0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY8C6016BZI-F04

CY8C6016BZI-F04

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    VFBGA124

  • 描述:

    IC MCU 32BIT 512KB FLASH 124BGA

  • 数据手册
  • 价格&库存
CY8C6016BZI-F04 数据手册
Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet PSoC 61 MCU General Description PSoC® 6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The CY8C61x6/7 product line, based on the PSoC 6 MCU platform, is a combination of a high-performance microcontroller with low-power flash technology, digital programmable logic, high-performance analog-to-digital conversion and standard communication and timing peripherals. Features 32-bit Dual CPU Subsystem Quad SPI (QSPI)/Serial Memory Interface (SMIF) Note: In PSoC 61 the Cortex M0+ is reserved for system functions, and is not available for applications. ■ ■ 150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle multiply, floating point, and memory protection unit (MPU) 100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply and MPU ■ Core logic operation at either 1.1 V or 0.9 V, depending on the part selected. See Ordering Information. ■ Active CPU current slope with 1.1-V core operation ❐ Cortex-M4: 40 µA/MHz ❐ Cortex-M0+: 20 µA/MHz ■ Active CPU current slope with 0.9-V core operation ❐ Cortex-M4: 22 µA/MHz ❐ Cortex-M0+: 15 µA/MHz ■ Two DMA controllers with 16 channels each ■ ■ ■ ■ Memory Subsystem Segment LCD Drive ■ ■ ■ One-time-programmable (OTP) 1-Kb eFuse array Low-Power 1.7-V to 3.6-V Operation Six power modes for fine-grained power management ■ Deep Sleep mode current of 7 µA with 64-KB SRAM retention ■ On-chip Single-In Multiple Out (SIMO) DC-DC buck converter, 2.7 V DRIVE_SEL 3 4.7 kΩ typ. XRES drive No restrictions XRES Watchdog timer (WDT or MCWDT) to reset the device if firmware fails to service it within a specified timeout period. ■ Software-initiated reset to reset the device on demand using firmware. ■ Logic-protection fault can trigger an interrupt or reset the device if unauthorized operating conditions occur; for example, reaching a debug breakpoint while executing privileged code. ■ Hibernate wakeup reset to bring the device out of the system Hibernate low-power mode. ■ Watchdog Timers (WDT, MCWDT) PSoC 6 MCU has one WDT and two multi-counter WDTs (MCWDTs). The WDT has a 16-bit free-running counter. Each MCWDT has two 16-bit counters and one 32-bit counter, with multiple operating modes. All of the 16-bit counters can generate a watchdog device reset. All of the counters can generate an interrupt on a match event. The WDT is clocked by the ILO. It can do interrupt/wakeup generation in system LP/ULP, Deep Sleep, and Hibernate power modes. The MCWDTs are clocked by LFCLK (ILO or WCO). It can do periodic interrupt/wakeup generation in system LP/ULP and Deep Sleep power modes. Reset events are asynchronous and guarantee reversion to a known state. Some of the reset sources are recorded in a register, which is retained through reset and allows software to determine the cause of the reset. Clock Dividers Integer and fractional clock dividers are provided for peripheral use and timing purposes. There are: ■ Eight 8-bit clock dividers ■ Sixteen 16-bit integer clock dividers ■ Four 16.5-bit fractional clock dividers ■ One 24.5-bit fractional clock divider Document Number: 002-21414 Rev. *M Page 14 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Programmable Analog Subsystem 12-bit SAR ADC The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion. One of three internal references may be used for the ADC reference voltage: VDDA, VDDA/2, and an analog reference (AREF). AREF is nominally 1.2 V, trimmed to ±1%; see Table 23. An external reference may also be used, by driving the VREF pin. When using VDDA/2 or AREF as a reference, an external bypass capacitor may be connected to the VREF pin to improve performance in noisy conditions. These reference options allow ratio-metric readings or absolute readings at the accuracy of the reference used. The input range of the ADC is the full supply voltage between VSS and VDDA/VDDIOA. The SAR ADC may be configured with a mix of single-ended and differential signals in the same configuration. The SAR ADC’s sample-and-hold (S/H) aperture is programmable to allow sufficient time for signals with a high impedance to settle sufficiently, if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. The SAR is connected to a fixed set of pins through an input multiplexer. The multiplexer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The result of each channel is buffered, so that an interrupt may be triggered only when a full scan of all channels is complete. Also, a pair of range registers can be set to detect and cause an interrupt if an input exceeds a minimum and/or maximum value. This allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software. The SAR can also be connected, under firmware control, to most other GPIO pins via the Analog Multiplexer Bus (AMUXBUS). The SAR is not available in Deep Sleep and Hibernate modes as it requires a high -speed clock (up to 18 MHz). The SAR operating range is 1.71 to 3.6 V. ADC accuracy is affected by GPIO switching noise. To improve accuracy, implement the GPIO port restrictions listed in Table 6. In addition, there should be no switching outputs on ports 9 and 10. Document Number: 002-21414 Rev. *M Temperature Sensor An on-chip temperature sensor is part of the SAR and may be scanned by the SAR ADC. It consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor may be connected directly to the SAR ADC as one of the measurement channels. The ADC digitizes the temperature sensor’s output and a Cypress-supplied software function may be used to convert the reading to temperature which includes calibration and linearization. 12-bit Digital-Analog Converter There is a 12-bit voltage mode DAC on the chip, which can settle in less than 2 µs. The DAC may be driven by the DMA controllers to generate user-defined waveforms. The DAC output from the chip can either be the resistive ladder output (highly linear near ground) or a buffered output using an opamp in the CTBm block. Continuous Time Block mini (CTBm) with Two Opamps This block consists of two opamps, which have their inputs and outputs connected to pins and other analog blocks, as Figure 7 shows. They have three power modes (high, medium, and low) and a comparator mode. The opamps can be used to buffer SAR inputs and DAC outputs. The non-inverting inputs of these opamps can be connected to either of two pins, thus allowing independent sensors to be used at different times. The pin selection can be made via firmware. The opamps also support operation in system Deep Sleep mode, with lower performance and reduced power consumption. Low-Power Comparators Two low-power comparators are provided, which can operate in all power modes. This allows other analog system resources to be disabled while retaining the ability to monitor external voltage levels during system Deep Sleep and Hibernate modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event. Page 15 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 7 shows an overview of the analog subsystem. This diagram is a high-level abstraction. See the Architecture TRMfor detailed connectivity information. P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8.6 P8.7 P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7 Figure 7. Analog Subsystem AMUXBUSA AMUXBUSB P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 P6.7 CSD LPCOMP0 inp inn P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 shield_pad vref_ext csh cmod amuxbusa amuxbusb LPCOMP1 inp inn P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 P5.6 P5.7 Red dots indicate AMUXBUS splitter switches VDDA CTDAC vref vout The DAC output is also routed directly to P9.6; not shown in this diagram. See the Alternate Port Pin Functionality table.. S/H P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P4.0 P4.1 P14.0 P14.1 OA1 P9.3 P9.7 P9.5 10x + - comp out 1x P9.4 P9.0 P9.6 OA0 + Bold lines indicate direct connections from the opamp 10x ouputs to port pins. 10x comp out - P9.1 1x P11.0 P11.1 P11.2 P11.3 P11.4 P11.5 P11.6 P11.7 P9.2 AREF, 1.2 V SARMUX (2) P10.0 P10.1 P10.2 P10.3 P10.4 P10.5 P10.6 P10.7 TEMP temp VSS Document Number: 002-21414 Rev. *M P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 SAR ADC vplus vminus vref VDDA V DDA / 2 SARREF To VREF pin, for bypass capacitor P12.0 P12.1 P12.2 P12.3 P12.4 P12.5 P12.6 P12.7 P13.0 P13.1 P13.2 P13.3 P13.4 P13.5 P13.6 P13.7 Page 16 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Programmable Digital Fixed-Function Digital Smart I/O Timer/Counter/Pulse-width Modulator (TCPWM) Block Smart I/O is a programmable logic fabric that enables Boolean operations on signals traveling from device internal resources to the GPIO pins or on signals traveling into the device from external sources. A Smart I/O block sits between the GPIO pins and the high-speed I/O matrix (HSIOM) and is dedicated to a single port. There are two Smart I/O blocks: one on Port 8 and one on Port 9. When Smart I/O is not enabled, all signals on Port 8 and Port 9 bypass the Smart I/O hardware. Smart I/O supports: ■ System Deep Sleep operation ■ Boolean operations without CPU intervention ■ Asynchronous or synchronous (clocked) operation Each Smart I/O block contains a data unit (DU) and eight lookup tables (LUTs). The DU: ■ Performs unique functions based on a selectable opcode. ■ Can source input signals from internal resources, the GPIO port, or a value in the DU register. Each LUT: ■ Has three selectable input sources. The input signals may be sourced from another LUT, an internal resource, an external signal from a GPIO pin, or from the DU. ■ Acts as a programmable Boolean logic table. ■ Can be synchronous or asynchronous. The TCPWM supports the following operational modes: ❐ Timer-counter with compare ❐ Timer-counter with capture ❐ Quadrature decoding ❐ Pulse width modulation (PWM) ❐ Pseudo-random PWM ❐ PWM with dead time ■ Up, down, and up/down counting modes. ■ Clock prescaling (division by 1, 2, 4, ... 64, 128) ■ Double buffering of compare/capture and period values ■ Underflow, overflow, and capture/compare output signals ■ Supports interrupt on: ❐ Terminal count – Depends on the mode; typically occurs on overflow or underflow ❐ Capture/compare – The count is captured to the capture register or the counter value equals the value in the compare register ■ Complementary output for PWMs ■ ■ In this device there are: ■ Eight 32-bit TCPWMs ■ Twenty-four 16-bit TCPWMs Serial Communication Blocks (SCB) This product line has nine SCBs: Universal Digital Blocks (UDBs) ■ This product line has 12 UDBs. Each UDB is a collection of uncommitted logic (PLD) and nano-CPU (datapath) optimized to create common embedded peripherals and custom functionality, as Figure 8 shows. UDB datapaths are 8 bits wide, and can be chained to form 16, 24, and 32-bit functions. Included with the UDBs is the digital system interconnect (DSI), which routes signals among UDBs, fixed function peripherals, I/O pins and other system blocks to implement full featured device connectivity. The DSI enables routing between any digital function and any pin. Port adapter blocks extend the UDBs to provide an interface to the GPIOs through the HSIOM. ■ Figure 8. UDB Block Diagram PLD Chaining Clock and Reset Control Status and Control PLD 12C4 (8 PTs) PLD 12C4 (8 PTs) Datapath Selectable start, reload, stop, count, and capture event signals for each TCPWM; with rising edge, falling edge, both edges, and level trigger options. The TCPWM has a Kill input to force outputs to a predetermined state. Datapath Chaining Eight can implement either I2C, UART, or SPI. One SCB (SCB #8) can operate in system Deep Sleep mode with an external clock; this SCB can be either SPI slave or I2C slave. I2C Mode: The SCB can implement a full multi-master and slave interface (it is capable of multimaster arbitration). This block can operate at speeds of up to 1 Mbps (Fast Mode Plus). It also supports EZI2C, which creates a mailbox address range and effectively reduces I2C communication to reading from and writing to an array in the memory.The SCB supports a 256-byte FIFO for receive and transmit. The I2C peripheral is compatible with I2C standard-mode, Fast Mode, and Fast Mode Plus devices as defined in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain modes. UART Mode: This is a full-feature UART operating at up to 8 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity error, break detect, and frame error are supported. A 256-byte FIFO allows much greater CPU service latencies to be tolerated. Routing Channel Document Number: 002-21414 Rev. *M Page 17 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet SPI Mode: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block supports an EZSPI mode in which the data interchange is reduced to reading and writing an array in memory. The SPI interface operates with a 25-MHz clock. GPIO This product line has up to 100 GPIOs, which implement: ■ Eight drive strength modes: ❐ Analog input mode (input and output buffers disabled) ❐ Input only ❐ Weak pull-up with strong pull-down ❐ Strong pull-up with weak pull-down ❐ Open drain with strong pull-down ❐ Open drain with strong pull-up ❐ Strong pull-up with strong pull-down ❐ Weak pull-up with weak pull-down A serial memory interface is provided, running at up to 80 MHz. It supports single, dual, quad, dual-quad and octal SPI configurations, and supports up to four external memory devices. It supports two modes of operation: ■ Input threshold select (CMOS or LVTTL) ■ Hold mode for latching previous state (used for retaining the I/O state in system Hibernate mode) ■ Memory-mapped I/O (MMIO), a command mode interface that provides data access via the SMIF registers and FIFOs ■ Selectable slew rates for dV/dt-related noise control to improve EMI ■ Execute in Place (XIP), in which AHB reads and writes are directly translated to SPI read and write transfers. USB Full-Speed Device Interface PSoC 6 incorporates a full-speed USB device interface. The device can have up to eight endpoints. A 512-byte SRAM buffer is provided and DMA is supported. QSPI Interface Serial Memory Interface (SMIF) In XIP mode, the external memory is mapped into the PSoC 6 MCU internal address space, enabling code execution directly from the external memory. To improve performance, a 4-KB cache is included. XIP mode also supports AES-128 on-the-fly encryption and decryption, enabling secured storage and access of code and data in the external memory. LCD This block drives LCD commons and segments; routing is available to most of the GPIOs. One to eight of the GPIOs must be used for commons, the rest can be used for segments. The LCD block has two modes of operation: high speed (8 MHz) and low speed (32 kHz). Both modes operate in system LP and ULP modes. Low-speed mode operates with reduced contrast in system Deep Sleep mode - review the number of common and segment lines, viewing angle requirements, and prototype performance before using this mode. The pins are organized in logical entities called ports, which are up to 8 pins in width. Data output and pin state registers store, respectively, the values to be driven on the pins and the input states of the pins. Every pin can generate an interrupt if enabled; each port has an interrupt request (IRQ) associated with it. The port 1 pins are capable of overvoltage-tolerant (OVT) operation, where the input voltage may be higher than VDDD. OVT pins are commonly used with I2C, to allow powering the chip OFF while maintaining a physical connection to an operating I2C bus without affecting its functionality. GPIO pins can be