Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
CYW4354
Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/
Radio with Integrated Bluetooth 4.1 and FM Receiver
The Cypress CYW4354 is a complete dual–band (2.4 GHz and 5 GHz) 5G Wi–Fi 2 × 2 MIMO® MAC/PHY/Radio System–on–a–Chip.
This Wi–Fi single–chip device provides a high level of integration with dual–stream IEEE 802.11ac MAC/baseband/radio, Bluetooth
4.1, and FM radio receiver. In IEEE 802.11ac mode, the WLAN operation supports rates of MCS0–MCS9 (up to 256 QAM) in 20 MHz,
40 MHz, and 80 MHz channels for data rates up to 867 Mbps. In addition, all the rates specified in IEEE 802.11a/b/g/n are supported.
Included on–chip are 2.4 GHz and 5 GHz transmit power amplifiers and receive low noise amplifiers.
For the WLAN section, several alternative host interface options are included: an SDIO v3.0 interface that can operate in 4b or 1b
modes, a high-speed inter-chip (HSIC) interface, and a PCIe v3.0 compliant interface running at Gen1 speeds. For the Bluetooth
section, host interface options of a high-speed 4-wire UART and USB 2.0 full-speed (12 Mbps) are provided.
The CYW4354 uses advanced design techniques and process technology to reduce active and idle power, and includes an embedded
power management unit that simplifies the system power topology.
In addition, the CYW4354 implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms
that ensure that WLAN and Bluetooth collaboration is optimized for maximum performance. Coexistence support for external radios
(such as LTE cellular and GPS) is provided via an external interface. As a result, enhanced overall quality for simultaneous voice,
video, and data transmission on a handheld system is achieved.
Cypress Part Numbering Scheme
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides
Cypress ordering part number that matches an existing IoT part number.
Table 1. Mapping Table for Part Number between Broadcom and Cypress
Broadcom Part Number
Cypress Part Number
BCM4354
CYW4354
BCM4354XKUBG
CYW4354XKUBG
BCM4354KKWBG
CYW4354KKWBG
Cypress Semiconductor Corporation
Document Number: 002-14809 Rev. *L
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised Wednesday, February 7, 2018
CYW4354
Features
IEEE 802.11X Key Features
■
IEEE 802.11ac Draft compliant.
■
Dual–stream spatial multiplexing up to 867 Mbps data rate.
■
Supports 20, 40, and 80 MHz channels with optional SGI (256
QAM modulation).
■
Full IEEE 802.11a/b/g/n legacy compatibility with enhanced
performance.
■
TX and RX low–density parity check (LDPC) support for
improved range and power efficiency.
■
Supports IEEE 802.11ac/n beamforming.
■
On–chip power amplifiers and low–noise amplifiers for both
bands.
■
Supports various RF front–end architectures including:
❐ Two antennas with one each dedicated to Bluetooth and
WLAN.
❐ Two antennas with WLAN diversity and a shared Bluetooth
antenna.
■
Shared Bluetooth and WLAN receive signal path eliminates the
need for an external power splitter while maintaining excellent
sensitivity for both Bluetooth and WLAN.
Bluetooth and FM Key Features
■
Complies with Bluetooth Core Specification Version 4.1 with
provisions for supporting future specifications.
■
Bluetooth Class 1 or Class 2 transmitter operation.
■
Supports extended synchronous connections (eSCO), for
enhanced voice quality by allowing for retransmission of
dropped packets.
■
Adaptive frequency hopping (AFH) for reducing radio
frequency interference.
■
Interface support, host controller interface (HCI) using a USB
or high–speed UART interface and PCM for audio data.
■
USB 2.0 full–speed (12 Mbps) supported for Bluetooth.
■
The FM unit supports HCI for communication.
■
Low power consumption improves battery life of handheld
devices.
■
FM receiver: 65 MHz to 108 MHz FM bands; supports the
European radio data systems (RDS) and the North American
radio broadcast data system (RBDS) standards.
■
Supports multiple simultaneous Advanced Audio Distribution
Profiles (A2DP) for stereo sound.
■
Internal fractional nPLL allows support for a wide range of
reference clock frequencies
■
■
Supports IEEE 802.15.2 external coexistence interface to
optimize bandwidth utilization with other co–located wireless.
technologies such as LTE or GPS.
Automatic frequency detection for standard crystal and TCXO
values.
■
Supports serial flash interfaces.
■
Supports standard SDIO v3.0 (up to SDR104 mode at
208 MHz, 4–bit and 1-bit) host interfaces.
■
Supports battery range from 3.0V to 5.25V supplies with
internal switching regulator.
■
Backward compatible with SDIO v2.0 host interfaces.
■
Programmable dynamic power management
■
Alternative host interface supports HSIC v1.0
■
484 bytes of user-accessible OTP for storing board parameters
■
PCIe mode complies with PCI Express base specification
revision 3.0 for ×1 lane and power management running at
Gen1 speeds.
■
GPIOs: 11 in WLBGA, 16 in WLCSP
■
Package options:
❐ 192-ball WLBGA (4.87 mm × 7.67 mm, 0.4 mm pitch
❐ 395-bump WLCSP (4.87 mm × 7.67 mm, 0.2 mm pitch)
■
Security:
❐ WPA™ and WPA2™ (Personal) support for powerful encryption and authentication
❐ AES and TKIP in hardware for faster data encryption and
IEEE 802.11i compatibility
®
❐ Reference WLAN subsystem provides Cisco Compatible
Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0)
❐ Reference WLAN subsystem provides Wi-Fi Protected Setup
(WPS)
■
Worldwide regulatory support: Global products supported with
worldwide homologated design.
■
■
Integrated ARMCR4™ processor with tightly coupled memory
for complete WLAN subsystem functionality, minimizing the
need to wake up the applications processor for standard WLAN
functions. This allows for further minimization of power
consumption, while maintaining the ability to field upgrade with
future features. On–chip memory includes 768 KB SRAM and
640 KB ROM.
General Features
OneDriver™ software architecture for easy migration from
existing embedded WLAN and Bluetooth devices as well as
future devices.
Document Number: 002-14809 Rev. *L
Page 2 of 162
CYW4354
Figure 1. Functional Block Diagram
VIO
VBAT
WL_REG_ON
WLAN
Host I/F
PCIe
SDIO
5G WLAN
HSIC
T/R Switch
COEX
CLK_REQ
BT_REG_ON
2G WLAN
T/R Switch
5G WLAN
T/R Switch
CYW4354
USB 2.0
I2S
PCM
Ant0
Diplexer
UART
Bluetooth Host I/F
FM Rx Host I/F
Ant1
Diplexer
External
Coexistence I/F
2G WLAN Tx
2.G WL/BT Rx
3PST Switch
BT_DEV_WAKE
BT_HOST_WAKE
FM Audio Out
FM I/F
Document Number: 002-14809 Rev. *L
BT Tx
FM Rx
2
IS
Page 3 of 162
CYW4354
Contents
1. Overview ........................................................................ 6
1.1 Overview ............................................................... 6
1.2 Features....................................................................... 8
1.3 Standards Compliance............................................... 9
2. Power Supplies and Power Management ................. 10
2.1 Power Supply Topology ...................................... 10
2.2 CYW4354 PMU Features .................................... 10
2.3 WLAN Power Management ...................................... 12
2.4 PMU Sequencing ...................................................... 12
2.5 Power-Off Shutdown ................................................ 13
2.6 Power-Up/Power-Down/Reset Circuits ............... 13
3. Frequency References ............................................... 14
3.1 Crystal Interface and Clock Generation .............. 14
3.2 External Frequency Reference ............................ 14
3.3 External 32.768 kHz Low-Power Oscillator ......... 16
4. Bluetooth + FM Subsystem Overview ...................... 17
4.1 Features .............................................................. 17
4.2 Bluetooth Radio........................................................ 18
5. Bluetooth Baseband Core ......................................... 20
5.1 Bluetooth 4.1 Features ........................................ 20
5.2 Bluetooth Low Energy ......................................... 20
5.3 Link Control Layer.................................................... 20
5.4 Test Mode Support .............................................. 20
5.5 Bluetooth Power Management Unit ..................... 21
5.6 Adaptive Frequency Hopping .............................. 24
5.7 Advanced Bluetooth/WLAN Coexistence............... 25
5.8 Fast Connection (Interlaced Page and Inquiry
Scans) ....................................................................... 25
6. Microprocessor and Memory Unit for Bluetooth ..... 26
6.1 RAM, ROM, and Patch Memory .......................... 26
6.2 Reset ................................................................... 26
7. Bluetooth Peripheral Transport Unit ........................ 27
7.1 SPI Interface ........................................................ 27
7.2 SPI/UART Transport Detection ........................... 27
7.3 PCM Interface ..................................................... 27
7.4 USB Interface ............................................................ 35
7.5 UART Interface.......................................................... 37
7.6 I2S Interface............................................................... 39
8. FM Receiver Subsystem ............................................ 42
8.1 FM Radio ............................................................. 42
8.2 Digital FM Audio Interfaces ................................. 42
8.3 FM Over Bluetooth .............................................. 42
8.4 eSCO ................................................................... 42
8.5 Wide Band Speech Link ...................................... 42
8.6 A2DP ................................................................... 42
8.7 Autotune and Search Algorithms ......................... 42
8.8 Audio Features ......................................................... 43
8.9 RDS/RBDS .......................................................... 45
9. WLAN Global Functions ............................................ 46
9.1 WLAN CPU and Memory Subsystem .................. 46
9.2 One-Time Programmable Memory ...................... 46
9.3 GPIO Interface .................................................... 46
9.4 External Coexistence Interface ........................... 46
9.5 UART Interface .................................................... 47
9.6 JTAG Interface .................................................... 47
Document Number: 002-14809 Rev. *L
9.7 SPROM Interface ................................................ 48
9.8 SFLASH Interface ............................................... 48
10. WLAN Host Interfaces .............................................. 49
10.1 SDIO v3.0 .......................................................... 49
10.2 HSIC Interface .................................................. 50
10.3 PCI Express Interface ....................................... 51
11. Wireless LAN MAC and PHY ................................... 54
11.1 IEEE 802.11ac Draft MAC ................................. 54
11.2 IEEE 802.11ac Draft PHY ................................. 57
12. WLAN Radio Subsystem ......................................... 59
12.1 Receiver Path .................................................... 59
12.2 Transmit Path .................................................... 59
12.3 Calibration ......................................................... 60
13. Pinout and Signal Descriptions .............................. 61
13.1 Ball Maps ........................................................... 61
13.2 Pin Lists ............................................................. 63
13.3 Signal Descriptions ................................................ 80
13.4 WLAN/BT GPIO Signals and Strapping Options 94
13.5 GPIO Alternative Signal Functions ....................... 95
13.6 I/O States .......................................................... 97
14. DC Characteristics ................................................. 100
14.1 Absolute Maximum Ratings ............................. 100
14.2 Environmental Ratings .................................... 100
14.3 Electrostatic Discharge Specifications ............ 100
14.4 Recommended Operating Conditions and DC
Characteristics ................................................. 101
15. Bluetooth RF Specifications .................................. 103
16. FM Receiver Specifications ................................... 109
17. WLAN RF Specifications ........................................ 113
17.1 Introduction ...................................................... 113
17.2 2.4 GHz Band General RF Specifications ....... 113
17.3 WLAN 2.4 GHz Receiver Performance
Specifications .................................................. 114
17.4 WLAN 2.4 GHz Transmitter Performance
Specifications .................................................. 120
17.5 WLAN 5 GHz Receiver Performance
Specifications ....................................................... 121
17.6 WLAN 5 GHz Transmitter Performance
Specifications ....................................................... 128
18. Internal Regulator Electrical Specifications ........ 129
18.1 Core Buck Switching Regulator ....................... 129
18.2 3.3V LDO (LDO3P3) ....................................... 129
18.3 3.3V LDO (LDO3P3_B) ................................... 131
18.4 2.5V LDO (BTLDO2P5) ......................................... 132
18.5 CLDO ..................................................................... 133
18.6 LNLDO ................................................................... 134
19. System Power Consumption ................................. 135
19.1 WLAN Current Consumption ........................... 135
19.2 Bluetooth and FM Current Consumption ........... 137
20. Interface Timing and AC Characteristics ............. 138
20.1 SDIO Timing .................................................... 138
20.2 HSIC Interface Specifications .......................... 146
20.3 PCI Express Interface Parameters ...................... 147
20.4 JTAG Timing ........................................................ 148
21. Power-Up Sequence and Timing ........................... 149
Page 4 of 162
CYW4354
21.1 Sequencing of Reset and Regulator Control
Signals ............................................................. 149
22. Package Information .............................................. 153
22.1 Package Thermal Characteristics ................... 153
22.2 Junction Temperature Estimation and PSIJT
Versus ThetaJC ................................................ 153
22.3 Environmental Characteristics ......................... 153
Document Number: 002-14809 Rev. *L
23. Mechanical Information ......................................... 154
24. Ordering Information .............................................. 158
25. Additional Information ........................................... 158
25.1 IoT Resources ................................................. 158
25.2 Acronyms and Abbreviations ........................... 158
Document History ........................................................ 159
Sales, Solutions, and Legal Information ................... 162
Page 5 of 162
CYW4354
1. Overview
1.1 Overview
The Cypress CYW4354 single-chip device provides the highest level of integration for a mobile or handheld wireless
system, with integrated IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 4.1 + EDR (enhanced data rate), and
FM receiver. It provides a small form-factor solution with minimal external components to drive down cost for mass
volumes and allows for handheld device flexibility in size, form, and function. Comprehensive power management
circuitry and software ensure the system can meet the needs of highly mobile devices that require minimal power
consumption and reliable operation.
Figure 2 on page 7 shows the interconnect of all the major physical blocks in the CYW4354 and their associated external interfaces,
which are described in greater detail in the following sections.
Table 2. Device Options and Features
Feature
Package ball count
WLBGA
192 pins
WLCSP
395 bumps
PCIe
Yes
Yes
USB2.0 (Bluetooth)
Yes
Yes
HSIC
Yes
Yes
Multiplexed onto six parallel flash pins
No
I
2S
GPIO
11
16
SDIO 3.0
Yes
Yes
Document Number: 002-14809 Rev. *L
Page 6 of 162
CYW4354
Figure 2. CYW4354 Block Diagram
CYW4354
JTAG
WLAN
BT/FM
FM RF
FM Digital
Cortex M3
PMU
Controller
HSIC
ETM
JTAG
SDP
FM RX
*SDIO or *PCIe 2.0
PCIe
Debug
LPO
XTAL OSC
RAM
ROM
APB
Patch
WD Timer
Inter Ctrl
SW Timer
DMA
GPIO Ctrl
Bus Arb
AHB
RAM
Debug UART
CLB
I2S/PCM1
802.11abgn
SMPS Control
GNSS LNA ANT
Control
BTFM Control Clock
Sleep
Clock
Timer Management
Wake/Sleep
Control
Coex
LPO
PMU
XO
Buffer
PMU
Controller
BT‐WLAN ECI
POR
JTAG
JTAG
I2S/PCM2
GPIO
UART
UART
2X2 LCNXNPHY
IO Port Control
BT Digital IO
ROM
BT RF
BT PHY
GPIO
OTP
GPIO
SLIMBus
MEIF
OTP
ARM
AXI BACKPLANE
AHB2 APB
Bridge
XTAL
POR
JTAG
AHB Bus Matrix
UART
Power Supply
LDO
SDIO
AHB
PTU
SW REG
Radio
CORE1
CORE1
2.4 GHz
5 GHz
2.4 GHz
5 GHz
FMRX
5 GHz IPA
BPF
LNA
2.4 GHz IPA
Diplexer
BPF
LNA
5 GHz IPA
BPF
LNA
2.4 GHz IPA
Diplexer
BPF
Shared LNA
BT RX
BT TX
XTAL
Document Number: 002-14809 Rev. *L
VBAT VREG
POR
EXT LNA RF Switch Control
Page 7 of 162
CYW4354
1.2 Features
The CYW4354 supports the following features:
■
IEEE 802.11a/b/g/n/ac dual-band 2x2 MIMO radio with virtual-simultaneous dual-band operation
■
Bluetooth v4.1 + EDR with integrated Class 1 PA
■
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation
■
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality
■
Single- and dual-antenna support
❐ Single antenna with shared LNA
❐ Simultaneous BT/WLAN receive with single antenna
■
WLAN host interface options:
❐ SDIO v3.0 (1-bit/4-bit)—up to 208 MHz clock rate in SDR104 mode
❐ HSIC (USB device interface for short distance on-board applications)
❐ PCIe 2.0
■
BT host digital interface (can be used concurrently with above interfaces):
❐ UART (up to 4 Mbps)
■
BT supports full-speed USB 2.0-compliant interface
■
ECI—enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives
■
I2S/PCM for FM/BT audio, HCI for FM block control
■
HCI high-speed UART (H4, H4+, H5) transport support
■
Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air coding, both through I2S
and PCM interface)
■
Bluetooth SmartAudio® technology improves voice and music quality to headsets
■
Bluetooth low power inquiry and page scan
■
Bluetooth Low Energy (BLE) support
■
Bluetooth Packet Loss Concealment (PLC)
■
Bluetooth Wide Band Speech (WBS)
■
FM advanced internal antenna support
■
FM auto search/tuning functions
■
FM multiple audio routing options: I2S, PCM, eSCO, and A2DP
■
FM mono-stereo blend and switch, and soft mute support
■
FM audio pause detect support
■
Audio rate-matching algorithms
■
Multiple simultaneous A2DP audio stream
■
FM over Bluetooth operation and on-chip stereo headset emulation (SBC)
Document Number: 002-14809 Rev. *L
Page 8 of 162
CYW4354
1.3 Standards Compliance
The CYW4354 supports the following standards:
■
Bluetooth 2.1 + EDR
■
Bluetooth 3.0 + HS
■
Bluetooth 4.1 (Bluetooth Low Energy)
■
65 MHz to 108 MHz FM bands (US, Europe, and Japan)
■
IEEE802.11ac mandatory and optional requirements for 20 MHz, 40 MHz, and 80 MHz channels
■
IEEE 802.11n—Handheld Device Class (Section 11)
■
IEEE 802.11a
■
IEEE 802.11b
■
IEEE 802.11g
■
IEEE 802.11d
■
IEEE 802.11h
■
IEEE 802.11i
■
Security:
❐ WEP
❐ WPA™ Personal
❐ WPA2™ Personal
❐ WMM
❐ WMM-PS (U-APSD)
❐ WMM-SA
❐ AES (Hardware Accelerator)
❐ TKIP (HW Accelerator)
❐ CKIP (SW Support)
■
Proprietary Protocols:
❐ CCXv2
❐ CCXv3
❐ CCXv4
❐ CCXv5
■
IEEE 802.15.2 Coexistence Compliance—on silicon solution compliant with IEEE 3 wire requirements
The CYW4354 will support the following future drafts/standards:
■
IEEE 802.11r—Fast Roaming (between APs)
■
IEEE 802.11w—Secure Management Frames
■
IEEE 802.11 Extensions:
®
❐ IEEE 802.11e QoS Enhancements (In accordance with the WMM specification, QoS is already supported.)
❐ IEEE 802.11h 5 GHz Extensions
❐ IEEE 802.11i MAC Enhancements
❐ IEEE 802.11k Radio Resource Measurement
Document Number: 002-14809 Rev. *L
Page 9 of 162
CYW4354
2. Power Supplies and Power Management
2.1 Power Supply Topology
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW4354. All regulators
are programmable via the PMU. These blocks simplify power supply design for Bluetooth, WLAN, and FM functions in embedded
designs.
A single VBAT (3.0V to 5.25V DC max.) and VIO supply (1.8V to 3.3V) can be used, with all additional voltages being provided by the
regulators in the CYW4354.
Two control signals, BT_REG_ON and WL_REG_ON, are used to power-up the regulators and take the respective section out of
reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are deasserted. All regulators are powered down only
when both BT_REG_ON and WL_REG_ON are deasserted. The CLDO and LNLDO may be turned off/on based on the dynamic
demands of the digital baseband.
The CYW4354 allows for an extremely low power-consumption mode by completely shutting down the CBUCK, CLDO, and LNLDO
regulators. When in this state, LPLDO1 (which is a low-power linear regulator supplied by the system VIO supply) provides the
CYW4354 with all the voltages it requires, further reducing leakage currents.
