Fall time in
fast strong
mode
2
–
12
ns
3.3 V VDDD,
Cload = 25
pF
SID72
TRISES
Rise time in
slow strong
mode
10
–
60
3.3 V VDDD,
Cload = 25
pF
SID73
TFALLS
Fall time in
slow strong
mode
10
–
60
3.3 V VDDD,
Cload = 25
pF
SID74
FGPIOUT1
GPIO
Fout;3.3 V ≤
VDDD ≤ 5.5 V.
Fast strong
mode.
–
–
33
MHz
90/10%, 25
pF load,
60/40 duty
cycle
SID75
FGPIOUT2
GPIO
Fout;1.7 V≤
VDDD≤ 3.3 V.
Fast strong
mode.
–
–
16.7
MHz
90/10%, 25
pF load,
60/40 duty
cycle
SID76
FGPIOUT3
GPIO
Fout;3.3 V ≤
VDDD ≤ 5.5 V.
Slow strong
mode.
–
–
7
MHz
90/10%, 25
pF load,
60/40 duty
cycle
SID245
FGPIOUT4
GPIO
Fout;1.7 V ≤
VDDD ≤ 3.3 V.
Slow strong
mode.
–
–
3.5
MHz
90/10%, 25
pF load,
60/40 duty
cycle
(table continues...)
Datasheet
27
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 4
(continued) GPIO DC specifications
Spec ID#
Parameter
Description
SID246
FGPIOIN
GPIO input
–
operating
frequency;
1.71 V ≤ VDDD
≤ 5.5 V
1)
Min
Typ
Max
Units
Details/
conditions
–
48
MHz
90/10% VIO
VIH must not exceed VDDD + 0.2 V.
Table 5
GPIO AC specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ Max
Units
Details/
conditions
SID70
TRISEF
Rise time in fast strong mode
2
–
12
ns
3.3 V VDDD,
Cload = 25 pF
SID71
TFALLF
Fall time in fast strong mode
2
–
12
ns
3.3 V VDDD,
Cload = 25 pF
SID72
TRISES
Rise time in slow strong mode
10
–
60
3.3 V VDDD,
Cload = 25 pF
SID73
TFALLS
Fall time in slow strong mode
10
–
60
90/10%, 25 pF
load, 60/40
duty cycle
SID74
FGPIOUT1
GPIO Fout;3.3 V ≤ VDDD ≤ 5.5 V. Fast
strong mode.
–
–
33
MHz
90/10%, 25 pF
load, 60/40
duty cycle
SID75
FGPIOUT2
GPIO Fout;1.7 V ≤ VDDD ≤ 3.3 V. Fast
strong mode.
–
–
16.7
MHz
90/10%, 25 pF
load, 60/40
duty cycle
SID76
FGPIOUT3
GPIO Fout;3.3 V ≤ VDDD ≤ 5.5 V. Slow
strong mode.
–
–
7
MHz
90/10%, 25 pF
load, 60/40
duty cycle
SID245
FGPIOUT4
GPIO Fout;1.7 V ≤ VDDD ≤ 3.3 V. Slow
strong mode.
–
–
3.5
MHz
90/10%, 25 pF
load, 60/40
duty cycle
SID246
FGPIOIN
GPIO input operating frequency;
1.71 V ≤ VDDD ≤ 5.5 V
–
–
48
MHz
90/10%, 25 pF
load, 60/40
duty cycle
Datasheet
28
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.2.2
XRES
Table 6
XRES DC specifications
Spec ID#
Parameter
Description
SID77
VIH
SID78
Typ
Max
Units
Details/
conditions
Input voltage 0.7 ×VDDD
high
threshold
–
–
V
CMOS Input
VIL
Input voltage –
low
threshold
–
0.3 ×VDDD
V
CMOS Input
SID79
RPULLUP
Pull-up
resistor
3.5
5.6
8.5
kΩ
SID80
CIN
Input
capacitance
–
3
–
pF
SID81
VHYSXRES
Input voltage –
hysteresis
100
–
mV
Guaranteed
by
characterizat
ion
SID82
IDIODE
Current
through
protection
diode to
VDDD/VSS
–
–
100
µA
Guaranteed
by
characterizat
ion
Table 7
Min
XRES AC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID83
TRESETWIDTH
Reset pulse
width
1
–
–
µs
Guaranteed
by
characterizat
ion
Datasheet
29
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.3
Analog peripherals
8.3.1
Opamp
Table 8
Opamp specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
IDD
Opamp
block
current. No
load.
–
–
–
–
SID269
IDD_HI
Power = high –
1100
1850
µA
SID270
IDD_MED
Power =
medium
–
550
950
µA
SID271
IDD_LOW
Power = low
–
150
350
µA
GBW
Load = 20 pF, –
0.1 mA. VDDA
= 2.7 V
–
–
–
SID272
GBW_HI
Power = high 6
–
–
MHz
SID273
GBW_MED
Power =
medium
4
–
–
MHz
SID274
GBW_LO
Power = low
–
1
–
MHz
IOUT_MAX
VDDA ≥ 2.7 V, –
500 mV from
rail
–
–
–
SID275
IOUT_MAX_HI
Power = high 10
–
–
mA
SID276
IOUT_MAX_MID
Power =
medium
10
–
–
mA
SID277
IOUT_MAX_LO
Power = low
–
5
–
mA
IOUT
VDDA = 1.71 V, –
500 mV from
rail
–
–
–
SID278
IOUT_MAX_HI
Power = high 4
–
–
mA
SID279
IOUT_MAX_MID
Power =
medium
4
–
–
mA
SID280
IOUT_MAX_LO
Power = low
–
2
–
mA
SID281
VIN
Charge
pump on,
VDDA ≥ 2.7 V
–0.05
–
VDDA – 0.2
V
(table continues...)