ganged to source or sink higher values of current. GPIO pins, including OVT pins, may not be pulled up higher than the absolute maximum; see Electrical Specifications. During power-on and reset, the pins are forced to the analog input drive mode, with input and output buffers disabled, so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as the high-speed I/O matrix (HSIOM) is used to multiplex between various peripheral and analog signals that may connect to an I/O pin. Analog performance is affected by GPIO switching noise. In order to get the best analog performance, the following frequency and drive mode constraints must be applied. The DRIVE_SEL values (refer to Table 6) represent drive strengths (see the Architecture and Register TRMs for further detail). See also Table 5 for additional restrictions for ECO use. Table 6. DRIVE_SEL Values Ports Max Frequency Port 0 8 MHz Port 1 1 MHz; slow slew rate, 2 outputs max Port 2 50 MHz Drive Strength for VDDD ≤ 2.7 V Drive Strength for VDDD > 2.7 V DRIVE_SEL 2 DRIVE_SEL 3 Ports 3 to 10 16 MHz; 25 MHz for SPI Ports 11 to 13 80 MHz for SMIF (QSPI). DRIVE_SEL 1 DRIVE_SEL 2 Ports 9 and 10 8 MHz; slow slew rate setting for TQFP Packages for ADC performance No restrictions No restrictions Document Number: 002-21414 Rev. *M Page 18 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Special-Function Peripherals CapSense Audio Subsystem Capacitive touch sensors are designed for user interfaces that rely on human body capacitance to detect the presence of a finger on or near a sensor. Cypress CapSense solutions bring elegant, reliable, and simple capacitive touch sensing functions to applications including IoT, industrial, automotive, and home appliances. This subsystem consists of the following hardware blocks: ■ ■ One Inter-IC Sound (I2S) interface Two pulse-density modulation (PDM) to pulse-code modulation (PCM) decoder channels The I2S interface implements two independent hardware FIFO buffers – TX and RX, which can operate in master or slave mode. The following features are supported: The Cypress-proprietary CapSense technology offers the following features: ■ Best-in-class signal-to-noise ratio (SNR) and robust sensing under harsh and noisy conditions ■ Self-capacitance (CSD) and mutual-capacitance (CSX) sensing methods ■ Support for various widgets, including buttons, matrix buttons, sliders, touchpads, and proximity sensors ■ High-performance sensing across a variety of materials ■ Best-in-class liquid tolerance The I2S interface is commonly used to connect with audio codecs, simple DACs, and digital microphones. ■ SmartSense auto-tuning technology that helps avoid complex manual tuning processes The PDM-to-PCM decoder implements a single hardware Rx FIFO that decodes a stereo or mono 1-bit PDM input stream to PCM data output. The following features are supported: ■ Superior immunity against external noise ■ Spread-spectrum clocks for low radiated emissions ■ Gesture and built-in self-test libraries ■ Ultra-low power consumption ■ An integrated graphical CapSense tuner for real-time tuning, testing, and debugging ■ Multiple data formats – I2S, left-justified, Time Division Multiplexed (TDM) mode A, and TDM mode B ■ Programmable channel/word lengths – 8/16/18/20/24/32 bits ■ Internal/external clock operation. Up to 192 ksps ■ Interrupt mask events – trigger, not empty, full, overflow, underflow, watchdog ■ Configurable FIFO trigger level with DMA support ■ Programmable data output word length – 16/18/20/24 bits ■ Programmable gain amplifier (PGA) for volume control – from –12 dB to +10.5 dB in 1.5 dB steps ■ Configurable PDM clock generation. Range from 384 kHz to 3.072 MHz ■ Droop correction and configurable decimation rate for sampling; up to 48 ksps ■ Programmable high-pass filter gain ■ Interrupt mask events – not empty, overflow, trigger, underflow ■ Configurable FIFO trigger level with DMA support The PDM-to-PCM decoder is commonly used to connect to digital PDM microphones. Up to two microphones can be connected to the same PDM Data line. CapSense Subsystem CapSense is supported in PSoC 6 MCU through a CapSense sigma-delta (CSD) hardware block. It is designed for high-sensitivity self-capacitance and mutual-capacitance measurements, and is specifically built for user interface solutions. In addition to CapSense, the CSD hardware block supports three general-purpose functions. These are available when CapSense is not being used. Alternatively, two or more functions can be time-multiplexed in an application under firmware control. The four functions supported by the CSD hardware block are: ■ CapSense ■ 10-bit ADC ■ Programmable current sources (IDAC) ■ Comparator Document Number: 002-21414 Rev. *M CapSense sensitivity and accuracy are affected by GPIO switching noise. To improve sensitivity and accuracy, implement the GPIO port restrictions listed in Table 6, and do the following: ■ Restrict CapSense pins to ports 6 and 7 ■ There should be no other GPIO output activity on ports 6 and 7 ■ There should be no more than two GPIO outputs on ports 5 and 8 ■ Restrict GPIO output switching in ports 5 and 8 to 1 MHz, with slow slew rate setting ADC The CapSense subsystem slope ADC offers the following features: ■ Selectable 8- or 10-bit resolution ■ Selectable input range: GND to VREF and GND to VDDA on any GPIO input ■ Measurement of VDDA against an internal reference without the use of GPIO or external components IDAC The CSD block has two programmable current sources, which offer the following features: ■ 7-bit resolution ■ Sink and source current modes ■ A current source programmable from 37.5 nA to 609 A ■ Two IDACs that can be used in parallel to form one 8-bit IDAC Page 19 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Comparator The CapSense subsystem comparator operates in the system Low Power and Ultra-Low Power modes. The inverting input is connected to an internal programmable reference voltage and the non-inverting input can be connected to any GPIO via the AMUXBUS. CapSense Hardware Subsystem Figure 9 shows the high-level hardware overview of the CapSense subsystem, which includes a delta sigma converter, internal clock dividers, a shield driver, and two programmable current sources. The inputs are managed through analog multiplexed buses (AMUXBUS A/B). The input and output of all functions offered by the CSD block can be provided on any GPIO or on a group of GPIOs under software control, with the exception of the comparator output and external capacitors that use dedicated GPIOs. Self-capacitance is supported by the CSD block using AMUXBUS A, an external modulator capacitor, and a GPIO for each sensor. There is a shield electrode (optional) for self-capacitance sensing. This is supported using AMUXBUS B and an optional external shield tank capacitor (to increase the drive capability of the shield driver) should this be required. Mutual-capacitance is supported by the CSD block using AMUXBUS A, two external integrated capacitors, and a GPIO for transmit and receive electrodes. The ADC does not require an external component. Any GPIO that can be connected to AMUXBUS A can be an input to the ADC under software control. The ADC can accept VDDA as an input without needing GPIOs (for applications such as battery voltage measurement). The two programmable current sources (IDACs) in general-purpose mode can be connected to AMUXBUS A or B. They can therefore connect to any GPIO pin. The comparator resides in the delta-sigma converter. The comparator inverting input can be connected to the reference. Both comparator inputs can be connected to any GPIO using AMUXBUS B; see Figure 9. The reference has a direct connection to a dedicated GPIO; see Table 9. The CSD block can operate in active and sleep CPU power modes, and seamlessly transition between system LP and ULP modes. It can be powered down in system Deep Sleep and Hibernate modes. Upon wakeup from Hibernate mode, the CSD block requires re-initialization. However, operation can be resumed without re-initialization upon exit from Deep Sleep mode, under firmware control. Figure 9. CapSense Hardware Subsystem AMUXBUS A B GPIO Pin CSD Sensor 1 GPIO Cell Clock Input CS1 I / O Configured for CSD Mode GPIO Pin GPIO Cell CSD Sensor 2 CS2 CSD Hardware Block CMOD Pin C MOD C SH_TANK Sense clock Clock Generator GPIO Pin ( optional ) Shield Drive Circuit GPIO Pin Modulator Clock GPIO Cell Compensation IDAC C SHIELD Shield Electrode Modulator IDAC GPIO Pin Tx CSX Sensor 3 IDAC control GPIO Cell I / O Configured for CSX Mode CS3 Rx GPIO Pin C INTA Pin CINT A I / O for General Purpose Mode CINT B Document Number: 002-21414 Rev. *M CINTB Pin GPIO Cell Sigma Delta Converter Raw Count V REF GPIO Cell GPIO Cell ADC Input IDAC Outputs Comp Input Page 20 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 10 shows the high-level software overview. Cypress provides middleware libraries for CapSense, ADC, and IDAC on GitHub to enable quick integration. The Board Support Package for any kit with CapSense capabilities automatically includes the CapSense library in any application that uses the BSP. User applications interact only with middleware to implement functions of the CSD block. The middleware interacts with underlying drivers to access hardware as necessary. The CSD driver facilitates time-multiplexing of the CSD hardware if more than one piece of CSD-related middleware is present in a project. It prevents access conflicts in this case. ModusToolbox Software provides a CapSense configurator to enable fast library configuration. It also provides a tuner for performance evaluation and real-time tuning of the system. The tuner requires an EZI2C communication interface in the application to enable real-time tuning capability. The tuner can update configuration parameters directly in the device as well as in the configurator. CapSense and ADC middleware use the CSD interrupt to implement non-blocking sensing and A-to-D conversion. Therefore, interrupt service routines are a defined part of the middleware, which must be initialized by the application. Middleware and drivers can operate on either CPU. Cypress recommends using the middleware only in one CPU. If both CPUs must access the CSD driver, memory access should be managed in the application. Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design Guide for more details on CSX sensing, CSD sensing, shield electrode usage and its benefits, and capacitive system design guidelines. Refer to the API reference guides for CapSense, ADC, and IDAC available on GitHub. Figure 10. CapSense Software/Firmware Subsystem Application Program Software Middleware Comp IDAC ADC CapSense Configurator Tuner SCB Driver (EZI2C) CSD Driver GPIO / Clock Drivers SCB CSD Block GPIOs / Clock Hardware and Drivers Document Number: 002-21414 Rev. *M Page 21 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Pinouts Note: The CY8C61x6/CY8C61x7 datasheet web page contains a spreadsheet with a consolidated list of pinouts and pin alternate functions with HSIOM mapping. GPIO ports are powered by VDDx pins as follows: ■ P0: VBACKUP ■ P1: VDDD. Port 1 pins are overvoltage tolerant (OVT). ■ P2, P3, P4: VDDIO2 ■ P5, P6, P7, P8: VDDIO1 ■ P9, P10: VDDIOA, VDDA (VDDIOA, when present, and VDDA must be connected together on the PCB) ■ P11, P12, P13: VDDIO0 ■ P14: VDDUSB Table 7. Packages and Pin Information Pin VDDD VCCD VDDA VDDIOA VDDIO0 VDDIO1 VDDIO2 VBACKUP VDDUSB VSS VDD_NS VIND1 VIND2 VBUCK1 VRF XRES VREF P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P2.0 Packages 124-BGA A1 A2 A12 A13 C4 K12 L4 D1 M1 B12, C3, D4, D10, K4, K10 80-WLCSP B11 A10 F1 A6 M1 D11 P11 A8, D1, P5, R8 J1 J2 K2 K3 K1 F1 B13 E3 E2 E1 F3 F2 G3 G2 G1 H3 H2 H1 J3 M2 Document Number: 002-21414 Rev. *M Pin Packages P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 P3.0 P3.1 P3.2 124-BGA N2 L3 M3 N3 N1 M4 N4 L5 M5 N5 80-WLCSP - K11 L10 M11 N10 G10 P3.3 P3.4 P3.5 P4.0 P4.1 L6 M6 N6 L7 M7 - P5.0 N7 M9 C10 D9 E10 F9 G8 F11 H11 H9 K9 J10 - P5.1 P5.2 P5.3 P5.4 P5.5 P5.6 P5.7 P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 L8 M8 N8 L9 M9 N9 N10 M10 L10 L11 M11 N11 M12 N12 N8 R6 P7 L8 M7 R4 N6 J8 K7 L6 R2 P3 N4 M5 Page 22 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 7. Packages and Pin Information (continued) Pin Packages 124-BGA 80-WLCSP P6.7 P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7 M13 L13 L12 K13 N13 K11 J13 J12 J11 J6 N2 M3 L4 K5 L2 P8.0 P8.1 H13 H12 H3 K1 P8.2 P8.3 P8.4 P8.5 P8.6 P8.7 P9.0 P9.1 P9.2 P9.3 P9.4 P9.5 P9.6 P9.7 P10.0 P10.1 P10.2 H11 G13 G12 G11 F13 F12 E11 E12 E13 F11 D13 D12 D11 C13 C12 A11 B11 K3 J4 J2 H1 G2 E2 C2 F3 A2 G4 H5 - P10.3 P10.4 C11 A10 B3 Document Number: 002-21414 Rev. *M Pin Packages 124-BGA 80-WLCSP P10.5 P10.6 P10.7 P11.0 P11.1 P11.2 P11.3 P11.4 B10 C10 A9 B9 C9 A8 B8 C8 D3 E4 F5 G6 A4 C4 P11.5 P11.6 A7 B7 B5 D5 P11.7 P12.0 P12.1 P12.2 P12.3 P12.4 P12.5 P12.6 P12.7 P13.0 P13.1 P13.2 P13.3 P13.4 P13.5 P13.6 P13.7 C7 A6 B6 C6 A5 B5 C5 A4 B4 B1 A3 B3 B2 C2 C1 D3 D2 C6 B7 D7 C8 B9 E6 E8 F7 H7 - P14.0 / USBDP P14.1 / USBDM L2 L1 R10 P9 Page 23 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Each Port Pin has multiple alternate functions. These are defined in Table 8. Table 8. Multiple Alternate Functions[1] Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 srss.ext _clk:0 ACT #8 ACT #9 ACT #10 ACT #12 peri.tr_io_i nput[0]:0 scb[0].spi _select2:0 peri.tr_io_i nput[1]:0 ACT #14 ACT #15 DS #4 P0.0 tcpwm[0].l tcpwm[1].line ine[0]:0 [0]:0 P0.1 tcpwm[0].l tcpwm[1].line ine_comp _compl[0]:0 l[0]:0 P0.2 tcpwm[0].l tcpwm[1].line ine[1]:0 [1]:0 scb[0].ua scb[0].i2 rt_rx:0 c_scl:0 scb[0].spi _mosi:0 P0.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[1]:0 l[1]:0 scb[0].ua scb[0].i2 rt_tx:0 c_sda:0 scb[0].spi _miso:0 P0.4 tcpwm[0].l tcpwm[1].line ine[2]:0 [2]:0 scb[0].ua rt_rts:0 scb[0].spi _clk:0 peri.tr_io_ output[0]:2 P0.5 tcpwm[0].l tcpwm[1].line ine_comp _compl[2]:0 l[2]:0 scb[0].ua rt_cts:0 scb[0].spi _select0:0 peri.tr_io_ output[1]:2 P1.0 tcpwm[0].l tcpwm[1].line ine[3]:0 [3]:0 scb[7].ua scb[7].i2 rt_rx:0 c_scl:0 scb[7].spi _mosi:0 peri.tr_io_i nput[2]:0 P1.1 tcpwm[0].l tcpwm[1].line ine_comp _compl[3]:0 l[3]:0 scb[7].ua scb[7].i2 rt_tx:0 c_sda:0 scb[7].spi _miso:0 peri.tr_io_i nput[3]:0 P1.2 tcpwm[0].l tcpwm[1].line ine[4]:4 [12]:1 scb[7].ua rt_rts:0 scb[7].spi _clk:0 P1.