2.2 CYW4354 PMU Features
■
VBAT to 1.35Vout (600 mA maximum) Core-Buck (CBUCK) switching regulator
■
VBAT to 3.3Vout (600 mA maximum) LDO3P3
■
VBAT to 3.3Vout (150 mA maximum) LDO3P3_B
■
VBAT to 2.5V out (70 mA maximum) BTLDO2P5
■
1.35V to 1.2Vout (150 mA maximum) LNLDO
■
1.35V to 1.2Vout (300 mA maximum) CLDO with bypass mode for deep-sleep
■
Additional internal LDOs (not externally accessible)
Figure 3 on page 11 illustrates the typical power topology for the CYW4354. The shaded areas are internal to the CYW4354.
Document Number: 002-14809 Rev. *L
Page 10 of 162
CYW4354
Figure 3. Typical Power Topology for the CYW4354
Internal LNLDO
Internal LNLDO
Internal VCOLDO
Internal LNLDO
XTAL LDO
1.2V
WL RF – AFE
1.2V
WL RF – TX (2.4 GHz, 5 GHz)
1.2V
WL RF – LOGEN (2.4 GHz, 5 GHz)
1.2V
WL RF – RX/LNA (2.4 GHz, 5 GHz)
1.2V
WL RF – XTAL
WL RF – RFPLL PFD/MMD
LNLDO
Max 150 mA
1.2V
BT RF/FM
HSIC/DFE/DFLL
WL_REG_ON
PCIE PLL/RXTX
BT_REG_ON
Core Buck
Regulator
CBUCK
Max 600 mA
VBAT
WLAN BBPLL/DFLL
1.35V
WLAN/BT/CLB/Top, always on
WL OTP
VDDIO
LPLDO1
3 mA
1.1V
CLDO
Max 300 mA
(Bypass in deep
sleep)
WL PHY
1.2V– 1.1V
WL DIGITAL
BT DIGITAL
WL/BT SRAMs
BTLDO2P5
Max 70 mA
2.5V
BT CLASS 1 PA
WL RF‐PA (2.4G, 5G)
LDO3P3
Max 600 mA
WL PAD (2.4 GHz, 5 GHz)
3.3V
VDDIO_RF
3.3V
Internal LNLDO
Internal LNLDO
Document Number: 002-14809 Rev. *L
2.5V
LDO3P3_B
Max 150 mA
2.5V
WL OTP 3.3V
WL RF – VCO
WL RF – CP
Page 11 of 162
CYW4354
2.3 WLAN Power Management
The CYW4354 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the chip
design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage current and
supply voltages. Additionally, the CYW4354 integrated RAM is a high Vt memory with dynamic clock control. The dominant supply
current consumed by the RAM is leakage current only. Additionally, the CYW4354 includes an advanced WLAN power management
unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the CYW4354 into various power
management states appropriate to the current environment and activities that are being performed. The power management unit
enables and disables internal regulators, switches, and other blocks based on a computation of the required resources and a table
that describes the relationship between resources and the time needed to enable and disable them. Power up sequences are fully
programmable. Configurable, free-running counters (running at 32.768 kHz LPO clock) in the PMU sequencer are used to turn on/
turn off individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for the current mode.
Slower clock speeds are used wherever possible.
The CYW4354 WLAN power states are described as follows:
■
Active mode— All WLAN blocks in the CYW4354 are powered up and fully functional with active carrier sensing and frame transmission and receiving. All required regulators are enabled and put in the most efficient mode based on the load current. Clock
speeds are dynamically adjusted by the PMU sequencer.
■
Deep-sleep mode—Most of the chip including both analog and digital domains and most of the regulators are powered off. All main
clocks (PLL, crystal oscillator, or TCXO) are shut down to reduce active power to the minimum. The 32.768 kHz LPO clock is available
only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition to Active
mode. Logic states in the digital core are saved and preserved into a retention memory in the always-ON domain before the digital
core is powered off. Upon a wake-up event triggered by the PMU timers, an external interrupt or a host resume through the HSIC
or SDIO bus, logic states in the digital core are restored to their pre-deep-sleep settings to avoid lengthy HW reinitialization. In Deepsleep mode, the primary source of power consumption is leakage current.
■
Power-down mode—The CYW4354 is effectively powered off by shutting down all internal regulators. The chip is brought out of
this mode by external logic re-enabling the internal regulators.
2.4 PMU Sequencing
The PMU sequencer is responsible for minimizing system power consumption. It enables and disables various system resources
based on a computation of the required resources and a table that describes the relationship between resources and the time needed
to enable and disable them.
Resource requests may come from several sources: clock requests from cores, the minimum resources defined in the ResourceMin
register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of
resources required to produce the requested clocks.
Each resource is in one of four states: enabled, disabled, transition_on, and transition_off and has a timer that contains 0 when the
resource is enabled or disabled and a non-zero value in the transition states. The timer is loaded with the time_on or time_off value
of the resource when the PMU determines that the resource must be enabled or disabled. That timer decrements on each 32.768 kHz
PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to enabled. If the time_on value is
0, the resource can go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go
immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the immediate transition or
the timer load-decrement sequence.
During each clock cycle, the PMU sequencer performs the following actions:
■
Computes the required resource set based on requests and the resource dependency table.
■
Decrements all timers whose values are non zero. If a timer reaches 0, the PMU clears the ResourcePending bit for the resource
and inverts the ResourceState bit.
■
Compares the request with the current resource status and determines which resources must be enabled or disabled.
■
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no powered up dependents.
■
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies enabled.
Document Number: 002-14809 Rev. *L
Page 12 of 162
CYW4354
2.5 Power-Off Shutdown
The CYW4354 provides a low-power shutdown feature that allows the device to be turned off while the host, and any other devices
in the system, remain operational. When the CYW4354 is not needed in the system, VDDIO_RF and VDDC are shut down while
VDDIO remains powered. This allows the CYW4354 to be effectively off while keeping the I/O pins powered so that they do not draw
extra current from any other devices connected to the I/O.
During a low-power shut-down state, provided VDDIO remains applied to the CYW4354, all outputs are tristated, and most inputs
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths
or create loading on any digital signals in the system, and enables the CYW4354 to be fully integrated in an embedded device and
take full advantage of the lowest power-savings modes.
When the CYW4354 is powered on from this state, it is the same as a normal power-up and the device does not retain any information
about its state from before it was powered down.
2.6 Power-Up/Power-Down/Reset Circuits
The CYW4354 has two signals (see Table 3) that enable or disable the Bluetooth and WLAN circuits and the internal regulator blocks,
allowing the host to control power consumption. For timing diagrams of these signals and the required power-up sequences, see
Power-Up Sequence and Timing on page 149.
Table 3. Power-Up/Power-Down/Reset Control Signals
Signal
Description
WL_REG_ON
This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is also OR-gated with the
BT_REG_ON input to control the internal CYW4354 regulators. When this pin is high, the regulators are enabled
and the WLAN section is out of reset. When this pin is low, the WLAN section is in reset. If BT_REG_ON and
WL_REG_ON are both low, the regulators are disabled. This pin has an internal 200 kΩ pull-down resistor that is
enabled by default. It can be disabled through programming.
BT_REG_ON
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal CYW4354
regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be disabled. This pin has an internal
200 kΩ pull-down resistor that is enabled by default. It can be disabled through programming.
Document Number: 002-14809 Rev. *L
Page 13 of 162
CYW4354
3. Frequency References
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency
reference may be used. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.
3.1 Crystal Interface and Clock Generation
The CYW4354 can use an external crystal to provide a frequency reference. The recommended configuration for the crystal oscillator
including all external components is shown in Figure 4. Consult the reference schematics for the latest configuration.
Figure 4. Recommended Oscillator Configuration
C*
WRF_XTAL_IN
37.4 MHz
C*
X ohms*
WRF_XTAL_OUT
*Values determined by crystal
drive level. See reference
schematics for details.
A fractional-N synthesizer in the CYW4354 generates the radio frequencies, clocks, and data/packet timing, enabling it to operate
using a wide selection of frequency references.
For SDIO, HSIC, and PCIe WLAN host applications, the recommended default frequency reference is a 37.4 MHz crystal. For PCIe
applications, see Table 4 on page 15 for details on alternatives for the external frequency reference. The signal characteristics for the
crystal oscillator interface are also listed in Table 4.
For SDIO WLAN host applications, the recommended default frequency reference is a 37.4 MHz crystal. The signal characteristics
for the crystal oscillator interface are also listed in Table 4.
Note:
Although the fractional-N synthesizer can support alternative reference frequencies, frequencies other than the default require support
to be added in the driver, plus additional extensive system testing. Contact Broadcom for further details.
3.2 External Frequency Reference
For operation in SDIO and HSIC modes only, an alternative to a crystal (an external precision frequency reference) can be used. The
recommended default frequency is 52 MHz ±10 ppm, and it must meet the phase noise requirements listed in Table 4.
If used, the external clock should be connected to the WRF_XTAL_IN pin through an external 1000 pF coupling capacitor, as shown
in Figure 5. The internal clock buffer connected to this pin will be turned OFF when the CYW4354 goes into sleep mode. When the
clock buffer turns ON and OFF there will be a small impedance variation. Power must be supplied to the WRF_XTAL_VDD1P5 pin.
Figure 5. Recommended Circuit to Use with an External Reference Clock
1000 pF
Reference
Clock
WRF_XTAL_IN
NC
Document Number: 002-14809 Rev. *L
WRF_XTAL_OUT
Page 14 of 162
CYW4354
Table 4. Crystal Oscillator and External Clock—Requirements and Performance
Parameter
Min.
Frequency
External Frequency Referenceb,c
Crystala
Conditions/Notes
Typ.
Max.
Min.
Typ.
Max.
Units
2.4G and 5G bands: IEEE 802.11ac
operation, SDIO3.0, HSIC and PCIe
WLAN interfaces
35
37.4
–
–
52
–
MHz
2.4G and 5G bands, IEEE 802.11ac
operation, PCIe interface alternative
frequency
–
40
–
–
–
–
MHz
–
52
35
–
52
MHz
5G band: IEEE 802.11n operation only 19
2.4G band: IEEE 802.11n operation,
and both bands legacy 802.11a/b/g
operation only
Ranges between 19 MHz and 52 MHz
d,e
Frequency tolerance over Without trimming
the lifetime of the
equipment, including
temperaturef
–20
–
20
–20
–
20
ppm
Crystal load capacitance
–
–
12
–
–
–
–
pF
ESR
–
–
–
60
–
–
–
Ω
Drive level
External crystal must be able to
tolerate this drive level.
200
–
–
–
–
–
µW
Input impedance
(WRF_XTAL_IN)
Resistive
–
–
–
30
100
–
kΩ
Capacitive
–
–
7.5
–
–
7.5
pF
WRF_XTAL_IN
Input low level
DC-coupled digital signal
–
–
–
0
–
0.2
V
WRF_XTAL_IN
Input high level
DC-coupled digital signal
–
–
–
1.0
–
1.26
V
WRF_XTAL_IN
input voltage
(see Figure 5)
AC-coupled analog signal
–
–
–
400
–
1200
mVp-p
Duty cycle
37.4 MHz clock
–
–
–
40
50
60
%
g
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–129
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–136
dBc/Hz
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–137
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–144
dBc/Hz
37.4 MHz clock at 10 kHz offset
Phase Noise
(IEEE 802.11n, 2.4 GHz)
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–134
dBc/Hz
–
–
–
–
–
–141
dBc/Hz
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–142
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–149
dBc/Hz
Phase Noise
(IEEE 802.11b/g)
g
Phase Noise
(IEEE 802.11a)
g
g,h
Phase Noise
(IEEE 802.11n, 5 GHz)
g
Phase Noise
(IEEE 802.11ac, 5 GHz)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–150
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–157
dBc/Hz
a. (Crystal) Use WRF_XTAL_IN and WRF_XTAL_OUT.
b. See “External Frequency Reference” on page 14 for alternate connection methods.
c. For a clock reference other than 37.4 MHz, 20 × log10(f/ 37.4) dB should be added to the limits, where f = the reference clock frequency in MHz.
Document Number: 002-14809 Rev. *L
Page 15 of 162
CYW4354
d. BT_TM6 should be tied low for a 52 MHz clock reference. For other frequencies, BT_TM6 should be tied high. Note that 52 MHz is not an
auto–detected frequency using the LPO clock.
e. The frequency step size is approximately 80 Hz resolution.
f. It is the responsibility of the equipment designer to select oscillator components that comply with these specifications.
g. Assumes that external clock has a flat phase noise response above 100 kHz.
h. If the reference clock frequency is 100k
Ω
0.35T
tHC > 0.35T
V H = 2.0V
SCK
V L = 0.8V
thtr > 0
totr < 0.8T
SD and WS
T = Clock period
Ttr = Minimum allowed clock period for transmitter
T = Ttr
* tRC is only relevant for transmitters in slave mode.
Figure 20. I2S Receiver Timing
T
tLC > 0.35T
tHC > 0.35
VH = 2.0V
SCK
VL = 0.8V
tsr > 0.2T
thr > 0
SD and WS
T = Clock period
Tr = Minimum allowed clock period for transmitter
T > Tr
Document Number: 002-14809 Rev. *L
Page 41 of 162
CYW4354
8. FM Receiver Subsystem
8.1 FM Radio
The CYW4354 includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands from 65 MHz to 108 MHz.
The receiver is controlled through commands on the HCI. FM received audio is available as stereo or in digital form through I2S or
PCM. The FM radio operates from the external clock reference.
8.2 Digital FM Audio Interfaces
The FM audio can be transmitted via the shared PCM and I2S pins, and the sampling rate is programmable. The CYW4354 supports
a three-wire PCM or I2S audio interface in either master or slave configuration. The master or slave configuration is selected using
vendor specific commands over the HCI interface. In addition, multiple sampling rates are supported, derived from either the FM or
Bluetooth clocks. In master mode, the clock rate is either of the following:
■
48 kHz × 32 bits per frame = 1.536 MHz
■
48 kHz × 50 bits per frame = 2.400 MHz
In slave mode, any clock rate is supported up to a maximum of 3.072 MHz.
8.3 FM Over Bluetooth
The CYW4354 can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS, and A2DP. In all of the
above modes, once the link has been set up, the host processor can enter sleep mode while the CYW4354 continues to stream FM
audio to the remote Bluetooth device, allowing the system current consumption to be minimized.
8.4 eSCO
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is then sent through the Bluetooth eSCO
link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.
8.5 Wide Band Speech Link
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is then sent through the Bluetooth wideband
speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.
8.6 A2DP
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a remote Bluetooth
device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP “lite” stack is implemented in the
CYW4354 to support this use case, which eliminates the need to route the SBC-encoded audio back to the host to create the A2DP
packets.
8.7 Autotune and Search Algorithms
The CYW4354 supports a number of FM search and tune functions that allows the host to implement many convenient user functions,
which are accessed through the Broadcom FM stack.
■
Tune to Play: Allows the FM receiver to be programmed to a specific frequency.
■
Search for SNR > Threshold: Checks the power level of the available channel and the estimated SNR of the channel to help achieve
precise control of the expected sound quality for the selected FM channel. Specifically, the host can adjust its SNR requirements to
retrieve a signal with a specific sound quality, or adjust this to return the weakest channels.
■
Alternate Frequency Jump: Allows the FM receiver to automatically jump to an alternate FM channel that carries the same information,
but has a better SNR. For example, when traveling, a user may pass through a region where a number of channels carry the same
station. When the user passes from one area to the next, the FM receiver can automatically switch to another channel with a stronger
signal to spare the user from having to manually change the channel to continue listening to the same station.
Document Number: 002-14809 Rev. *L
Page 42 of 162
CYW4354
8.8 Audio Features
A number of features are implemented in the CYW4354 to provide the best possible audio experience for the user.
■
Mono/Stereo Blend or Switch: The CYW4354 provides automatic control of the stereo or mono settings based on the FM signal
carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio SNR based on the FM channel condition. Two
modes of operation are supported:
❐ Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a wide range of input C/N. The
amount of separation is fully programmable. In Figure 21, the separation is programmed to maintain a minimum 50 dB SNR across
the blend range.
❐ Extended blend: In this mode, stereo separation is maximized across a wide range of input CNR. Broadcom static suppression
typically gives a static-free user experience to within 3 dB of ultimate sensitivity.
Figure 21. Example Blend/Switch Usage
❐
Switch: In this mode, the audio switches from full stereo to full mono at a predetermined level to maintain optimal audio quality.
The stereo-to-mono switch point and the mono-to-stereo switch points are fully programmable to provide the desired amount of
audio SNR. In Figure 22, the switch point is programmed to switch to mono to maintain a 40 dB SNR.
Document Number: 002-14809 Rev. *L
Page 43 of 162
CYW4354
Figure 22. Example Blend/Switch Separation
■
Soft Mute: Improves the user experience by dynamically muting the output audio proportionate to the FM signal C/N. This prevents
the user from being assaulted with a blast of static. The mute characteristic is fully programmable to accommodate fine tuning of
the output signal level. An example mute characteristic is shown in Figure 23.
Figure 23. Example Soft Mute Characteristic
■
High Cut: A programmable high-cut filter is provided to reduce the amount of high-frequency noise caused by static in the output
audio signal. Like the soft mute circuit, it is fully programmable to allow for any amount of high cut based on the FM signal C/N.
Document Number: 002-14809 Rev. *L
Page 44 of 162
CYW4354
■
Audio Pause Detect: The FM receiver monitors the magnitude of the audio signal and notifies the host through an interrupt when
the magnitude of the signal has fallen below the threshold set for a programmable period. This feature can be used to provide
alternate frequency jumps during periods of silence to minimize disturbances to the listener. Filtering techniques are used within the
audio pause detection block to provide more robust presence-to-silence detection and silence-to-presence detection.
■
Automatic Antenna Tuning: The CYW4354 has an on-chip automatic antenna tuning network. When used with a single off-chip
inductor, the on-chip circuitry automatically chooses an optimal on-chip matching component to obtain the highest signal strength
for the desired frequency. The high-Q nature of this matching network simultaneously provides out-of-band blocking protection as
well as a reduction of radiated spurious emissions from the FM antenna. It is designed to accommodate a wide range of external
wire antennas.
8.9 RDS/RBDS
The CYW4354 integrates a RDS/RBDS modem and codec, the decoder includes programmable filtering and buffering functions, and
the encoder includes the option to encode messages to PS or RT frame format with programmable scrolling in PS mode. The RDS/
RBDS data can be read out in receive mode or delivered in transmit mode through either the HCI interface.
In addition, the RDS/RBDS functionality supports the following:
Receive
■
Block decoding, error correction and synchronization
■
Flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and loss of sync. (It is possible
to set up the CYW4354 such that synch is achieved when a minimum of two good blocks (error free) are decoded in sequence. The
number of good blocks required for sync is programmable.)
■
Storage capability up to 126 blocks of RDS data
■
Full or partial block B match detect and interrupt to host
■
Audio pause detection with programmable parameters
■
Program Identification (PI) code detection and interrupt to host
■
Automatic frequency jump
■
Block E filtering
■
Soft mute
■
Signal dependent mono/stereo blend
■
Programmable pre-emphasis
Document Number: 002-14809 Rev. *L
Page 45 of 162
CYW4354
9. WLAN Global Functions
9.1 WLAN CPU and Memory Subsystem
The CYW4354 WLAN section includes an integrated ARM Cortex-R4™ 32-bit processor with internal RAM and ROM. The ARM
Cortex-R4 is a low-power processor that features low gate count, low interrupt latency, and low-cost debug capabilities. It is intended
for deeply embedded applications that require fast interrupt response features. Delivering a performance gain of more than 30% over
the ARM7TDMI® processor, the ARM Cortex-R4 processor implements the ARM v7-R architecture with support for the Thumb®-2
instruction set.
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available, outperforming 8- and 16-bit
devices on MIPS/µW.
Using multiple technologies to reduce cost, the ARM Cortex-R4 offers improved memory utilization, reduced pin overhead, and
reduced silicon area. It supports independent buses for Code and Data access (ICode/DCode and System buses), integrated sleep
modes, and extensive debug features including real time trace of program execution.
On-chip memory for the CPU includes 768 KB SRAM and 640 KB ROM.
9.2 One-Time Programmable Memory
Various hardware configuration parameters may be stored in an internal One-Time Programmable (OTP) memory, which is read by
the system software after device reset. In addition, customer-specific parameters, including the system vendor ID and the MAC
address can be stored, depending on the specific board design. Up to 484 bytes of user-accessible OTP are available.