Datasheet
30
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 8
(continued) Opamp specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID282
VCM
Charge
pump on,
VDDA ≥ 2.7 V
–0.05
–
VDDA – 0.2
V
VOUT
VDDA ≥ 2.7 V
–
–
–
SID283
VOUT_1
Power =
0.5
high,
Iload=10 mA
–
VDDA – 0.5
V
SID284
VOUT_2
Power =
0.2
high, Iload=1
mA
–
VDDA – 0.2
V
SID285
VOUT_3
Power =
medium,
Iload=1 mA
0.2
–
VDDA – 0.2
V
SID286
VOUT_4
Power = low, 0.2
Iload=0.1mA
–
VDDA – 0.2
V
SID288
VOS_TR
Offset
voltage,
trimmed
1
±0.5
1
mV
High mode
SID288A
VOS_TR
Offset
voltage,
trimmed
–
±1
–
mV
Medium
mode
SID288B
VOS_TR
Offset
voltage,
trimmed
–
±2
–
mV
Low mode
SID290
VOS_DR_TR
Offset
–10
voltage drift,
trimmed
±3
10
µV/°C
SID290Q
VOS_DR_TR
Offset
–15
voltage drift,
trimmed
±3
15
μV/°C
High
mode.TA < 85
°C.
SID290A
VOS_DR_TR
Offset
–
voltage drift,
trimmed
±10
–
µV/°C
Medium
mode
SID290B
VOS_DR_TR
Offset
–
voltage drift,
trimmed
±10
–
µV/°C
Low mode
SID291
CMRR
DC
70
80
–
dB
VDDD = 3.6 V
SID292
PSRR
At 1 kHz, 100 70
mV ripple
85
–
dB
VDDD = 3.6 V
High
mode.TA ≤
105 °C
(table continues...)
Datasheet
31
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 8
(continued) Opamp specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
Noise
–
–
–
–
SID293
VN1
Input
–
referred, 1
Hz - 1GHz,
power = high
94
–
µVrms
SID294
VN2
Input
–
referred, 1
kHz, power =
high
72
–
nV/rtHz
SID295
VN3
Input
–
referred,
10kHz,
power = high
28
–
nV/rtHz
SID296
VN4
Input
–
referred,
100kHz,
power = high
15
–
nV/rtHz
SID297
Cload
Stable up to –
maximum
load. Performance specs
at 50 pF.
–
125
pF
SID298
Slew_rate
Cload = 50
pF, Power =
High,VDDA ≥
2.7 V
–
–
V/µs
SID299
T_op_wake
From disable –
to enable, no
external RC
dominating
300
–
µs
Comp_mode Comparator –
mode; 50 mV
drive, Trise =
Tfall
(approx.)
–
–
SID299A
OL_GAIN
Open Loop
Gain
–
90
–
dB
Guaranteed
by Design
SID300
TPD1
Response
time; power
= high
–
150
–
ns
6
(table continues...)
Datasheet
32
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 8
(continued) Opamp specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID301
TPD2
Response
time; power
= medium
–
400
–
ns
SID302
TPD3
Response
time; power
= low
–
2000
–
ns
SID303
Vhyst_op
Hysteresis
–
10
–
mV
8.3.2
Comparator
Typ
Max
Units
Details/
conditions
Table 9
Comparator DC specifications
Spec ID#
Parameter
Description
SID85
VOFFSET2
Input offset –
voltage,
Common
Mode
voltage
range from 0
to VDD-1
–
±4
mV
SID85A
VOFFSET3
Input offset –
voltage.
Ultra lowpower mode
(VDDD ≥ 2.2 V
for Temp < 0
°C, VDDD ≥ 1.8
V for Temp >
0 °C)
±12
–
mV
SID86
VHYST
Hysteresis
–
when
enabled,
Common
Mode
voltage
range from 0
to VDD -1.
10
35
mV
Guaranteed
by
characterizat
ion
(table continues...)
Datasheet
Min
33
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 9
(continued) Comparator DC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID87
VICM1
Input
common
mode
voltage in
normal
mode
0
–
VDDD – 0.1
V
Modes 1 and
2.
SID247
VICM2
Input
0
common
mode
voltage in
low power
mode (VDDD ≥
2.2 V for
Temp < 0 °C,
VDDD ≥ 1.8 V
for Temp > 0
°C)
–
VDDD
V
SID247A
VICM3
Input
0
common
mode
voltage in
ultra low
power mode
–
VDDD – 1.15
V
SID88
CMRR
Common
mode
rejection
ratio
50
–
–
dB
VDDD ≥ 2.7 V.
Guaranteed
by
characterizat
ion
SID88A
CMRR
Common
mode
rejection
ratio
42
–
–
dB
VDDD < 2.7 V.
Guaranteed
by
characterizat
ion
SID89
ICMP1
Block
current,
normal
mode
–
–
400
µA
Guaranteed
by
characterizat
ion
SID248
ICMP2
Block
–
current, low
power mode
–
100
µA
Guaranteed
by
characterizat
ion
(table continues...)