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[12]:1 l[4]:4 scb[7].ua rt_cts:0 scb[7].spi _select0:0 P1.4 tcpwm[0].l tcpwm[1].line ine[5]:4 [13]:1 scb[7].spi _select1:0 P1.5 tcpwm[0].l tcpwm[1].line ine_comp _compl[14]:1 l[5]:4 scb[7].spi _select2:0 P2.0 tcpwm[0]. tcpwm[1].line line[6]:4 [15]:1 scb[1].ua scb[1].i2 rt_rx:0 c_scl:0 scb[1].spi _mosi:0 peri.tr_io_i n put[4]:0 bless.mxd_dpslp_ret_switch_h v P2.1 tcpwm[0].l tcpwm[1].line ine_-com _compl[15]:1 pl[ scb[1].ua scb[1].i2 rt_tx:0 c_sda:0 scb[1].spi _miso:0 peri.tr_io_i nput[5]:0 bless.mxd_dpslp_ret_ldo_ol_h v srss.ext _clk:1 scb[0].spi _select1:0 ACT #13 DS #5 DS #6 cpuss.swj_ trstn Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 24 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 P2.2 tcpwm[0].l tcpwm[1].line ine[7]:4 [16]:1 scb[1].ua rt_rts:0 scb[1].spi _clk:0 bless.mxd_dpslp_-buck_en P2.3 tcpwm[0].l tcpwm[1].line ine_-com _compl[16]:1 pl[7]:4 scb[1].ua rt_cts:0 scb[1].spi _select0:0 bless.mxd_dpslp_reset_n P2.4 tcpwm[0].l tcpwm[1].line ine[0]:5 [17]:1 scb[1].spi _select1:0 bless.mxd_dpslp_-clk_en P2.5 tcpwm[0].l tcpwm[1].line ine_-com _compl[17]:1 pl[0]:5 scb[1].spi _select2:0 bless.mxd_dpslp_isolate_n P2.6 tcpwm[0].l tcpwm[1].line ine[1]:5 [18]:1 scb[1].spi _select3:0 bless.mxd_dpslp_act_ldo_en P2.7 tcpwm[0].l tcpwm[1].line ine_-com _compl[18]:1 pl[1]:5 P3.0 tcpwm[0]. tcpwm[1].line line[2]:5 [19]:1 scb[2].ua scb[2].i2 rt_rx:1 c_scl:1 scb[2].spi _mosi:1 peri.tr_io_i nput[6]:0 P3.1 tcpwm[0]. line_tcpwm[1].line compl[2]: _compl[19]:1 5 scb[2].ua scb[2].i2 rt_tx:1 c_sda:1 scb[2].spi _miso:1 peri.tr_io_i nput[7]:0 P3.2 tcpwm[0]. tcpwm[1].line line[3]:5 [20]:1 scb[2].ua rt_rts:1 scb[2].spi _clk:1 bless.mxd_act _dbus_tx_en P3.3 tcpwm[0]. line_tcpwm[1].line compl[3]: _compl[20]:1 5 scb[2].ua rt_cts:1 scb[2].spi _select0:1 bless.mxd_act _bpktctl P3.4 tcpwm[0]. tcpwm[1].line line[4]:5 [21]:1 scb[2].spi _select1:1 bless.mxd_act _txd_rxd P3.5 tcpwm[0]. line_tcpwm[1].line compl[4]: _compl[21]:1 5 scb[2].spi _select2:1 bless.mxd_dpslp_rcb_data P4.0 tcpwm[0]. tcpwm[1].line line[5]:5 [22]:1 scb[7].ua scb[7].i2 rt_rx:1 c_scl:1 scb[7].spi _mosi:1 peri.tr_io_i nput[8]:0 bless.mxd_dpslp_rcb_clk P4.1 tcpwm[0]. line_tcpwm[1].line compl[5]: _compl[22]:1 5 scb[7].ua scb[7].i2 rt_tx:1 c_sda:1 scb[7].spi _miso:1 peri.tr_io_i nput[9]:0 bless.mxd_dpslp_rcb_le P5.0 tcpwm[0]. tcpwm[1].line line[4]:0 [4]:0 scb[5].ua scb[5].i2 rt_rx:0 c_scl:0 scb[5].spi _mosi:0 audioss.clk peri.tr_io_i _i2s_if nput[10]:0 DS #5 DS #6 bless.mxd_dpslp_xtal_en bless.mxd_dpslp_dig_ldo_en bless.mxd_act _dbus_rx_en Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 25 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6 P5.1 tcpwm[0]. line_tcpwm[1].line compl[4]: _compl[4]:0 0 scb[5].ua scb[5].i2 rt_tx:0 c_sda:0 scb[5].spi _miso:0 audioss.tx peri.tr_io_i _sck nput[11]:0 P5.2 tcpwm[0]. tcpwm[1].line line[5]:0 [5]:0 scb[5].ua rt_rts:0 scb[5].spi _clk:0 audioss.tx _ws P5.3 tcpwm[0]. line_tcpwm[1].line compl[5]: _compl[5]:0 0 scb[5].ua rt_cts:0 scb[5].spi _select0:0 audioss.tx _sdo P5.4 tcpwm[0]. tcpwm[1].line line[6]:0 [6]:0 scb[5].spi _select1:0 audioss.rx _sck P5.5 tcpwm[0]. line_tcpwm[1].line compl[6]: _compl[6]:0 0 scb[5].spi _select2:0 audioss.rx _ws P5.6 tcpwm[0]. tcpwm[1].line line[7]:0 [7]:0 scb[5].spi _select3:0 audioss.rx _sdi P5.7 tcpwm[0]. line_tcpwm[1].line compl[7]: _compl[7]:0 0 scb[3].spi _select3:0 P6.0 tcpwm[0]. tcpwm[1].line scb[8].i2 line[0]:1 [8]:0 c_scl:0 scb[3].ua scb[3].i2 rt_rx:0 c_scl:0 scb[3].spi _mosi:0 cpuss.fault _out[0] scb[8].spi _mosi:0 P6.1 tcpwm[0]. line_tcpwm[1].line scb[8].i2 compl[0]: _compl[8]:0 c_sda:0 1 scb[3].ua scb[3].i2 rt_tx:0 c_sda:0 scb[3].spi _miso:0 cpuss.fault _out[1] scb[8].spi _miso:0 P6.2 tcpwm[0]. tcpwm[1].line line[1]:1 [9]:0 scb[3].ua rt_rts:0 scb[3].spi _clk:0 scb[8].spi _clk:0 P6.3 tcpwm[0]. line_tcpwm[1].line compl[1]: _compl[9]:0 1 scb[3].ua rt_cts:0 scb[3].spi _select0:0 scb[8].spi _select0:0 P6.4 tcpwm[0]. tcpwm[1].line scb[8].i2 line[2]:1 [10]:0 c_scl:1 scb[6].ua scb[6].i2 rt_rx:2 c_scl:2 scb[6].spi _mosi:2 peri.tr_io_i peri.tr_io_ nput[12]:0 output[0]:1 cpuss.swj_ scb[8].spi swo_tdo _mosi:1 P6.5 tcpwm[0]. line_tcpwm[1].line scb[8].i2 compl[2]: _compl[10]:0 c_sda:1 1 scb[6].ua scb[6].i2 rt_tx:2 c_sda:2 scb[6].spi _miso:2 peri.tr_io_i peri.tr_io_ nput[13]:0 output[1]:1 cpuss.swj_ scb[8].spi swdoe_tdi _miso:1 P6.6 tcpwm[0].l tcpwm[1].line ine[3]:1 [11]:0 scb[6].ua rt_rts:2 scb[6].spi _clk:2 cpuss.swj_ scb[8].spi swdio_tms _clk:1 Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 26 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 P6.7 tcpwm[0].l ine_comp tcpwm[1].line _compl[11]:0 l[3]:1 scb[6].ua rt_cts:2 scb[6].spi _select0:2 P7.0 tcpwm[0].l tcpwm[1].line ine[4]:1 [12]:0 scb[4].ua scb[4].i2 rt_rx:1 c_scl:1 scb[4].spi _mosi:1 peri.tr_io_i nput[14]:0 P7.1 tcpwm[0].l tcpwm[1].line ine_comp _compl[12]:0 l[4]:1 scb[4].ua scb[4].i2 rt_tx:1 c_sda:1 scb[4].spi _miso:1 peri.tr_io_i nput[15]:0 P7.2 tcpwm[0].l tcpwm[1].line ine[5]:1 [13]:0 scb[4].ua rt_rts:1 scb[4].spi _clk:1 P7.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[13]:0 l[5]:1 scb[4].ua rt_cts:1 scb[4].spi _select0:1 P7.4 tcpwm[0].l tcpwm[1].line ine[6]:1 [14]:0 scb[4].spi _select1:1 bless.ext_lna_rx_ctl_out P7.5 tcpwm[0].l tcpwm[1].line ine_comp _compl[14]:0 l[6]:1 scb[4].spi _select2:1 bless.ext_pa_t cpuss.trac x_ctl_out e_data[2]:2 P7.6 tcpwm[0].l tcpwm[1].line ine[7]:1 [15]:0 scb[4].spi _select3:1 bless.ext_pa_l- cpuss.trac na_chip_en_ou e_data[1]:2 t P7.7 tcpwm[0].l tcpwm[1].line ine_comp _compl[15]:0 l[7]:1 scb[3].spi cpuss.clk_ _select1:0 fm_pump P8.0 tcpwm[0].l tcpwm[1].line ine[0]:2 [16]:0 scb[4].ua scb[4].i2 rt_rx:0 c_scl:0 scb[4].spi _mosi:0 peri.tr_io_i nput[16]:0 P8.1 tcpwm[0].l ine_comp tcpwm[1].line _compl[16]:0 l[0]:2 scb[4].ua scb[4].i2 rt_tx:0 c_sda:0 scb[4].spi _miso:0 peri.tr_io_i nput[17]:0 P8.2 tcpwm[0].l tcpwm[1].line ine[1]:2 [17]:0 scb[4].ua rt_rts:0 scb[4].spi _clk:0 P8.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[17]:0 l[1]:2 scb[4].ua rt_cts:0 scb[4].spi _select0:0 P8.4 tcpwm[0].l tcpwm[1].line ine[2]:2 [18]:0 scb[4].spi _select1:0 P8.5 tcpwm[0].l ine_comp tcpwm[1].line _compl[18]:0 l[2]:2 scb[4].spi _select2:0 P8.6 tcpwm[0].l tcpwm[1].line ine[3]:2 [19]:0 scb[4].spi _select3:0 DS #4 DS #5 DS #6 cpuss.swj_ scb[8].spi swclk_tclk _select0:1 cpuss.trace_clock cpuss.trac e_data[3]:2 cpuss.trac e_data[0]:2 Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 27 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 P8.7 tcpwm[0].l ine_comp tcpwm[1].line _compl[19]:0 l[3]:2 P9.0 tcpwm[0].l tcpwm[1].line ine[4]:2 [20]:0 scb[2].ua scb[2].i2 rt_rx:0 c_scl:0 scb[2].spi _mosi:0 peri.tr_io_i nput[18]:0 cpuss.trac e_data[3]:0 P9.1 tcpwm[0].l tcpwm[1].line ine_comp _compl[20]:0 l[4]:2 scb[2].ua scb[2].i2 rt_tx:0 c_sda:0 scb[2].spi _miso:0 peri.tr_io_i nput[19]:0 cpuss.trac e_data[2]:0 P9.2 tcpwm[0].l tcpwm[1].line ine[5]:2 [21]:0 scb[2].ua rt_rts:0 scb[2].spi _clk:0 pass.dsi_ct b_cmp0:1 cpuss.trac e_data[1]:0 P9.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[21]:0 l[5]:2 scb[2].ua rt_cts:0 scb[2].spi _select0:0 pass.dsi_ct b_cmp1:1 cpuss.trac e_data[0]:0 P9.4 tcpwm[0].l tcpwm[1].line ine[7]:5 [0]:2 scb[2].spi _select1:0 P9.5 tcpwm[0].l tcpwm[1].line ine_comp _compl[0]:2 l[7]:5 scb[2].spi _select2:0 P9.6 tcpwm[0].l tcpwm[1].line ine[0]:6 [1]:2 scb[2].spi _select3:0 P9.7 tcpwm[0].l ine_comp tcpwm[1].line _compl[1]:2 l[0]:6 P10.0 tcpwm[0].l tcpwm[1].line ine[6]:2 [22]:0 scb[1].ua scb[1].i2 rt_rx:1 c_scl:1 scb[1].spi _mosi:1 peri.tr_io_i nput[20]:0 cpuss.trac e_data[3]:1 tcpwm[0].l P10.1 ine_comp tcpwm[1].line _compl[22]:0 l[6]:2 scb[1].ua scb[1].i2 rt_tx:1 c_sda:1 scb[1].spi _miso:1 peri.tr_io_i nput[21]:0 cpuss.trac e_data[2]:1 P10.2 tcpwm[0].l tcpwm[1].line ine[7]:2 [23]:0 scb[1].ua rt_rts:1 scb[1].spi _clk:1 cpuss.trac e_data[1]:1 tcpwm[0].l P10.3 ine_comp tcpwm[1].line _compl[23]:0 l[7]:2 scb[1].ua rt_cts:1 scb[1].spi _select0:1 cpuss.trac e_data[0]:1 DS #5 DS #6 scb[3].spi _select2:0 tcpwm[0].l tcpwm[1].line ine[0]:3 [0]:1 scb[1].spi audioss.p _select1:1 dm_clk tcpwm[0].l P10.5 ine_comp tcpwm[1].line _compl[0]:1 l[0]:3 scb[1].spi audioss.p _select2:1 dm_data tcpwm[1].line P10.6 tcpwm[0].l ine[1]:6 [2]:2 scb[1].spi _select3:1 P10.4 DS #4 Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 28 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6 tcpwm[0].l P10.7 ine_comp tcpwm[1].line _compl[2]:2 l[1]:6 P11.0 tcpwm[0].l tcpwm[1].line ine[1]:3 [1]:1 smif.spi_ scb[5].ua scb[5].i2 select2 rt_rx:1 c_scl:1 scb[5].spi _mosi:1 peri.tr_io_i nput[22]:0 P11.1 tcpwm[0].l tcpwm[1].line ine_comp _compl[1]:1 l[1]:3 smif.spi_ scb[5].ua scb[5].i2 select1 rt_tx:1 c_sda:1 scb[5].spi _miso:1 peri.tr_io_i nput[23]:0 P11.2 tcpwm[0].l tcpwm[1].line ine[2]:3 [2]:1 smif.spi_ scb[5].ua select0 rt_rts:1 scb[5].spi _clk:1 P11.3 tcpwm[0].l tcpwm[1].line ine_comp _compl[2]:1 l[2]:3 smif.spi_ scb[5].ua data3 rt_cts:1 scb[5].spi _select0:1 peri.tr_io_ output[0]:0 P11.4 tcpwm[0].l tcpwm[1].line ine[3]:3 [3]:1 smif.spi_ data2 scb[5].spi _select1:1 peri.tr_io_ output[1]:0 P11.5 tcpwm[0].l ine_comp tcpwm[1].line _compl[3]:1 l[3]:3 smif.spi_ data1 scb[5].spi _select2:1 P11.6 smif.spi_ data0 scb[5].spi _select3:1 P11.7 smif.spi_ clk P12.0 tcpwm[0].l tcpwm[1].line ine[4]:3 [4]:1 smif.spi_ scb[6].ua scb[6].i2 data4 rt_rx:0 c_scl:0 scb[6].spi _mosi:0 peri.tr_io_i nput[24]:0 tcpwm[0].l P12.1 ine_comp tcpwm[1].line _compl[4]:1 l[4]:3 smif.spi_ scb[6].ua scb[6].i2 data5 rt_tx:0 c_sda:0 scb[6].spi _miso:0 peri.tr_io_i nput[25]:0 tcpwm[0].l tcpwm[1].line ine[5]:3 [5]:1 smif.spi_ scb[6].ua data6 rt_rts:0 scb[6].spi _clk:0 tcpwm[0].l tcpwm[1].line P12.3 ine_comp _compl[5]:1 l[5]:3 smif.spi_ scb[6].ua data7 rt_cts:0 scb[6].spi _select0:0 P12.4 tcpwm[0].l tcpwm[1].line ine[6]:3 [6]:1 smif.spi_ select3 scb[6].spi _select1:0 audioss.p dm_clk tcpwm[0].l P12.5 ine_comp tcpwm[1].line _compl[6]:1 l[6]:3 scb[6].spi _select2:0 audioss.p dm_data tcpwm[0].l tcpwm[1].line ine[7]:3 [7]:1 scb[6].spi _select3:0 P12.2 P12.6 Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 29 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 8. Multiple Alternate Functions[1] (continued) Port/ Pin ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6 tcpwm[0].l P12.7 ine_comp tcpwm[1].line _compl[7]:1 l[7]:3 tcpwm[0].l tcpwm[1].line ine[0]:4 [8]:1 scb[6].ua scb[6].i2 rt_rx:1 c_scl:1 scb[6].spi _mosi:1 peri.tr_io_i nput[26]:0 tcpwm[0].l P13.1 ine_comp tcpwm[1].line _compl[8]:1 l[0]:4 scb[6].ua scb[6].i2 rt_tx:1 c_sda:1 scb[6].spi _miso:1 peri.tr_io_i nput[27]:0 P13.2 tcpwm[0].l tcpwm[1].line ine[1]:4 [9]:1 scb[6].ua rt_rts:1 scb[6].spi _clk:1 tcpwm[0].l tcpwm[1].line P13.3 ine_comp _compl[9]:1 l[1]:4 scb[6].ua rt_cts:1 scb[6].spi _select0:1 P13.0 tcpwm[0].l tcpwm[1].line ine[2]:4 [10]:1 scb[6].spi _select1:1 tcpwm[0].l P13.5 ine_comp tcpwm[1].line _compl[10]:1 l[2]:4 scb[6].spi _select2:1 tcpwm[0].l tcpwm[1].line ine[3]:4 [11]:1 scb[6].spi _select3:1 P13.4 P13.6 tcpwm[0].l P13.7 ine_comp tcpwm[1].line _compl[11]:1 l[3]:4 Note 1. The notation for a signal is of the form IPName[x].signal_name[u]:y. IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name. For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources. Document Number: 002-21414 Rev. *M Page 30 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Analog, Smart I/O, and DSI alternate Port Pin functionality is provided in Table 9. Table 9. Port Pin Analog, Smart I/O, and DSI Functions Port/Pin Name P0.0 P0.0 wco_in dsi[0].port_if[0] P0.1 P0.1 wco_out dsi[0].port_if[1] P0.2 P0.2 dsi[0].port_if[2] P0.3 P0.3 dsi[0].port_if[3] P0.4 P0.4 pmic_wakeup_in hibernate_wakeup[1] P0.5 P0.5 pmic_wakeup_out P1.0 P1.0 dsi[1].port_if[0] P1.1 P1.1 dsi[1].port_if[1] P1.2 P1.2 dsi[1].port_if[2] P1.3 P1.3 P1.4 P1.4 Analog Digital HV DSI SMARTIO USB dsi[0].port_if[4] dsi[0].port_if[5] dsi[1].port_if[3] hibernate_wakeup[0] dsi[1].port_if[4] P1.5 P1.5 P14.0 USBDP dsi[1].port_if[5] P14.1 USBDM P2.0 P2.0 dsi[2].port_if[0] P2.1 P2.1 dsi[2].port_if[1] P2.2 P2.2 dsi[2].port_if[2] P2.3 P2.3 dsi[2].port_if[3] P2.4 P2.4 dsi[2].port_if[4] P2.5 P2.5 dsi[2].port_if[5] P2.6 P2.6 dsi[2].port_if[6] P2.7 P2.7 dsi[2].port_if[7] P3.0 P3.0 P3.1 P3.1 P3.2 P3.2 P3.3 P3.3 P3.4 P3.4 usb.usb_dp_pad usb.usb_dm_pad P3.5 P3.5 P4.0 P4.0 dsi[0].port_if[6] P4.1 P4.1 dsi[0].port_if[7] P4.2 P4.2 dsi[1].port_if[6] P4.3 P4.3 dsi[1].port_if[7] P5.0 P5.0 dsi[3].port_if[0] P5.1 P5.1 dsi[3].port_if[1] P5.2 P5.2 dsi[3].port_if[2] P5.3 P5.3 dsi[3].port_if[3] P5.4 P5.4 dsi[3].port_if[4] P5.5 P5.5 P5.6 P5.6 lpcomp.inp_comp0 dsi[3].port_if[6] P5.7 P5.7 lpcomp.inn_comp0 dsi[3].port_if[7] P6.0 P6.0 dsi[3].port_if[5] Document Number: 002-21414 Rev. *M dsi[4].port_if[0] Page 31 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 9. Port Pin Analog, Smart I/O, and DSI Functions (continued) Port/Pin Name Analog Digital HV DSI SMARTIO P6.1 P6.1 P6.2 P6.2 lpcomp.inp_comp1 dsi[4].port_if[2] P6.3 P6.3 lpcomp.inn_comp1 dsi[4].port_if[3] P6.4 P6.4 dsi[4].port_if[4] P6.5 P6.5 dsi[4].port_if[5] P6.6 P6.6 swd_data dsi[4].port_if[6] P6.7 P6.7 swd_clk dsi[4].port_if[7] P7.0 P7.0 P7.1 P7.1 csd.cmodpadd csd.cmodpads dsi[5].port_if[1] P7.2 P7.2 csd.csh_tankpadd csd.csh_tankpads dsi[5].port_if[2] P7.3 P7.3 csd.vref_ext dsi[5].port_if[3] P7.4 P7.4 dsi[5].port_if[4] P7.5 P7.5 dsi[5].port_if[5] P7.6 P7.6 P7.7 P7.7 P8.0 P8.0 dsi[11].port_if[0] smartio[8].io[0] P8.1 P8.1 dsi[11].port_if[1] smartio[8].io[1] P8.2 P8.2 dsi[11].port_if[2] smartio[8].io[2] P8.3 P8.3 dsi[11].port_if[3] smartio[8].io[3] P8.4 P8.4 dsi[11].port_if[4] smartio[8].io[4] P8.5 P8.5 dsi[11].port_if[5] smartio[8].io[5] P8.6 P8.6 dsi[11].port_if[6] smartio[8].io[6] P8.7 P8.7 dsi[11].port_if[7] smartio[8].io[7] USB dsi[4].port_if[1] dsi[5].port_if[0] dsi[5].port_if[6] csd.cshieldpads dsi[5].port_if[7] P9.0 P9.0 ctb_oa0+ dsi[10].port_if[0] smartio[9].io[0] P9.1 P9.1 ctb_oa0- dsi[10].port_if[1] smartio[9].io[1] P9.2 P9.2 ctb_oa0_out dsi[10].port_if[2] smartio[9].io[2] P9.3 P9.3 ctb_oa1_out dsi[10].port_if[3] smartio[9].io[3] P9.4 P9.4 ctb_oa1- dsi[10].port_if[4] smartio[9].io[4] P9.5 P9.5 ctb_oa1+ dsi[10].port_if[5] smartio[9].io[5] P9.6 P9.6 ctb_oa0+ dsi[10].port_if[6] smartio[9].io[6] P9.7 P9.7 ctb_oa1+ or ext_vref dsi[10].port_if[7] smartio[9].io[7] P10.0 P10.0 sarmux[0] dsi[9].port_if[0] P10.1 P10.1 sarmux[1] dsi[9].port_if[1] P10.2 P10.2 sarmux[2] dsi[9].port_if[2] P10.3 P10.3 sarmux[3] dsi[9].port_if[3] P10.4 P10.4 sarmux[4] dsi[9].port_if[4] P10.5 P10.5 sarmux[5] dsi[9].port_if[5] P10.6 P10.6 sarmux[6] dsi[9].port_if[6] P10.7 P10.7 sarmux[7] dsi[9].port_if[7] Document Number: 002-21414 Rev. *M Page 32 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 9. Port Pin Analog, Smart I/O, and DSI Functions (continued) Port/Pin Name P11.0 P11.0 dsi[8].port_if[0] P11.1 P11.1 dsi[8].port_if[1] P11.2 P11.2 dsi[8].port_if[2] P11.3 P11.3 dsi[8].port_if[3] P11.4 P11.4 dsi[8].port_if[4] P11.5 P11.5 dsi[8].port_if[5] P11.6 P11.6 dsi[8].port_if[6] P11.7 P11.7 dsi[8].port_if[7] P12.0 P12.0 dsi[7].port_if[0] P12.1 P12.1 dsi[7].port_if[1] P12.2 P12.2 dsi[7].port_if[2] P12.3 P12.3 dsi[7].port_if[3] P12.4 P12.4 dsi[7].port_if[4] P12.5 P12.5 dsi[7].port_if[5] P12.6 P12.6 eco_in dsi[7].port_if[6] P12.7 P12.7 eco_out dsi[7].port_if[7] P13.0 P13.0 dsi[6].port_if[0] P13.1 P13.1 dsi[6].port_if[1] P13.2 P13.2 dsi[6].port_if[2] P13.3 P13.3 dsi[6].port_if[3] P13.4 P13.4 dsi[6].port_if[4] P13.5 P13.5 dsi[6].port_if[5] P13.6 P13.6 dsi[6].port_if[6] P13.7 P13.7 dsi[6].port_if[7] Document Number: 002-21414 Rev. *M Analog Digital HV DSI SMARTIO USB Page 33 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Power Supply Considerations The following power system diagrams show typical connections for power pins for all supported packages, and with and without usage of the buck regulator. In these diagrams, the package pin is shown with the pin name, for example "VDDA, A12". For VDDx pins, the I/O port that is powered by that pin is also shown, for example "VDDD, A1; I/O port P1". Figure 11. 124-BGA Power Connection Diagram 1.7 to 3.6 V CY8C61x6/7, 124-BGA package 1 KΩ at 100 MHz 1 KΩ at 100 MHz 1 KΩ at 100 MHz 10 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 10 µF 0.1 µF VDDD , A1; I/O port P1 VDD_NS, J1 VBACKUP, D1; I/O port P0 V BUCK1, K3 0.1 µF 10 µF 4.7 µF VDDIO0, C4; I/O ports P11, P12, P13 VCCD , A2 VDDIO1, K12; I/O ports P5, P6, P7, P8 VDDIO2 , L4; I/O ports P2, P3, P4 VIND1, J2 2.2 µH VDDUSB , M1; I/O port P14 VIND2, K2 V DDA, A12 V RF, K1 0.1 µF 10 µF V DDIOA, A13; I/O ports P9, P10 B12,C3,D4,D10,K4,K10 V SS Document Number: 002-21414 Rev. *M Page 34 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 12. 124-BGA (No Buck) Power Connection Diagram 1.7 to 3.6 V CY8C61x6/7, 124-BGA package 1 KΩ at 100 MHz 1 KΩ at 100 MHz 10 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 10 µF 0.1 µF VDDD, A1; I/O port P1 VDD_NS, J1 VBACKUP, D1; I/O port P0 VBUCK1, K3 VDDIO0, C4; I/O ports P11, P12, P13 VCCD, A2 VDDIO1, K12; I/O ports P5, P6, P7, P8 VDDIO2, L4; I/O ports P2, P3, P4 VIND1, J2 VDDUSB, M1; I/O port P14 VIND2, K2 VDDA, A12 4.7 µF VRF, K1 VDDIOA, A13; I/O ports P9, P10 B12,C3,D4,D10,K4,K10 VSS Document Number: 002-21414 Rev. *M Page 35 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 13. 