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be reprogrammed to 0.
The entire OTP array can be programmed in a single write cycle using a utility provided with the Broadcom WLAN manufacturing test
tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits which are still in the 0 state
can be altered during each programming cycle.
Prior to OTP programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with the
reference board design package.
9.3 GPIO Interface
The CYW4354 has 11 general-purpose I/O (GPIO) pins in the WLAN section that can be used to connect to various external devices.
Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either input or output pins via
the GPIO control register. In addition, the GPIO pins can be assigned to various other functions, see Table 27 on page 95.
9.4 External Coexistence Interface
An external handshake interface is available to enable signaling between the device and an external co-located wireless device, such
as GPS, or LTE, to manage wireless medium sharing for optimal performance.
Figure 24 and Figure 25 on page 47 show the LTE coexistence interface (including UART) for each CYW4354 package type. See
Table 27 on page 95 for further details on multiplexed signals, such as the GPIO pins.
See Table 16 on page 38 for the UART baud rate.
Document Number: 002-14809 Rev. *L
Page 46 of 162
CYW4354
Figure 24. Cypress GCI Mode LTE Coexistence Interface
SECI_OUT
WLAN
SECI_IN
UART_IN
UART_OUT
GCI
BTFM
CYW4354
LTE/IC
Notes:
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by
setting the GPIO mask registers appropriately.
SECI_OUT and SECI_IN are multiplexed on the GPIOs.
Figure 25. Legacy 3-Wire LTE Coexistence Interface
GCI_GPIO_2
WLAN
WCN_PRIORITY
GCI_GPIO_1
GCI
MWS_RX, LTE_PRIORITY
GCI_GPIO_0
LTE_FRAME_SYNC
BT/FM
CYW4354
LTE/IC
Note: OR’ing to generate WCN_PRIORITY FOR ERCX_TXCONF or BT_RX_PRIORITY is achieved by
setting the GPIO mask registers appropriately.
9.5 UART Interface
One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins. Refer to Table 27 on page 95. Provided
primarily for debugging during development, this UART enables the CYW4354 to operate as RS-232 data termination equipment
(DTE) for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550 UART, and
provides a FIFO size of 64 × 8 in each direction.
9.6 JTAG Interface
The CYW4354 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and PCB assembly testing
during manufacturing. In addition, the JTAG interface allows Broadcom to assist customers by using proprietary debug and characterization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins by means of test
points or a header on all PCB designs.
Refer to Table 27 on page 95 for JTAG pin assignments.
Document Number: 002-14809 Rev. *L
Page 47 of 162
CYW4354
9.7 SPROM Interface
Various hardware configuration parameters may be stored in an external SPROM instead of the OTP. The SPROM is
read by system software after device reset. In addition, depending on the board design, customer-specific parameters
may be stored in SPROM.
The four SPROM control signals —SPROM_CS, SPROM_CLK, SPROM_MI, and SPROM_MO are multiplexed on the SDIO interface
(see Table 27 on page 95 for additional details). By default, the SPROM interface supports 2 kbit serial SPROMs, and it can also
support 4 kbit and 16 kbit serial SPROMs by using the appropriate strapping option.
9.8 SFLASH Interface
For use only when the HSIC interface mode is selected, an interface to external SFLASH is available.
The four SFLASH control signals —SFLASH_CS#, SFLASH_CLK, SFLASH_MI, and SFLASH_MO are multiplexed on the SDIO
interface (see Table 27 on page 95 for additional details).
Document Number: 002-14809 Rev. *L
Page 48 of 162
CYW4354
10. WLAN Host Interfaces
10.1 SDIO v3.0
All three package options of the CYW4354 WLAN section provide support for SDIO version 3.0, including the new UHS-I modes:
■
DS: Default speed (DS) up to 25 MHz, including 1- and 4-bit modes (3.3V signaling).
■
HS: High-speed up to 50 MHz (3.3V signaling).
■
SDR12: SDR up to 25 MHz (1.8V signaling).
■
SDR25: SDR up to 50 MHz (1.8V signaling).
■
SDR50: SDR up to 100 MHz (1.8V signaling).
■
SDR104: SDR up to 208 MHz (1.8V signaling)
■
DDR50: DDR up to 50 MHz (1.8V signaling).
Note: The CYW4354 is backward compatible with SDIO v2.0 host interfaces.
The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an interrupt different
from the one provided by the SDIO interface. The ability to force control of the gated clocks from within the device is also provided.
SDIO mode is enabled by strapping options. Refer to Table 24 on page 94 WLAN GPIO Functions and Strapping Options.
The following three functions are supported:
■
Function 0 Standard SDIO function (max. BlockSize/ByteCount = 32B)
■
Function 1 Backplane Function to access the internal system-on-chip (SoC) address space
(max. BlockSize/ByteCount = 64B)
■
Function 2 WLAN Function for efficient WLAN packet transfer through DMA
(max. BlockSize/ByteCount = 512B)
10.1.1 SDIO Pins
Table 18. SDIO Pin Descriptions
SD 4-Bit Mode
SD 1-Bit Mode
DATA0
Data line 0
DATA
Data line
DATA1
Data line 1 or Interrupt
IRQ
Interrupt
DATA2
Data line 2 or Read Wait
RW
Read Wait
DATA3
Data line 3
N/C
Not used
CLK
Clock
CLK
Clock
CMD
Command line
CMD
Command line
Figure 26. Signal Connections to SDIO Host (SD 4-Bit Mode)
CLK
SD Host
CMD
CYW4354
DAT[3:0]
Document Number: 002-14809 Rev. *L
Page 49 of 162
CYW4354
Figure 27. Signal Connections to SDIO Host (SD 1-Bit Mode)
CLK
CMD
SD Host
DATA
CYW4354
IRQ
RW
Note:
Per Section 6 of the SDIO specification, pull-ups in the 10 kΩ to 100 kΩ range are required on the four DATA lines and the CMD line.
This requirement must be met during all operating states either through the use of external pull-up resistors or through proper
programming of the SDIO host’s internal pull-ups.
10.2 HSIC Interface
As an alternative to SDIO, an HSIC host interface can be enabled using the strapping option pins strap_host_ifc_[3:1]. HSIC is a
simplified derivative of the USB2.0 interface designed to replace a standard USB PHY and cable for short distances (up to 10 cm) on
board point-to-point connections. Using two signals, a bidirectional data strobe (STROBE) and a bidirectional DDR data signal (DATA),
it provides high-speed serial 480 Mbps data transfers that are 100% host driver compatible with traditional USB 2.0 cable-connected
topologies.
Figure 28 shows the blocks in the HSIC device core.
Key features of HSIC include:
■
High-speed 480 Mbps data rate
■
Source-synchronous serial interface using 1.2V LVCMOS signal levels
■
No power consumed except when a data transfer is in progress
■
Maximum trace length of 10 cm.
■
No Plug-n-Play support, no hot attach/removal
Document Number: 002-14809 Rev. *L
Page 50 of 162
CYW4354
Figure 28. HSIC Device Block Diagram
32‐Bit On‐Chip Communication System
DMA Engines
RX FIFO
TX FIFOs
TX FIFOs
TX FIFOs
TX FIFOs
TX FIFOs
TX FIFOs
Endpoint Management Unit
USB 2.0 Protocol Engine
HSIC PHY
Strobe
Data
10.3 PCI Express Interface
The PCI Express (PCIe™) core on the CYW4354 is a high-performance serial I/O interconnect that is protocol compliant and electrically compatible with the PCI Express Base Specification v3.0 running at Gen1 speeds. This core contains all the necessary blocks,
including logical and electrical functional subblocks to perform PCIe functionality and maintain high-speed links, using existing PCI
system configuration software implementations without modification.
Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as shown in Figure 29. A
configuration or link management block is provided for enumerating the PCIe configuration space and supporting generation and
reception of System Management Messages by communicating with PCIe layers.
Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication between the host and
CYW4354 device. The transmit side processes outbound packets whereas the receive side processes inbound packets. Packets are
formed and generated in the Transaction and Data Link Layer for transmission onto the high-speed links and onto the receiving device.
A header is added at the beginning to indicate the packet type and any other optional fields.
Figure 29. PCI Express Layer Model
HW /SW Interface
HW /SW Interface
Transaction
Layer
Transaction
Layer
Data Link
Layer
Data Link
Layer
Physical Layer
Physical Layer
Logical Subblock
Logical Subblock
Electrical Subblock
Electrical Subblock
TX
Document Number: 002-14809 Rev. *L
RX
TX
RX
Page 51 of 162
CYW4354
10.3.1 Transaction Layer Interface
The PCIe core employs a packet-based protocol to transfer data between the host and CYW4354 device, delivering new levels of
performance and features. The upper layer of the PCIe is the Transaction Layer. The Transaction layer is primarily responsible for
assembly and disassembly of Transaction Layer Packets (TLPs). TLP structure contains header, data payload, and End-to-End CRC
(ECRC) fields, which are used to communicate transactions, such as read and write requests and other events.
A pipelined full split-transaction protocol is implemented in this layer to maximize efficient communication between devices with creditbased flow control of TLP, which eliminates wasted link bandwidth due to retries.
10.3.2 Data Link Layer
The data link layer serves as an intermediate stage between the transaction layer and the physical layer. Its primary responsibility is
to provide reliable, efficient mechanism for the exchange of TLPs between two directly connected components on the link. Services
provided by the data link layer include data exchange, initialization, error detection and correction, and retry services.
Data Link Layer Packets (DLLPs) are generated and consumed by the data link layer. DLLPs are the mechanism used to transfer link
management information between data link layers of the two directly connected components on the link, including TLP acknowledgement, power management, and flow control.
10.3.3 Physical Layer
The physical layer of the PCIe provides a handshake mechanism between the data link layer and the high-speed signaling used for
Link data interchange. This layer is divided into the logical and electrical functional subblocks. Both subblocks have dedicated transmit
and receive units that allow for point-to-point communication between the host and CYW4354 device. The transmit section prepares
outgoing information passed from the data link layer for transmission, and the receiver section identifies and prepares received
information before passing it to the data link layer. This process involves link initialization, configuration, scrambler, and data
conversion into a specific format.
10.3.4 Logical Subblock
The logical sub block primary functions are to prepare outgoing data from the data link layer for transmission and identify received
data before passing it to the data link layer.
10.3.5 Scrambler/Descrambler
This PCIe PHY component generates pseudo-random sequence for scrambling of data bytes and the idle sequence. On the transmit
side, scrambling is applied to characters prior to the 8b/10b encoding. On the receive side, descrambling is applied to characters after
8b/10b decoding. Scrambling may be disabled in polling and recovery for testing and debugging purposes.
10.3.6 8B/10B Encoder/Decoder
The PCIe core on the CYW4354 uses an 8b/10b encoder/decoder scheme to provide DC balancing, synchronizing clock and data
recovery, and error detection. The transmission code is specified in the ANSI X3.230-1994, clause 11 and in IEEE 802.3z, 36.2.4.
Using this scheme, 8-bit data characters are treated as 3 bits and 5 bits mapped onto a 4-bit code group and a 6-bit code group,
respectively. The control bit in conjunction with the data character is used to identify when to encode one of the twelve Special Symbols
included in the 8b/10b transmission code. These code groups are concatenated to form a 10-bit symbol, which is then transmitted
serially. Special Symbols are used for link management, frame TLPs, and DLLPs, allowing these packets to be quickly identified and
easily distinguished.
10.3.7 Elastic FIFO
An elastic FIFO is implemented in the receiver side to compensate for the differences between the transmit clock domain and the
receive clock domain, with worse case clock frequency specified at 600 ppm tolerance. As a result, the transmit and receive clocks
can shift one clock every 1666 clocks. In addition, the FIFO adaptively adjusts the elastic level based on the relative frequency
difference of the write and read clock. This technique reduces the elastic FIFO size and the average receiver latency by half.
Document Number: 002-14809 Rev. *L
Page 52 of 162
CYW4354
10.3.8 Electrical Subblock
The high-speed signals utilize the Common Mode Logic (CML) signaling interface with on-chip termination and de-emphasis for bestin-class signal integrity. A de-emphasis technique is employed to reduce the effects of Intersymbol Interference (ISI) due to the
interconnect by optimizing voltage and timing margins for worst case channel loss. This results in a maximally open “eye” at the
detection point, thereby allowing the receiver to receive data with acceptable Bit-Error Rate (BER).
To further minimize ISI, multiple bits of the same polarity that are output in succession are de-emphasized. Subsequent same bits are
reduced by a factor of 3.5 dB in power. This amount is specified by PCIe to allow for maximum interoperability while minimizing the
complexity of controlling the de-emphasis values. The high-speed interface requires AC coupling on the transmit side to eliminate the
DC common mode voltage from the receiver. The range of AC capacitance allowed is 75 nF to 200 nF.
10.3.9 Configuration Space
The PCIe function in the CYW4354 implements the configuration space as defined in the PCI Express Base Specification v3.0.
Document Number: 002-14809 Rev. *L
Page 53 of 162
CYW4354
11. Wireless LAN MAC and PHY
11.1 IEEE 802.11ac Draft MAC
The CYW4354 WLAN MAC is designed to support high-throughput operation with low-power consumption. It does so without compromising the Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In addition, several power saving
modes have been implemented that allow the MAC to consume very little power while maintaining network-wide timing synchronization. The architecture diagram of the MAC is shown in Figure 30.
The following sections provide an overview of the important modules in the MAC.
Figure 30. WLAN MAC Architecture
Embedded CPU Interface
Host Registers, DMA Engines
TX‐FIFO
32 KB
PMQ
RX‐FIFO
10 KB
PSM
PSM
UCODE
Memory
IFS
Backoff, BTCX
WEP
TKIP, AES, WAPI
TSF
SHM
BUS
IHR
NAV
EXT‐ IHR
BUS
TXE
TX A‐MPDU
RXE
RX A‐MPDU
Shared Memory
6 KB
MAC‐PHY Interface
The CYW4354 WLAN media access controller (MAC) supports features specified in the IEEE 802.11 base standard, and amended
by IEEE 802.11n. The key MAC features include:
■
Enhanced MAC for supporting IEEE 802.11ac Draft features
■
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT)
■
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP) and multiphase PSMP
operation
■
Support for immediate ACK and Block-ACK policies
■
Interframe space timing support, including RIFS
■
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges
■
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification
■
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time (TBTT)
generation in hardware
■
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management
■
Support for coexistence with Bluetooth and other external radios
Document Number: 002-14809 Rev. *L
Page 54 of 162
CYW4354
■
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality
■
Statistics counters for MIB support
11.1.1 PSM
The programmable state machine (PSM) is a micro-coded engine, which provides most of the low-level control to the hardware, to
implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow control operations, which are predominant in implementations of communication protocols. The instruction set and fundamental operations are simple and general, which
allows algorithms to be optimized until very late in the design process. It also allows for changes to the algorithms to track evolving
IEEE 802.11 specifications.
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for instructions, as a data
store, and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratchpad
memory (similar to a register bank) to store frequently accessed and temporary variables.
The PSM exercises fine-grained control over the hardware engines, by programming internal hardware registers (IHR). These IHRs
are co-located with the hardware functions they control, and are accessed by the PSM via the IHR bus.
The PSM fetches instructions from the microcode memory using an address determined by the program counter, instruction literal,
or a program stack. For ALU operations the operands are obtained from shared memory, scratchpad, IHRs, or instruction literals, and
the results are written into the shared memory, scratchpad, or IHRs.
There are two basic branch instructions: conditional branches and ALU based branches. To better support the many decision points
in the IEEE 802.11 algorithms, branches can depend on either a readily available signals from the hardware modules (branch condition
signals are available to the PSM without polling the IHRs), or on the results of ALU operations.
11.1.2 WEP
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the encryption and decryption, and
MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP, WPA2 AESCCMP.
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to be used. It supplies
the keys to the hardware engines from an on-chip key table. The WEP interfaces with the TXE to encrypt and compute the MIC on
transmit frames, and the RXE to decrypt and verify the MIC on receive frames.
Document Number: 002-14809 Rev. *L
Page 55 of 162
CYW4354
11.1.3 TXE
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit frames
in the TXFIFO. It interfaces with WEP module to encrypt frames, and transfers the frames across the MAC-PHY interface at the
appropriate time determined by the channel access mechanisms.
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical queues to support traffic
streams that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to schedule
a queue from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on a
precise timing trigger received from the IFS module.
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for transmission. The hardware
module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.
11.1.4 RXE
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to drain the received frames
from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames. The
decrypted data is stored in the RXFIFO.
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames based on several criteria
such as receiver address, BSSID, and certain frame types.
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate
them into component MPDUS.
11.1.5 IFS
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also contains multiple
backoff engines required to support prioritized access to the medium as specified by WMM.
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These timers
provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or perform
transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or
pause the backoff counters. When the backoff counters reach 0, the TXE gets notified, so that it may commence frame transmission.
In the event of multiple backoff counters decrementing to 0 at the same time, the hardware resolves the conflict based on policies
provided by the PSM.
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power
save mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized by
the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. Once the timer
expires the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration ensuring that the TSF
is synchronized to the network.
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.
11.1.6 TSF
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon transmission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon
and probe response frames in order to maintain synchronization with the network.
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and downlink
transmission times used in PSMP.
11.1.7 NAV
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received frames.
This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.
11.1.8 MAC-PHY Interface
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is an
programming interface, which can be controlled either by the host or the PSM to configure and control the PHY.
Document Number: 002-14809 Rev. *L
Page 56 of 162
CYW4354
11.2 IEEE 802.11ac Draft PHY
The CYW4354 WLAN Digital PHY (see Figure 31 on page 58) is designed to comply with IEEE 802.11ac Draft and IEEE
802.11a/b/g/n dual-stream specifications to provide wireless LAN connectivity supporting data rates from 1 Mbps to
866.7 Mbps for low-power, high-performance handheld applications.
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other impairments.
It incorporates optimized implementations of the filters, FFT and Viterbi decoder algorithms. Efficient algorithms have
been designed to achieve maximum throughput and reliability, including algorithms for carrier sense/rejection,
frequency/phase/timing acquisition and tracking, channel estimation and tracking. The PHY receiver also contains a
robust IEEE 802.11b demodulator. The PHY carrier sense has been tuned to provide high throughput for IEEE 802.11g/
11b hybrid networks with Bluetooth coexistence. It has also been designed for sharing an antenna between WL and BT
to support simultaneous RX-RX.
The key PHY features include:
■
Programmable data rates from MCS0–15 in 20 MHz, 40 MHz, and 80 MHz channels, as specified in IEEE 802.11ac Draft
■
Supports Optional Short GI and Green Field modes in TX and RX
■
TX and RX LDPC for improved range and power efficiency
■
Beamforming support
■
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse operations in the receive
direction.
■
Supports IEEE 802.11h/k for worldwide operation
■
Advanced algorithms for low power, enhanced sensitivity, range, and reliability
■
Algorithms to improve performance in presence of Bluetooth
■
Closed loop transmit power control
■
Digital RF chip calibration algorithms to handle CMOS RF chip non-idealities
■
On-the-fly channel frequency and transmit power selection
■
Supports per packet RX antenna diversity
■
Available per-packet channel quality and signal strength measurements
■
Designed to meet FCC and other worldwide regulatory requirements
Document Number: 002-14809 Rev. *L
Page 57 of 162
CYW4354
Figure 31. WLAN PHY Block Diagram
CCK/DSSS
Demodulate
Filters and
Radio Comp
Radio Control
Block
Frequency and
Timing Synch
Carrier Sense,
AGC, and Rx FSM
OFDM
Demodulate
Buffers
Viterbi Decoder
Descramble
and Deframe
MAC
Interface
FFT/IFFT
AFE
and
Radio
Tx FSM
Common Logic
Block
Modulation
and Coding
Frame and
Scramble
Filters and Radio
Comp
PA Comp
Modulate/
Spread
COEX
Document Number: 002-14809 Rev. *L
Page 58 of 162
CYW4354
12. WLAN Radio Subsystem
The CYW4354 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in 2.4 GHz and 5 GHz Wireless
LAN systems. It has been designed to provide low-power, low-cost, and robust communications for applications operating in the
globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII bands. The transmit and receive sections include all on-chip filtering, mixing,
and gain control functions.
Sixteen RF control signals are available (eight per core) to drive external RF switches and support optional external power amplifiers
and low-noise amplifiers for each band. See the reference board schematics for further details.