Datasheet
34
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 9
(continued) Comparator DC specifications
Spec ID#
Parameter
Description
SID259
ICMP3
SID90
ZCMP
Table 10
Min
Typ
Max
Units
Details/
conditions
Block
–
current, ultra
low power
mode (VDDD ≥
2.2 V for
Temp < 0 °C,
VDDD ≥ 1.8 V
for Temp > 0
°C)
6
28
µA
Guaranteed
by
characterizat
ion
DC input
impedance
of
comparator
–
–
MΩ
Guaranteed
by
characterizat
ion
Typ
Max
Units
Details/
conditions
35
Comparator AC specifications
Guaranteed by characterization
Spec ID#
Parameter
Description
SID91
TRESP1
Response
–
time, normal
mode
–
110
ns
50 mV
overdrive
SID258
TRESP2
Response
–
time, low
power mode
–
200
ns
50 mV
overdrive
SID92
TRESP3
Response
–
time, ultra
low power
mode(VDDD ≥
2.2 V for
Temp < 0 °C,
VDDD ≥ 1.8 V
for Temp > 0
°C)
–
15
µs
200 mV
overdrive
8.3.3
Temperature sensor
Typ
Max
Units
Details/
conditions
±1
+5
°C
–40 to +85 °C
Table 11
Min
Temperature sensor specifications
Spec ID#
Parameter
Description
SID93
TSENSACC
Temperature –5
sensor
accuracy
Datasheet
Min
35
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.3.4
Table 12
SAR ADC
SAR ADC DC specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID94
A_RES
Resolution
–
–
12
bits
SID95
A_CHNIS_S
Number of
–
channels single ended
–
8
8 full speed
SID96
A-CHNKS_D
Number of
channels differential
–
–
4
Diff inputs
use
neighboring
I/O
SID97
A-MONO
Monotonicity –
–
–
Yes. Based
on
characterizat
ion
SID98
A_GAINERR
Gain error
–
–
±0.1
%
With external
reference.
Guaranteed
by
characterizat
ion
SID99
A_OFFSET
Input offset
voltage
–
–
2
mV
Measured
with 1-V VREF.
Guaranteed
by
characterizat
ion
SID100
A_ISAR
Current
–
consumption
–
1
mA
SID101
A_VINS
Input voltage VSS
range single ended
–
VDDA
V
Based on
device
characterizat
ion
SID102
A_VIND
Input voltage VSS
range differential
–
VDDA
V
Based on
device
characterizat
ion
SID103
A_INRES
Input
resistance
–
–
2.2
KΩ
Based on
device
characterizat
ion
SID104
A_INCAP
Input
capacitance
–
–
10
pF
Based on
device
characterizat
ion
Datasheet
36
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 13
SAR ADC AC specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID106
A_PSRR
Power
supply
rejection
ratio
70
–
–
dB
SID107
A_CMRR
Common
mode
rejection
ratio
66
–
–
dB
Measured at
1V
SID108
A_SAMP_1
Sample rate –
with external
reference
bypass cap
–
1
Msps
SID108A
A_SAMP_2
Sample rate
with no
bypass cap.
Reference =
VDD
–
–
500
Ksps
SID108B
A_SAMP_3
Sample rate
with no
bypass cap.
Internal
reference
–
–
100
Ksps
SID109
A_SNDR
Signal-to65
noise and
distortion
ratio (SINAD)
–
–
dB
FIN = 10 kHz
SID111
A_INL
Integral non
linearity
–1.7
–
+2
LSB
VDD = 1.71 to
5.5, 1 Msps,
Vref = 1 to
5.5. –40 °C ≤
TA ≤ 85 °C
–1.9
–
+2
LSB
VDD = 1.71 to
5.5, 1 Msps,
Vref = 1 to
5.5. –40 °C ≤
TA ≤ 105 °C
–1.5
–
+1.7
LSB
VDDD = 1.71
to 3.6, 1
Msps, Vref =
1.71 to VDDD.
–40 °C ≤ TA ≤
85 °C
SID111A
A_INL
Integral non
linearity
(table continues...)
Datasheet
37
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 13
(continued) SAR ADC AC specifications
(Guaranteed by characterization)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
–1.9
–
+2
LSB
VDDD = 1.71
to 3.6, 1
Msps, Vref =
1.71 to VDDD.
–40 °C ≤ TA ≤
105 °C
–1.5
–
+1.7
LSB
VDDD = 1.71
to 5.5, 500
Ksps, Vref = 1
to 5.5.
SID111B
A_INL
Integral non
linearity
SID112
A_DNL
Differential –1
non linearity
–
+2.2
LSB
VDDD = 1.71
to 5.5, 1
Msps, Vref =
1 to 5.5. –40
°C ≤ TA ≤ 85
°C
–1
–
+2.3
LSB
VDDD = 1.71
to 5.5, 1
Msps, Vref =
1 to 5.5. –40
°C ≤ TA ≤ 105
°C
Differential –1
non linearity
–
+2
LSB
VDDD = 1.71
to 3.6, 1
Msps, Vref =
1.71 to VDDD.
–40 °C ≤ TA ≤
85 °C
–1
–
+2.2
LSB
VDDD = 1.71
to 3.6, 1
Msps, Vref =
1.71 to VDDD.
–40 °C ≤ TA ≤
105 °C
SID112A
A_DNL
SID112B
A_DNL
Differential –1
non linearity
–
+2.2
LSB
VDDD = 1.71
to 5.5, 500
Ksps, Vref = 1
to 5.5.
SID113
A_THD
Total
harmonic
distortion
–
–65
dB
FIN = 10 kHz.
Datasheet
–
38
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.3.5
CSD
Table 14
Spec ID#
CSD block specification
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
1.71
–
5.5
V
CSD specification
SID308
VCSD
Voltage
range of
operation
SID309
IDAC1
DNL for 8-bit –1
resolution
–
1
LSB
SID310
IDAC1
INL for 8-bit
resolution
–3
–
3
LSB
SID311
IDAC2
DNL for 7-bit –1
resolution
–
1
LSB
SID312
IDAC2
INL for 7-bit
resolution
–
3
LSB
SID313
SNR
Ratio of
5
counts of
finger to
noise.