80-WLCSP Power Connection Diagram 1.7 to 3.6 V CY8C61x6/7, 80-WLCSP package 1 KΩ at 100 MHz 10 µF 0.1 µF 1 µF 0.1 µF 1 µF 1 KΩ at 100 MHz 1 KΩ at 100 MHz V DDD, B11; I/O port P1 V BACKUP, D11; I/O port P0 0.1 µF 1 µF 0.1 µF 10 µF 0.1 µF VBUCK1, N10 0.1 µF 10 µF 4.7 µF V DDIO0, A6; I/O ports P11, P12 0.1 µF 1 µF VDD_NS, K11 V CCD, A10 V DDIO1, M1; I/O ports P5, P6, P7, P8 V DDUSB, P11; I/O port P14 VIND1, L10 2.2 µH VDDA , F1; I/O ports P9, P10 V IND2, M11 0.1 µF A8, D1, P5, R8 VSS Figure 14. 80-WLCSP (No Buck) Power Connection Diagram 1.7 to 3.6 V CY8C61x6/7, 80-WLCSP package 1 KΩ at 100 MHz 1 KΩ at 100 MHz 10 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 1 µF 0.1 µF 10 µF 0.1 µF VDDD, B11; I/O port P1 VDD_NS, K11 VBACKUP, D11; I/O port P0 VBUCK1, N10 VDDIO0, A6; I/O ports P11, P12 VCCD, A10 VDDIO1, M1; I/O ports P5, P6, P7, P8 VDDUSB, P11; I/O port P14 VIND1, L10 VDDA, F1; I/O ports P9, P10 VIND2, M11 4.7 µF A8, D1, P5, R8 VSS Document Number: 002-21414 Rev. *M Page 36 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet There are as many as eight VDDx supply pins, depending on the package, and multiple VSS ground pins. The power pins are: ■ VDDD: the main digital supply. It powers the low dropout (LDO) regulators and I/O port 1. . ■ VCCD: the main LDO output. It requires a 4.7-µF capacitor for regulation. The LDO can be turned off when VCCD is driven from the switching regulator (see VBUCK1 below). For more information, see the power system block diagram in the device technical reference manual (TRM). ■ VDDA: the supply for the analog peripherals. Voltage must be applied to this pin for correct device initialization and boot up. ■ VDDIOA: the supply for I/O ports 9 and 10. If it is present in the device package, it must be connected to VDDA. ■ VDDIO0: the supply for I/O ports 11, 12, and 13. ■ VDDIO1: the supply for I/O ports 5, 6, 7, and 8. ■ VDDIO2: the supply for I/O ports 2, 3, and 4. ■ VBACKUP: the supply for the backup domain, which includes the 32-kHz WCO and the RTC. It can be a separate supply as low as 1.4 V, for battery or supercapacitor backup, as Figure 15 shows. Otherwise it is connected to VDDD. It powers I/O port 0. Figure 15. Separate Battery Connection to VBACKUP 1.7 to 3.6 V 10 µF 0.1 µF 1 µF 0.1 µF 1.4 to 3.6 V ■ VDDD VBACKUP VDDUSB: the supply for the USB peripheral and the USBDP and USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can be used as limited-capability GPIOs on I/O port 14. Table 10 shows a summary of the I/O port supplies: Table 10. I/O Port Supplies Port Supply Alternate Supply 0 VBACKUP VDDD 1 VDDD - 2, 3, 4 VDDIO2 - 5, 6, 7, 8 VDDIO1 - 9, 10 VDDIOA VDDA 11, 12, 13 VDDIO0 - 14 VDDUSB - Document Number: 002-21414 Rev. *M Voltage must be applied to the VDDD pin, and the VDDA pin as noted above, for correct device initialization and operation. If an I/O port is not being used, applying voltage to the corresponding VDDx pin is optional. ■ VSS: ground pins for the above supplies. All ground pins should be connected together to a common ground. In addition to the LDO regulator, a single input multiple output (SIMO) switching regulator is included. It provides two regulated outputs using a single inductor. The regulator pins are: ■ VDD_NS: the regulator supply. ■ VIND1 and VIND2: the inductor and capacitor connections. ■ VBUCK1: the first regulator output. It is typically used to drive VCCD, see above. ■ VRF: the second regulator output. It is typically not used; the pin may not be available in some packages. The various VDD power pins are not connected together on chip. They can be connected off chip, in one or more separate nets. If separate power nets are used, they can be isolated from noise from the other nets using optional ferrite beads, as indicated in the diagrams. No external load should be placed on VCCD, VRF, or any of the switching regulator power pins; whether or not the switching regulator is used. There are no power pin sequencing requirements; power supplies may be brought up in any order. The power management system holds the device in reset until all power pins are at the voltage levels required for proper operation. Note: If a battery is installed on the PCB first, VDDD must be cycled for at least 50 µs. This prevents premature drain of the battery during product manufacture and storage. Bypass capacitors must be connected to a common ground from the VDDx and other pins, as indicated in the diagrams. Typical practice for systems in this frequency range is to use a 10-µF or 1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated for optimal bypassing. All capacitors and inductors should be ±20% or better. The capacitor connected to VIND2 should be 100 nF. The recommended inductor value is 2.2 µH ±20% (for example, TDK MLP2012H2R2MT0S1). It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the applied voltage is a significant percentage of the rated working voltage. For more information on pad layout, refer to PSoC 6 CAD libraries. Page 37 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Electrical Specifications All specifications are valid for –40 °C ≤ TA ≤ 85 °C and for 1.71 V to 3.6 V except where noted. Absolute Maximum Ratings Table 11. Absolute Maximum Ratings[2] Spec ID# Parameter Description Min Typ Max Unit SID1 VDD_ABS Analog or digital supply relative to VSS (VSSD = VSSA) –0.5 – 4 V SID2 VCCD_ABS Direct digital core voltage input relative to VSSD –0.5 – 1.2 V SID3 VGPIO_ABS GPIO voltage; VDDD or VDDA –0.5 – VDD + 0.5 V SID4 IGPIO_ABS Current per GPIO –25 – 25 mA SID5 IGPIO_injection GPIO injection current per pin –0.5 – 0.5 mA SID3A ESD_HBM Electrostatic discharge Human Body Model 2200 – – V SID4A ESD_CDM Electrostatic discharge Charged Device Model 500 – – V SID5A LU Pin current for latchup-free operation –100 – 100 mA Details / Conditions Device-Level Specifications Table 14 provides detailed specifications of CPU current. Table 12 summarizes these specifications, for rapid review of CPU currents under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz. Table 12. CPU Current Specifications Summary Condition Range Typ Range Max Range 0.9–6.3 mA 0.8–3.8 mA 0.7–1.5 mA 0.7–1.3 mA 0.6–0.7 mA 1.5–7 mA 1.3–4.5 mA 1.3–2.2 mA 1.3–2 mA 1.1–1.1 mA 0.65–1.6 mA 0.51–0.91 mA 0.42–0.76 mA 0.41–0.62 mA 0.39–0.54 mA 7–9 µA 300–800 nA 0.8–2.2mA 0.72–1.25 mA 0.65–1.1 mA 0.6–0.9 mA 0.6–0.76 mA - LP Mode, VDDD = 3.3 V, VCCD = 1.1 V, with buck regulator CM4 active, CM0+ sleep CM0+ active, CM4 sleep CM4 sleep, CM0+ sleep Across CPUs clock ranges: 8–150/100 MHz; Dhrystone with flash cache enabled CM0+ sleep, CM4 off Minimum regulator current mode Across CM4/CM0+ CPU active/sleep modes ULP Mode, VDDD = 3.3 V, VCCD = 0.9 V, with buck regulator CM4 active, CM0+ sleep CM0+ active, CM4 sleep CM4 sleep, CM0+ sleep Across CPUs clock ranges: 8 – 50/25 MHz; Dhrystone with flash cache enabled CM0+ sleep, CM4 off Minimum regulator current mode Across CM4/CM0+ CPU active/sleep modes Deep Sleep Across SRAM retention Hibernate Across VDDD Note 2. Usage above the absolute maximum conditions listed in Table 11 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification. Document Number: 002-21414 Rev. *M Page 38 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 16. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode 7 CM4 Active, CM0+ Sleep 1/2 CM4 6 CM4 Active, CM0+ Sleep same as CM4 CM0+ Active, CM4 Sleep IDDD, mA 5 4 3 2 1 0 0 25 50 75 100 125 150 CPU Clock, MHz Power Supplies Table 13. Power Supply DC Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID6 VDDD Internal regulator and Port 1 GPIO supply 1.7 – 3.6 V – SID7 VDDA Analog power supply voltage. Shorted to VDDIOA on PCB. 1.7 – 3.6 V Internally unregulated supply SID7A VDDIO1 GPIO supply for ports 5 to 8 when present 1.7 – 3.6 V Must be ≥ VDDA. SID7B VDDIO0 GPIO supply for ports 11 to 13 when present 1.7 – 3.6 V – SID7E VDDIO0 Supply for eFuse programming 2.38 2.5 2.62 V SID7C VDDIO2 GPIO supply for ports 2 to 4 when present 1.7 – 3.6 V – SID7D VDDIOA GPIO supply for ports 9 and 10 when present. Must be connected to VDDA on PCB. 1.7 – 3.6 V – SID7F VDDUSB Supply for port 14 (USB or GPIO) when present 1.7 – 3.6 V Min. supply is 2.85 V for USB SID6B VBACKUP Backup power and GPIO Port 0 supply when present 1.7 – 3.6 V Min. is 1.4 V when VDDD is removed. SID8 VCCD1 Output voltage (for core logic bypass) – 1.1 – V System LP mode SID9 VCCD2 Output voltage (for core logic bypass) – 0.9 – V ULP mode. Valid for –20 to 85 °C. SID10 CEFC External regulator voltage (VCCD) bypass 3.8 4.7 5.6 µF X5R ceramic or better; Value for 0.8 to 1.2 V. SID11 CEXC Power supply decoupling capacitor – 10 – µF X5R ceramic or better Document Number: 002-21414 Rev. *M Page 39 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet CPU Current and Transition Times Table 14. CPU Current and Transition Times Spec ID# Parameter Description Min Typ Max Unit Details / Conditions LP RANGE POWER SPECIFICATIONS (for VCCD = 1.1 V with Buck and LDO) Cortex M4. Active Mode Execute with Cache Disabled (Flash) SIDF1 SIDF2 IDD1 IDD2 Execute from Flash; CM4 Active 50 MHz, CM0+ Sleep 25 MHz. With IMO & FLL. While(1). Execute from Flash; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. While(1). – 2.3 3.2 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 3.1 3.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 5.7 6.5 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.9 1.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.2 1.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.8 3.5 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 6.3 7 mA VDDD = 3.3 V, Buck ON, Max at 60 °C Execute with Cache Enabled SIDC1 SIDC2 SIDC3 SIDC4 IDD3 IDD4 IDD5 IDD6 Execute from Cache; CM4 Active 150 MHz, CM0+ Sleep 75 MHz. IMO & FLL. Dhrystone. Execute from Cache; CM4 Active 100 MHz, CM0+ Sleep 100 MHz. IMO & FLL. Dhrystone. Execute from Cache; CM4 Active 50 MHz, CM0+ Sleep 25 MHz. IMO & FLL. Dhrystone Execute from Cache; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. IMO. Dhrystone. – 9.7 11.2 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 14.4 15.1 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 4.8 5.8 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 7.4 8.4 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 11.3 12 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 2.4 3.4 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 3.7 4.1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 6.3 7.2 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.9 1.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.3 1.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 3 3.8 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 2.4 3.3 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 3.2 3.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 5.6 6.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.8 1.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.1 1.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.60 3.4 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C Cortex M0+. Active Mode Execute with Cache Disabled (Flash) SIDF3 SIDF4 IDD7 IDD8 Execute from Flash; CM4 Off, CM0+ Active 50 MHz. With IMO & FLL. While (1). Execute from Flash; CM4 Off, CM0+ Active 8 MHz. With IMO. While (1). Document Number: 002-21414 Rev. *M Page 40 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 14. CPU Current and Transition Times (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions – 3.8 4.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 5.9 6.5 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 9 9.7 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.8 1.3 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.20 1.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.60 3.4 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 1.5 2.2 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 2.2 2.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 4 4.6 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 1.2 1.9 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.7 2.2 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 3.4 4.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.7 1.3 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1 1.5 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.4 3.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 1.3 2 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.9 2.4 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute with Cache Enabled SIDC5 SIDC6 IDD9 IDD10 Execute from Cache; CM4 Off, CM0+ Active 100 MHz. With IMO & FLL. Dhrystone. Execute from Cache; CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone. Cortex M4. Sleep Mode SIDS1 SIDS2 SIDS3 IDD11 IDD12 IDD13 CM4 Sleep 100 MHz; CM0+ Sleep 25 MHz. With IMO & FLL. CM4 Sleep 50 MHz; CM0+ Sleep 25 MHz. With IMO & FLL. CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With IMO. Cortex M0+. Sleep Mode SIDS4 SIDS5 IDD14 IDD15 CM4 Off, CM0+ Sleep 50 MHz. With IMO & FLL. CM4 Off, CM0+ Sleep 8 MHz. With IMO. – 3.80 4.6 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.7 1.3 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1 1.5 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.4 3.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.9 1.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.2 1.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.8 3.5 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.9 1.5 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.3 1.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.9 3.7 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.8 1.4 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.1 1.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.7 3.6 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C Cortex M4. Minimum Regulator Current Mode SIDLPA1 SIDLPA2 IDD16 IDD17 Execute from Flash; CM4 LPA 8 MHz, CM0+ Sleep 8 MHz. With IMO. While (1). Execute from Cache; CM4 LPA 8 MHz, CM0+ Sleep 8 MHz. With IMO. Dhrystone. Cortex M0+. Minimum Regulator Current Mode SIDLPA3 IDD18 Execute from Flash; CM4 Off, CM0+ Active 8 MHz. With IMO. While (1). Document Number: 002-21414 Rev. *M Page 41 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 14. CPU Current and Transition Times (continued) Spec ID# Parameter SIDLPA4 IDD19 Description Execute from Cache; CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone. Min Typ Max Unit Details / Conditions – 0.8 1.4 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.2 1.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.7 3.6 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.7 1.1 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1 1.5 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.4 3.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C – 0.6 1.1 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.9 1.5 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 2.4 3.3 mA VDDD = 1.8 to 3.3 V, LDO, Max at 85 °C Cortex M4. Minimum Regulator Current Mode SIDLPS1 IDD20 CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With IMO. Cortex M0+. Minimum Regulator Current Mode SIDLPS3 IDD22 CM4 Off, CM0+ Sleep 8 MHz. With IMO. ULP RANGE POWER SPECIFICATIONS (for VCCD = 0.9 V using the Buck). ULP mode is valid from –20 to +85 °C. Cortex M4. Active Mode Execute with Cache Disabled (Flash) SIDF5 SIDF6 IDD3 IDD4 Execute from Flash; CM4 Active 50 MHz, CM0+ Sleep 25 MHz. With IMO & FLL. While(1). – 1.7 2.2 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 2.1 2.4 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute from Flash; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. While (1) – 0.56 0.8 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.75 1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute from Cache; CM4 Active 50 MHz, CM0+ Sleep 25 MHz. With IMO & FLL. Dhrystone. – 1.6 2.2 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 2.4 2.7 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute from Cache; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. Dhrystone. – 0.65 0.8 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.8 1.1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute with Cache Enabled SIDC8 SIDC9 IDD10 IDD11 Cortex M0+. Active Mode Execute with Cache Disabled (Flash) SIDF7 SIDF8 IDD16 Execute from Flash; CM4 Off, CM0+ Active 25 MHz. With IMO & FLL. Write(1). – 1 1.4 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.34 1.