A block diagram of the radio subsystem (core 0) is shown in Figure 32 on page 60. Core 1, is identical to Core 0 without the Bluetooth
blocks. The integrated on-chip baluns (not shown) convert the fully differential transmit and receive paths to single-ended signal pins.
12.1 Receiver Path
The CYW4354 has a wide dynamic range, direct conversion receiver that employs high order on-chip channel filtering to ensure
reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. An on-chip low noise amplifier (LNA) in the 2.4 GHz
path in core 0 is shared between the Bluetooth and WLAN receivers, whereas the 5 GHz receive path and the core 1 2.4 GHz receive
path have dedicated on-chip LNAs. Control signals are available that can support the use of external LNAs for each band, which can
increase the receive sensitivity by several dB.
12.2 Transmit Path
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5 GHz U-NII bands, respectively. Linear on-chip power amplifiers
are included, which are capable of delivering high output power while meeting IEEE 802.11ac and IEEE 802.11a/b/g/n specifications,
and without the need for external PAs. When using the internal PAs, closed-loop output power control is completely integrated.
Document Number: 002-14809 Rev. *L
Page 59 of 162
CYW4354
Figure 32. Radio Functional Block Diagram (core 0)
W L D AC
W L PA
W L PAD
W L PG A
W L A ‐PA
W L A ‐PA D
W L A‐PG A
W L TXLPF
W L TX G ‐M ixer
W L DA C
W L TXLPF
W L TX A ‐M ixer
W L RX A ‐M ixer
Voltage
Regulators
W LA N BB
W L AD C
W L A‐LN A 11
W L A‐LN A 12
W L RXLPF
M UX
W L A DC
SLN A
W L G ‐LN A 12
W L RXLPF
W L RX G ‐M ixer
W L ATX
CLB
W L ARX
W L G TX
W L G RX
W L LO G EN
W L PLL
Gm
BT LN A G M
Shared XO
BT RX
BT TX
BT LO G EN
BT PLL
LPO /Ext LPO /RCAL
BT AD C
BT RXLPF
BT AD C
BT LN A Load
BT RX M ixer
BT RXLPF
BT BB
BT PA
BT FM
BT D AC
BT D AC
BT TX M ixer
BT TXLPF
12.3 Calibration
The CYW4354 features dynamic and automatic on-chip calibration to continually compensate for temperature and process variations
across components. These calibration routines are performed periodically in the course of normal radio operation. Examples of some
of the automatic calibration algorithms are baseband filter calibration for optimum transmit and receive performance, and LOFT
calibration for carrier leakage reduction. In addition, I/Q Calibration, R Calibration, and VCO Calibration are performed on-chip. No
per-board calibration is required in manufacturing test, which helps to minimize the test time and cost in large volume production.
Document Number: 002-14809 Rev. *L
Page 60 of 162
CYW4354
13. Pinout and Signal Descriptions
13.1 Ball Maps
Figure 33 and Figure 34 on page 61 show the WLBGA ball map.
Figure 33. WLBGA Ball Map, 4.87 mm × 7.67 mm Array, 192-Ball, A1–V6 (Bottom View—Balls Facing Up)
6
5
4
3
2
HSIC_DATA
PCIE_REFCLKN
PCIE_REFCLKP
PCIE_TDN
PCIE_TDP
1
HSIC_AGND12PLL
PCIE_PLL_AVSS
PCIE_RXTX_AVSS
PCIE_PLL
_AVDD1P2
PCIE_RXTX
_AVDD1P2
PCIE_RDN
B
HSIC_DVDD12
PCIE_PME_L
PCIE_PERST_L
PCIE_TESTP
PCIE_TESTN
PCIE_RDP
C
VSSC
PCIE_CLKREQ_L
VDDC
VSSC
GPIO_9
BT_USB_DN
BT_VDDC
LPO_IN
BT_USB_DP
CLK_REQ
FM_PLLVDD1P2
BT_I2S_DO
BT_I2S_DI
VSSC
FM_PLLVSS
BT_UART_RXD
BT_PCM_OUT
BT_I2S_CLK
BT_UART_TXD
BT_PCM_SYNC
A
D
FM_AOUT1
E
FM_AOUT2
F
FM_VCOVSS
FM_LNAVCOVDD1P2
G
BT_VDDC
FM_LNAVSS
FM_RFIN
H
BT_PCM_IN
BT_HOST_WAKE
BT_VCOVSS
BT_VCOVDD1P2
J
BT_UART_RTS_L
BT_GPIO_4
BT_IFVDD1P2
BT_PLLVDD1P2
BT_LNAVDD1P2
K
BT_I2S_WS
BT_UART_CTS_L
BT_DEV_WAKE
BT_PLLVSS
BT_PAVSS
BT_RF
L
BT_PCM_CLK
BT_VDDC
VSSC
BT_IFVSS
BT_PAVDD2P5
M
RF_SW_CTRL_4
FM_AUDIOVDD1P2
FM_AUDIOVSS
WRF_RX2G
_GND1P2_CORE0
WRF_LNA_2G
_GND1P2_CORE0
WRF_RFIN
_2G_CORE0
N
RF_SW_CTRL_6
WRF_AFE
_GND1P2_CORE0
WRF_TX
_GND1P2_CORE0
WRF_PA2G_VBAT
_GND3P3_CORE0
WRF_RFOUT
_2G_CORE0
P
WRF_LOGEN
_GND1P2
WRF_LOGENG
_GND1P2
WRF_GPIO
_OUT_CORE0
WRF_PADRV_VBAT
_VDD3P3_CORE0
WRF_PA2G_VBAT
_GND3P3_CORE0
WRF_PA2G_VBAT
_VDD3P3_CORE0
R
WRF_MMD
_GND1P2
WRF_MMD
_VDD1P2
WRF_PFD
_VDD1P2
WRF_PADRV_VBAT
_GND3P3_CORE0
WRF_PA5G_VBAT
_GND3P3_CORE0
WRF_PA5G_VBAT
_VDD3P3_CORE0
T
WRF_VCO
_GND1P2
WRF_PFD
_GND1P2
WRF_BUCK
_VDD1P5
CORE0
WRF_TSSI_A
_CORE0
WRF_PA5G_VBAT
_GND3P3_CORE0
WRF_RFOUT
_5G_CORE0
U
WRF_SYNTH
_VBAT_VDD3P3
WRF_CP
_GND1P2
WRF_BUCK
_GND1P5_CORE0
WRF_RX5G
_GND1P2_CORE0
WRF_LNA_5G
_GND1P2_CORE0
WRF_RFIN
_5G_CORE0
V
6
5
4
3
2
1
Document Number: 002-14809 Rev. *L
Page 61 of 162
CYW4354
Figure 34. WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7 – V12 (Bottom View—Balls Facing Up)
12
11
10
9
8
7
A
SR
_PVSS
SR
_VLX
WL_REG_ON
SDIO_CMD
SDIO_CLK
HSIC_STROBE
B
SR
_VDDBATP5V
SR
_VDDBATA5V
PMU_AVSS
SDIO_DATA_0
SDIO_DATA_2
VDDC
C
LDO
_VDD1P5
VOUT
_CLDO
VSSC
SDIO_DATA_1
SDIO_DATA_3
HSIC_AVDD12PLL
D
VOUT
_BTLDO2P5
VOUT
_LNLDO
BT_REG_ON
JTAG_SEL
E
LDO
_VDDBAT5V
VOUT
_LDO3P3_B
VDDIO
VDDC
VDDIO_SD
GPIO_7
F
VOUT
_3P3
GPIO_2
GPIO_1
GPIO_5
GPIO_6
GPIO_8
G
VSSC
GPIO_0
VDDC
GPIO_3
VSSC
AVSS_BBPLL
H
GPIO_10
VDDIO_RF
GPIO_4
J
VDDC
RF_SW
_CTRL_9
RF_SW_CTRL_12
K
RF_SW
_CTRL_8
RREFHSIC
AVDD_BBPLL
VDDC
RF_SW
_CTRL_13
L
VSSC
VDDC
BT_VDDIO
RF_SW_CTRL_11
RF_SW_CTRL_15
VSSC
RF_SW
_CTRL_14
RF_SW_CTRL_7
VDDC
WRF_XTAL
_VDD1P2
RF_SW_CTRL_1
RF_SW_CTRL_3
M
RF_SW
_CTRL_10
N
WRF_XTAL
_OUT
WRF_XTAL
_GND1P2
P
WRF_XTAL
_IN
WRF_XTAL
_VDD1P5
RF_SW_CTRL_2
R
WRF_BUCK
_GND1P5_CORE1
WRF_BUCK
_VDD1P5_CORE1
WRF_GPIO_OUT
_CORE1
WRF_AFE
_GND1P2_CORE1
RF_SW_CTRL_0
T
WRF_RX5G
_GND1P2_CORE1
WRF_TSSI
_A_CORE1
WRF_PADRV_VBAT
_GND3P3_CORE1
WRF_PADRV_VBAT
_VDD3P3_CORE1
WRF_TX
_GND1P2_CORE1
WRF_RX2G
_GND1P2_CORE1
U
WRF_LNA
_5G_GND1P2_CORE1
WRF_PA5G_VBAT
_GND3P3_CORE1
WRF_PA5G_VBAT
_GND3P3_CORE1
WRF_PA2G_VBAT
_GND3P3_CORE1
WRF_PA2G_VBAT
_GND3P3_CORE1
WRF_LNA_2G
_GND1P2_CORE1
V
WRF_RFIN
_5G_CORE1
WRF_RFOUT
_5G_CORE1
WRF_PA5G_VBAT
_VDD3P3_CORE1
WRF_PA2G_VBAT
_VDD3P3_CORE1
WRF_RFOUT
_2G_CORE1
WRF_RFIN
_2G_CORE1
12
11
10
9
8
7
Document Number: 002-14809 Rev. *L
RF_SW_CTRL_5
Page 62 of 162
CYW4354
13.2 Pin Lists
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
WLBGA
Ball#
Pin Name
A10
WL_REG_ON
D6
A11
SR_VLX
D7
RREFHSIC
A12
SR_PVSS
D9
JTAG_SEL
A2
PCIE_TDP0
E1
FM_AOUT1
A3
PCIE_TDN0
E10
VDDIO
A4
PCIE_REFCLKP
E11
VOUT_LDO3P3_B
A5
PCIE_REFCLKN
E12
LDO_VDDBAT5V
A6
HSIC_DATA
E2
FM_AUDIOVDD1P2
A7
HSIC_STROBE
E4
BT_VDD/VDDC
A8
SDIO_CLK
E5
BT_USB_DN
A9
SDIO_CMD
E6
GPIO_9
B1
PCIE_RDN0
E7
GPIO_7
B10
PMU_AVSS
E8
VDDIO_SD
B11
SR_VDDBATA5V
E9
VDD/VDDC
B12
SR_VDDBATP5V
F1
FM_AOUT2
B2
PCIE_RXTX_AVDD1P2
F10
GPIO_1
B3
PCIE_PLL_AVDD1P2
F11
GPIO_2
B4
PCIE_RXTX_AVSS
F12
VOUT_3P3
B5
PCIE_PLL_AVSS
F2
FM_AUDIOVSS
B6
HSIC_AGND12PLL
F3
FM_PLLVDD1P2
B7
VDD/VDDC
F4
CLK_REQ
B8
SDIO_DATA_2
F5
BT_USB_DP
B9
SDIO_DATA_0
F6
LPO_IN
C1
PCIE_RDP0
F7
GPIO_8
C10
VSSC/VSS
F8
GPIO_6
C11
VOUT_CLDO
F9
GPIO_5
C12
LDO_VDD1P5
G1
FM_LNAVCOVDD1P2
C2
PCIE_TESTN
G10
VDD/VDDC
C3
PCIE_TESTP
G11
GPIO_0
C4
PCIE_PERST_L
G12
VSSC/VSS
C5
PCIE_PME_L
G2
FM_VCOVSS
C6
HSIC_DVDD12
G3
FM_PLLVSS
C7
HSIC_AVDD12PLL
G4
VSSC/VSS
C8
SDIO_DATA_3
G5
BT_I2S_DI
C9
SDIO_DATA_1
G6
BT_I2S_DO
D10
BT_REG_ON
G7
AVSS_BBPLL
D11
VOUT_LNLDO
G8
VSSC/VSS
D12
VOUT_BTLDO2P5
G9
GPIO_3
D3
VSSC/VSS
H1
FM_RFIN
D4
VDD/VDDC
H11
VDDIO_RF
PCIE_CLKREQ_L
H12
GPIO_10
D5
Document Number: 002-14809 Rev. *L
VSSC/VSS
Page 63 of 162
CYW4354
WLBGA
Ball#
H2
Pin Name
WLBGA
Ball#
Pin Name
FM_LNAVSS
M7
VDD/VDDC
H3
BT_VDD/VDDC
M8
RF_SW_CTRL_7
H4
BT_PCM_OUT
N1
WRF_RFIN_2G_CORE0
H5
BT_UART_RXD
N10
WRF_XTAL_VDD1P2
H7
AVDD_BBPLL
N11
WRF_XTAL_GND1P2
H9
GPIO_4
N12
WRF_XTAL_OUT
J1
BT_VCOVDD1P2
N2
WRF_LNA_2G_GND1P2_CORE0
J11
RF_SW_CTRL_9
N3
WRF_RX2G_GND1P2_CORE0
J12
VDD/VDDC
N5
RF_SW_CTRL_4
J2
BT_VCOVSS
N7
RF_SW_CTRL_3
J3
BT_HOST_WAKE
N8
RF_SW_CTRL_1
J4
BT_PCM_IN
P1
WRF_RFOUT_2G_CORE0
J5
BT_UART_TXD
P11
WRF_XTAL_VDD1P5
J6
BT_I2S_CLK
P12
WRF_XTAL_IN
J8
VDD/VDDC
P2
WRF_PA2G_VBAT_GND3P3_CORE0
J9
RF_SW_CTRL_12
P3
WRF_TX_GND1P2_CORE0
K1
BT_LNAVDD1P2
P4
WRF_AFE_GND1P2_CORE0
K10
RF_SW_CTRL_13
P5
RF_SW_CTRL_6
K12
RF_SW_CTRL_8
P7
RF_SW_CTRL_5
K2
BT_PLLVDD1P2
P9
RF_SW_CTRL_2
K3
BT_IFVDD1P2
R1
WRF_PA2G_VBAT_VDD3P3_CORE0
K4
BT_GPIO_4
R11
WRF_BUCK_VDD1P5_CORE1
K5
BT_UART_RTS_L
R12
WRF_BUCK_GND1P5_CORE1
K6
BT_PCM_SYNC
R2
WRF_PA2G_VBAT_GND3P3_CORE0
K7
BT_VDDIO
R3
WRF_PADRV_VBAT_VDD3P3_CORE0
L1
BT_RF
R4
WRF_GPIO_OUT_CORE0
L10
VDD/VDDC
R5
WRF_LOGENG_GND1P2
L11
VSSC/VSS
R6
WRF_LOGEN_GND1P2
L2
BT_PAVSS
R7
RF_SW_CTRL_0
L3
BT_PLLVSS
R8
WRF_AFE_GND1P2_CORE1
L4
BT_DEV_WAKE
R9
WRF_GPIO_OUT_CORE1
L5
BT_UART_CTS_L
T1
WRF_PA5G_VBAT_VDD3P3_CORE0
L6
BT_I2S_WS
T10
WRF_PADRV_VBAT_GND3P3_CORE1
L7
VSSC/VSS
T11
WRF_TSSI_A_CORE1
L8
RF_SW_CTRL_15
T12
WRF_RX5G_GND1P2_CORE1
L9
RF_SW_CTRL_11
T2
WRF_PA5G_VBAT_GND3P3_CORE0
M1
BT_PAVDD2P5
T3
WRF_PADRV_VBAT_GND3P3_CORE0
M10
RF_SW_CTRL_14
T4
WRF_PFD_VDD1P2
M12
RF_SW_CTRL_10
T5
WRF_MMD_VDD1P2
M3
BT_IFVSS
T6
WRF_MMD_GND1P2
M4
VSSC/VSS
T7
WRF_RX2G_GND1P2_CORE1
M5
BT_VDD/VDDC
T8
WRF_TX_GND1P2_CORE1
M6
BT_PCM_CLK
T9
WRF_PADRV_VBAT_VDD3P3_CORE1
Document Number: 002-14809 Rev. *L
Page 64 of 162
CYW4354
WLBGA
Ball#
Pin Name
U1
WRF_RFOUT_5G_CORE0
U10
WRF_PA5G_VBAT_GND3P3_CORE1
U11
WRF_PA5G_VBAT_GND3P3_CORE1
U12
WRF_LNA_5G_GND1P2_CORE1
U2
WRF_PA5G_VBAT_GND3P3_CORE0
U3
WRF_TSSI_A_CORE0
U4
WRF_BUCK_VDD1P5_CORE0
U5
WRF_PFD_GND1P2
U6
WRF_VCO_GND1P2
U7
WRF_LNA_2G_GND1P2_CORE1
U8
WRF_PA2G_VBAT_GND3P3_CORE1
U9
WRF_PA2G_VBAT_GND3P3_CORE1
V1
WRF_RFIN_5G_CORE0
V10
WRF_PA5G_VBAT_VDD3P3_CORE1
V11
WRF_RFOUT_5G_CORE1
V12
WRF_RFIN_5G_CORE1
V2
WRF_LNA_5G_GND1P2_CORE0
V3
WRF_RX5G_GND1P2_CORE0
V4
WRF_BUCK_GND1P5_CORE0
V5
WRF_CP_GND1P2
V6
WRF_SYNTH_VBAT_VDD3P3
V7
WRF_RFIN_2G_CORE1
V8
WRF_RFOUT_2G_CORE1
V9
WRF_PA2G_VBAT_VDD3P3_CORE1
Document Number: 002-14809 Rev. *L
Page 65 of 162
CYW4354
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
Pin Name
Pin Name
WLBGA Ball#
WLBGA Ball#
AVDD_BBPLL
H7
GPIO_1
AVSS_BBPLL
G7
GPIO_10
H12
BT_DEV_WAKE
L4
GPIO_2
F11
BT_GPIO_4
K4
GPIO_3
G9
BT_HOST_WAKE
J3
GPIO_4
H9
BT_I2S_CLK
J6
GPIO_5
F9
BT_I2S_DI
G5
GPIO_6
F8
BT_I2S_DO
G6
GPIO_7
E7
BT_I2S_WS
L6
GPIO_8
F7
BT_IFVDD1P2
K3
GPIO_9
E6
BT_IFVSS
M3
HSIC_AGND12PLL
B6
BT_LNAVDD1P2
K1
HSIC_AVDD12PLL
C7
BT_PAVDD2P5
M1
HSIC_DATA
A6
BT_PAVSS
L2
HSIC_DVDD12
C6
BT_PCM_CLK
M6
HSIC_STROBE
A7
BT_PCM_IN
J4
JTAG_SEL
D9
BT_PCM_OUT
H4
LDO_VDD1P5
C12
BT_PCM_SYNC
K6
LDO_VDDBAT5V
E12
BT_PLLVDD1P2
K2
LPO_IN
F6
BT_PLLVSS
L3
PCIE_PME_L
C5
BT_REG_ON
D10
PCIE_CLKREQ_L
D5
BT_RF
L1
PCIE_PERST_L
C4
BT_UART_CTS_L
L5
PCIE_PLL_AVDD1P2
B3
BT_UART_RTS_L
K5
PCIE_PLL_AVSS
B5
BT_UART_RXD
H5
PCIE_RDN0
B1
BT_UART_TXD
J5
PCIE_RDP0
C1
BT_USB_DN
E5
PCIE_REFCLKN
A5
BT_USB_DP
F5
PCIE_REFCLKP
A4
BT_VCOVDD1P2
J1
PCIE_RXTX_AVDD1P2
B2
BT_VCOVSS
J2
PCIE_RXTX_AVSS
B4
BT_VDDIO
K7
PCIE_TDN0
A3
CLK_REQ
F4
PCIE_TDP0
A2
FM_AOUT1
E1
PCIE_TESTN
C2
FM_AOUT2
F1
PCIE_TESTP
C3
FM_AUDIOVDD1P2
E2
PMU_AVSS
B10
FM_AUDIOVSS
F2
RF_SW_CTRL_0
R7
FM_LNAVCOVDD1P2
G1
RF_SW_CTRL_1
N8
FM_LNAVSS
H2
RF_SW_CTRL_10
M12
FM_PLLVDD1P2
F3
RF_SW_CTRL_11
L9
FM_PLLVSS
G3
RF_SW_CTRL_12
J9
FM_RFIN
H1
RF_SW_CTRL_13
K10
FM_VCOVSS
G2
RF_SW_CTRL_14
M10
G11
RF_SW_CTRL_15
L8
GPIO_0
Document Number: 002-14809 Rev. *L
F10
Page 66 of 162
CYW4354
Pin Name
WLBGA Ball#
Pin Name
WLBGA Ball#
RF_SW_CTRL_2
P9
VSSC/VSS
L11
RF_SW_CTRL_3
N7
VSSC/VSS
L7
RF_SW_CTRL_4
N5
VSSC/VSS
M4
RF_SW_CTRL_5
P7
WL_REG_ON
A10
RF_SW_CTRL_6
P5
WRF_AFE_GND1P2_CORE0
P4
RF_SW_CTRL_7
M8
WRF_AFE_GND1P2_CORE1
R8
RF_SW_CTRL_8
K12
WRF_BUCK_GND1P5_CORE0
V4
RF_SW_CTRL_9
J11
WRF_BUCK_GND1P5_CORE1
R12
RREFHSIC
D7
WRF_BUCK_VDD1P5_CORE0
U4
SDIO_CLK
A8
WRF_BUCK_VDD1P5_CORE1
R11
SDIO_CMD
A9
WRF_CP_GND1P2
V5
SDIO_DATA_0
B9
WRF_GPIO_OUT_CORE0
R4
SDIO_DATA_1
C9
WRF_GPIO_OUT_CORE1
R9
SDIO_DATA_2
B8
WRF_LNA_2G_GND1P2_CORE0
N2
SDIO_DATA_3
C8
WRF_LNA_2G_GND1P2_CORE1
U7
SR_PVSS
A12
WRF_LNA_5G_GND1P2_CORE0
V2
SR_VDDBATA5V
B11
WRF_LNA_5G_GND1P2_CORE1
U12
SR_VDDBATP5V
B12
WRF_LOGEN_GND1P2
R6
SR_VLX
A11
WRF_LOGENG_GND1P2
R5
VDD/VDDC
B7
WRF_MMD_GND1P2
T6
VDD/VDDC
D4
WRF_MMD_VDD1P2
T5
BT_VDD/VDDC
E4
WRF_PA2G_VBAT_GND3P3_CORE0
P2
VDD/VDDC