Guaranteed
by
characterizat
ion
–
–
Ratio
Capacitance
range of 9 to
35 pF, 0.1 pF
sensitivity
SID314
IDAC1_CRT1 Output
–
current of
Idac1 (8-bits)
in High range
612
–
µA
SID314A
IDAC1_CRT2 Output
–
current of
Idac1(8-bits)
in Low range
306
–
µA
SID315
IDAC2_CRT1 Output
–
current of
Idac2 (7-bits)
in High range
304.8
–
µA
SID315A
IDAC2_CRT2 Output
–
current of
Idac2 (7-bits)
in Low range
152.4
–
µA
8.4
Digital peripherals
–3
The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.
Datasheet
39
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.4.1
Table 15
Timer/Counter/PWM
TCPWM specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID.TCPWM.1 ITCPWM1
Block
–
current
consumption
at 3 MHz
–
45
µA
All
modes(Time
r/Counter/
PWM)
SID.TCPWM.2 ITCPWM2
Block
–
current
consumption
at 12 MHz
–
155
µA
All
modes(Time
r/Counter/
PWM)
SID.TCPWM.2 ITCPWM3
A
Block
–
current
consumption
at 48 MHz
–
650
µA
All
modes(Time
r/Counter/
PWM)
–
Fc
MHz
Fc max =
Fcpu.
Maximum =
24 MHz
SID.TCPWM.4 TPWMENEXT Input Trigger 2/Fc
Pulse Width
for all Trigger
Events
–
–
ns
Trigger
Events can
be Stop,
Start,
Reload,
Count,
Capture, or
Kill
depending
on which
mode of
operation is
selected.
SID.TCPWM.5 TPWMEXT
–
–
ns
Minimum
possible
width of
Overflow,
Underflow,
and CC
(Counter
equals
Compare
value) trigger
outputs
SID.TCPWM.3 TCPWMFREQ Operating
frequency
–
Output
2/Fc
Trigger Pulse
widths
(table continues...)
Datasheet
40
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 15
(continued) TCPWM specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID.TCPWM.5 TCRES
A
Resolution of 1/Fc
Counter
–
–
ns
Minimum
time
between
successive
counts
SID.TCPWM.5 PWMRES
B
PWM
Resolution
1/Fc
–
–
ns
Minimum
pulse width
of PWM
Output
SID.TCPWM.5 QRES
C
Quadrature
inputs
resolution
1/Fc
–
–
ns
Minimum
pulse width
between
Quadrature
phase
inputs.
Typ
Max
Units
Details/
conditions
8.4.2
I2C
Fixed I2C DC specifications
Table 16
(Guaranteed by characterization)
Spec ID
Parameter
Description
SID149
II2C1
Block
–
current
consumption
at 100 kHz
–
50
pA
SID150
II2C2
Block
–
current
consumption
at 400 kHz
–
135
pA
SID151
II2C3
Block
–
current
consumption
at 1 Mbps
–
310
pA
SID152
II2C4
I2C enabled
in Deep
Sleep mode
–
1.4
pA
Datasheet
Min
–
41
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Fixed I2C AC specifications
Table 17
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID153
FI2C1
Bit rate
–
–
1
Mbps
8.4.3
LCD direct drive
Table 18
LCD direct drive DC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID154
ILCDLOW
Operating
current in
low power
mode
–
5
–
µA
16 × 4 small
segment
disp. at 50 Hz
SID155
CLCDCAP
LCD
capacitance
per
segment/
common
driver
–
500
5000
pF
Guaranteed
by Design
SID156
LCDOFFSET
Long-term
segment
offset
–
20
–
mV
SID157
ILCDOP1
PWM Mode
current. 5-V
bias.24-MHz
IMO. 25 °C
–
0.6
–
mA
32 × 4
segments. 50
Hz
SID158
ILCDOP2
PWM Mode
current. 3.3V bias. 24MHz IMO. 25
°C
–
0.5
–
mA
32 × 4
segments. 50
Hz
Table 19
LCD direct drive AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID159
FLCD
LCD frame
rate
10
50
150
Hz
Datasheet
42
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 20
Fixed UART DC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
SID160
IUART1
SID161
IUART2
Table 21
Min
Typ
Max
Units
Details/
conditions
Block
–
current
consumption
at100
Kbits/sec
–
55
µA
Block
–
current
consumption
at1000
Kbits/sec
–
312
µA
Fixed UART AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
SID162
FUART
Bit rate
–
–
1
Mbps
8.4.4
Table 22
SPI specifications
Fixed SPI DC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
SID163
ISPI1
Block current
consumption
at 1 Mbits/sec
–
–
360
µA
SID164
ISPI2
Block current
consumption
at 4 Mbits/sec
–
–
560
µA
SID165
ISPI3
Block current
consumption
at 8 Mbits/sec
–
–
600
µA
Min
Typ
Max
Units
–
8
MHz
Table 23
Fixed SPI AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
SID166
FSPI
SPI operating –
frequency
(master; 6X
oversampling)
Datasheet
43
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 24
Fixed SPI Master mode AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
SID167
TDMO
MOSI valid
after Sclock
driving edge
–
–
15
ns
SID168
TDSI
MISO valid
20
before Sclock
capturing
edge. Full
clock, late
MISO Sampling
used
–
–
ns
SID169
THMO
Previous MOSI 0
data hold time
with respect to
capturing edge
at Slave
–
–
ns
Table 25
Fixed SPI Slave mode AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID170
TDMI
MOSI valid
before
Sclock
capturing
edge
40
–
–
ns
SID171
TDSO
MISO valid
–
after Sclock
driving edge
–
42 + 3 ×
Tscbclk
ns
SID171A
TDSO_ext
MISO valid
–
after Sclock
driving edge
in Ext. Clock
mode
–
48
ns
SID172
THSO
Previous
MISO data
hold time
–
–
ns
SID172A
TSSELSCK
SSEL Valid to 100
first SCK
Valid edge
–
–
ns
Datasheet
0
44
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.5
Memory
Table 26
Flash DC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID173
VPE
Erase and
program
voltage
1.71
–
5.5
V
Table 27
Flash AC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID174
TROWWRITE1)
Row (block)
write time
(erase and
program)
–
–
20
ms
Row (block)
=128 bytes. –
40 °C ≤ TA ≤
85 °C
–
–
26
ms
Row (block)
=128 bytes. –
40 °C ≤ TA ≤
105 °C
SID175
TROWERASE1)
Row erase
time
–
–
13
ms
SID176
TROWPROGRAM
1)
Row
program
time after
erase
–
–
7
ms
–40 °C ≤ TA ≤
85 °C
–
–
13
ms
–40 °C ≤ TA ≤
105 °C
SID178
TBULKERASE1)
Bulk erase
time (32 KB)
–
–
35
ms
SID180
TDEVPROG1)
Total device
program
time
–
–
7
seconds
Guaranteed
by
characterizat
ion
SID181
FEND
Flash
endurance
100 K
–
–
cycles
Guaranteed
by
characterizat
ion
SID182
FRET
Flash
20
retention. TA
≤ 55 °C, 100 K
P/E cycles
–
–
years
Guaranteed
by
characterizat
ion
SID182A
Flash
10
retention. TA
≤ 85 °C, 10 K
P/E cycles
–
–
years
Guaranteed
by
characterizat
ion
(table continues...)