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD17 Execute from Flash; CM4 Off, CM0+ Active 8 MHz. With IMO. While(1). – 0.54 0.75 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.73 1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Execute with Cache Enabled SIDC10 SIDC11 IDD18 Execute from Cache; CM4 Off, CM0+ Active 25 MHz. With IMO & FLL. Dhrystone. – 0.91 1.25 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.34 1.6 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD19 Execute from Cache; CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone. – 0.51 0.72 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.73 0.95 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Document Number: 002-21414 Rev. *M Page 42 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 14. CPU Current and Transition Times (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions IDD21 CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz. With IMO & FLL. – 0.76 1.1 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 1.1 1.4 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD22 CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With IMO. – 0.42 0.65 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.59 0.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Cortex M4. Sleep Mode SIDS7 SIDS8 Cortex M0+. Sleep Mode SIDS9 SIDS10 IDD23 CM4 Off, CM0+ Sleep 25 MHz. With IMO & FLL. – 0.62 0.9 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.88 1.1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD24 CM4 Off, CM0+ Sleep 8 MHz. With IMO. – 0.41 0.6 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.58 0.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Cortex M4. Minimum Regulator Current Mode SIDLPA5 SIDLPA6 IDD25 Execute from Flash. CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. While(1). – 0.52 0.75 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.76 1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD26 Execute from Cache. CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. Dhrystone. – 0.54 0.76 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.78 1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C Cortex M0+. Minimum Regulator Current Mode IDD27 Execute from Flash. CM4 Off, CM0+ Active 8 MHz. With IMO. While (1). – 0.51 0.75 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.75 1 mA VDDD = 1.8 V, Buck ON, Max at 60 °C IDD28 Execute from Cache. CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone. – 0.48 0.7 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.7 0.95 mA VDDD = 1.8 V, Buck ON, Max at 60 °C – 0.4 0.6 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.57 0.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C CM4 Off, CM0+ Sleep 8 MHz. With IMO. – 0.39 0.6 mA VDDD = 3.3 V, Buck ON, Max at 60 °C – 0.56 0.8 mA VDDD = 1.8 V, Buck ON, Max at 60 °C With internal Buck enabled and 64K SRAM retention – 7 – µA Max value is at 85 °C SIDDS1_B IDD33A_B With internal Buck enabled and 64K SRAM retention – 7 – µA Max value is at 60 °C SIDDS2 With internal Buck enabled and 256K SRAM retention – 9 – µA Max value is at 85 °C With internal Buck enabled and 256K SRAM retention – 9 – µA Max value is at 60 °C SIDLPA7 SIDLPA8 Cortex M4. Minimum Regulator Current Mode SIDLPS5 IDD29 CM4 Sleep 8 MHz, CM0 Sleep 8 MHz. With IMO. Cortex M0+. Minimum Regulator Current Mode SIDLPS7 IDD31 Deep Sleep Mode SIDDS1 IDD33A IDD33B SIDDS2_B IDD33B_B Hibernate Mode SIDHIB1 IDD34 VDDD = 1.8 V – 300 – nA No clocks running SIDHIB2 IDD34A VDDD = 3.3 V – 800 – nA No clocks running Document Number: 002-21414 Rev. *M Page 43 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 14. CPU Current and Transition Times (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions Power Mode Transition Times SID12 TLPACT_AC Minimum regulator current to LP transition time T – – 35 µs Including PLL lock time SID13 TDS_LPACT Deep Sleep to LP transition time – – 25 µs Guaranteed by design SID14 THIB_ACT – 500 – µs Including PLL lock time Hibernate to LP transition time XRES Table 15. XRES DC Specifications Spec ID# Parameter Description IDD when XRES asserted Min Typ Max Unit Details / Conditions – 300 – nA VDDD = 1.8 V SID17 TXRES_IDD SID17A TXRES_IDD_1 IDD when XRES asserted – 800 – nA VDDD = 3.3 V SID77 VIH Input voltage high threshold 0.7 × VDD – – V CMOS Input SID78 VIL Input voltage low threshold – – 0.3 × VDD V CMOS Input SID80 CIN Input capacitance – 3 – pF – SID81 VHYSXRES Input voltage hysteresis – 100 – mV – SID82 IDIODE Current through protection diode to VDD/VSS – – 100 µA – Table 16. XRES AC Specifications Min Typ Max Unit SID15 Spec ID# TXRES_ACT Parameter Time from XRES release to Cortex-M0+ executing application code Description – 750 – µs Not minimum regulator current mode; Cortex-M0+ executing at 50 MHz Details / Conditions SID16 TXRES_PW XRES Pulse width 5 – – µs – Min Typ Max GPIO Table 17. GPIO DC Specifications Spec ID# Parameter Description Unit Details / Conditions SID57 VIH Input voltage high threshold 0.7 × VDD – – V CMOS Input SID57A IIHS Input current when Pad > VDDIO for OVT inputs – – 10 µA Per I2C Spec SID58 VIL Input voltage low threshold – – 0.3 × VDD V CMOS Input SID241 VIH LVTTL input, VDD < 2.7 V 0.7 × VDD – – V – SID242 VIL LVTTL input, VDD < 2.7 V – – 0.3 × VDD V – SID243 VIH LVTTL input, VDD ≥ 2.7 V 2.0 – – V – SID244 VIL LVTTL input, VDD ≥ 2.7 V – – 0.8 V – SID59 VOH Output voltage high level VDD – 0.5 – – V IOH = 8 mA SID62A VOL Output voltage low level – – 0.4 V IOL = 8 mA Document Number: 002-21414 Rev. *M Page 44 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 17. GPIO DC Specifications (continued) Min Typ Max Unit SID63 Spec ID# RPULLUP Parameter Pull-up resistor Description 3.5 5.6 8.5 kΩ – Details / Conditions SID64 RPULLDOWN Pull-down resistor 3.5 5.6 8.5 kΩ – SID65 IIL Input leakage current (absolute value) – – 2 nA 25 °C, VDD = 3.0 V SID65A IIL_CTBM Input leakage on CTBm input pins – – 4 nA – SID66 CIN Input Capacitance – – 5 pF – SID67 VHYSTTL Input hysteresis LVTTL VDD > 2.7 V 100 0 – mV – SID68 VHYSCMOS Input hysteresis CMOS 0.05 × VDD – – mV – SID69 IDIODE Current through protection diode to VDD/VSS – – 100 µA – SID69A ITOT_GPIO Maximum total source or sink Chip Current – – 200 mA – Table 18. GPIO AC Specifications Min Typ Max Unit SID70 Spec ID# TRISEF Parameter Rise time in Fast Strong Mode. 10% to 90% of VDD Description – – 2.5 ns Cload = 15 pF, 8 mA drive strength SID71 TFALLF Fall time in Fast Strong Mode. 10% to 90% of VDD – – 2.5 ns Cload = 15 pF, 8 mA drive strength SID72 TRISES_1 Rise time in Slow Strong Mode. 10% to 90% of VDD 52 – 142 ns Cload = 15 pF, 8 mA drive strength, VDD  2.7 V SID72A TRISES_2 Rise time in Slow Strong Mode. 10% to 90% of VDD 48 – 102 ns Cload = 15 pF, 8 mA drive strength, 2.7 V < VDD  3.6 V SID73 TFALLS_1 Fall time in Slow Strong Mode. 10% to 90% of VDD 44 – 211 ns Cload = 15 pF, 8 mA drive strength, VDD 2.7 V SID73A TFALLS_2 Fall time in Slow Strong Mode. 10% to 90% of VDD 42 – 93 ns Cload = 15 pF, 8 mA drive strength, 2.7 V < VDD  3.6 V SID73G TFALL_I2C Fall time (30% to 70% of VDD) in 20 × VDDIO/ Slow Strong mode 5.5 – 250 ns Cload = 10 pF to 400 pF, 8-mA drive strength SID74 FGPIOUT1 GPIO Fout. Fast Strong mode. – – 100 MHz 90/10%, 15-pF load, 60/40 duty cycle SID75 FGPIOUT2 GPIO Fout; Slow Strong mode. – – 16.7 MHz 90/10%, 15-pF load, 60/40 duty cycle SID76 FGPIOUT3 GPIO Fout; Fast Strong mode. – – 7 MHz 90/10%, 25-pF load, 60/40 duty cycle SID245 FGPIOUT4 GPIO Fout; Slow Strong mode. – – 3.5 MHz 90/10%, 25-pF load, 60/40 duty cycle SID246 FGPIOIN GPIO input operating frequency;1.71 V  VDD 3.6 V – – 100 MHz 90/10% VIO Document Number: 002-21414 Rev. *M Details / Conditions Page 45 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Analog Peripherals Opamp Table 19. Opamp Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions IDD Opamp block current. No load. – – – SID269 IDD_HI Power = Hi – 1300 1500 µA – – SID270 IDD_MED Power = Med – 450 600 µA – SID271 IDD_LOW Power = Lo – 250 350 µA – GBW Load = 50 pF, 0.1 mA. VDDA  2.7 V – – – – SID272 GBW_HI Power = Hi 6 – – MHz – SID273 GBW_MED Power = Med 3 – – MHz – SID274 GBW_LO Power = Lo 1 – – MHz IOUT_MAX VDDA  2.7 V, 500 mV from rail – – – – – SID275 IOUT_MAX_HI Power = Hi 10 – – mA – SID276 IOUT_MAX_MID Power = Med 10 – – mA – SID277 IOUT_MAX_LO Power = Lo – 5 – mA IOUT VDDA = 1.71 V, 500 mV from rail – – – SID278 IOUT_MAX_HI Power = Hi 4 – – mA – SID279 IOUT_MAX_MID Power = Med 4 – – mA – SID280 IOUT_MAX_LO Power = Lo – 2 – mA V V – – – SID281 VIN Input voltage range 0 – VDDA – 0.2 SID282 VCM Input common mode voltage 0 – VDDA – 1.5 VOUT VDDA ≥ 2.7 V – – – SID283 VOUT_1 Power = Hi, Iload = 10 mA 0.5 – VDDA – 0.5 V SID284 VOUT_2 Power = Hi, Iload = 1 mA 0.2 – VDDA – 0.2 V SID285 VOUT_3 Power = Med, Iload = 1 mA 0.2 – VDDA – 0.2 V SID286 VOUT_4 Power = Lo, Iload = 0.1 mA 0.2 – VDDA – 0.2 V SID288 VOS_TR Offset voltage –1 ±0.5 1 mV SID288A VOS_TR Offset voltage – ±1 – mV Power = Med SID288B VOS_TR Offset voltage – ±2 – mV Power = Lo SID290 VOS_DR_TR Offset voltage drift –10 ±3 10 µV/°C SID290A VOS_DR_TR Offset voltage drift – ±10 – µV/°C Power = Med SID290B VOS_DR_TR Offset voltage drift – ±10 – µV/°C Power = Lo SID291 CMRR DC common mode rejection ratio 67 80 – dB VDDA ≥ 2.7 V SID292 PSRR Power supply rejection ratio at 1 kHz, 10-mV ripple 70 85 – dB VDDA ≥ 2.7 V SID65A IIL_CTBM Input leakage on CTBm input pins – – 4 nA – Document Number: 002-21414 Rev. *M Charge pump ON Charge pump OFF, VDDA  2.7 V – – – – – Power = Hi, 0.2 V < VOUT < (VDDA - 0.2 V) Power = Hi, 0.2 V < VOUT < (VDDA - 0.2 V) Page 46 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 19. Opamp Specifications (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions Noise SID293 VN1 Input-referred, 1 Hz – 1 GHz, power = Hi – 100 – µVrms SID294 VN2 Input-referred, 1 kHz, power = Hi – 180 – nV/rtHz SID295 VN3 Input-referred, 10 kHz, power = Hi – 70 – nV/rtHz SID296 VN4 Input-referred, 100 kHz, power = Hi – 38 – nV/rtHz SID297 CLOAD Stable up to max. load. Performance specs at 50 pF. – – 125 pF SID298 SLEW_RATE Output slew rate 4 – – V/µs SID299 T_OP_WAKE From disable to enable, no external RC dominating – 25 – µs COMP_MODE Comparator mode; 50-mV overdrive, Trise = Tfall (approx.) – – – – – – Cload = 50 pF, Power = Hi, VDDA  2.7 V Refer to Figure 17 and Figure 18. – – – SID300 TPD1 Response time; power = Hi – 150 – ns – SID301 TPD2 Response time; power = Med – 400 – ns – SID302 TPD3 Response time; power = Lo – 2000 – ns – SID303 VHYST_OP Hysteresis – 10 – mV – Deep Sleep mode operation: VDDA ≥ 2.7 V. VIN is 0.2 to VDDA –1.5 V Deep Sleep Mode Mode 2 is lowest current range. Mode 1 has higher GBW. SID_DS_1 IDD_HI_M1 Mode 1, High current – 1300 SID_DS_2 IDD_MED_M1 Mode 1, Medium current – 460 600 µA Typ at 25 °C SID_DS_3 IDD_LOW_M1 Mode 1, Low current – 230 350 µA Typ at 25 °C SID_DS_4 IDD_HI_M2 Mode 2, High current – 120 – µA 25 °C SID_DS_5 IDD_MED_M2 Mode 2, Medium current – 60 – µA 25 °C SID_DS_6 IDD_LOW_M2 Mode 2, Low current – 15 – µA 25 °C SID_DS_7 GBW_HI_M1 Mode 1, High current – 4 – MHz 25 °C 1500 µA Typ at 25 °C SID_DS_8 GBW_MED_M1 Mode 1, Medium current – 2 – MHz 25 °C SID_DS_9 GBW_LOW_M1 Mode 1, Low current – 0.5 – MHz 25 °C SID_DS_10 GBW_HI_M2 – 0.5 – MHz 20-pF load, no DC load 0.2 V to VDDA – 1.5 V SID_DS_11 GBW_MED_M2 Mode 2, Medium current – 0.2 – MHz 20-pF load, no DC load 0.2 V to VDDA – 1.5 V SID_DS_12 GBW_LOW_M2 Mode 2, Low current – 0.1 – MHz 20-pF load, no DC load 0.2 V to VDDA – 1.5 V SID_DS_13 VOS_HI_M1 Mode 1, High current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V SID_DS_14 VOS_MED_M1 Mode 1, Medium current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V SID_DS_15 VOS_LOW_M1 Mode 1, Low current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V Mode 2, High current Document Number: 002-21414 Rev. *M Page 47 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 19. Opamp Specifications (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID_DS_16 VOS_HI_M2 Mode 2, High current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V SID_DS_17 VOS_MED_M2 Mode 2, Medium current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V SID_DS_18 VOS_LOW_M2 Mode 2, Low current – 5 – mV 25 °C, 0.2 V to VDDA – 1.5 V SID_DS_19 IOUT_HI_M1 Mode 1, High current – 10 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_20 IOUT_MED_M1 Mode 1, Medium current – 10 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_21 IOUT_LOW_M1 Mode 1, Low current – 4 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_22 IOUT_HI_M2 Mode 2, High current – 1 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_23 IOUT_MED_M2 Mode 2, Medium current – 1 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_24 IOUT_LOW_M2 Mode 2, Low current – 0.5 – mA Output is 0.5 V to VDDA – 0.5 V Figure 18. Opamp Step Response, Falling 1.4 1.4 1.2 1.2 Input and Output Signals, V Input and Output Signals, V Figure 17. Opamp Step Response, Rising 1 0.8 0.6 Input 0.4 Output, Power = Hi 0.2 0 -0.25 Output, Power = Med 0 0.25 0.5 Time, µs Document Number: 002-21414 Rev. *M 0.75 1 Input Output, Power = Hi 1 Output, Power = Med 0.8 0.6 0.4 0.2 0 -0.25 0 0.25 0.5 Time. µs 0.75 1 Page 48 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Low-Power (LP) Comparator Table 20. LP Comparator DC Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions COMP0 offset is ±25 mV SID84 VOFFSET1 Input offset voltage for COMP1. Normal power mode. –10 – 10 mV SID85A VOFFSET2 Input offset voltage. Low-power mode. –25 ±12 25 mV SID85B VOFFSET3 Input offset voltage. Ultra low-power mode. –25 ±12 25 mV SID86 VHYST1 Hysteresis when enabled in Normal mode – – 60 mV SID86A VHYST2 Hysteresis when enabled in Low-power mode – – 80 mV SID87 VICM1 Input common mode voltage in Normal mode 0 – VDDIO1 – 0.1 V SID247 VICM2 Input common mode voltage in Low power mode 0 – VDDIO1 – 0.1 V SID247A VICM3 Input common mode voltage in Ultra low power mode 0 – VDDIO1 – 0.1 V SID88 CMRR Common mode rejection ratio in Normal power mode 50 – – dB SID89 ICMP1 Block Current, Normal mode – – 150 µA – SID248 ICMP2 Block Current, Low power mode – – 10 µA – SID259 ICMP3 Block Current in Ultra low-power mode – 0.3 0.85 µA SID90 ZCMP DC Input impedance of comparator 35 – – MΩ Min Typ Max Unit – – – – – – – – – – Table 21. LP Comparator AC Specifications Spec ID# Parameter Description Details / Conditions SID91 TRESP1 Response time, Normal mode, 100 mV overdrive – – 100 ns SID258 TRESP2 Response time, Low power mode, 100 mV overdrive – – 1000 ns SID92 TRESP3 Response time, Ultra-low power mode, 100 mV overdrive – – 20 µs SID92E T_CMP_EN1 Time from Enabling to operation – – 10 µs Normal and Low-power modes SID92F T_CMP_EN2 Time from Enabling to operation – – 50 µs Ultra low-power mode Min Typ Max Unit –5 ±1 5 °C Description Min Typ Max Unit – 1.188 1.2 1.212 V – – – Table 22. Temperature Sensor Specifications Spec ID# SID93 Parameter TSENSACC Description Temperature sensor accuracy Details / Conditions –40 to +85 °C Table 23. Internal Reference Specification Spec ID# SID93R Parameter VREFBG Document Number: 002-21414 Rev. *M Details / Conditions – Page 49 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet SAR ADC Table 24. 