E9
WRF_PA2G_VBAT_GND3P3_CORE0
R2
VDD/VDDC
G10
WRF_PA2G_VBAT_GND3P3_CORE1
U8
BT_VDD/VDDC
H3
WRF_PA2G_VBAT_GND3P3_CORE1
U9
VDD/VDDC
J12
WRF_PA2G_VBAT_VDD3P3_CORE0
R1
VDD/VDDC
J8
WRF_PA2G_VBAT_VDD3P3_CORE1
V9
VDD/VDDC
L10
WRF_PA5G_VBAT_GND3P3_CORE0
T2
BT_VDD/VDDC
M5
WRF_PA5G_VBAT_GND3P3_CORE0
U2
VDD/VDDC
M7
WRF_PA5G_VBAT_GND3P3_CORE1
U10
VDDIO
E10
WRF_PA5G_VBAT_GND3P3_CORE1
U11
VDDIO_RF
H11
WRF_PA5G_VBAT_VDD3P3_CORE0
T1
VDDIO_SD
E8
WRF_PA5G_VBAT_VDD3P3_CORE1
V10
VOUT_3P3
F12
WRF_PADRV_VBAT_GND3P3_CORE0
T3
VOUT_BTLDO2P5
D12
WRF_PADRV_VBAT_GND3P3_CORE1
T10
VOUT_CLDO
C11
WRF_PADRV_VBAT_VDD3P3_CORE0
R3
VOUT_LDO3P3_B
E11
WRF_PADRV_VBAT_VDD3P3_CORE1
T9
VOUT_LNLDO
D11
WRF_PFD_GND1P2
U5
VSSC/VSS
C10
WRF_PFD_VDD1P2
T4
VSSC/VSS
D3
WRF_RFIN_2G_CORE0
N1
VSSC/VSS
D6
WRF_RFIN_2G_CORE1
V7
VSSC/VSS
G12
WRF_RFIN_5G_CORE0
V1
VSSC/VSS
G4
WRF_RFIN_5G_CORE1
V12
VSSC/VSS
G8
WRF_RFOUT_2G_CORE0
P1
Document Number: 002-14809 Rev. *L
Page 67 of 162
CYW4354
Pin Name
WLBGA Ball#
WRF_RFOUT_2G_CORE1
V8
WRF_RFOUT_5G_CORE0
U1
WRF_RFOUT_5G_CORE1
V11
WRF_RX2G_GND1P2_CORE0
N3
WRF_RX2G_GND1P2_CORE1
T7
WRF_RX5G_GND1P2_CORE0
V3
WRF_RX5G_GND1P2_CORE1
T12
WRF_SYNTH_VBAT_VDD3P3
V6
WRF_TSSI_A_CORE0
U3
WRF_TSSI_A_CORE1
T11
WRF_TX_GND1P2_CORE0
P3
WRF_TX_GND1P2_CORE1
T8
WRF_VCO_GND1P2
U6
WRF_XTAL_GND1P2
N11
WRF_XTAL_IN
P12
WRF_XTAL_OUT
N12
WRF_XTAL_VDD1P2
N10
WRF_XTAL_VDD1P5
P11
Document Number: 002-14809 Rev. *L
Page 68 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
1
Top Side
Y
X
Y
PCIE_RXTX_AVSS
2300.51
3659.87
–2300.51
3659.87
2
PCIE_PLL_AVSS
1966.81
3659.87
–1966.81
3659.87
3
PCIE_REFCLKP
1966.81
3434.87
–1966.81
3434.87
4
PCIE_REFCLKN
1800.31
3547.37
–1800.31
3547.37
5
PCIE_TDN0
2134.01
3547.37
–2134.01
3547.37
6
PCIE_TDP0
2134.01
3322.37
–2134.01
3322.37
7
PCIE_RXTX_AVDD1P2
2134.01
3068.53
–2134.01
3068.53
8
PCIE_RDP0
2300.51
3209.87
–2300.51
3209.87
9
PCIE_RDN0
2300.51
3434.87
–2300.51
3434.87
10
PCIE_PLL_AVSS
1966.81
3209.87
–1966.81
3209.87
11
PCIE_PLL_AVDD1P2
1800.31
3322.37
–1800.31
3322.37
12
USB3_REFCLKN
508.44
3481.00
–508.44
3481.00
13
USB3_PVDD1P2
768.62
3062.57
–768.62
3062.57
14
USB3_REFCLKP
508.44
3281.00
–508.44
3281.00
15
USB3_RVDD1P2
1177.22
3062.57
–1177.22
3062.57
16
USB3_TVDD1P2
972.92
3062.57
–972.92
3062.57
17
USB3_PGND
553.11
3681.00
–553.11
3681.00
18
USB3_PGND
753.11
3681.00
–753.11
3681.00
19
USB3_PTESTP
773.17
3481.00
–773.17
3481.00
20
USB3_PTESTN
773.17
3281.00
–773.17
3281.00
21
USB3_TDP
974.72
3481.00
–974.72
3481.00
22
USB3_TDN
974.72
3281.00
–974.72
3281.00
23
USB3_TGND
982.37
3681.00
–982.37
3681.00
24
USB3_RDP
1176.88
3281.00
–1176.88
3281.00
25
USB3_RDN
1176.88
3481.00
–1176.88
3481.00
26
USB3_RGND
1186.67
3681.00
–1186.67
3681.00
27
USB3_PVDD1P2
526.91
3062.57
–526.91
3062.57
28
USB3_DVDD1P2
1177.22
2860.07
–1177.22
2860.07
29
USB3_DVDD1P2
768.62
2860.07
–768.62
2860.07
30
USB2_AVSS
1601.79
3595.19
–1601.79
3595.19
31
USB2_MONCDR
1601.79
2792.39
–1601.79
2792.39
32
USB2_RREF
1401.09
3394.49
–1401.09
3394.49
33
USB2_DP
1601.79
3394.49
–1601.79
3394.49
34
USB2_AVDD3P3
1601.79
2993.09
–1601.79
2993.09
35
USB2_DM
1601.79
3193.79
–1601.79
3193.79
36
USB2_AVDD1P2
1401.09
2792.39
–1401.09
2792.39
37
USB2_AVSSBG
1401.09
3595.19
–1401.09
3595.19
38
USB2_MONPLL
1401.09
2993.09
–1401.09
2993.09
Document Number: 002-14809 Rev. *L
Page 69 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
39
USB2_DVSS
1401.09
Top Side
Y
3193.79
X
–1401.09
Y
3193.79
40
BT_PAVSS
2217.95
–736.50
–2217.95
–736.50
41
BT_AGPIO
2017.95
–1298.03
–2017.95
–1298.03
42
BT_IFVDD1P2
1768.91
–1298.03
–1768.91
–1298.03
43
BT_IFVSS
1568.92
–1298.03
–1568.92
–1298.03
44
BT_LNAVDD1P2
2228.18
–392.72
–2228.18
–392.72
45
BT_LNAVSS
1843.60
–524.82
–1843.60
–524.82
46
BT_PAVDD2P5
2176.03
–1164.53
–2176.03
–1164.53
47
BT_PLLVDD1P2
1768.91
–223.55
–1768.91
–223.55
48
BT_PLLVSS
1568.92
–223.55
–1568.92
–223.55
49
BT_RF
2252.39
–936.50
–2252.39
–936.50
50
BT_VCOVDD1P2
2227.01
–189.65
–2227.01
–189.65
51
BT_VCOVSS
1967.62
–45.40
–1967.62
–45.40
52
FM_AUDIOVDD1P2
2044.00
931.81
–2044.00
931.81
53
FM_AUDIOAVSS
2044.00
1143.58
–2044.00
1143.58
54
FM_AOUT1
2244.00
1143.58
–2244.00
1143.58
55
FM_AOUT2
2244.00
931.81
–2244.00
931.81
56
FM_IFVDD1P2
1614.95
371.79
–1614.95
371.79
57
FM_IFVSS
1614.95
171.80
–1614.95
171.80
58
FM_PLLVSS
1793.21
871.61
–1793.21
871.61
59
FM_PLLVDD1P2
1686.40
695.87
–1686.40
695.87
60
FM_RFAUX
2273.40
68.08
–2273.40
68.08
61
FM_RFIN
2260.02
313.69
–2260.02
313.69
62
FM_LNAVDD1P2
2060.02
354.59
–2060.02
354.59
63
FM_LNAVSS
2060.02
154.59
–2060.02
154.59
64
FM_VCOVDD1P2
2273.40
731.81
–2273.40
731.81
65
FM_VCOVSS
2273.40
531.81
–2273.40
531.81
66
RF_SW_CTRL_0
–2202.33
–1494.00
2202.33
–1494.00
67
VDDC
–661.10
–1355.99
661.10
–1355.99
68
VSSC
740.99
2052.00
–740.99
2052.00
69
VSSC
–616.50
–408.01
616.50
–408.01
70
VSSC
–459.00
–198.00
459.00
–198.00
71
VSSC
–546.71
–1008.00
546.71
–1008.00
72
VSSC
–546.71
–708.00
546.71
–708.00
73
VSSC
–459.00
252.00
459.00
252.00
74
VDDC
–661.10
–21.01
661.10
–21.01
75
VSSC
740.99
2352.00
–740.99
2352.00
76
VDDIO_SD
–405.00
2299.50
405.00
2299.50
Document Number: 002-14809 Rev. *L
Page 70 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
77
SDIO_DATA_1
–337.05
78
SDIO_CLK
–337.05
79
SDIO_DATA_3
–337.05
80
SDIO_DATA_2
–337.05
81
SDIO_CMD
82
83
84
Top Side
Y
2531.57
X
Y
337.05
2531.57
2731.57
337.05
2731.57
2931.58
337.05
2931.58
3131.59
337.05
3131.59
–337.05
3331.59
337.05
3331.59
SDIO_DATA_0
–337.05
3531.60
337.05
3531.60
VSSC
–316.50
–408.01
316.50
–408.01
VSSC
–266.51
–1008.00
266.51
–1008.00
85
VSSC
–266.51
–708.00
266.51
–708.00
86
RF_SW_CTRL_4
–2072.12
–1125.00
2072.12
–1125.00
87
VDDC
–261.11
–21.01
261.11
–21.01
88
VSSC
–259.00
1651.99
259.00
1651.99
89
VSSC
–159.00
252.00
159.00
252.00
90
VSSC
–159.00
552.00
159.00
552.00
91
VSSC
–159.00
851.99
159.00
851.99
92
VSSC
–159.00
1151.99
159.00
1151.99
93
VSSC
–159.00
1451.99
159.00
1451.99
94
VSSC
–159.00
2052.00
159.00
2052.00
95
VSSC
–459.00
552.00
459.00
552.00
96
DGNDHSIC
–67.05
2286.36
67.05
2286.36
97
AGND12PLL
–67.05
2486.57
67.05
2486.57
98
AVDD12PLL
–67.05
2686.57
67.05
2686.57
99
RREFHSIC
–67.05
2886.58
67.05
2886.58
100
STROBE
–67.05
3086.59
67.05
3086.59
101
DATA
–67.05
3286.59
67.05
3286.59
102
DVDD12HSIC
–67.05
3486.60
67.05
3486.60
103
VDDC
–61.11
–1220.99
61.11
–1220.99
104
VSSC
–61.11
–1008.00
61.11
–1008.00
105
VSSC
–61.11
–708.00
61.11
–708.00
106
VSSC
–61.11
–408.01
61.11
–408.01
107
VDDC
–61.11
–21.01
61.11
–21.01
108
VDDC
–61.11
1843.97
61.11
1843.97
109
VDDC
138.89
–1220.99
–138.89
–1220.99
110
VDDC
138.89
–1021.00
–138.89
–1021.00
111
VDDC
138.89
–821.00
–138.89
–821.00
112
VDDC
–261.11
–1220.99
261.11
–1220.99
113
VDDC
138.89
–421.00
–138.89
–421.00
114
VDDC
138.89
–221.00
–138.89
–221.00
Document Number: 002-14809 Rev. *L
Page 71 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
115
VDDC
138.89
–21.01
–138.89
–21.01
116
VSSC
140.99
252.00
–140.99
252.00
117
VSSC
140.99
552.00
–140.99
552.00
118
VSSC
140.99
851.99
–140.99
851.99
119
VSSC
140.99
1151.99
–140.99
1151.99
120
VSSC
140.99
1451.99
–140.99
1451.99
121
VSSC
140.99
1651.99
–140.99
1651.99
122
VSSC
140.99
2052.00
–140.99
2052.00
123
PACKAGEOPTION_4
140.99
2352.00
–140.99
2352.00
124
BT_VSSC
768.37
–1186.86
–768.37
–1186.86
125
BT_VSSC
816.40
21.84
–816.40
21.84
126
BT_VSSC
599.69
–715.49
–599.69
–715.49
127
VDDC
338.89
443.99
–338.89
443.99
128
VDDC
338.89
643.99
–338.89
643.99
129
VDDC
338.89
1843.97
–338.89
1843.97
130
VSSC
–459.00
851.99
459.00
851.99
131
PACKAGEOPTION_2
440.99
2352.00
–440.99
2352.00
132
PACKAGEOPTION_3
440.99
2592.00
–440.99
2592.00
133
BT_VSSC
468.37
–1186.86
–468.37
–1186.86
134
VDDC
538.88
643.99
–538.88
643.99
135
VDDC
538.88
843.98
–538.88
843.98
136
VDDC
538.88
1043.98
–538.88
1043.98
137
VDDC
538.88
1243.98
–538.88
1243.98
138
VDDC
538.88
1443.98
–538.88
1443.98
139
VDDC
538.88
1643.98
–538.88
1643.98
140
VDDC
538.88
1843.97
–538.88
1843.97
141
BT_VDDC_ISO_1
601.19
–970.04
–601.19
–970.04
142
BT_VDDC_ISO_2
620.91
–500.07
–620.91
–500.07
143
AVDD_BBPLL
655.50
168.14
–655.50
168.14
144
AVSS_BBPLL
655.50
437.48
–655.50
437.48
145
BT_VDDC
1480.37
555.67
–1480.37
555.67
146
PACKAGEOPTION_1
740.99
2592.00
–740.99
2592.00
147
BT_VDDC
1480.37
780.66
–1480.37
780.66
148
BT_VDDIO
830.29
–445.06
–830.29
–445.06
149
BT_VDDIO
840.29
–724.53
–840.29
–724.53
150
BT_VDDIO
865.28
–245.06
–865.28
–245.06
151
BT_VDDIO
915.28
–973.39
–915.28
–973.39
152
PACKAGEOPTION_0
1040.99
2592.00
–1040.99
2592.00
Document Number: 002-14809 Rev. *L
Page 72 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
153
BT_GPIO_5
1048.37
420.67
–1048.37
420.67
154
BT_GPIO_3
1048.37
620.67
–1048.37
620.67
155
BT_GPIO_2
1048.37
820.67
–1048.37
820.67
156
BT_I2S_DI
1444.06
1426.01
–1444.06
1426.01
157
BT_UART_TXD
1444.06
1643.00
–1444.06
1643.00
158
BT_I2S_WS
1143.51
1940.00
–1143.51
1940.00
159
LPO_IN
1143.51
2237.00
–1143.51
2237.00
160
OTP_VDD33
1348.51
2444.00
–1348.51
2444.00
161
BT_CLK_REQ
1644.06
1426.01
–1644.06
1426.01
162
BT_UART_RXD
1644.06
1643.00
–1644.06
1643.00
163
BT_PCM_SYNC
1343.51
1940.00
–1343.51
1940.00
164
BT_USB_DN
1343.51
2237.00
–1343.51
2237.00
165
PCIE_PME_L
1548.50
2444.00
–1548.50
2444.00
166
BT_TM1
1844.06
1346.00
–1844.06
1346.00
167
BT_I2S_CLK
1844.06
1643.00
–1844.06
1643.00
168
BT_GPIO_4
1543.51
1940.00
–1543.51
1940.00
169
BT_USB_DP
1543.51
2237.00
–1543.51
2237.00
170
BT_HOST_WAKE
2044.05
1346.00
–2044.05
1346.00
171
BT_I2S_DO
2044.05
1643.00
–2044.05
1643.00
172
BT_UART_CTS_N
1743.51
1940.00
–1743.51
1940.00
173
BT_PCM_IN
1743.51
2237.00
–1743.51
2237.00
174
PCIE_CLKREQ_L
1858.50
2534.00
–1858.50
2534.00
175
RF_SW_CTRL_1
–2002.32
–1494.00
2002.32
–1494.00
176
BT_DEV_WAKE
2244.05
1346.00
–2244.05
1346.00
177
BT_PCM_OUT
2244.05
1643.00
–2244.05
1643.00
178
BT_UART_RTS_N
1943.51
1940.00
–1943.51
1940.00
179
BT_PCM_CLK
1943.51
2237.00
–1943.51
2237.00
180
PERST_L
2058.50
2534.00
–2058.50
2534.00
181
RF_SW_CTRL_8
–1945.91
–806.00
1945.91
–806.00
182
GPIO_13
–2040.71
516.01
2040.71
516.01
183
RF_SW_CTRL_5
–1872.11
–1125.00
1872.11
–1125.00
184
RF_SW_CTRL_12
–1760.12
–327.01
1760.12
–327.01
185
GPIO_10
–1959.30
229.01
1959.30
229.01
186
RF_SW_CTRL_2
–1802.31
–1494.00
1802.31
–1494.00
187
RF_SW_CTRL_9
–1745.90
–806.00
1745.90
–806.00
188
GPIO_14
–1840.71
516.01
1840.71
516.01
189
GPIO_7
–1853.50
–18.00
1853.50
–18.00
190
RF_SW_CTRL_6
–1672.10
–1125.00
1672.10
–1125.00
Document Number: 002-14809 Rev. *L
Page 73 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
191
Top Side
Y
–327.01
X
1560.11
Y
RF_SW_CTRL_13
–1560.11
–327.01
192
GPIO_11
–1759.91
279.00
1759.91
279.00
193
RF_SW_CTRL_3
–1602.31
–1494.00
1602.31
–1494.00
194
RF_SW_CTRL_10
–1545.89
–806.00
1545.89
–806.00
195
GPIO_15
–1640.70
516.01
1640.70
516.01
196
GPIO_8
–1593.91
22.00
1593.91
22.00
197
RF_SW_CTRL_7
–1472.09
–1125.00
1472.09
–1125.00
198
RF_SW_CTRL_14
–1360.11
–327.01
1360.11
–327.01
199
GPIO_12
–1559.91
279.00
1559.91
279.00
200
VSSC
–459.00
1151.99
459.00
1151.99
201
VSSC
–459.00
1451.99
459.00
1451.99
202
RF_SW_CTRL_11
–1346.09
–756.00
1346.09
–756.00
203
VDDC
–459.00
1651.99
459.00
1651.99
204
VDDC
–1345.37
1017.54
1345.37
1017.54
205
GPIO_9
–1393.90
22.00
1393.90
22.00
206
VDDIO
–1215.90
576.00
1215.90
576.00
207
RF_SW_CTRL_15
–1160.10
–327.01
1160.10
–327.01
208
VDDC
–1261.10
1843.97
1261.10
1843.97
209
VDDC
–1061.11
–1156.00
1061.11
–1156.00
210
VDDC
–1061.11
–776.00
1061.11
–776.00
211
VDDC
–1061.10
–1355.99
1061.10
–1355.99
212
VDDC_ISO_PHY
–1402.10
–1494.00
1402.10
–1494.00
213
VDDC
–1180.10
–587.00
1180.10
–587.00
214
VDDC_ISO_PHY
–1151.11
–956.00
1151.11
–956.00
215
VDDC_ISO_DIG
–1058.99
2052.00
1058.99
2052.00
216
VDDC_ISO_DIG
–816.10
1843.97
816.10
1843.97
217
VSSC
–459.00
2052.00
459.00
2052.00
218
GPIO_0