Datasheet
45
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 27
(continued) Flash AC specifications
Spec ID
Parameter
Description
SID182B
FRETQ
Flash
10
retention. TA
≤ 105 °C, 10K
P/E cycles, ≤
three years
at TA > 85 °C.
1)
Min
Typ
Max
Units
Details/
conditions
20
–
Guaranteed
by
characterizat
ion.
It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be
interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and
privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.
8.6
System resources
8.6.1
Power-on-Reset (POR) with Brown Out
Table 28
Imprecise Power On Reset (PRES)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID185
VRISEIPOR
Rising trip
voltage
0.80
–
1.45
V
Guaranteed
by
characterizat
ion
SID186
VFALLIPOR
Falling trip
voltage
0.75
–
1.4
V
Guaranteed
by
characterizat
ion
SID187
VIPORHYST
Hysteresis
15
–
200
mV
Guaranteed
by
characterizat
ion
Datasheet
46
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 29
Precise Power On Reset (POR)
Spec ID
Parameter
Description
SID190
VFALLPPOR
SID192
Typ
Max
Units
Details/
conditions
BOD trip
1.64
voltage in
active and
sleep modes
–
–
V
Full
functionality
between
1.71 V and
BOD trip
voltage is
guaranteed
by
characterizat
ion
VFALLDPSLP
BOD trip
voltage in
Deep Sleep
–
–
V
Guaranteed
by
characterizat
ion
BID55
Svdd
Maximum
–
power
supply ramp
rate
–
67
kV/sec
8.6.2
Voltage monitors
Table 30
Min
1.4
Voltage monitors DC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID195
VLVI1
LVI_A/
1.71
D_SEL[3:0] =
0000b
1.75
1.79
V
SID196
VLVI2
LVI_A/
1.76
D_SEL[3:0] =
0001b
1.80
1.85
V
SID197
VLVI3
LVI_A/
1.85
D_SEL[3:0] =
0010b
1.90
1.95
V
SID198
VLVI4
LVI_A/
1.95
D_SEL[3:0] =
0011b
2.00
2.05
V
SID199
VLVI5
LVI_A/
2.05
D_SEL[3:0] =
0100b
2.10
2.15
V
SID200
VLVI6
LVI_A/
2.15
D_SEL[3:0] =
0101b
2.20
2.26
V
(table continues...)
Datasheet
47
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 30
(continued) Voltage monitors DC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID201
VLVI7
LVI_A/
2.24
D_SEL[3:0] =
0110b
2.30
2.36
V
SID202
VLVI8
LVI_A/
2.34
D_SEL[3:0] =
0111b
2.40
2.46
V
SID203
VLVI9
LVI_A/
2.44
D_SEL[3:0] =
1000b
2.50
2.56
V
SID204
VLVI10
LVI_A/
2.54
D_SEL[3:0] =
1001b
2.60
2.67
V
SID205
VLVI11
LVI_A/
2.63
D_SEL[3:0] =
1010b
2.70
2.77
V
SID206
VLVI12
LVI_A/
2.73
D_SEL[3:0] =
1011b
2.80
2.87
V
SID207
VLVI13
LVI_A/
2.83
D_SEL[3:0] =
1100b
2.90
2.97
V
SID208
VLVI14
LVI_A/
2.93
D_SEL[3:0] =
1101b
3.00
3.08
V
SID209
VLVI15
LVI_A/
3.12
D_SEL[3:0] =
1110b
3.20
3.28
V
SID210
VLVI16
LVI_A/
4.39
D_SEL[3:0] =
1111b
4.50
4.61
V
SID211
LVI_IDD
Block
current
–
100
µA
Guaranteed
by
characterizat
ion
Table 31
–
Voltage monitors AC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID212
TMONTRIP
Voltage
monitor trip
time
–
–
1
µs
Guaranteed
by
characterizat
ion
Datasheet
48
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
8.6.3
Table 32
SWD interface
SWD interface specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID213
F_SWDCLK1
3.3 V ≤ VDD ≤
5.5 V
–
–
14
MHz
SWDCLK ≤
1/3 CPU
clock
frequency
SID214
F_SWDCLK2
1.71 V ≤ VDD ≤ –
3.3 V
–
7
MHz
SWDCLK ≤
1/3 CPU
clock
frequency
SID215
T_SWDI_SET T = 1/f
UP
SWDCLK
0.25*T
–
–
ns
Guaranteed
by
characterizat
ion
SID216
T_SWDI_HOL T = 1/f
D
SWDCLK
0.25*T
–
–
ns
Guaranteed
by
characterizat
ion
SID217
T_SWDO_VA T = 1/f
LID
SWDCLK
–
–
0.5*T
ns
Guaranteed
by
characterizat
ion
SID217A
T_SWDO_HO T = 1/f
LD
SWDCLK
1
–
–
ns
Guaranteed
by
characterizat
ion
8.6.4
Internal main oscillator
Typ
Max
Units
Details/
conditions
Table 33
IMO DC specifications
(Guaranteed by design)
Spec ID
Parameter
Description
Min
SID218
IIMO1
IMO
–
operating
current at 48
MHz
–
1000
pA
SID219
IIMO2
IMO
–
operating
current at 24
MHz
–
325
pA
(table continues...)