12-bit SAR ADC DC Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID94 A_RES SAR ADC Resolution – – 12 bits – SID95 A_CHNLS_S Number of channels single-ended – – 16 – 8 full speed. SID96 A-CHNKS_D Number of channels - differential – – 8 – Diff inputs use neighboring I/O SID97 A-MONO Monotonicity – – – – Yes SID98 A_GAINERR Gain error – – ±0.2 % With external reference. SID99 A_OFFSET Input offset voltage – – 2 mV Measured with 1-V reference SID100 A_ISAR_1 Current consumption at 1 Msps – – 1 mA At 1 Msps. External Bypass Cap. SID100A A_ISAR_2 Current consumption at 1 Msps. Reference = VDD – – 1.25 mA At 1 Msps. External Bypass Cap. SID101 A_VINS Input voltage range - single-ended VSS – VDDA V – SID102 A_VIND Input voltage range - differential VSS – VDDA V – SID103 A_INRES Input resistance – – 2.2 kΩ – SID104 A_INCAP Input capacitance – – 10 pF – Min Typ Max Unit Table 25. 12-bit SAR ADC AC Specifications Spec ID# Parameter Description Details / Conditions 12-bit SAR ADC AC Specifications SID106 A_PSRR Power supply rejection ratio 70 – – dB – SID107 A_CMRR Common mode rejection ratio 66 – – dB Measured at 1 V. One Megasample per second mode: SID108 A_SAMP_1 Sample rate with external reference bypass cap. – – 1 Msps – SID108A A_SAMP_2 Sample rate with no bypass cap; Reference = VDD – – 250 ksps – SID108B A_SAMP_3 Sample rate with no bypass cap. Internal reference. – – 100 ksps – SID109 A_SINAD Signal-to-noise and Distortion ratio (SINAD). VDDA = 2.7 to 3.6 V, 1 Msps. 64 – – dB SID111A A_INL Integral Non Linearity. VDDA = 2.7 to 3.6 V, 1 Msps –2 – 2 LSB Measured with internal VREF = 1.2 V and bypass cap. SID111B A_INL Integral Non Linearity. VDDA = 2.7 to 3.6 V, 1 Msps –4 – 4 LSB Measured with external VREF ≥ 1 V and VIN common mode < 2 * Vref. SID112A A_DNL Differential Non Linearity. VDDA = 2.7 to 3.6 V, 1 Msps –1 – 1.4 LSB Measured with internal VREF = 1.2 V and bypass cap. SID112B A_DNL Differential Non Linearity. VDDA = 2.7 to 3.6 V, 1 Msps –1 – 1.7 LSB Measured with external VREF ≥ 1 V and VIN common mode < 2 * Vref. SID113 A_THD Total harmonic distortion. VDDA = 2.7 to 3.6 V, 1 Msps. – – –65 dB Document Number: 002-21414 Rev. *M Fin = 10 kHz Fin = 10 kHz Page 50 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet DAC Table 26. 12-bit DAC DC Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID108D DAC_RES DAC resolution – – 12 bits – SID111D Integral non-linearity –4 – 4 LSB – SID112D DAC_DNL Differential non-linearity –2 – 2 LSB Monotonic to 11 bits. SID99D Output Voltage zero offset error –2 – 1 mV For 000 (hex) SID103D DAC_OUT_RES DAC Output Resistance – 15 – kΩ – SID100D DAC_IDD DAC Current – – 125 µA – SID101D DAC_QIDD DAC Current when DAC stopped – – 1 µA – DAC_INL DAC_OFFSET Table 27. 12-bit DAC AC Specifications Min Typ Max Unit Details / Conditions SID109D DAC_CONV Spec ID# Parameter DAC Settling time Description – – 2 µs Driving through CTBm buffer; 25-pF load SID110D DAC_Wakeup Time from Enabling to ready for conversion – – 10 µs – CSD Table 28. CapSense Sigma-Delta (CSD) Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions CSD V2 Specifications SYS.PER#3 VDD_RIPPLE Max allowed ripple on power supply, DC to 10 MHz – – ±50 mV VDDA > 2 V (with ripple), 25 °C TA, Sensitivity = 0.1 pF SYS.PER#16 VDD_RIPPLE_1.8 Max allowed ripple on power supply, DC to 10 MHz – – ±25 mV VDDA > 1.75 V (with ripple), 25 ° C TA, Parasitic Capacitance (CP) < 20 pF, Sensitivity ≥ 0.4 pF 4500 µA – VDDA – 0.6 V VDDA – VREF ≥ 0.6 V VDDA – 0.6 V VDDA – VREF ≥ 0.6 V SID.CSD.BLK ICSD Maximum block current SID.CSD#15 Voltage reference for CSD and Comparator 0.6 SID.CSD#15A VREF_EXT External Voltage reference for CSD and Comparator 0.6 SID.CSD#16 IDAC1IDD IDAC1 (7-bits) block current – – 1900 µA – SID.CSD#17 IDAC2IDD IDAC2 (7-bits) block current – – 1900 µA – SID308 VCSD Voltage range of operation 1.7 – 3.6 V 1.71 to 3.6 V SID308A VCOMPIDAC Voltage compliance range of IDAC 0.6 – VDDA – 0.6 V VDDA – VREF ≥ 0.6 V SID309 IDAC1DNL DNL –1 – 1 LSB – SID310 IDAC1INL INL –3 – 3 LSB If VDDA < 2 V then for LSB of 2.4 µA or less SID311 IDAC2DNL DNL –1 – 1 LSB – SID312 IDAC2INL INL –3 – 3 LSB If VDDA < 2 V then for LSB of 2.4 µA or less VREF Document Number: 002-21414 Rev. *M 1.2 Page 51 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 28. CapSense Sigma-Delta (CSD) Specifications (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SNRC of the following is Ratio of counts of finger to noise. Guaranteed by characterization SID313_1A SNRC_1 SRSS Reference. IMO + FLL Clock Source. 0.1-pF sensitivity 5 – – Ratio 9.5-pF max. capacitance SID313_1B SNRC_2 SRSS Reference. IMO + FLL Clock Source. 0.3-pF sensitivity 5 – – Ratio 31-pF max. capacitance SID313_1C SNRC_3 SRSS Reference. IMO + FLL Clock Source. 0.6-pF sensitivity 5 – – Ratio 61-pF max. capacitance SID313_2A SNRC_4 PASS Reference. IMO + FLL Clock Source. 0.1-pF sensitivity 5 – – Ratio 12-pF max. capacitance SID313_2B SNRC_5 PASS Reference. IMO + FLL Clock Source. 0.3-pF sensitivity 5 – – Ratio 47-pF max. capacitance SID313_2C SNRC_6 PASS Reference. IMO + FLL Clock Source. 0.6-pF sensitivity 5 – – Ratio 86-pF max. capacitance SID313_3A SNRC_7 PASS Reference. IMO + PLL Clock Source. 0.1-pF sensitivity 5 – – Ratio 27-pF max. capacitance SID313_3B SNRC_8 PASS Reference. IMO + PLL Clock Source. 0.3-pF sensitivity 5 – – Ratio 86-pF max. capacitance SID313_3C SNRC_9 PASS Reference. IMO + PLL Clock Source. 0.6-pF sensitivity 5 – – Ratio 168-pF max. capacitance SID314 IDAC1CRT1 Output current of IDAC1 (7 bits) in low range 4.2 5.7 µA LSB = 37.5-nA typ SID314A IDAC1CRT2 Output current of IDAC1(7 bits) in medium range 33.7 45.6 µA LSB = 300-nA typ. SID314B IDAC1CRT3 Output current of IDAC1(7 bits) in high range 270 365 µA LSB = 2.4-µA typ. SID314C IDAC1CRT12 Output current of IDAC1 (7 bits) in low range, 2X mode 8 11.4 µA LSB = 37.5-nA typ. 2X output stage SID314D IDAC1CRT22 Output current of IDAC1(7 bits) in medium range, 2X mode 67 91 µA LSB = 300-nA typ. 2X output stage SID314E IDAC1CRT32 Output current of IDAC1(7 bits) in high range, 2X mode. VDDA > 2V 540 730 µA LSB = 2.4-µA typ. 2X output stage SID315 IDAC2CRT1 Output current of IDAC2 (7 bits) in low range 4.2 5.7 µA LSB = 37.5-nA typ. SID315A IDAC2CRT2 Output current of IDAC2 (7 bits) in medium range 33.7 45.6 µA LSB = 300-nA typ. SID315B IDAC2CRT3 Output current of IDAC2 (7 bits) in high range 270 365 µA LSB = 2.4-µA typ. SID315C IDAC2CRT12 Output current of IDAC2 (7 bits) in low range, 2X mode 8 11.4 µA LSB = 37.5-nA typ. 2X output stage SID315D IDAC2CRT22 Output current of IDAC2(7 bits) in medium range, 2X mode 67 91 µA LSB = 300-nA typ. 2X output stage SID315E IDAC2CRT32 Output current of IDAC2(7 bits) in high range, 2X mode. VDDA > 2V 540 730 µA LSB = 2.4-µA typ. 2X output stage SID315F IDAC3CRT13 Output current of IDAC in 8-bit mode in low range 8 11.4 µA LSB = 37.5-nA typ. Document Number: 002-21414 Rev. *M Page 52 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 28. CapSense Sigma-Delta (CSD) Specifications (continued) Max Unit SID315G Spec ID# IDAC3CRT23 Parameter Output current of IDAC in 8-bit mode in medium range Description Min 67 Typ 91 µA LSB = 300-nA typ. Details / Conditions SID315H IDAC3CRT33 Output current of IDAC in 8-bit mode in high range. VDDA > 2V 540 730 µA LSB = 2.4-µA typ. SID320 IDACOFFSET All zeroes input – – 1 SID321 IDACGAIN Full-scale error less offset – – ±15 SID322 IDACMISMATCH1 Mismatch between IDAC1 and IDAC2 in Low mode – – 9.2 LSB LSB = 37.5-nA typ. SID322A IDACMISMATCH2 Mismatch between IDAC1 and IDAC2 in Medium mode – – 6 LSB LSB = 300-nA typ. SID322B IDACMISMATCH3 Mismatch between IDAC1 and IDAC2 in High mode – – 5.8 LSB LSB = 2.4-µA typ. SID323 IDACSET8 Settling time to 0.5 LSB for 8-bit IDAC – – 10 µs Full-scale transition. No external load. SID324 IDACSET7 Settling time to 0.5 LSB for 7-bit IDAC – – 10 µs Full-scale transition. No external load. SID325 CMOD External modulator capacitor. – 2.2 – nF 5-V rating, X7R or NP0 cap. LSB Polarity set by Source or Sink % LSB = 2.4-µA typ. Table 29. CSD ADC Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions CSDv2 ADC Specifications SIDA94 A_RES Resolution – – 10 bits Auto-zeroing is required every millisecond SID95 A_CHNLS_S Number of channels - single ended – – – 16 – SIDA97 A-MONO Monotonicity – – Yes – VREF mode SIDA98 A_GAINERR_VREF Gain error – 0.6 – % Reference Source: SRSS (VREF = 1.20 V, VDDA < 2.2 V), (VREF = 1.6 V, 2.2 V < VDDA< 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) SIDA98A A_GAINERR_VDDA Gain error – 0.2 – % Reference Source: SRSS (VREF = 1.20 V, VDDA < 2.2V), (VREF = 1.6 V, 2.2 V < VDDA < 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) SIDA99 A_OFFSET_VREF Input offset voltage – 0.5 – LSB After ADC calibration, Ref. Src = SRSS, (VREF = 1.20 V, VDDA < 2.2 V), (VREF = 1.6 V, 2.2 V < VDDA < 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) SIDA99A A_OFFSET_VDDA Input offset voltage – 0.5 – LSB After ADC calibration, Ref. Src = SRSS, (VREF = 1.20 V, VDDA < 2.2 V), (VREF = 1.6 V, 2.2 V < VDDA < 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) SIDA100 A_ISAR_VREF Current consumption – 0.3 – mA CSD ADC Block current Document Number: 002-21414 Rev. *M Page 53 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 29. CSD ADC Specifications (continued) Spec ID# Parameter SIDA100A A_ISAR_VDDA Current consumption Description Min Typ Max Unit – 0.3 – mA SIDA101 A_VINS_VREF SIDA101A A_VINS_VDDA Details / Conditions Input voltage range - single ended VSSA – VREF V (VREF = 1.20 V, VDDA < 2.2 V), (VREF = 1.6 V, 2.2 V < VDDA < 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) Input voltage range - single ended VSSA – VDDA V (VREF = 1.20 V, VDDA < 2.2 V), (VREF = 1.6 V, 2.2 V < VDDA < 2.7 V), (VREF = 2.13 V, VDDA > 2.7 V) CSD ADC Block current SIDA103 A_INRES Input charging resistance – 15 – kΩ – SIDA104 A_INCAP Input capacitance – 41 – pF – SIDA106 A_PSRR Power supply rejection ratio (DC) – 60 – dB – SIDA107 A_TACQ Sample acquisition time – 10 – µs Measured with 50-Ω source impedance. 10 µs is default software driver acquisition time setting. Settling to within 0.05%. SIDA108 A_CONV8 Conversion time for 8-bit resolution at conversion rate = Fhclk/(2"(N+2)). Clock frequency = 50 MHz. – 25 – µs Does not include acquisition time. SIDA108A A_CONV10 Conversion time for 10-bit resolution at conversion rate = Fhclk/(2"(N+2)). Clock frequency = 50 MHz. – 60 – µs Does not include acquisition time. SIDA109 A_SND_VRE Signal-to-noise and Distortion ratio (SINAD) – 57 – dB Measured with 50-Ω source impedance SIDA109A A_SND_VDDA Signal-to-noise and Distortion ratio (SINAD) – 52 – dB Measured with 50-Ω source impedance SIDA111 A_INL_VREF Integral non-linearity. 11.6 ksps – – 2 LSB Measured with 50-Ω source impedance SIDA111A A_INL_VDDA Integral non-linearity. 11.6 ksps – – 2 LSB Measured with 50-Ω source impedance SIDA112 A_DNL_VREF Differential non-linearity. 11.6 ksps – – 1 LSB Measured with 50-Ω source impedance SIDA112A A_DNL_VDDA Differential non- linearity. 11.6 ksps – – 1 LSB Measured with 50-Ω source impedance Document Number: 002-21414 Rev. *M Page 54 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Digital Peripherals Table 30. Timer/Counter/PWM (TCPWM) Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions – – 70 µA All modes (TCPWM) SID.TCPWM.1 ITCPWM1 Block current consumption at 8 MHz SID.TCPWM.2 ITCPWM2 Block current consumption at 24 MHz – – 180 µA All modes (TCPWM) SID.TCPWM.2A ITCPWM3 Block current consumption at 50 MHz – – 270 µA All modes (TCPWM) SID.TCPWM.2B ITCPWM4 Block current consumption at 100 MHz – – 540 µA All modes (TCPWM) – – 100 MHz Fc max = Fcpu Maximum = 100 MHz SID.TCPWM.3 TCPWMFREQ Operating frequency SID.TCPWM.4 Input Trigger Pulse Width for TPWMENEXT all Trigger Events 2 / Fc – – ns Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected. Fc is counter operating frequency. SID.TCPWM.5 TPWMEXT Output Trigger Pulse widths 1.5 / Fc – – ns Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs SID.TCPWM.5A TCRES Resolution of Counter 1 / Fc – – ns Minimum time between successive counts SID.TCPWM.5B PWMRES PWM Resolution 1 / Fc – – ns Minimum pulse width of PWM Output SID.TCPWM.5C QRES Quadrature inputs resolution 2 / Fc – – ns Minimum pulse width between Quadrature phase inputs. Delays from pins should be similar. Table 31. Serial Communication Block (SCB) Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions 2 Fixed I C DC Specifications SID149 II2C1 Block current consumption at 100 kHz – – 30 µA – SID150 II2C2 Block current consumption at 400 kHz – – 80 µA – SID151 II2C3 Block current consumption at 1 Mbps – – 180 µA – SID152 II2C4 I2C enabled in Deep Sleep mode – – 1.7 µA At 60 °C Bit Rate – – 1 Fixed I2C AC Specifications SID153 FI2C1 Mbps – Fixed UART DC Specifications SID160 IUART1 Block current consumption at 100 kbps – – 30 µA – SID161 IUART2 Block current consumption at 1000 kbps – – 180 µA – Document Number: 002-21414 Rev. *M Page 55 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 31. Serial Communication Block (SCB) Specifications (continued) Spec ID# Parameter Description Min Typ Max – – 3 – – 8 Unit Details / Conditions Fixed UART AC Specifications SID162A FUART1 SID162B FUART2 Bit Rate Mbps ULP Mode LP Mode Fixed SPI DC Specifications SID163 ISPI1 Block current consumption at 1 Mbps – – 220 µA – SID164 ISPI2 Block current consumption at 4 Mbps – – 340 µA – SID165 ISPI3 Block current consumption at 8 Mbps – – 360 µA – SID165A ISP14 Block current consumption at 25 Mbps – – 800 µA – Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise. SID166 FSPI SPI Operating Frequency Master and Externally Clocked Slave – – 25 MHz 14-MHz max for ULP (0.9 V) mode SID166A FSPI_IC SPI Slave Internally Clocked – – 15 MHz 5-MHz max for ULP (0.9 V) mode SID166B FSPI_EXT SPI Operating Frequency Master (FSCB is SPI Clock) – – FSCB/4 MHz FSCB max is 100 MHz in LP mode, 25 MHz max in ULP mode Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise. SID167 TDMO MOSI Valid after SClock driving edge – – 12 ns 20-ns max for ULP (0.9 V) mode SID168 TDSI MISO Valid before SClock capturing edge 5 – – ns Full clock, late MISO sampling SID169 THMO MOSI data hold time 0 – – ns Referred to Slave capturing edge SID169A TSSELMSCK1 SSEL Valid to first SCK Valid edge 18 – – ns Referred to Master clock edge SID169B TSSELMSCK2 SSEL Hold after last SCK Valid edge 18 – – ns Referred to Master clock edge Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise. SID170 TDMI MOSI Valid before Sclock Capturing edge 5 – – ns – SID171A TDSO_EXT MISO Valid after Sclock driving edge in Ext. Clk. mode – – 20 ns 35-ns max. for ULP (0.9 V) mode SID171 TDSO MISO Valid after Sclock driving edge in Internally Clk. Mode – – TDSO_EXT + 3 × Tscb ns Tscb is Serial Comm. Block clock period. SID171B TDSO MISO Valid after Sclock driving edge in Internally Clk. Mode with Median filter enabled. – – TDSO_EXT + 4 × Tscb ns Tscb is Serial Comm. Block clock period. SID172 THSO Previous MISO data hold time 5 – – ns – SID172A TSSELSCK1 SSEL Valid to first SCK Valid edge 65 – – ns – SID172B TSSELSCK2 SSEL Hold after Last SCK Valid edge 65 – – ns Document Number: 002-21414 Rev. *M Page 56 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet LCD Specifications Table 32. LCD Direct Drive DC Specifications Spec ID# Parameter Description SID154 ILCDLOW Operating current in low-power mode Min – Typ 5 Max – Unit Details / Conditions µA 16 × 4 small segment display at 50 Hz SID155 CLCDCAP LCD capacitance per segment/common driver – 500 5000 pF SID156 LCDOFFSET Long-term segment offset – 20 – mV SID157 ILCDOP1 PWM Mode current. 