–996.05
2877.58
996.05
2877.58
219
GPIO_1
–996.05
3077.59
996.05
3077.59
220
GPIO_2
–996.05
3277.59
996.05
3277.59
221
GPIO_3
–996.05
3477.60
996.05
3477.60
222
VDDIO
–990.90
576.00
990.90
576.00
223
VDDIO_RF
–960.10
–117.00
960.10
–117.00
224
VDDC
–1061.10
1843.97
1061.10
1843.97
225
VDDC_ISO_PHY
–1061.10
843.98
1061.10
843.98
226
VDDC_ISO_PHY
–1058.99
1151.99
1058.99
1151.99
227
VDDIO_RF
–852.10
–387.00
852.10
–387.00
228
VDDC
–461.11
–1355.99
461.11
–1355.99
Document Number: 002-14809 Rev. *L
Page 74 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
229
GPIO_4
–769.05
a
Top Side
Y
3196.59
X
769.05
Y
3196.59
230
VDDIO_PCIE
–759.00
252.00
759.00
252.00
231
VDDIO
–759.00
552.00
759.00
552.00
232
VSSC
–1359.90
279.00
1359.90
279.00
233
VSSC
–1319.39
2052.00
1319.39
2052.00
234
VSSC
–1358.99
2302.00
1358.99
2302.00
235
VSSC
–1351.11
–956.00
1351.11
–956.00
236
GPIO_6
–751.05
2996.59
751.05
2996.59
237
GPIO_5
–751.05
3396.60
751.05
3396.60
238
VDDIO_SD
–745.50
2352.00
745.50
2352.00
239
JTAG_SEL
–733.05
2796.58
733.05
2796.58
240
VDDC_ISO_PHY
–729.00
–220.50
729.00
–220.50
241
VDDC
–951.31
–956.00
951.31
–956.00
242
VDDC
–861.10
–1355.99
861.10
–1355.99
243
VSSC
–1440.90
576.00
1440.90
576.00
244
VSSC
–1159.90
–98.00
1159.90
–98.00
245
VSSC
–1159.90
279.00
1159.90
279.00
246
VDDC
–616.10
1843.97
616.10
1843.97
247
WRF_SYNTH_VBAT_VDD3P3
75.91
–3598.00
–75.91
–3598.00
248
WRF_XTAL_GND1P2
–2003.12
–1834.98
2003.12
–1834.98
249
WRF_XTAL_VDD1P5
–2003.12
–2065.65
2003.12
–2065.65
250
WRF_VCO_GND1P2
198.52
–3109.71
–198.52
–3109.71
251
WRF_XTAL_IN
–2205.82
–2065.65
2205.82
–2065.65
252
WRF_LOGEN_GND1P2
126.11
–2303.63
–126.11
–2303.63
253
WRF_XTAL_OUT
–2205.82
–1818.42
2205.82
–1818.42
254
WRF_XTAL_VDD1P2
–1807.98
–1960.54
1807.98
–1960.54
255
WRF_TX_GND1P2_core1
–437.83
–2417.93
437.83
–2417.93
256
WRF_BUCK_GND1P5_core1
–2137.36
–2823.85
2137.36
–2823.85
257
WRF_RX5G_GND1P2_core1
–1968.14
–2944.01
1968.14
–2944.01
258
WRF_GPIO_OUT_core1
–877.08
–2398.01
877.08
–2398.01
259
WRF_RX2G_GND1P2_core1
–167.27
–2716.52
167.27
–2716.52
260
WRF_RFIN_5G_core1
–2253.44
–3538.14
2253.44
–3538.14
261
WRF_RFIN_2G_core1
–201.47
–3598.00
201.47
–3598.00
262
WRF_PFD_VDD1P2
901.40
–2994.96
–901.40
–2994.96
263
WRF_PFD_GND1P2
818.12
–3198.01
–818.12
–3198.01
264
WRF_PADRV_VBAT_VDD3P3_core1
–1090.70
–2792.61
1090.70
–2792.61
265
WRF_PADRV_VBAT_GND3P3_core1
–1401.46
–2798.01
1401.46
–2798.01
266
WRF_PA5G_VBAT_VDD3P3_core1
–1401.46
–3679.00
1401.46
–3679.00
Document Number: 002-14809 Rev. *L
Page 75 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
267
WRF_AFE_GND1P2_core1
–631.56
–2293.35
631.56
–2293.35
268
WRF_PA5G_VBAT_GND3P3_core0
1825.51
–2798.01
–1825.51
–2798.01
269
WRF_PA5G_VBAT_VDD3P3_core0
2297.50
–2998.01
–2297.50
–2998.01
270
WRF_MMD_VDD1P2
692.41
–2994.96
–692.41
–2994.96
271
WRF_MMD_GND1P2
499.12
–2798.01
–499.12
–2798.01
272
WRF_PA2G_VBAT_GND3P3_core0
1744.51
–1940.22
–1744.51
–1940.22
273
WRF_LNA_5G_GND1P2_core0
1877.39
–3673.49
–1877.39
–3673.49
274
WRF_CP_GND1P2
539.26
–3598.00
–539.26
–3598.00
275
WRF_LNA_2G_GND1P2_core0
1798.51
–1598.02
–1798.51
–1598.02
276
WRF_TSSI_A_core1
–1839.15
–2716.77
1839.15
–2716.77
277
WRF_BUCK_VDD1P5_core0
1024.35
–3433.91
–1024.35
–3433.91
278
WRF_LOGENG_GND1P2
770.31
–2353.01
–770.31
–2353.01
279
WRF_RFOUT_2G_core1
–601.47
–3679.00
601.47
–3679.00
280
WRF_RFOUT_5G_core0
2288.50
–3198.01
–2288.50
–3198.01
281
WRF_AFE_GND1P2_core0
880.13
–2028.11
–880.13
–2028.11
282
WRF_LNA_2G_GND1P2_core1
–201.47
–3198.01
201.47
–3198.01
283
WRF_LNA_5G_GND1P2_core1
–2276.94
–3276.89
2276.94
–3276.89
284
WRF_PA2G_VBAT_GND3P3_core1
–543.68
–3144.01
543.68
–3144.01
285
WRF_PA2G_VBAT_VDD3P3_core1
–801.47
–3697.00
801.47
–3697.00
286
WRF_PA5G_VBAT_GND3P3_core1
–1801.46
–3225.01
1801.46
–3225.01
287
WRF_PA5G_VBAT_VDD3P3_core0
2279.50
–2798.01
–2279.50
–2798.01
288
WRF_PADRV_VBAT_GND3P3_core0
1398.51
–2798.01
–1398.51
–2798.01
289
WRF_PADRV_VBAT_VDD3P3_core0
1393.11
–2487.25
–1393.11
–2487.25
290
WRF_RFIN_2G_core0
2198.50
–1598.02
–2198.50
–1598.02
291
WRF_RX2G_GND1P2_core0
1317.02
–1563.82
–1317.02
–1563.82
292
WRF_RX5G_GND1P2_core0
1544.51
–3364.69
–1544.51
–3364.69
293
WRF_TX_GND1P2_core0
1018.43
–1834.38
–1018.43
–1834.38
294
WRF_TSSI_A_core0
1317.27
–3235.69
–1317.27
–3235.69
295
WRF_BUCK_GND1P5_core0
1424.35
–3533.90
–1424.35
–3533.90
296
WRF_BUCK_VDD1P5_core1
–2237.36
–2423.85
2237.36
–2423.85
297
WRF_GPIO_OUT_core0
998.51
–2273.63
–998.51
–2273.63
298
WRF_RFOUT_2G_core0
2279.50
–1998.02
–2279.50
–1998.02
299
WRF_RFOUT_5G_core1
–1801.46
–3688.00
1801.46
–3688.00
300
WRF_PA2G_VBAT_GND3P3_core0
1714.63
–2523.25
–1714.63
–2523.25
301
WRF_PA2G_VBAT_GND3P3_core1
–1126.70
–3114.13
1126.70
–3114.13
302
WRF_RFIN_5G_core0
2138.64
–3649.99
–2138.64
–3649.99
303
WRF_PA5G_VBAT_GND3P3_core0
1825.51
–3198.01
–1825.51
–3198.01
304
WRF_PA5G_VBAT_GND3P3_core1
–1401.46
–3225.01
1401.46
–3225.01
Document Number: 002-14809 Rev. *L
Page 76 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
2279.50
Top Side
Y
X
Y
–2398.01
–2279.50
–2398.01
305
WRF_PA2G_VBAT_VDD3P3_core0
306
WRF_PA2G_VBAT_VDD3P3_core0
2297.50
–2198.02
–2297.50
–2198.02
307
WRF_RX2G_GND1P2_core0
1488.79
–1700.51
–1488.79
–1700.51
308
WRF_BUCK_VDD1P5_core0
1024.35
–3633.90
–1024.35
–3633.90
309
WRF_BUCK_VDD1P5_core0
1224.35
–3633.90
–1224.35
–3633.90
310
WRF_BUCK_VDD1P5_core0
1224.35
–3433.91
–1224.35
–3433.91
311
WRF_BUCK_VDD1P5_core1
–2037.36
–2423.85
2037.36
–2423.85
312
WRF_BUCK_VDD1P5_core1
–2037.36
–2623.85
2037.36
–2623.85
313
WRF_BUCK_VDD1P5_core1
–2237.36
–2623.85
2237.36
–2623.85
314
WRF_PA5G_VBAT_VDD3P3_core1
–1601.46
–3697.00
1601.46
–3697.00
315
WRF_PA2G_VBAT_VDD3P3_core1
–1001.47
–3679.00
1001.47
–3679.00
316
WRF_LOGEN_GND1P2
326.11
–2303.63
–326.11
–2303.63
317
WRF_RX2G_GND1P2_core1
–303.96
–2888.29
303.96
–2888.29
318
WRF_CP_GND1P2
339.26
–3598.00
–339.26
–3598.00
319
WL_REG_ON
–1710.77
3277.01
1710.77
3277.01
320
BT_REG_ON
–1569.35
1721.37
1569.35
1721.37
321
LDO_VDDBAT5V
–1852.20
1721.37
1852.20
1721.37
322
LDO_VDDBAT5V
–1852.20
1438.53
1852.20
1438.53
323
LDO_VDDBAT5V
–1852.20
1155.69
1852.20
1155.69
324
VOUT_3P3
–1993.62
1297.11
1993.62
1297.11
325
VOUT_3P3
–2135.04
1155.69
2135.04
1155.69
326
VDDIO_PMU
–1710.77
1297.11
1710.77
1297.11
327
LDO_VDDBAT5V
–1852.20
872.84
1852.20
872.84
328
LDO_VDDBAT5V
–2135.04
872.84
2135.04
872.84
329
LDO_VDDBAT5V
–2276.46
1014.26
2276.46
1014.26
330
VOUT_3P3_SENSE
–2276.46
1297.11
2276.46
1297.11
331
LDO_VDDBAT5V
–1710.77
1862.79
1710.77
1862.79
332
VOUT_3P3
–1993.62
1579.95
1993.62
1579.95
333
VSSC
–1569.35
1155.69
1569.35
1155.69
334
VSSC
–1569.35
1438.53
1569.35
1438.53
335
PMU_AVSS
–1569.35
2287.06
1569.35
2287.06
336
SR_VLX
–1569.35
2852.74
1569.35
2852.74
337
SR_VLX
–1569.35
3135.59
1569.35
3135.59
338
SR_PVSS
–1852.20
3135.59
1852.20
3135.59
339
SR_VLX
–1852.20
2852.74
1852.20
2852.74
340
SR_VDDBATA5V
–1852.20
2569.90
1852.20
2569.90
341
VOUT_CLDO
–1852.20
2287.06
1852.20
2287.06
342
LDO_VDD1P5
–1852.20
2004.21
1852.20
2004.21
Document Number: 002-14809 Rev. *L
Page 77 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
343
LDO_VDDBAT5V
344
345
Top Side
Y
X
Y
–1993.62
1014.26
1993.62
1014.26
VOUT_3P3
–2135.04
1438.53
2135.04
1438.53
LDO_VDDBAT5V
–2135.04
1721.37
2135.04
1721.37
346
VOUT_LDO3P3_B
–2135.04
2004.21
2135.04
2004.21
347
LDO_VDD1P5
–2135.04
2287.06
2135.04
2287.06
348
SR_VDDBATP5V
–2135.04
2569.90
2135.04
2569.90
349
SR_PVSS
–2135.04
3135.59
2135.04
3135.59
350
VDDIO_PMU
–1710.77
1579.95
1710.77
1579.95
351
VOUT_LNLDO
–1710.77
2145.64
1710.77
2145.64
352
VOUT_CLDO
–1710.77
2428.48
1710.77
2428.48
353
SR_VLX
–1710.77
2711.32
1710.77
2711.32
354
SR_VLX
–1710.77
2994.17
1710.77
2994.17
355
VOUT_LDO3P3_B
–1993.62
1862.79
1993.62
1862.79
356
LDO_VDD1P5
–1993.62
2145.64
1993.62
2145.64
357
VOUT_CLDO
–1993.62
2428.48
1993.62
2428.48
358
SR_VDDBATP5V
–1993.62
2711.32
1993.62
2711.32
359
SR_VLX
–1993.62
2994.17
1993.62
2994.17
360
SR_PVSS
–1993.62
3277.01
1993.62
3277.01
361
VOUT_3P3
–2276.46
1862.79
2276.46
1862.79
362
VOUT_BTLDO2P5
–2276.46
2145.64
2276.46
2145.64
363
LDO_VDD1P5
–2276.46
2428.48
2276.46
2428.48
364
SR_PVSS
–2276.46
3277.01
2276.46
3277.01
365
VOUT_3P3
–2276.46
1579.95
2276.46
1579.95
366
SR_VDDBATP5V
–2276.46
2711.32
2276.46
2711.32
367
PCIE_TESTP
1800.31
3068.53
–1800.31
3068.53
368
PCIE_TESTN
1966.81
2956.03
–1966.81
2956.03
369
BT_VDDC
1480.37
1005.66
–1480.37
1005.66
370
BT_VDDC
1480.37
1225.66
–1480.37
1225.66
371
BT_VDDC
1408.19
248.05
–1408.19
248.05
372
BT_VDDC
1322.34
55.02
–1322.34
55.02
373
BT_VDDC
1060.28
–1186.86
–1060.28
–1186.86
374
BT_VDDC
666.40
–198.15
–666.40
–198.15
375
BT_VDDC
617.61
–1324.61
–617.61
–1324.61
376
BT_VSSC
338.89
–475.07
–338.89
–475.07
377
BT_VSSC
1040.28
–724.53
–1040.28
–724.53
378
BT_VSSC
1063.38
1020.66
–1063.38
1020.66
379
BT_VSSC
1063.38
1320.66
–1063.38
1320.66
380
BT_VSSC
1273.37
505.67
–1273.37
505.67
Document Number: 002-14809 Rev. *L
Page 78 of 162
CYW4354
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
381
BT_VSSC
1273.37
705.66
–1273.37
705.66
382
BT_VSSC
1273.37
1005.66
–1273.37
1005.66
383
BT_VSSC
1273.37
1225.66
–1273.37
1225.66
384
VSSC
440.99
2052.00
–440.99
2052.00
385
VSSC
–1293.24
–1317.60
1293.24
–1317.60
386
VSSC
–1202.10
–1504.00
1202.10
–1504.00
387
VSSC
–1058.99
1451.99
1058.99
1451.99
388
VSSC
–1058.99
2302.00
1058.99
2302.00
389
VSSC
–959.90
279.00
959.90
279.00
390
VSSC
–759.00
851.99
759.00
851.99
391
VSSC
–759.00
1151.99
759.00
1151.99
392
VSSC
–759.00
1451.99
759.00
1451.99
393
VSSC
–759.00
2052.00
759.00
2052.00
394
VSSC
–746.31
–956.00
746.31
–956.00
395
VSSC
–746.31
–756.00
746.31
–756.00
a. This net name was changed to VDDIO_PCIE to correct an error in the pin definition of bump 230. The correction applies to WLCSP package
PCIe platform only, and is inconsequential for SDIO platforms.
Document Number: 002-14809 Rev. *L
Page 79 of 162
CYW4354
13.3 Signal Descriptions
The signal name, type, and description of each pin in the CYW4354 is listed in Table 22 (WLCSP) and Table 23 on page 87 (WLBGA).
The symbols shown under Type indicate pin directions (I/O = bidirectional, I = input, O = output) and the internal pull-up/pull-down
characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any.
Table 22. WLCSP Signal Descriptions
Bump#
Signal Name
Type
Description
WLAN and Bluetooth Receive RF Signal Interface
290
WRF_RFIN_2G_CORE0
I
2.4 GHz Bluetooth and WLAN CORE0 receiver shared input
261
WRF_RFIN_2G_CORE1
I
2.4 GHz Bluetooth and WLAN CORE1 receiver shared input
302
WRF_RFIN_5G_CORE0
I
5 GHz WLAN CORE0 receiver input
260
WRF_RFIN_5G_CORE1
I
5 GHz WLAN CORE1 receiver input
298
WRF_RFOUT_2G_CORE0
O
2.4 GHz WLAN CORE0 PA output
279
WRF_RFOUT_2G_CORE1
O
2.4 GHz WLAN CORE1 PA output
280
WRF_RFOUT_5G_CORE0
O
5 GHz WLAN CORE0 PA output
299
WRF_RFOUT_5G_CORE1
O
5 GHz WLAN CORE1 PA output
294
WRF_TSSI_A_CORE0
I
5 GHz TSSI CORE0 input from an optional external power
amplifier/power detector.
276
WRF_TSSI_A_CORE1
I
5 GHz TSSI CORE1 input from an optional external power
amplifier/power detector.
297
WRF_GPIO_OUT_CORE0
I/O
GPIO or 2.4 GHz TSSI CORE0 input from an optional external
power amplifier/power detector
258
WRF_GPIO_OUT_CORE1
I/O
GPIO or 2.4 GHz TSSI CORE1 input from an optional external
power amplifier/power detector
66
RF_SW_CTRL_0
O
175
RF_SW_CTRL_1
O
186
RF_SW_CTRL_2
O
193
RF_SW_CTRL_3
O
86
RF_SW_CTRL_4
O
183
RF_SW_CTRL_5
O
190
RF_SW_CTRL_6
O
197
RF_SW_CTRL_7
O
181
RF_SW_CTRL_8
O
187
RF_SW_CTRL_9
O
194
RF_SW_CTRL_10
O
202
RF_SW_CTRL_11
O
184
RF_SW_CTRL_12
O
191
RF_SW_CTRL_13
O
198
RF_SW_CTRL_14
O
207
RF_SW_CTRL_15
RF Switch Control Lines
Programmable RF switch control lines. The control lines are
programmable via the driver and NVRAM file.