Datasheet
49
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 33
(continued) IMO DC specifications
(Guaranteed by design)
Spec ID
Parameter
Description
SID220
IIMO3
SID221
SID222
Typ
Max
Units
Details/
conditions
IMO
–
operating
current at 12
MHz
–
225
pA
IIMO4
IMO
operating
current at 6
MHz
–
–
180
pA
IIMO5
IMO
operating
current at 3
MHz
–
–
150
pA
Table 34
Min
IMO AC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID223
FIMOTOL1
Frequency
variation
from 3 to 48
MHz
–
–
±2
%
+3% if TA >
85 °C and
IMO
frequency <
24 MHz
SID226
TSTARTIMO
IMO startup
time
–
–
12
µs
SID227
TJITRMSIMO1
RMS Jitter at –
3 MHz
156
–
ps
SID228
TJITRMSIMO2
RMS Jitter at –
24 MHz
145
–
ps
SID229
TJITRMSIMO3
RMS Jitter at –
48 MHz
139
–
ps
8.6.5
Internal low-speed oscillator
Typ
Max
Units
Details/
conditions
0.3
1.05
µA
Guaranteed
by
characterizat
ion
Table 35
ILO DC specifications
(Guaranteed by design)
Spec ID
Parameter
Description
Min
SID231
IILO1
ILO
–
operating
current at 32
kHz
(table continues...)
Datasheet
50
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 35
(continued) ILO DC specifications
(Guaranteed by design)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID233
IILOLEAK
ILO leakage
current
–
2
15
nA
Guaranteed
by design
Table 36
ILO AC specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID234
TSTARTILO1
ILO startup
time
–
–
2
ms
Guaranteed
by
characterizat
ion
SID236
TILODUTY
ILO duty
cycle
40
50
60
%
Guaranteed
by
characterizat
ion
SID237
FILOTRIM1
32 kHz
trimmed
frequency
15
32
50
kHz
Max. ILO
frequency is
70 kHz if TA >
85 °C
Table 37
External clock specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID305
ExtClkFreq
External
Clock input
Frequency
0
–
48
MHz
Guaranteed
by
characterizat
ion
SID306
ExtClkDuty
Duty cycle;
45
Measured at
VDD/2
–
55
%
Guaranteed
by
characterizat
ion
Typ
Max
Units
Details/
conditions
–
48
MHz
Table 38
UDB AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
Min
Datapath performance
SID249
FMAX-TIMER
Max
–
frequency of
16-bit timer
in a UDB pair
(table continues...)
Datasheet
51
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 38
(continued) UDB AC specifications
(Guaranteed by characterization)
Spec ID
Parameter
Description
SID250
FMAX-ADDER
SID251
FMAX_CRC
Min
Typ
Max
Units
Details/
conditions
Max
–
frequency of
16-bit adder
in a UDB pair
–
48
MHz
Max
–
frequency of
16-bit
CRC/PRS in a
UDB pair
–
48
MHz
Max
–
frequency of
2-pass PLD
function in a
UDB pair
–
48
MHz
PLD performance in UDB
SID252
FMAX_PLD
Clock to output performance
SID253
TCLK_OUT_UDB Prop. delay –
for clock in
1
to data out
at 25 °C, Typ.
15
–
ns
SID254
TCLK_OUT_UDB Prop. delay
for clock in
2
to data out,
Worst case.
–
25
–
ns
Table 39
Block specs
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID256*
TWS48*
Number of
wait states
at 48 MHz
1
–
–
CPU
execution
fromFlash.
Guaranteed
by
characterizat
ion
(table continues...)
Datasheet
52
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 39
(continued) Block specs
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID257
TWS24*
Number of
wait states
at 24 MHz
0
–
–
CPU
execution
fromFlash.
Guaranteed
by
characterizat
ion
SID260
VREFSAR
Trimmed
internal
reference to
SAR
–1
–
+1
%
Percentage
of Vbg (1.024
V).
Guaranteed
by
characterizat
ion
SID262
TCLKSWITCH Clock
switching
from clk1 to
clk2 in clk1
periods
3
–
4
Periods
Guaranteed
bydesign
* Tws48 and Tws24 are guaranteed by Design
Table 40
UDB port adaptor specifications
(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V VDDIO and VDDD)
Spec ID
Parameter
Description
SID263
TLCLKDO
SID264
Min
Typ
Max
Units
Details/
conditions
LCLK to
–
output delay
–
18
ns
TDINLCLK
Input setup –
time to
LCLCK rising
edge
–
7
ns
SID265
TDINLCLKHLD
Input hold
time from
LCLK rising
edge
5
–
–
ns
SID266
TLCLKHIZ
LCLK to
output
tristated
–
–
28
ns
SID267
TFLCLK
LCLK
frequency
–
–
33
MHz
(table continues...)
Datasheet
53
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
8 Electrical specifications
Table 40
(continued) UDB port adaptor specifications
(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V VDDIO and VDDD)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/
conditions
SID268
TLCLKDUTY
LCLK duty
cycle
(percentage
high)
40
–
60
%
Datasheet
54
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
9 Ordering information
9
Ordering information
The PSoC™ 4200 part numbers and features are listed in the following table.