3.3-V bias. 8-MHz IMO. 25 °C. – 0.6 – mA 32 × 4 segments 50 Hz SID158 ILCDOP2 PWM Mode current. 3.3-V bias. 8-MHz IMO. 25 °C. – 0.5 – mA 32 × 4 segments 50 Hz – – Table 33. LCD Direct Drive AC Specifications Spec ID# Parameter SID159 FLCD Description LCD frame rate Min Typ Max Unit 10 50 150 Hz Min Typ Max Unit – – 6 mA Details / Conditions – Memory Flash Table 34. Flash DC Specifications[3] Spec ID# Parameter SID173A IPE Description Erase and program current Details / Conditions – Table 35. Flash AC Specifications Spec ID# SID174 Min Typ Max Unit TROWWRITE Parameter Row write time (erase & program) Description – – 16 ms Row = 512 bytes Row erase time – – 11 ms – – – 5 ms – SID175 TROWERASE SID176 TROWPROGRAM Row program time after erase SID178 TBULKERASE SID179 TSECTORERASE Sector erase time (256 KB) Bulk erase time (1024 KB) Details / Conditions – – 11 ms – – – 11 ms 512 rows per sector SID178S TSSERIAE Subsector erase time – – 11 ms 8 rows per subsector SID179S TSSWRITE Subsector write time; 1 erase plus 8 program times – – 51 ms – SID180S TSWRITE Sector write time; 1 erase plus 512 program times – – 2.6 seconds – SID180 TDEVPROG Total device write time – – 15 seconds – SID181 FEND Flash Endurance 100 k – – cycles – FRET1 Flash Retention. TA  25 °C, 100 k P/E cycles 10 – – years – SID182A FRET2 Flash Retention. TA  85 °C, 10 k P/E cycles 10 – – years – SID182B FRET3 Flash Retention. TA 55 °C, 20 k P/E cycles 20 – – years – SID256 TWS100 Number of Wait states at 100 MHz 3 – – – SID257 TWS50 Number of Wait states at 50 MHz 2 – – – SID182 Note 3. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated. Document Number: 002-21414 Rev. *M Page 57 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet System Resources Power-on-Reset Table 36. Power-On-Reset (POR) with Brown-out Detect (BOD) DC Specifications Spec ID# SID190 SID192 Parameter Min Typ Max Unit VFALLPPOR BOD trip voltage in system LP and ULP modes. Description 1.54 – – V VFALLDPSLP BOD trip voltage in system Deep Sleep mode. 1.54 – – V Min Typ Max Unit Details / Conditions Reset guaranteed for VDDD levels below 1.54 V Table 37. POR with BOD AC Specifications Spec ID# Parameter Description Details / Conditions SID192A VDDRAMP Maximum power supply ramp rate (any supply) – – 100 mV/µs System LP mode SID194A VDDRAMP_DS Maximum power supply ramp rate (any supply) in system Deep Sleep mode – – 10 mV/µs BOD operation guaranteed Voltage Monitors Table 38. Voltage Monitors DC Specifications Min Typ Max Unit SID195R VHVD0 SID195 VHVDI1 Spec ID# Parameter Description 1.18 1.23 1.27 V – 1.38 1.43 1.47 V – SID196 VHVDI2 1.57 1.63 1.68 V – SID197 VHVDI3 1.76 1.83 1.89 V – SID198 VHVDI4 1.95 2.03 2.1 V – SID199 VHVDI5 2.05 2.13 2.2 V – SID200 VHVDI6 2.15 2.23 2.3 V – SID201 VHVDI7 2.24 2.33 2.41 V – SID202 VHVDI8 2.34 2.43 2.51 V – SID203 VHVDI9 2.44 2.53 2.61 V – SID204 VHVDI10 2.53 2.63 2.72 V – SID205 VHVDI11 2.63 2.73 2.82 V – SID206 VHVDI12 2.73 2.83 2.92 V – SID207 VHVDI13 2.82 2.93 3.03 V – SID208 VHVDI14 2.92 3.03 3.13 V – SID209 VHVDI15 3.02 3.13 3.23 V – SID211 LVI_IDD – 5 15 µA – Min Typ Max Unit – – 170 ns Block current Details / Conditions Table 39. Voltage Monitors AC Specification Spec ID# SID212 Parameter TMONTRIP Description Voltage monitor trip time Document Number: 002-21414 Rev. *M Details / Conditions – Page 58 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet SWD and Trace Interface Table 40. SWD and Trace Specifications Spec ID# Parameter SID214 F_SWDCLK2 SID214L F_SWDCLK2L Description Min Typ Max Unit Details / Conditions 1.7 V  VDDD  3.6 V – – 25 MHz LP mode. VCCD = 1.1 V 1.7 V  VDDD 3.6 V – – 12 MHz ULP mode. VCCD = 0.9 V SID215 T_SWDI_SETUP T = 1/f SWDCLK 0.25 * T – – ns – SID216 T_SWDI_HOLD T = 1/f SWDCLK 0.25 * T – – ns – SID217 T_SWDO_VALID T = 1/f SWDCLK – – 0.5 * T ns – SID217A T_SWDO_HOLD T = 1/f SWDCLK 1 – – ns – SID214T F_TRCLK_LP1 With Trace Data setup/hold times of 2/1 ns respectively – – 75 MHz LP Mode. VDD = 1.1 V SID215T F_TRCLK_LP2 With Trace Data setup/hold times of 3/2 ns respectively – – 70 MHz LP Mode. VDD = 1.1 V SID216T F_TRCLK_ULP With Trace Data setup/hold times of 3/2 ns respectively – – 25 MHz ULP Mode. VDD = 0.9 V Min Typ Max Unit – 9 15 µA Min Typ Max Unit Internal Main Oscillator Table 41. IMO DC Specifications Spec ID# SID218 Parameter IIMO1 Description IMO operating current at 8 MHz Details / Conditions – Table 42. IMO AC Specifications Spec ID# Parameter Description SID223 FIMOTOL1 Frequency variation centered on 8 MHz – – ±2 % SID227 TJITR Cycle-to-Cycle and Period jitter – ±250 – ps Min Typ Max Unit – 0.3 0.7 µA Min Typ Max Unit Details / Conditions – – Internal Low-Speed Oscillator Table 43. ILO DC Specification Spec ID# SID231 Parameter IILO2 Description ILO operating current at 32 kHz Details / Conditions – Table 44. ILO AC Specifications Spec ID# Parameter Description SID234 TSTARTILO1 ILO startup time – – SID236 TLIODUTY SID237 FILOTRIM1 ILO Duty cycle 45 50 ILO frequency 28.8 32 Document Number: 002-21414 Rev. *M Details / Conditions µs Startup time to 95% of final frequency 55 % – 36.1 kHz 7 Factory trimmed Page 59 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Crystal Oscillator Table 45. ECO Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions Block operating current with Cload up to 18 pF – 800 1600 µA Crystal frequency range 16 – 35 MHz Block operating current with 32-kHz crystal – 0.38 1 µA SID321E ESR32K Equivalent Series Resistance – 80 – kΩ – SID322E PD32K Drive level – – 1 µW – 32-kHz frequency – 32.768 – kHz – MHz ECO DC Specifications SID316 IDD_MHz Max = 35 MHz, Typ = 16 MHz MHz ECO AC Specifications SID317 F_MHz – kHz ECO DC Specification SID318 IDD_kHz – kHz ECO AC Specification SID319 F_kHz SID320 Ton_kHz SID320E FTOL32K Startup time – – 500 ms – Frequency tolerance – 50 250 ppm – Min Typ Max Unit External Clock Table 46. External Clock Specifications Spec ID# Parameter Description Details / Conditions SID305 EXTCLKFREQ External Clock input Frequency 0 – 100 MHz – SID306 EXTCLKDUTY Duty cycle; Measured at VDD/2 45 – 55 % – Min Typ Max Unit PLL Table 47. PLL Specifications Spec ID# Parameter Description Details / Conditions SID305P PLL_LOCK Time to achieve PLL Lock – 16 35 µs – SID306P PLL_OUT Output frequency from PLL Block – – 150 MHz – SID307P PLL_IDD PLL Current – 0.55 1.1 mA Typ at 100 MHz out. SID308P PLL_JTR Period Jitter – – 150 ps 100-MHz output frequency Min Typ Max Unit Clock Source Switching Time Table 48. Clock Source Switching Time Specifications Spec ID# SID262 Parameter TCLKSWITCH Description Clock switching from clk1 to clk2 in clock periods[4] – – Details / Conditions 4 clk1 + – periods 3 clk2 Note 4. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 4) then clk1 is the IMO and clk2 is the FLL. Document Number: 002-21414 Rev. *M Page 60 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet FLL Table 49. Frequency Locked Loop (FLL) Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID450 FLL_RANGE Input frequency range. 0.001 – 100 MHz Lower limit allows lock to USB SOF signal (1 kHz). Upper limit is for External input. SID451 FLL_OUT_DIV2 Output frequency range. VCCD = 1.1 V 24.00 – 100.00 MHz Output range of FLL divided-by-2 output SID451A FLL_OUT_DIV2 Output frequency range. VCCD = 0.9 V 24.00 – 50.00 MHz Output range of FLL divided-by-2 output SID452 FLL_DUTY_DIV2 Divided-by-2 output; High or Low 47.00 – 53.00 % – SID454 FLL_WAKEUP Time from stable input clock to 1% of final value on deep sleep wakeup – – 7.50 µs With IMO input, less than 10 °C change in temperature while in Deep Sleep, and Fout ≥ 50 MHz. SID455 FLL_JITTER Period jitter (1 sigma at 100 MHz) – – 35.00 ps 50 ps at 48 MHz, 35 ps at 100 MHz SID456 FLL_CURRENT CCO + Logic current – – 5.50 Min Typ Max Unit µA/MHz – UDB Table 50. UDB AC Specifications Spec ID# Parameter Description Details / Conditions Data Path Performance SID249 FMAX-TIMER Max frequency of 16-bit timer in a UDB pair – – 100 MHz – SID250 FMAX-ADDER Max frequency of 16-bit adder in a UDB pair – – 100 MHz SID251 FMAX_CRC Max frequency of 16-bit CRC/PRS in a UDB pair – – 100 MHz Max frequency of 2-pass PLD function in a UDB pair – – 100 MHz Prop. delay for clock in to data out – 5 – ns – – – PLD Performance in UDB SID252 FMAX_PLD – Clock to Output Performance SID253 TCLK_OUT_UDB1 UDB Port Adapter Specifications Conditions: 10-pF load, 3-V VDDIO and VDDD SID263 TLCLKDO LCLK to Output delay – – 11 ns LCLK is a selected clock; for more information see the TRM SID264 TDINLCLK Input setup time to LCLK rising edge – – 7 ns – SID265 TDINLCLKHLD Input hold time from LCLK rising edge 5 – – ns – SID266 TLCLKHIZ LCLK to Output tristated – – 28 ns – SID267 TFLCLK LCLK frequency – – 33 MHz – SID268 TLCLKDUTY LCLK duty cycle (percentage high) 40% – 60% % – Document Number: 002-21414 Rev. *M Page 61 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet USB Table 51. USB Specifications (USB requires LP Mode 1.1-V Internal Supply) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions USB Block Specifications SID322U Vusb_3.3 Device supply for USB operation 3.15 – 3.6 V USB Configured SID323U Vusb_3 Device supply for USB operation (functional operation only) 2.85 – 3.6 V USB Configured SID325U Iusb_config Device supply current in Active mode – 8 – mA VDDD = 3.3 V SID328 Isub_suspend Device supply current in Sleep mode – 0.5 – mA VDDD = 3.3 V, Device connected SID329 Isub_suspend Device supply current in Sleep mode – 0.3 – mA VDDD = 3.3 V, Device disconnected SID330U USB_Drive_Res USB driver impedance 28 – 44 Ω Series resistors are on chip SID331U USB_Pulldown USB pull-down resistors in Host mode 14.25 – 24.8 kΩ – SID332U USB_Pullup_Idle Idle mode range 900 – 1575 Ω Bus idle SID333U USB_Pullup Active mode 1425 – 3090 Ω Upstream device transmitting QSPI Table 52. QSPI Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SMIF QSPI Specifications. All specs with 15-pF load. SID390Q Fsmifclock SMIF QSPI output clock frequency – – 80 MHz LP mode (1.1 V) SID390QU Fsmifclocku SMIF QSPI output clock frequency – – 50 MHz ULP mode (0.9 V). Guaranteed by Char. SID397Q Idd_qspi Block current in LP mode (1.1 V) – – 1900 µA LP mode (1.1 V) SID398Q Idd_qspi_u Block current in ULP mode (0.9 V) – – 590 µA ULP mode (0.9 V) SID391Q Tsetup Input data set-up time with respect to clock capturing edge 4.5 – – ns – SID392Q Tdatahold Input data hold time with respect to clock capturing edge 0 – – ns – SID393Q Tdataoutvalid Output data valid time with respect to clock falling edge – – 3.7 ns 7.5-ns max for ULP mode (0.9 V) SID394Q Tholdtime Output data hold time with respect to clock rising edge 3 – – ns – SID395Q Tseloutvalid Output Select valid time with respect to clock rising edge – – 7.5 ns 15-ns max for ULP mode (0.9 V) SID396Q Tselouthold Output Select hold time with respect to clock rising edge 0.5* Tsclk – – ns Tsclk = Fsmifclk cycle time Document Number: 002-21414 Rev. *M Page 62 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Audio Subsystem Table 53. Audio Subsystem Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions PDM Specifications SID400P PDM_IDD1 PDM Active current, Stereo operation, 1-MHz clock – 175 – µA 16-bit audio at 16 ksps SID401 PDM_IDD2 PDM Active current, Stereo operation, 3-MHz clock – 600 – µA 24-bit audio at 48 ksps SID402 PDM_JITTER RMS Jitter in PDM clock –200 – 200 ps – SID403 PDM_CLK PDM Clock speed 0.384 – 3.072 MHz – SID403A PDM_BLK_CLK PDM Block input clock 1.024 – 49.152 MHz – SID403B PDM_SETUP Data input set-up time to PDM_CLK edge 10 – – ns – SID403C PDM_HOLD Data input hold time to PDM_CLK edge 10 – – ns – SID404 PDM_OUT Audio sample rate 8 – 48 ksps – SID405 PDM_WL Word Length 16 – 24 bits – SID406 PDM_SNR Signal-to-Noise Ratio (A-weighted) – 100 – dB PDM input, 20 Hz to 20 kHz BW SID407 PDM_DR Dynamic Range (A-weighted) – 100 – dB 20 Hz to 20 kHz BW, –60 dB FS SID408 PDM_FR Frequency Response –0.2 – 0.2 dB DC to 0.45f. DC Blocking filter off. SID409 PDM_SB Stop Band – 0.566 – f – SID410 PDM_SBA Stop Band Attenuation – 60 – dB – SID411 PDM_GAIN Adjustable Gain –12 – 10.5 dB PDM to PCM, 1.5 dB/step SID412 PDM_ST Startup time – 48 – – 32 WS (Word Select) cycles I2S Specifications. The same for LP and ULP modes unless stated otherwise. SID413 I2S_WORD Length of I2S Word 8 bits – Word Clock frequency in LP mode – – 192 kHz 12.288-MHz bit clock with 32-bit word SID414M I2S_WS_U Word Clock frequency in ULP mode – – 48 kHz 3.072-MHz bit clock with 32-bit word SID414A I2S_WS_TDM Word Clock frequency in TDM mode for LP – – 48 kHz Eight 32-bit channels SID414X I2S_WS_TDM_U Word Clock frequency in TDM mode for ULP – – 12 kHz Eight 32-bit channels SID414 I2S_WS I2S Slave Mode SID430 TS_WS WS Setup Time to the Following Rising Edge of SCK for LP Mode 5 – – ns – SID430U TS_WS WS Setup Time to the Following Rising Edge of SCK for ULP Mode 11 – – ns – SID430A TH_WS WS Hold Time to the Following Edge of SCK TMCLK_SOC[5] +5 – – ns – Note 5. TMCLK_SOC is the internal I2S master clock period. Document Number: 002-21414 Rev. *M Page 63 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Table 53. Audio Subsystem Specifications (continued) Spec ID# Parameter Description Min Typ Max Unit Details / Conditions TMCLK_SOC + 25 ns Associated clock edge depends on selected polarity SID432 TD_SDO Delay Time of TX_SDO Transition – from Edge of TX_SCK for LP (TMCLK_SOC + mode 25) SID432U TD_SDO Delay Time of TX_SDO Transition – from Edge of TX_SCK for ULP (TMCLK_SOC + mode 70) – TMCLK_SOC + 70 ns Associated clock edge depends on selected polarity SID433 TS_SDI RX_SDI Setup Time to the Following Edge of RX_SCK in Lp Mode 5 – – ns – SID433U TS_SDI RX_SDI Setup Time to the Following Edge of RX_SCK in ULP mode 11 – – ns – SID434 TH_SDI RX_SDI Hold Time to the Rising Edge of RX_SCK TMCLK_SOC + 5 – – ns – SID435 TSCKCY TX/RX_SCK Bit Clock Duty Cycle 45 – 55 % – – I2S Master Mode SID437 TD_WS WS Transition Delay from Falling Edge of SCK in LP mode –10 – 20 ns – SID437U TD_WS_U WS Transition Delay from Falling Edge of SCK in ULP mode –10 – 40 ns – SID438 TD_SDO SDO Transition Delay from Falling Edge of SCK in LP mode –10 – 20 ns – SID438U TD_SDO SDO Transition Delay from Falling Edge of SCK in ULP mode –10 – 40 ns – SID439 TS_SDI SDI Setup Time to the Associated Edge of SCK 5 – – ns Associated clock edge depends on selected polarity SID440 TH_SDI SDI Hold Time to the Associated Edge of SCK TMCLK_SOC + 5 – – ns T is TX/RX_SCK Bit Clock period. Associated clock edge depends on selected polarity. SID443 TSCKCY SCK Bit Clock Duty Cycle 45 – 55 % – SID445 FMCLK_SOC MCLK_SOC Frequency in LP mode 1.024 – 98.304 MHz FMCLK_SOC = 8 * Bit-clock SID445U FMCLK_SOC_U MCLK_SOC Frequency in ULP mode 1.024 – 24.576 MHz SID446 TMCLKCY MCLK_SOC Duty Cycle 45 – 55 % – SID447 TJITTER MCLK_SOC Input Jitter –100 – 100 ps – Document Number: 002-21414 Rev. *M FMCLK_SOC_U = 8 * Bit-clock Page 64 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Smart I/O Table 54. Smart I/O Specifications Spec ID# Parameter Description Min Typ Max Unit Details / Conditions SID420 SMIO_BYP Smart I/O Bypass delay – – 2 ns – SID421 SMIO_LUT Smart I/O LUT prop delay – 8 – ns – Precision ILO (PILO) Table 55. PILO Specifications Min Typ Max Unit SID 430R IPILO Spec ID# Parameter Operating current Description – 1.2 4 µA – Details / Conditions SID431 F_PILO PILO nominal frequency – 32768 – Hz T = 25 °C SID432R ACC_PILO PILO accuracy with periodic calibration –500 – 500 ppm – JTAG Boundary Scan Table 56. JTAG Boundary Scan Spec ID# Parameter Description Min Typ Max Units JTAG Boundary Scan Parameters JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation: SID468 TCKLOW TCK LOW 52 – – ns – SID469 TCKHIGH TCK HIGH 10 – – ns – SID470 TCK_TDO TCK falling edge to output valid – 40 ns – SID471 TSU_TCK Input valid to TCK rising edge 12 – – ns – SID472 TCk_THD Input hold time to TCK rising edge 10 – – ns – SID473 TCK_TDOV TCK falling edge to output valid (High-Z to Active). 