O
WLAN PCI Express Interface
174
PCIE_CLKREQ_L
Document Number: 002-14809 Rev. *L
OD
PCIe clock request signal which indicates when the REFCLK to
the PCIe interface can be gated.
1 = the clock can be gated
0 = the clock is required
Page 80 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
I (PU)
PCIe System Reset. This input is the PCIe reset as defined in
the PCIe base specification version 1.1.
180
PCIE_PERST_L
9
PCIE_RDN0
I
8
PCIE_RDP0
I
4
PCIE_REFCLKN
I
3
PCIE_REFCLKP
I
5
PCIE_TDN0
O
6
PCIE_TDP0
O
165
PCIE_PME_L
OD
367
PCIE_TESTP
–
368
PCIE_TESTN
–
Receiver differential pair (×1 lane)
PCIE Differential Clock inputs (negative and positive). 100 MHz
differential.
Transmitter differential pair (×1 lane)
PCI power management event output. Used to request a change
in the device or system power state. The assertion and
deassertion of this signal is asynchronous to the PCIe reference
clock. This signal has an open-drain output structure, as per the
PCI Bus Local Bus Specification, revision 2.3.
PCIe test pin
WLAN SDIO Bus Interface
These signals can support alternate functionality depending on package and host interface mode. See Table 27 on page 95
78
SDIO_CLK
I
SDIO clock input
81
SDIO_CMD
I/O
SDIO command line
82
SDIO_DATA_0
I/O
SDIO data line 0
77
SDIO_DATA_1
I/O
SDIO data line 1
80
SDIO_DATA_2
I/O
SDIO data line 2
79
SDIO_DATA_3
I/O
SDIO data line 3
WLAN HSIC Interface
100
HSIC_STROBE
I/O
HSIC Strobe
101
HSIC_DATA
I/O
HSIC Data
99
RREFHSIC
I
Document Number: 002-14809 Rev. *L
HSIC reference resistor input. If HSIC is used, connect this pin
to ground via a 51-ohm 5% resistor. On SDIO designs this pin
should not be connected.
Page 81 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
WLAN GPIO Interface
The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table 24 on page 94 and
Table 27 on page 95 for additional details.
218
GPIO_0
I/O
219
GPIO_1
I/O
220
GPIO_2
I/O
221
GPIO_3
I/O
229
GPIO_4
I/O
237
GPIO_5
I/O
236
GPIO_6
I/O
189
GPIO_7
I/O
196
GPIO_8
I/O
205
GPIO_9
I/O
185
GPIO_10
I/O
192
GPIO_11
I/O
199
GPIO_12
I/O
182
GPIO_13
I/O
188
GPIO_14
I/O
195
GPIO_15
I/O
Programmable GPIO pins
JTAG Interface
239
JTAG_SEL
I/O
JTAG select: pull high to select the JTAG interface. If the JTAG
interface is not used this pin may be left floating or connected to
ground.
Note:
See Table 27 on page 95 for the JTAG signal pins.
Clocks
251
WRF_XTAL_IN
I
XTAL oscillator input
253
WRF_XTAL_OUT
O
XTAL oscillator output
159
LPO_IN
I
External sleep clock input (32.768 kHz)
161
CLK_REQ
O
Reference clock request (shared by BT and WLAN). If not used,
this can be no-connect.
49
BT_RF
O
Bluetooth PA output
–
BT_SF_CLK
I
SFLASH_CLK
–
BT_SF_CS_L
I/O
SFLASH_CSN
–
BT_SF_MISO
I/O
SFLASH master input, slave output
–
BT_SF_MOSI
I/O
SFLASH master output, slave input
61
FM_RFIN
I
FM radio antenna port
60
FM_RFAUX
I
FM radio auxiliary antenna port
54
FM_AOUT1
O
FM DAC output 1
55
FM_AOUT2
O
FM DAC output 2
Bluetooth/FM Transceiver
Document Number: 002-14809 Rev. *L
Page 82 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
Bluetooth PCM
179
BT_PCM_CLK
173
BT_PCM_IN
177
163
I/O
PCM clock; can be master (output) or slave (input)
I
PCM data input
BT_PCM_OUT
O
PCM data output
BT_PCM_SYNC
I/O
PCM sync; can be master (output) or slave (input).
Bluetooth USB Interface
164
BT_USB_DN
I/O
USB (Host) data negative. Negative terminal of the USB transceiver.
169
BT_USB_DP
I/O
USB (Host) data positive. Positive terminal of the USB transceiver.
Bluetooth UART
172
BT_UART_CTS_L
I
UART clear-to-send. Active-low clear-to-send signal for the HCI
UART interface.
178
BT_UART_RTS_L
O
UART request-to-send. Active-low request-to-send signal for
the HCI UART interface. BT LED control pin.
162
BT_UART_RXD
I
UART serial input. Serial data input for the HCI UART interface.
157
BT_UART_TXD
O
UART serial output. Serial data output for the HCI UART
interface.
Bluetooth/FM I2S
167
BT_I2S_CLK
I/O
I2S clock, can be master (output) or slave (input).
171
BT_I2S_DO
I/O
I2S data output
156
BT_I2S_DI
I/O
I2S data input
158
BT_I2S_WS
I/O
I2S WS; can be master (output) or slave (input).
Bluetooth GPIOs
155
BT_GPIO_2
I/O
Bluetooth general-purpose I/O
154
BT_GPIO_3
I/O
Bluetooth general-purpose I/O
168
BT_GPIO_4
I/O
Bluetooth general-purpose I/O
153
BT_GPIO_5
I/O
Bluetooth general-purpose I/O
Miscellaneous
319
WL_REG_ON
I
Used by PMU to power up or power down the internal CYW4354
regulators used by the WLAN section. Also, when deasserted,
this pin holds the WLAN section in reset. This pin has an internal
200 kΩ pull-down resistor that is enabled by default. It can be
disabled through programming.
320
BT_REG_ON
I
Used by PMU to power up or power down the internal CYW4354
regulators used by the Bluetooth/FM section. Also, when
deasserted, this pin holds the Bluetooth/FM section in reset.
This pin has an internal 200 kΩ pull-down resistor that is enabled
by default. It can be disabled through programming.
176
BT_DEV_WAKE
I/O
Bluetooth DEV_WAKE
170
BT_HOST_WAKE
I/O
Bluetooth HOST_WAKE
Document Number: 002-14809 Rev. *L
Page 83 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
Integrated Voltage Regulators
340
SR_VDDBATA5V
I
Quiet VBAT
348
SR_VDDBATP5V
I
Power VBAT
336
SR_VLX
O
CBuck switching regulator output. Refer to Table 44 on page 129
for details of the inductor and capacitor required on this output.
342
LDO_VDD1P5
I
LNLDO input
327
LDO_VDDBAT5V
I
LDO VBAT.
249
WRF_XTAL_VDD1P5
I
XTAL LDO input (1.35V)
254
WRF_XTAL_VDD1P2
O
XTAL LDO output (1.2V)
351
VOUT_LNLDO
O
Output of LNLDO
341
VOUT_CLDO
O
Output of core LDO
362
VOUT_BTLDO2P5
O
Output of BT LDO
346
VOUT_LDO3P3_B
O
Output of 3.3V LDO
324
VOUT_3P3
O
LDO 3.3V output
330
VOUT_3P3_SENSE
O
Voltage sense pin for LDO 3.3V output
Bluetooth Supplies
46
BT_PAVDD2P5
PWR
Bluetooth PA power supply
44
BT_LNAVDD1P2
PWR
Bluetooth LNA power supply
42
BT_IFVDD1P2
PWR
Bluetooth IF block power supply
47
BT_PLLVDD1P2
PWR
Bluetooth RF PLL power supply
50
BT_VCOVDD1P2
PWR
Bluetooth RF power supply
148, 149,
150,151
BT_VDDIO
PWR
Core supply
FM Transceiver Supplies
–
FM_LNAVCOVDD1P2
PWR
FM LNA and VCO 1.2V power supply
62
FM_LNAVDD1P2
PWR
FM LNA 1.2V power supply
64
FM_VCOVDD1P2
PWR
FM VCO 1.2V power supply
59
FM_PLLVDD1P2
PWR
FM PLL 1.2V power supply
52
FM_AUDIOVDD1P2
PWR
FM AUDIO power supply
277
WRF_BUCK_VDD1P5_CORE0
PWR
Internal capacitor-less CORE0 LDO supply
296
WRF_BUCK_VDD1P5_CORE1
PWR
Internal capacitor-less CORE1 LDO supply
262
WRF_SYNTH_VBAT_VDD3P3
PWR
Synth VDD 3.3V supply
289
WRF_PADRV_VBAT_VDD3P3_CORE0
PWR
CORE0 PA Driver VBAT supply
264
WRF_PADRV_VBAT_VDD3P3_CORE1
PWR
CORE1 PA Driver VBAT supply
269
WRF_PA5G_VBAT_VDD3P3_CORE0
PWR
5 GHz CORE0 PA 3.3V VBAT supply
266
WRF_PA5G_VBAT_VDD3P3_CORE1
PWR
5 GHz CORE1 PA 3.3V VBAT supply
305
WRF_PA2G_VBAT_VDD3P3_CORE0
PWR
2 GHz CORE0 PA 3.3V VBAT supply
285
WRF_PA2G_VBAT_VDD3P3_CORE1
PWR
2 GHz CORE1 PA 3.3V VBAT supply
270
WRF_MMD_VDD1P2
PWR
1.2V supply
WLAN Supplies
Document Number: 002-14809 Rev. *L
Page 84 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
262
Signal Name
Type
WRF_PFD_VDD1P2
PWR
Description
1.2V supply
Miscellaneous Supplies
160
OTP_VDD33
PWR
OTP 3.3V supply
67, 74, 87, VDDC
103, 107–
115, 127–
129, 134–
140, 203,
204, 208–
211, 213,
224, 228,
241, 242,
246
PWR
1.2V core supply for WLAN
206, 222,
231
VDDIO
PWR
1.8V–3.3V supply for WLAN. Must be directly connected to
PMU_VDDIO and BT_VDDIO on the PCB.
145, 147,
369– 375,
BT_VDDC
PWR
1.2V core supply for BT
326
VDDIO_PMU
PWR
1.8V–3.3V supply for PMU controls. Must be directly connected
to VDDIO and BT_VDDIO on the PCB.
76
VDDIO_SD
PWR
1.8V–3.3V supply for SDIO pads
223
VDDIO_RF
PWR
IO supply for RF switch control pads (3.3V)
98
HSIC_AVDD12PLL
PWR
1.2V supply for HSIC PLL
102
HSIC_DVDD12
PWR
1.2V supply for HSIC digital
143
AVDD_BBPLL
PWR
Baseband PLL supply
11
PCIE_PLL_AVDD1P2
PWR
1.2V supply for PCIe PLL
7
PCIE_RXTX_AVDD1P2
PWR
1.2V supply for PCIE TX and RX
230
VDDIO_PCIE
PWR
Supply the same voltage to this pin as used for the PCIe out-ofband signals (that is, PCIE_PME_L). This would be 1.8V or 3.3V,
and cannot be turned off.
250
WRF_VCO_GND1P2
GND
VCO/LOGEN ground
281
WRF_AFE_GND1P2_CORE0
GND
CORE0 AFE ground
267
WRF_AFE_GND1P2_CORE1
GND
CORE1 AFE ground
295
WRF_BUCK_GND1P5_CORE0
GND
Internal capacitor-less CORE0 LDO ground
256
WRF_BUCK_GND1P5_CORE1
GND
Internal capacitor-less CORE1 LDO ground
275
WRF_LNA_2G_GND1P2_CORE0
GND
2 GHz internal CORE0 LNA ground
282
WRF_LNA_2G_GND1P2_CORE1
GND
2 GHz internal CORE1 LNA ground
273
WRF_LNA_5G_GND1P2_CORE0
GND
5 GHz internal CORE0 LNA ground
283
WRF_LNA_5G_GND1P2_CORE1
GND
5 GHz internal CORE1 LNA ground
293
WRF_TX_GND1P2_CORE0
GND
TX CORE0 ground
255
WRF_TX_GND1P2_CORE1
GND
TX CORE1 ground
288
WRF_PADRV_VBAT_GND3P3_CORE0
GND
PAD CORE0 ground
265
WRF_PADRV_VBAT_GND3P3_CORE1
GND
PAD CORE1 ground
248
WRF_XTAL_GND1P2
GND
XTAL ground
Ground
Document Number: 002-14809 Rev. *L
Page 85 of 162
CYW4354
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
291, 307
WRF_RX2G_GND1P2_CORE0
GND
RX 2GHz CORE0 ground
259, 317
WRF_RX2G_GND1P2_CORE1
GND
RX 2GHz CORE1 ground
292
WRF_RX5G_GND1P2_CORE0
GND
RX 5GHz CORE0 ground
257
WRF_RX5G_GND1P2_CORE1
GND
RX 5GHz CORE1 ground
252, 316
WRF_LOGEN_GND1P2
GND
LOGEN ground
278
WRF_LOGENG_GND1P2
GND
LOGEN ground
268, 030
WRF_PA5G_VBAT_GND3P3_CORE0
GND
5 GHz PA CORE0 ground
286, 304
WRF_PA5G_VBAT_GND3P3_CORE1
GND
5 GHz PA CORE1 ground
272, 300
WRF_PA2G_VBAT_GND3P3_CORE0
GND
2 GHz PA CORE0 ground
284, 301
WRF_PA2G_VBAT_GND3P3_CORE1
GND
2 GHz PA CORE1 ground
271
WRF_MMD_GND1P2
GND
Ground
274, 318
WRF_CP_GND1P2
GND
Ground
263
WRF_PFD_GND1P2
GND
Ground
68–73, 75, VSSC
83–85,
88–95,
104–106,
116–122,
130, 200,
201, 217,
232–235,
254–245,
333, 334,
384–395
GND
Core ground for WLAN and BT
338, 349,
360, 364
SR_PVSS
GND
Power ground
335
PMU_AVSS
GND
Quiet ground
97
HSIC_AGND12PLL
GND
HSIC PLL ground
40
BT_PAVSS
GND
Bluetooth PA ground
43
BT_IFVSS
GND
Bluetooth IF block ground
48
BT_PLLVSS
GND
Bluetooth PLL ground
51
BT_VCOVSS
GND
Bluetooth VCO ground
65
FM_VCOVSS
GND
FM VCO ground
63
FM_LNAVSS
GND
FM LNA ground
58
FM_PLLVSS
GND
FM PLL ground
53
FM_AUDIOVSS
GND
FM AUDIO ground
144
AVSS_BBPLL
GND
Baseband PLL ground
10
PCIE_AVSS
GND
PCIe ground
1
PCIE_RXTX_AVSS
GND
PCIe ground
2
PCIE_PLL_AVSS
GND
PCIe ground
17, 18, 23, RGND
26, 96
GND
Ground
–
GND
Ground
BTRGND
Document Number: 002-14809 Rev. *L
Page 86 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
WLAN and Bluetooth Receive RF Signal Interface
N1
WRF_RFIN_2G_CORE0
I
2.4 GHz Bluetooth and WLAN CORE0 receiver shared input
V7
WRF_RFIN_2G_CORE1
I
2.4 GHz Bluetooth and WLAN CORE1 receiver shared input
V1
WRF_RFIN_5G_CORE0
I
5 GHz WLAN CORE0 receiver input
V12
WRF_RFIN_5G_CORE1
I
5 GHz WLAN CORE1 receiver input
P1
WRF_RFOUT_2G_CORE0
O
2.4 GHz WLAN CORE0 PA output
V8
WRF_RFOUT_2G_CORE1
O
2.4 GHz WLAN CORE1 PA output
U1
WRF_RFOUT_5G_CORE0
O
5 GHz WLAN CORE0 PA output
V11
WRF_RFOUT_5G_CORE1
O
5 GHz WLAN CORE1 PA output
U3
WRF_TSSI_A_CORE0
I
5 GHz TSSI CORE0 input from an optional external power
amplifier/power detector.
T11
WRF_TSSI_A_CORE1
I
5 GHz TSSI CORE1 input from an optional external power
amplifier/power detector.
R4
WRF_GPIO_OUT_CORE0
I/O
GPIO or 2.4 GHz TSSI CORE0 input from an optional external
power amplifier/power detector
R9
WRF_GPIO_OUT_CORE1
I/O
GPIO or 2.4 GHz TSSI CORE1 input from an optional external
power amplifier/power detector
RF Switch Control Lines
R7
RF_SW_CTRL_0
O
N8
RF_SW_CTRL_1
O
P9
RF_SW_CTRL_2
O
N7
RF_SW_CTRL_3
O
N5
RF_SW_CTRL_4
O
P7
RF_SW_CTRL_5
O
P5
RF_SW_CTRL_6
O
M8
RF_SW_CTRL_7
O
K12
RF_SW_CTRL_8
O
J11
RF_SW_CTRL_9
O
M12
RF_SW_CTRL_10
O
L9
RF_SW_CTRL_11
O
J9
RF_SW_CTRL_12
O
K10
RF_SW_CTRL_13
O
M10
RF_SW_CTRL_14
O
L8
RF_SW_CTRL_15
O
Programmable RF switch control lines. The control lines are
programmable via the driver and NVRAM file.
WLAN PCI Express Interface
D5
PCIE_CLKREQ_L
C4
PCIE_PERST_L
Document Number: 002-14809 Rev. *L
OD
PCIe clock request signal which indicates when the REFCLK to
the PCIe interface can be gated.
1 = the clock can be gated
0 = the clock is required
I (PU)
PCIe System Reset. This input is the PCIe reset as defined in
the PCIe base specification version 1.1.
Page 87 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
B1
PCIE_RDN0
I
C1
PCIE_RDP0
I
A5
PCIE_REFCLKN
I
A4
PCIE_REFCLKP
I
A3
PCIE_TDN0
O
A2
PCIE_TDP0
O
C5
PCIE_PME_L
OD
C3
PCIE_TESTP
–
C2
PCIE_TESTN
–
Description
Receiver differential pair (×1 lane)
PCIE Differential Clock inputs (negative and positive). 100 MHz
differential.
Transmitter differential pair (×1 lane)
PCI power management event output. Used to request a
change in the device or system power state. The assertion and
deassertion of this signal is asynchronous to the PCIe reference
clock. This signal has an open-drain output structure, as per the
PCI Bus Local Bus Specification, revision 2.3.
PCIe test pin
WLAN SDIO Bus Interface
Note: These signals can support alternate functionality depending on package and host interface mode. See Table 27
on page 95 for additional details.
A8
SDIO_CLK
I
SDIO clock input
A9
SDIO_CMD
I/O
SDIO command line
B9
SDIO_DATA_0
I/O
SDIO data line 0
C9
SDIO_DATA_1
I/O
SDIO data line 1
B8
SDIO_DATA_2
I/O
SDIO data line 2
C8
SDIO_DATA_3
I/O
SDIO data line 3
WLAN HSIC Interface
A7
HSIC_STROBE
I/O
HSIC Strobe
A6
HSIC_DATA
I/O
HSIC Data
D7
RREFHSIC
I
Document Number: 002-14809 Rev. *L
HSIC reference resistor input. If HSIC is used, connect this pin
to ground via a 51-ohm 5% resistor. On SDIO designs this pin
should not be connected.
Page 88 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
WLAN GPIO Interface
Note: The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table
24 on page 94 and Table 27 on page 95 for additional details.
G11
GPIO_0
I/O
F10
GPIO_1
I/O
F11
GPIO_2
I/O
G9
GPIO_3
I/O
H9
GPIO_4
I/O
F9
GPIO_5
I/O
F8
GPIO_6
I/O
E7
GPIO_7
I/O
F7
GPIO_8
I/O
E6
GPIO_9
I/O
H12
GPIO_10
I/O
–
GPIO_11
I/O
–
GPIO_12
I/O
–
GPIO_13
I/O
–
GPIO_14
I/O
–
GPIO_15
I/O
Programmable GPIO pins
JTAG Interface
D9
JTAG_SEL
I/O
JTAG select: pull high to select the JTAG interface. If the JTAG
interface is not used this pin may be left floating or connected
to ground.
Note: See Table 27 on page 95 for the JTAG signal pins.
Clocks
P12
WRF_XTAL_IN
I
XTAL oscillator input
N12
WRF_XTAL_OUT
O
XTAL oscillator output
F6
LPO_IN
I
External sleep clock input (32.768 kHz)
F4
CLK_REQ
O
Reference clock request (shared by BT and WLAN). If not used,
this can be no-connect.