Opamp (CTBm)
CAPSENSE™
Direct LCD drive
12-bit SAR ADC
TCPWM blocks
SCB blocks
GPIO
28-SSOP
–40 to +85 °C (A grade)
–40 to +105 °C (S grade)
2
1
✓
✓
1 Msps 2
4
2
24
✓
✓
–
CY8C4245PVA- 48
452Z
32
4
4
0
–
✓
–
0
4
2
24
✓
✓
–
CY8C4245PVA- 48
472Z
32
4
4
1
–
✓
1 Msps 2
4
2
24✓
✓
–
CY8C4245PVA- 48
482Z
32
4
4
1
✓
✓
1 Msps 2
4
2
24
✓
✓
–
CY8C4244PVS- 48
442Z
16
4
2
1
✓
✓
1 Msps 2
4
2
24
✓
–
✓
CY8C4245PVS- 48
452Z
32
4
4
0
–
✓
–
0
4
2
24
✓
–
✓
CY8C4245PVS- 48
472Z
32
4
4
1
–
✓
1 Msps 2
4
2
24
✓
–
✓
CY8C4245PVS- 48
482Z
32
4
4
1
✓
✓
1 Msps 2
4
2
24
✓
–
✓
CY8C4245PVA- 48
482
32
4
4
1
✓
✓
1 Msps 2
4
2
24
✓
✓
–
9.1
LP comparators
UDB
4
Max CPU speed (MHz)
16
Product
4200 CY8C4244PVA- 48
442Z
Family
SRAM (KB)
Package Operating
temperature
Flash (KB)
Features
Part numbering conventions
PSoC™ 4 devices follow the part numbering convention described in the following table. All fields are single-character
alphanumeric (0, 1, 2, …, 9, A,B, …, Z) unless stated otherwise.
The part numbers are of the form CY8C4ABCDEF-GHI where the fields are defined as follows.
Datasheet
55
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
9 Ordering information
Example
CY8C
4 A B C DE
F - GH I Z
Cypress (An Infineon company)
4 : PSoC4
Architecture
2 : 4200Family
Family within Architecture
4 : 48 MHz
Speed Grade
5 : 32 KB
Flash Capacity
PV : SSOP
Package Code
A: Automotive -40 to +85 °C
S: Automotive: -40 to +105 °C
Temperature Range
Attributes Set
Fab Location Change: Z
Figure 9
Part numbering conventions
The field values are listed in the following table.
Field
Description
Values
Meaning
CY8C
Cypress (An Infineon
company)
4
Architecture
4
PSoC™ 4
A
Family within architecture
1
4100 Family
2
4200 Family
2
24 MHz
4
48 MHz
4
16 KB
5
32 KB
B
C
CPU speed
Flash capacity
DE
Package code
PV
SSOP
F
Temperature range
A/S
Automotive
GHI
Attributes code
000-999
Code of feature set in
specific family
Z
Fab location change
Datasheet
56
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
10 Packaging
10
Table 41
Packaging
Package characteristics
Parameter
Description
Conditions
Min
Typ
Max
Units
TA
Operating
ambient
temperature
For A grade
devices
–40
25.00
85
°C
TA
Operating
ambient
temperature
For S grade
devices
–40
25.00
105
°C
TJ
Operating
junction
temperature
For A grade
devices
–40
–
100
°C
TJ
Operating
junction
temperature
For S grade
devices
–40
–
120
°C
–
66.58
–
°C/W
–
46.28
–
°C/W
TJA
TJC
Table 42
Package θJA
(28-pin SSOP)
Package θJC
(28-pin SSOP)
Solder reflow peak temperature
Package
Maximum peak temperature
Maximum time at peak
temperature
28-pin SSOP
260 °C
30 seconds
Table 43
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2
Package
MSL
28-pin SSOP
MSL 3
PSoC™ 4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Infineon webpage at http://
www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents
Datasheet
57
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
10 Packaging
Figure 10
Datasheet
28-pin SSOP (210 Mils) Package Outline, 51-85079 (PG-SSOP-28)
58
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
11 Acronyms
11
Acronyms
Table 44
Acronyms used in this document
Acronym
Description
abus
analog local bus
ADC
analog-to-digital converter
AG
analog global
AHB
AMBA (advanced microcontroller bus architecture) highperformance bus, an Arm® data transfer bus
ALU
arithmetic logic unit
AMUXBUS
analog multiplexer bus
API
application programming interface
APSR
application program status register
®
Arm
advanced RISC machine, a CPU architecture
ATM
automatic thump mode
BW
bandwidth
CAN
Controller Area Network, a communications protocol
CMRR
common-mode rejection ratio
CPU
central processing unit
CRC
cyclic redundancy check, an error-checking protocol
DAC
digital-to-analog converter, see also IDAC, VDAC
DFB
digital filter block
DIO
digital input/output, GPIO with only digital capabilities,
no analog. See GPIO.