40 – – ns – SID474 TCK_TDOZ TCK falling edge to output valid (Active to High-Z). 40 – – ns – JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation: SID468A TCKLOW TCK low 102 – – ns – SID469A TCKHIGH TCK high 20 – – ns – SID470A TCK_TDO TCK falling edge to output valid – 80 ns – SID471A TSU_TCK Input valid to TCK rising edge 22 – – ns – SID472A TCk_THD Input hold time to TCK rising edge 20 – – ns – SID473A TCK_TDOV TCK falling edge to output valid (high-Z to active). 80 – – ns – SID474A TCK_TDOZ TCK falling edge to output valid (active to high-Z). 80 – – ns – Document Number: 002-21414 Rev. *M Page 65 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Ordering Information Table 57 lists the CY8C61x6 and CY8C61x7 part numbers and features. All devices include QSPI SMIF, ADC, DAC, 9 SCBs, USB-FS, 32 TCPWMs, 2 PDMs, and I2S. See also the product selector guide. 61 CPU Speed (CM4) CPU Speed (CM0+) Single CPU/Dual CP ULP/LP Flash (KB) SRAM (KB) No of CTBMs No. of UDBs CapSense GPIOs CRYPTO PDM-PCM SIMO BUCK Package 60 MPN Family Table 57. Marketing Part Numbers CY8C6036BZI-F04 150 – Single LP 512 128 0 0 No 100 No No No 124-BGA CY8C6016BZI-F04 50 – Single ULP 512 128 0 0 No 100 No No No 124-BGA CY8C6116BZI-F54 50 – Single ULP 512 128 1 12 Yes 100 Yes Yes Yes 124-BGA CY8C6136BZI-F14 150 – Single LP 512 128 0 0 Yes 100 No Yes Yes 124-BGA CY8C6136BZI-F34 150 – Single LP 512 128 1 12 Yes 100 No Yes Yes 124-BGA CY8C6137BZI-F14 150 – Single LP 1024 288 0 0 Yes 100 No Yes Yes 124-BGA CY8C6137BZI-F34 150 – Single LP 1024 288 1 12 Yes 100 No Yes Yes 124-BGA CY8C6137BZI-F54 150 – Single LP 1024 288 1 12 Yes 100 Yes Yes Yes 124-BGA CY8C6117BZI-F34 50 – Single ULP 1024 288 1 12 Yes 100 No Yes Yes 124-BGA CY8C6136FTI-F42 150 – Single 128 0 0 Yes 62 Yes Yes Yes Thin LP 512 CY8C6136FDI-F42 150 – Single LP 512 128 0 0 Yes 62 Yes Yes Yes 80-WLCSP CY8C6137FDI-F02 150 – Single LP 1024 288 0 0 No 62 No Yes Yes 80-WLCSP CY8C6117FDI-F02 50 – Single ULP 1024 288 0 0 No 62 No Yes Yes 80-WLCSP Document Number: 002-21414 Rev. *M Page 66 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet PSoC 6 MPN Decoder CY XX 6 A B C DD E - FF G H I JJ K L Field CY XX 6 A B Description Cypress Firmware Architecture Line Speed Values CY 8C Standard B0 “Secure Boot” v1 S0 “Standard Secure” AWS 6 PSoC 6 0 Value 1 Programmable 2 Performance 3 Connectivity 4 Secured 2 100 MHz 3 150 MHz 4 150/50 MHz 0-3 C Memory Size (Flash/SRAM) Meaning Field Description Cypress Reserved 4 256K/128K 5 512K/256K 6 512K/128K 7 1024K/288K 8 1024K/512K 9 Reserved A 2048K/1024K Values C E FF Temperature Range Feature Code I Industrial Q Extended Industrial Cypress internal S2-S6 BL G CPU Core H Attributes Code I GPIO count JJ Engineering sample (optional) K Die Revision (optional) L Tape/Reel Shipment (optional) Meaning Consumer Integrated Bluetooth LE F Single Core D Dual Core 0–9 Feature set 1 31–50 2 51–70 3 71–90 4 91–110 ES Engineering samples or not Base A1–A9 T Die revision Tape and Reel shipment AZ, AX TQFP DD Package LQ QFN BZ BGA FM M-CSP FN, FD, WLCSP FT Document Number: 002-21414 Rev. *M Page 67 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Packaging This product line is offered in 124-BGA[6] and 80-ball WLCSP packages in 0.43 mm and 0.33 mm[6] heights. The 124-BGA package qualification is in process. Table 58. Package Dimensions Spec ID# Package PKG_1 124-BGA PKG_2 80-WLCSP PKG_3 Description Package Drawing Number 124-BGA, 9 mm  9 mm  1 mm height with 0.65-mm pitch 001-97718 80-WLCSP, 3.7 mm  3.2 mm  0.43 mm height with 0.35-mm pitch 002-20310 Thin 80-WLCSP Thin 80 -WLCSP, 3.7 mm  3.3 mm  0.33mm height with 0.35-mm pitch 002-23411 Table 59. Package Characteristics Parameter Description Conditions Min Typ Max Unit TA Operating ambient temperature – –40 25 85 °C TJ Operating junction temperature – –40 – 100 °C TJA Package JA (124-BGA) – – 36.2 – °C/watt TJC Package JC (124-BGA) – – 15 – °C/watt TJA Package JA (80-WLCSP) – – 20.4 – °C/watt TJC Package JC (80-WLCSP) – – 0.2 – °C/watt TJA Package JA (Thin 80-WLCSP) – – 20.4 – °C/watt TJC Package JC (Thin 80-WLCSP) – – 0.2 – °C/watt Table 60. Solder Reflow Peak Temperature Package Maximum Peak Temperature Maximum Time at Peak Temperature All 260 °C 30 seconds Table 61. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2 Package MSL 124-BGA MSL 3 80-WLCSP Packages MSL 1 Note 6. The 124-BGA and Thin 80-WLCSP packages are in the process of qualification. Document Number: 002-21414 Rev. *M Page 68 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 19. 124-BGA 9.0 × 9.0 ×1.0 mm 001-97718 *B Document Number: 002-21414 Rev. *M Page 69 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 20. 80-Ball WLCSP 3.676 × 3.190 × 0.467 mm DIMENSIONS NOTES SYMBOL MIN. NOM. A 0.387 0.427 A1 0.122 1. ALL DIMENSIONS ARE IN MILLIMETERS. 0.467 0.182 3.676 BSC D E 3.190 BSC D1 3.031 BSC E1 2.450 BSC n Øb MAX. 80 0.188 0.218 eD 0.303 BSC eE 0.350 BSC 0.248 002-20310 *A Document Number: 002-21414 Rev. *M Page 70 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Figure 21. Thin 80-Ball WLCSP 3.676 × 3.190 × 0.33 mm 6 6 7 5 NOTES: DIMENSIONS SYMBOL 1. ALL DIMENSIONS ARE IN MILLIMETERS. MIN NOM MAX A - - 0.33 A1 0.081 - - 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020. 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH. 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. D 3.676 BSC E 3.190 BSC D1 3.031 BSC E1 2.450 BSC MD 11 ME 15 DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. N 80 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. Øb 0.1035 0.1150 eD 0.303 BSC eE 0.350 BSC SD 0.00 BSC SE 0.00 BSC N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND 0.1265 WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALIZED MARK, INDENTATION OR OTHER MEANS. 8. JEDEC SPECIFICATION NO. REF. : N/A 002-23411 ** Document Number: 002-21414 Rev. *M Page 71 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Acronyms Acronym Description 3DES triple DES (data encryption standard) ADC analog-to-digital converter AES Acronym FS Description full-speed GND Ground advanced encryption standard GPIO general-purpose input/output, applies to a PSoC pin AHB AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus HMAC Hash-based message authentication code HSIOM high-speed I/O matrix AMUX analog multiplexer I/O input/output, see also GPIO, DIO, SIO, USBIO AMUXBUS analog multiplexer bus API application programming interface I S Arm® advanced RISC machine, a CPU architecture IC integrated circuit BGA ball grid array IDAC current DAC, see also DAC, VDAC BOD brown-out detect IDE integrated development environment CAD computer aided design ILO internal low-speed oscillator, see also IMO CCO current controlled oscillator IMO internal main oscillator, see also ILO CM0+ Cortex-M0+, an Arm CPU INL integral nonlinearity, see also DNL CM4 Cortex-M4, an Arm CPU IoT internet of things CMAC cipher-based message authentication code IPC inter-processor communication CMOS complementary metal-oxide-semiconductor, a process technology for IC fabrication IRQ interrupt request ISR interrupt service routine CMRR common-mode rejection ratio JTAG Joint Test Action Group CPU central processing unit LCD liquid crystal display CRC cyclic redundancy check, an error-checking protocol LIN Local Interconnect Network, a communications protocol CSD CapSense Sigma-Delta LP low power CSX Cypress mutual capacitance sensing method. See also CSD LS low-speed DAC digital-to-analog converter, see also IDAC, VDAC DAP debug access port DES data encryption standard DMA direct memory access, see also TD DNL differential nonlinearity, see also INL DSI digital system interconnect DU data unit ECC elliptic curve cryptography ECO external crystal oscillator EEPROM electrically erasable programmable read-only memory 2 Inter-Integrated Circuit, a communications protocol 2 inter-IC sound I C, or IIC LUT lookup table LVD low-voltage detect, see also LVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate M-CSP molded chip scale package MCU microcontroller unit MCWDT multi-counter watchdog timer MISO master-in slave-out MMIO memory-mapped input output MOSI master-out slave-in MPU memory protection unit moisture sensitivity level EMI electromagnetic interference MSL ESD electrostatic discharge Msps million samples per second ETM embedded trace macrocell MTB micro trace buffer FIFO first-in, first-out MUL multiplier FLL frequency locked loop NC no connect floating-point unit NMI nonmaskable interrupt FPU Document Number: 002-21414 Rev. *M Page 72 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Acronym Description Acronym Description NVIC nested vectored interrupt controller SWO single wire output OTP one-time programmable SWV serial-wire viewer OVT overvoltage tolerant TCPWM timer, counter, pulse-width modulator PASS programmable analog subsystem TDM time division multiplexed PCB printed circuit board TQFP thin quad flat package PCM pulse code modulation TRM technical reference manual PDM pulse density modulation TRNG true random number generator PHY physical layer TX transmit PICU port interrupt control unit UART PLL phase-locked loop Universal Asynchronous Transmitter Receiver, a communications protocol PMIC power management integrated circuit UDB universal digital block POR power-on reset ULP ultra-low power PPU peripheral protection unit USB Universal Serial Bus WCO watch crystal oscillator PRNG pseudo random number generator PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator QD quadrature decoder QSPI quad serial peripheral interface RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square ROM read-only memory RSA Rivest–Shamir–Adleman, a public-key cryptography algorithm RTC real-time clock RX receive S/H sample and hold SAR successive approximation register SARMUX SAR ADC multiplexer bus SCB serial communication block SFlash supervisory flash SHA secure hash algorithm SINAD signal to noise and distortion ratio SNR signal-to-noise ration SOF start of frame SPI Serial Peripheral Interface, a communications protocol SRAM static random access memory SROM supervisory read-only memory SRSS system resources subsystem SWD serial wire debug, a test protocol SWJ serial wire JTAG Document Number: 002-21414 Rev. *M WDT watchdog timer WIC wakeup interrupt controller WLCSP wafer level chip scale package XIP execute-in-place XRES external reset input pin Page 73 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Document Conventions Unit of Measure Table 62. Unit of Measure (continued) Table 62. Unit of Measure Symbol Symbol Unit of Measure Unit of Measure µH microhenry microsecond °C degrees Celsius µs dB decibel µV microvolt fF femto farad µW microwatt Hz hertz mA milliampere KB 1024 bytes ms millisecond kbps kilobits per second mV millivolt khr kilohour nA nanoampere kHz kilohertz ns nanosecond k kilo ohm nV nanovolt ksps kilosamples per second  ohm LSB least significant bit pF picofarad Mbps megabits per second ppm parts per million MHz megahertz ps picosecond M mega-ohm s second Msps megasamples per second sps samples per second µA microampere sqrtHz square root of hertz microfarad V volt µF Document Number: 002-21414 Rev. *M Page 74 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Revision History Description Title: PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Document Number: 002-21414 Submission Revision ECN Description of Change Date ** 5896512 09/27/2017 New datasheet *A 5956122 11/03/2017 Corrected typo in Development Support. Updated Table 5. Updated SID84 description and conditions. Updated Table 13. *B 5974156 11/29/2017 Updated max value for SID223. Updated min and max values of SID432R. Updated Table 39. Updated Revision History Updated Active CPU power consumption in 32-bit Dual Core CPU Subsystem. Updated Table 5, Table 6, Table 16, Table 21, Table 32, and Table 35. Updated min value for SID4B and SID291. Updated Fixed UART AC specifications. *C 6065337 02/10/2018 Updated SID190 and removed SID194. Removed SID226. Updated max value for SID234. Updated Revision History. Corrected typo in the block diagram. *D 6190455 05/29/2018 Updated 80-ball WLCSP package diagram. Updated Features and Ordering Information. Updated IMO Clock Source: Corrected the IMO tolerance and locking information and *E 6215538 06/26/2018 TCPWM and PLL description errors. Updated Packaging: Added Thin 80-WLCSP package dimension and package diagram. Updated Table 39, Table 40, and Table 42. Removed Preliminary document status. Corrected units usage throughout the document. Added note explaining Fc for the SID.TCPWM.4 parameter. Updated Features, CPU, Flash, ILO Clock Source, Watchdog Timer (WDT), Serial Communication Blocks (SCB), Ordering Information, Packaging, and Acronyms. *F 6221434 09/08/2018 Removed “Errata” section. Updated package diagram (spec 001-97718 *A to *B) in Packaging. Updated Figure 2. Added a note in Table 2. Updated Table 5, Table 6 through Table 8, Table 15, Table 18, Table 21, Table 30, Table 32, and Table 36. Updated the title. *G 6658244 09/20/2019 Updated Ordering Information. Added UDB in Acronyms. Updated Features. *H 6757930 12/20/2019 Updated Blocks and Functionality and Functional Description. Updated Pinouts and Power Supply Considerations. Updated Features. Updated Functional Description. *I 6842918 03/31/2020 Updated Pinouts. Updated PSoC 6 MPN Decoder. Updated Development Ecosystem, GPIO, and LCD sections. *J 6898008 06/22/2020 Added External Crystal Oscillators. Updated Errata Document Number: 002-21414 Rev. *M Page 75 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Description Title: PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Document Number: 002-21414 Updated Flexible Clocking Options, Block Diagram, CPUs, Clock System, and SID431. Updated Universal Digital Blocks (UDBs), UDB Port Adapter Specifications Conditions. Added InterProcessor Communication (IPC). Updated Analog Subsystem diagram. Updated the XRES bullet in Reset, updated SID15 Description and Conditions, and Power-on-Reset specifications table. Updated ModusToolbox Software. Updated Clocking Diagram. Removed Secure Boot information. Updated Security Built into Platform Architecture, PSoC 6 MCU Resources, Protection *K 7004924 11/09/2020 Units, and Boot Code. Updated Power Supply Considerations. Added footnote to TMCLK_SOC specs. Updated Opamp Specifications. Updated SID7A conditions, SID7C Description, SID7D description, and SID8 conditions. Added spec SID468 - SID474, and SID468A - SID474A. Updated Audio Spec SID408. Updated Ordering Information. Integrated ECO erratum into External Crystal Oscillators. Added ECO Usage Guidelines table. Added Table 12 and Figure 16. Updated conditions for SID316 and updated description of SID319. Changed BLE references to Bluetooth LE. *L 7094508 02/26/2021 Updated Security terminology to Infineon standards. Removed the Errata section; incorporated errata into the GPIO, ADC, and CapSense sections. Added opamp graphs (Figure 17 and Figure 18). *M 7173987 06/30/2021 Corrected typo in Figure 12 and Figure 14. Document Number: 002-21414 Rev. *M Page 76 of 77 PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Arm® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface cypress.com/clocks cypress.com/interface Internet of Things Memory cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Cypress Developer Community Community | Code Examples | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation, 2017-2021. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-21414 Rev. *M Revised June 30, 2021 Page 77 of 77
CY8C6016BZI-F04 价格&库存

很抱歉,暂时无法提供与“CY8C6016BZI-F04”相匹配的价格&库存,您可以联系我们找货

免费人工找货