DMIPS
Dhrystone million instructions per second
DMA
direct memory access, see also TD
DNL
differential nonlinearity, see also INL
DNU
do not use
DR
port write data registers
DSI
digital system interconnect
DWT
data watchpoint and trace
ECC
error correcting code
ECO
external crystal oscillator
EEPROM
electrically erasable programmable read-only memory
EMI
electromagnetic interference
EMIF
external memory interface
EOC
(table continues...)
end of conversion
Datasheet
59
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
11 Acronyms
Table 44
(continued) Acronyms used in this document
Acronym
Description
EOF
end of frame
EPSR
execution program status register
ESD
electrostatic discharge
ETM
embedded trace macrocell
FIR
finite impulse response, see also IIR
FPB
flash patch and breakpoint
FS
full-speed
GPIO
general-purpose input/output, applies to a PSoC™ pin
HVI
high-voltage interrupt, see also LVI, LVD
IC
integrated circuit
IDAC
current DAC, see also DAC, VDAC
IDE
integrated development environment
I2C, or IIC
Inter-Integrated Circuit, a communications protocol
IIR
infinite impulse response, see also FIR
ILO
internal low-speed oscillator, see also IMO
IMO
internal main oscillator, see also ILO
INL
integral nonlinearity, see also DNL
I/O
input/output, see also GPIO, DIO, SIO, USBIO
IPOR
initial power-on reset
IPSR
interrupt program status register
IRQ
interrupt request
ITM
instrumentation trace macrocell
LCD
liquid crystal display
LIN
Local Interconnect Network, a communications protocol.
LR
link register
LUT
lookup table
LVD
low-voltage detect, see also LVI
LVI
low-voltage interrupt, see also HVI
LVTTL
low-voltage transistor-transistor logic
MAC
multiply-accumulate
MCU
microcontroller unit
MISO
master-in slave-out
NC
(table continues...)
no connect
Datasheet
60
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
11 Acronyms
Table 44
(continued) Acronyms used in this document
Acronym
Description
NMI
nonmaskable interrupt
NRZ
non-return-to-zero
NVIC
nested vectored interrupt controller
NVL
nonvolatile latch, see also WOL
opamp
operational amplifier
PAL
programmable array logic, see also PLD
PC
program counter
PCB
printed circuit board
PGA
programmable gain amplifier
PHUB
peripheral hub
PHY
physical layer
PICU
port interrupt control unit
PLA
programmable logic array
PLD
programmable logic device, see also PAL
PLL
phase-locked loop
PMDD
package material declaration data sheet
POR
power-on reset
PRES
precise power-on reset
PRS
pseudo random sequence
PS
port read data register
PSoC™
Programmable System-on-ChipTM
PSRR
power supply rejection ratio
PWM
pulse-width modulator
RAM
random-access memory
RISC
reduced-instruction-set computing
RMS
root-mean-square
RTC
real-time clock
RTL
register transfer language
RTR
remote transmission request
RX
receive
SAR
successive approximation register
SC/CT
switched capacitor/continuous time
SCL
(table continues...)
I2C serial clock
Datasheet
61
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
11 Acronyms
Table 44
(continued) Acronyms used in this document
Acronym
Description
SDA
I2C serial data
S/H
sample and hold
SINAD
signal to noise and distortion ratio
SIO
special input/output, GPIO with advanced features. See
GPIO.
SOC
start of conversion
SOF
start of frame
SPI
Serial Peripheral Interface, a communications protocol
SR
slew rate
SRAM
static random access memory
SRES
software reset
SWD
serial wire debug, a test protocol
SWV
single-wire viewer
TD
transaction descriptor, see also DMA
THD
total harmonic distortion
TIA
transimpedance amplifier
TRM
technical reference manual
TTL
transistor-transistor logic
TX
transmit
UART
Universal Asynchronous Transmitter Receiver, a
communications protocol
UDB
universal digital block
USB
Universal Serial Bus
USBIO
USB input/output, PSoC™ pins used to connect to a USB
port
VDAC
voltage DAC, see also DAC, IDAC
WDT
watchdog timer
WOL
write once latch, see also NVL
WRES
watchdog timer reset
XRES
external reset I/O pin
XTAL
crystal
Datasheet
62
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
12 Document conventions
12
Document conventions
Units of measure
Table 45
Units of measure
Symbol
Unit of measure
°C
degrees Celsius
dB
decibel
fF
femtofarad
Hz
hertz
KB
1024 bytes
kbps
kilobits per second
Khr
kilohour
kHz
kilohertz
kΩ
kilo ohm
ksps
kilosamples per second
LSB
least significant bit
Mbps
megabits per second
MHz
megahertz
MΩ
mega-ohm
Msps
megasamples per second
μF
microampere
μV
microsecond
μA
μH
microfarad
μW
microvolt
mA
milliampere
ms
millisecond
mV
millivolt
nA
nanoampere
ns
nanosecond
nV
nanovolt
Ω
ohm
pF
picofarad
ppm
parts per million
ps
picosecond
s
second
sps
(table continues...)
samples per second
microhenry
μs
Datasheet
microwatt
63
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
12 Document conventions
Table 45
(continued) Units of measure
Symbol
Unit of measure
sqrtHz
square root of hertz
V
volt
Datasheet
64
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
13 References
13
References
Worldwide sales and design support
Infineon maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors.
To find the office closest to you, visit webpage.
Products
Arm® Cortex® Microcontrollers
Automotive
Clocks & Timing Solutions
Transceivers
Internet of Things
Memories
Microcontroller
Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity
PSoC™ Solutions
PSoC™ 1 | PSoC™ 3 | PSoC™ 4 | PSoC™ 5LP | PSoC™ 6 MCU
Infineon developer community
Technical support
Datasheet
65
001-93573 Rev. *H
2023-11-06
PSoC™ 4: PSoC™ 4200
Revision history
Revision history
Table 46
Revision history
Document version
Date of release
Description of change
*D
2016-07-04
Changed status from Preliminary to
Final.
*E
2017-03-28
Updated Ordering Information
Updated part numbers.
Updated to new template.
*F
2017-05-29
No technical updates.
Completing Sunset Review.
*G
2019-03-08
Added CY84245PVA-472Z and
CY84245PVS-472Z in Ordering
Information.
*H
2023-11-06
Migrated to IFX template
Updated Ordering Information
Completing Sunset review
Datasheet
66
001-93573 Rev. *H
2023-11-06
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2023-11-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2023 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-wvs1691059611019
Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.