Bluetooth/FM Transceiver
L1
BT_RF
O
Bluetooth PA output
–
BT_SF_CLK
I
SFLASH_CLK
–
BT_SF_CS_L
I/O
SFLASH_CSN
–
BT_SF_MISO
I/O
SFLASH master input, slave output
–
BT_SF_MOSI
I/O
SFLASH master output, slave input
H1
FM_RFIN
–
E1
F1
I
FM radio antenna port
FM_RFAUX
I
FM radio auxiliary antenna port
FM_AOUT1
O
FM DAC output 1
FM_AOUT2
O
FM DAC output 2
Bluetooth PCM
Document Number: 002-14809 Rev. *L
Page 89 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
I/O
Description
M6
BT_PCM_CLK
PCM clock; can be master (output) or slave (input)
J4
BT_PCM_IN
I
PCM data input
H4
BT_PCM_OUT
O
PCM data output
K6
BT_PCM_SYNC
I/O
PCM sync; can be master (output) or slave (input).
Bluetooth USB Interface
E5
BT_USB_DN
I/O
USB (Host) data negative. Negative terminal of the USB transceiver.
F5
BT_USB_DP
I/O
USB (Host) data positive. Positive terminal of the USB transceiver.
L5
BT_UART_CTS_L
I
UART clear-to-send. Active-low clear-to-send signal for the HCI
UART interface.
K5
BT_UART_RTS_L
O
UART request-to-send. Active-low request-to-send signal for
the HCI UART interface. BT LED control pin.
H5
BT_UART_RXD
I
UART serial input. Serial data input for the HCI UART interface.
J5
BT_UART_TXD
O
UART serial output. Serial data output for the HCI UART
interface.
Bluetooth UART
Bluetooth/FM I2S
J6
BT_I2S_CLK
I/O
I2S clock, can be master (output) or slave (input).
G6
BT_I2S_DO
I/O
I2S data output
G5
BT_I2S_DI
I/O
I2S data input
L6
BT_I2S_WS
I/O
I2S WS; can be master (output) or slave (input).
–
BT_GPIO_2
I/O
Bluetooth general-purpose I/O
–
BT_GPIO_3
I/O
Bluetooth general-purpose I/O
K4
BT_GPIO_4
I/O
Bluetooth general-purpose I/O
–
BT_GPIO_5
I/O
Bluetooth general-purpose I/O
Bluetooth GPIO
Miscellaneous
A10
WL_REG_ON
I
Used by PMU to power up or power down the internal CYW4354
regulators used by the WLAN section. Also, when deasserted,
this pin holds the WLAN section in reset. This pin has an internal
200 kΩ pull-down resistor that is enabled by default. It can be
disabled through programming.
D10
BT_REG_ON
I
Used by PMU to power up or power down the internal CYW4354
regulators used by the Bluetooth/FM section. Also, when
deasserted, this pin holds the Bluetooth/FM section in reset.
This pin has an internal 200 kΩ pull-down resistor that is
enabled by default. It can be disabled through programming.
L4
BT_DEV_WAKE
I/O
Bluetooth DEV_WAKE
J3
BT_HOST_WAKE
I/O
Bluetooth HOST_WAKE
Document Number: 002-14809 Rev. *L
Page 90 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
Integrated Voltage Regulators
B11
SR_VDDBATA5V
I
Quiet VBAT
B12
SR_VDDBATP5V
I
Power VBAT
A11
SR_VLX
O
CBuck switching regulator output. Refer to Table 44 on page 129
for details of the inductor and capacitor required on this output.
C12
LDO_VDD1P5
I
LNLDO input
E12
LDO_VDDBAT5V
I
LDO VBAT.
P11
WRF_XTAL_VDD1P5
I
XTAL LDO input (1.35V)
N10
WRF_XTAL_VDD1P2
O
XTAL LDO output (1.2V)
D11
VOUT_LNLDO
O
Output of LNLDO
C11
VOUT_CLDO
O
Output of core LDO
D12
VOUT_BTLDO2P5
O
Output of BT LDO
E11
VOUT_LDO3P3_B
O
Output of 3.3V LDO
F12
VOUT_3P3
O
LDO 3.3V output
–
VOUT_3P3_SENSE
O
Voltage sense pin for LDO 3.3V output
Bluetooth Supplies
M1
BT_PAVDD2P5
PWR
Bluetooth PA power supply
K1
BT_LNAVDD1P2
PWR
Bluetooth LNA power supply
K3
BT_IFVDD1P2
PWR
Bluetooth IF block power supply
K2
BT_PLLVDD1P2
PWR
Bluetooth RF PLL power supply
J1
BT_VCOVDD1P2
PWR
Bluetooth RF power supply
K7
BT_VDDIO
PWR
Core supply
G1
FM_LNAVCOVDD1P2
PWR
FM LNA and VCO 1.2V power supply
–
FM_LNAVDD1P2
PWR
FM LNA 1.2V power supply
–
FM_VCOVDD1P2
PWR
FM VCO 1.2V power supply
FM Transceiver Supplies
F3
FM_PLLVDD1P2
PWR
FM PLL 1.2V power supply
E2
FM_AUDIOVDD1P2
PWR
FM AUDIO power supply
WLAN Supplies
U4
WRF_BUCK_VDD1P5_CORE0
PWR
Internal capacitor-less CORE0 LDO supply
R11
WRF_BUCK_VDD1P5_CORE1
PWR
Internal capacitor-less CORE1 LDO supply
V6
WRF_SYNTH_VBAT_VDD3P3
PWR
Synth VDD 3.3V supply
R3
WRF_PADRV_VBAT_VDD3P3_CORE0
PWR
CORE0 PA Driver VBAT supply
T9
WRF_PADRV_VBAT_VDD3P3_CORE1
PWR
CORE1 PA Driver VBAT supply
T1
WRF_PA5G_VBAT_VDD3P3_CORE0
PWR
5 GHz CORE0 PA 3.3V VBAT supply
V10
WRF_PA5G_VBAT_VDD3P3_CORE1
PWR
5 GHz CORE1 PA 3.3V VBAT supply
R1
WRF_PA2G_VBAT_VDD3P3_CORE0
PWR
2 GHz CORE0 PA 3.3V VBAT supply
V9
WRF_PA2G_VBAT_VDD3P3_CORE1
PWR
2 GHz CORE1 PA 3.3V VBAT supply
T5
WRF_MMD_VDD1P2
PWR
1.2V supply
T4
WRF_PFD_VDD1P2
PWR
1.2V supply
Document Number: 002-14809 Rev. *L
Page 91 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
Miscellaneous Supplies
–
OTP_VDD33
PWR
OTP 3.3V supply
B7, D4,
E9, G10,
J8, J12,
L10, M7
VDDC
PWR
1.2V core supply for WLAN
E10
VDDIO
PWR
1.8V–3.3V supply for WLAN. Must be directly connected to
PMU_VDDIO and BT_VDDIO on the PCB.
E4, H3, M5 BT_VDDC
PWR
1.2V core supply for BT
–
VDDIO_PMU
PWR
1.8V–3.3V supply for PMU controls. Must be directly connected
to VDDIO and BT_VDDIO on the PCB.
E8
VDDIO_SD
PWR
1.8V–3.3V supply for SDIO pads
H11
VDDIO_RF
PWR
IO supply for RF switch control pads (3.3V)
C7
HSIC_AVDD12PLL
PWR
1.2V supply for HSIC PLL
C6
HSIC_DVDD12
PWR
1.2V supply for HSIC digital
H7
AVDD_BBPLL
PWR
Baseband PLL supply
B3
PCIE_PLL_AVDD1P2
PWR
1.2V supply for PCIe PLL
B2
PCIE_RXTX_AVDD1P2
PWR
1.2V supply for PCIE TX and RX
U6
WRF_VCO_GND1P2
GND
VCO/LOGEN ground
P4
WRF_AFE_GND1P2_CORE0
GND
CORE0 AFE ground
R8
WRF_AFE_GND1P2_CORE1
GND
CORE1 AFE ground
Ground
V4
WRF_BUCK_GND1P5_CORE0
GND
Internal capacitor-less CORE0 LDO ground
R12
WRF_BUCK_GND1P5_CORE1
GND
Internal capacitor-less CORE1 LDO ground
N2
WRF_LNA_2G_GND1P2_CORE0
GND
2 GHz internal CORE0 LNA ground
U7
WRF_LNA_2G_GND1P2_CORE1
GND
2 GHz internal CORE1 LNA ground
V2
WRF_LNA_5G_GND1P2_CORE0
GND
5 GHz internal CORE0 LNA ground
U12
WRF_LNA_5G_GND1P2_CORE1
GND
5 GHz internal CORE1 LNA ground
P3
WRF_TX_GND1P2_CORE0
GND
TX CORE0 ground
T8
WRF_TX_GND1P2_CORE1
GND
TX CORE1 ground
T3
WRF_PADRV_VBAT_GND3P3_CORE0
GND
PAD CORE0 ground
T10
WRF_PADRV_VBAT_GND3P3_CORE1
GND
PAD CORE1 ground
N11
WRF_XTAL_GND1P2
GND
XTAL ground
N3
WRF_RX2G_GND1P2_CORE0
GND
RX 2GHz CORE0 ground
T7
WRF_RX2G_GND1P2_CORE1
GND
RX 2GHz CORE1 ground
V3
WRF_RX5G_GND1P2_CORE0
GND
RX 5GHz CORE0 ground
T12
WRF_RX5G_GND1P2_CORE1
GND
RX 5GHz CORE1 ground
R6
WRF_LOGEN_GND1P2
GND
LOGEN ground
R5
WRF_LOGENG_GND1P2
GND
LOGEN ground
T2, U2
WRF_PA5G_VBAT_GND3P3_CORE0
GND
5 GHz PA CORE0 ground
U10, U11
WRF_PA5G_VBAT_GND3P3_CORE1
GND
5 GHz PA CORE1 ground
Document Number: 002-14809 Rev. *L
Page 92 of 162
CYW4354
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
P2, R2
WRF_PA2G_VBAT_GND3P3_CORE0
GND
2 GHz PA CORE0 ground
U8, U9
WRF_PA2G_VBAT_GND3P3_CORE1
GND
2 GHz PA CORE1 ground
T6
WRF_MMD_GND1P2
GND
Ground
V5
WRF_CP_GND1P2
GND
Ground
U5
WRF_PFD_GND1P2
GND
Ground
C10, D3,
D6, G4,
G8, G12,
L7, L11,
M4
VSSC
GND
Core ground for WLAN and BT
A12
SR_PVSS
GND
Power ground
B10
PMU_AVSS
GND
Quiet ground
B6
HSIC_AGND12PLL
GND
HSIC PLL ground
L2
BT_PAVSS
GND
Bluetooth PA ground
M3
BT_IFVSS
GND
Bluetooth IF block ground
L3
BT_PLLVSS
GND
Bluetooth PLL ground
J2
BT_VCOVSS
GND
Bluetooth VCO ground
G2
FM_VCOVSS
GND
FM VCO ground
H2
FM_LNAVSS
GND
FM LNA ground
G3
FM_PLLVSS
GND
FM PLL ground
F2
FM_AUDIOVSS
GND
FM AUDIO ground
G7
AVSS_BBPLL
GND
Baseband PLL ground
–
PCIE_AVSS
GND
PCIe ground
B4
PCIE_RXTX_AVSS
GND
PCIe ground
B5
PCIE_PLL_AVSS
GND
PCIe ground
–
RGND
GND
Ground
–
BTRGND
GND
Ground
Document Number: 002-14809 Rev. *L
Page 93 of 162
CYW4354
13.4 WLAN/BT GPIO Signals and Strapping Options
The pins listed in Table 24 and Table 25 are sampled at power-on reset (POR) to determine the various operating modes. Sampling
occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or
alternative function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD)
resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND,
using a 10 kΩ resistor or less.
Note: Refer to the reference board schematics for more information.
Table 24. WLAN GPIO Functions and Strapping Options
Pin Name
Default Function
Description
GPIO_4
0
1: SPROM is present
0: SPROM is absent (default). Applicable in PCIe Host mode.
Note: In SDIO Host mode, sdioPadVddio is 3.3V while set to 1, and 1.8V while set to 0.
GPIO_5
0
0: sflash absent (default)
1: sflash present
GPIO_[10, 9, 8]
[0,0,0]
GPIO_12
Host interface selection: see Table 26.
1
1 = HTAvailable (default)
0 = ResourceModeInit is ALPAvailable. On PCBs, use a pull-down and tie to ALP clock
mode.
Table 25. BT GPIO Functions and Strapping Options
Pin Name
BT_GPIO4
Default
Function
0
Description
1: BT Serial Flash is present.
0: BT Serial Flash is absent (default)
Table 26. GPIO_[10, 9, 8] Host Interface Selection
GPIO_[10, 9, 8]
Bit Setting
WLAN Host Interface Mode
Bluetooth Mode
000
SDIO
BTUART or BTUSB;
BT tPorts stand-alone.
010
HSIC_30D
BTUART or BTUSB;
BT tPorts stand-alone
011
PCIE
BTUART or BTUSB;
BT tPorts stand-alone
Document Number: 002-14809 Rev. *L
Page 94 of 162
CYW4354
13.5 GPIO Alternative Signal Functions
Table 27. GPIO Alternative Signal Functions
Test Mode
Pin
Names
UART
SFLASH
SPROM
BSC
Miscellaneous-0
(JTAG_SEL =
1)
GCI
Miscellaneous1
Miscellaneous-2
PWDOG
7
8
9
10
Additional
Functionality
SDIO_SEP_INT
SDIO_SEP_INT
_OD
PWDOG
_GPIO_0
WL_HOST_WAK
E
Function Select
0
2
3
4
5
6
GPIO_0
TEST_GPIO_0 FAST_UAR
T
_RX
UART_DBG
_TX
–
BSC_CLK
GPIO_1
TEST_GPIO_1 FAST_UAR
T
_TX
UART_DBG
_RX
–
BSC _SDA RF_DISABLE_L GCI_GPIO_5
–
–
PWDOG
_GPIO_1
WL_DEV_WAKE
/
HSIC_HOST_RD
Y
GPIO_2
TEST_GPIO_2 FAST_UAR
T
_CTS_IN
–
–
N/A
TCK
GCI_GPIO_1
–
–
–
–
GPIO_3
TEST_GPIO_3 FAST_UAR
T
_RTS_OUT
–
–
N/A
TMS
GCI_GPIO_0
–
–
–
–
GPIO_4
TEST_GPIO_4 UART_RX
UART_DBG
_RX
–
N/A
TDI
SECI_IN
–
–
–
–
GPIO_5
TEST_GPIO_5 UART_TX
UART_DBG
_TX
–
N/A
TDO
SECI_OUT
–
–
–
–
GPIO_6
TEST_GPIO_6 –
–
–
N/A
TRST_L
GCI_GPIO_2
SECI_IN
–
–
–
GPIO_7
TEST_GPIO_7 FAST_UAR
T
_RTS_OUT
SFLASH_CS
SPROM_CS
BSC_SDA
PMU_TEST_O
GCI_GPIO_3
USB_MDC/
HSIC_MDC
–
PWDOG
_GPIO_2
WL_LED
(For WLBGA)
GPIO_8
TEST_GPIO_8 FAST_UAR
T
_CTS_IN
SFLASH_CL
K
SPROM_CLK BSC_CLK
–
SECI_IN
USB_MDIO/
HSIC_MDIO
––
PWDOG
_GPIO_3
–
GPIO_9
TEST_GPIO_9 FAST_UAR
T
_RX
SFLASH_MI
SPROM_MI
PALDO
_PU
–
SECI_OUT
PALDO_PD
–
PWDOG
_GPIO_4
–
GPIO_10
TEST_GPIO_10
FAST_UAR
T
_TX
SFLASH_MO SPROM_MO
–
–
GCI_GPIO_4
–
–
PWDOG
_GPIO_5
HSIC_DEV_RDY
GPIO_11
TEST_GPIO_11
FAST_UAR
T_RX
–
–
PALDO
_PU
–
GCI_GPIO_5
PALDO_PD
–
–
USB_VBUS
_PRESENT
GPIO_12
TEST_GPIO_12
FAST_UAR
T
_TX
–
–
–
–
GCI_GPIO_1
–
–
–
Document Number: 002-14809 Rev. *L
–
GCI_GPIO_4
Page 95 of 162
CYW4354
Table 27. GPIO Alternative Signal Functions (Cont.)
Test Mode
UART
SFLASH
SPROM
Miscellaneous-0
(JTAG_SEL =
1)
BSC
GCI
Miscellaneous1
Miscellaneous-2
PWDOG
7
8
9
10
Function Select
Pin
Names
0
2
3
4
5
6
Additional
Functionality
GPIO_13
TEST_GPIO_13
usbphy
_scan
_resetb
–
–
–
–
GCI_GPIO_0
–
–
–
–
GPIO_14
TEST_GPIO_14
FAST_UAR
T
_RTS_OUT
UART_DBG
_RX
–
–
–
GCI_GPIO_2
–
–
–
–
GPIO_15
TEST_GPIO_1 FAST_UART UART_DBG
5
_CTS_IN
_TX
–
–
–
GCI_GPIO_
3
–
–
–
–
Note:
1. GPIO_0 and WL_DEV_WAKE signals are selected by using software.
2. USB_VBUS_PRESENT indicates that USB30D is selected.
3. SDIO_PADVDDIO = 1 (not in straps table) is set to 3.3V by default for all packages.
4.GPIO_7 can be used as WL_LED in WLBGA packages.
5. USB_MDx/HSIC_MDx MDIO is the interface of USB1.0/2.0/3.0 PHY or of HSIC PHY (depending on the strap option).
Table 28 defines status for all CYW4354 GPIOs based on the tristate test mode.
Table 28. GPIO Status Vs. Test Modes
Test Mode
Function Select
Status for All GPIOs
TRISTATE_IND
12
Input disable
TRISTATE_PDN
13
Pull down
TRISTATE_PUP
14
Pull up
TRISTATE
15
Tristate
Document Number: 002-14809 Rev. *L
Page 96 of 162
CYW4354
13.6 I/O States
The following notations are used in Table 29 on page 97:
I: Input signal
O: Output signal
I/O: Input/Output signal
PU = Pulled up
PD = Pulled down
NoPull = Neither pulled up nor pulled down
Note: Where applicable, the default value is shown in bold brackets (for example, [default value].
Table 29. I/O States
Name
WL_REG_ON
I/O Keepera
Active Mode
Power-downb
Low Power State/Sleep (All
(BT_REG_ON and
Power Present)
WL_REG_ON Held Low)
Out-of-Reset; Before
SW Download
(BT_REG_ON High;
WL_REG_ON High)
(WL_REG_ON High and
BT_REG_ON Low) and Power Rail
VDDIOs Are Present
I
N
I: PD
Pull-down can be disabled
I: PD
Pull-down can be disabled
I: PD (of 200K)
I: PD (of 200K)
I: PD (of 200K)
–
CLK_REQ
I/O
Y
Open drain or push-pull
Programmable
Active high
Open drain or push-pull
Programmable
Active high
High-Z, NoPull
Open drain
Active high
Open drain
Active high
BT_VDDIO
BT_HOST_WAKE
I/O
Y
I/O: PU, PD, NoPull
Programmable
I/O: PU, PD, NoPull
Programmable
High-Z, NoPull
I: PD
I: PD
BT_REG_ON
BT_DEV_WAKE
BT_GPIO 5
BT_GPIO 4
I: Floating, but input
disabled
BT_GPIO 2, 3
BT_UART_CTS
I
I: NoPull; PU programmable
I: NoPull
BT_UART_RTS
O
Y
O: NoPull
O: NoPull
BT_UART_RXD
I
I: PU
I: NoPull
BT_UART_TXD
O
O: NoPull
O: NoPull
Document Number: 002-14809 Rev. *L
High-Z, NoPull
I: PU
I: PU
I: PU
I: PU
Page 97 of 162
CYW4354
Table 29. I/O States (Cont.)
Name
SDIO Data
I/O Keepera
I/O
N
SDIO CMD
SDIO_CLK
I
BT_PCM_CLK
I/O
Y
Active Mode
Power-downb
Low Power State/Sleep (All
(BT_REG_ON and
Power Present)
WL_REG_ON Held Low)
I/O:
PU (SDIO Mode)
I:
PU (SDIO Mode)
I: NoPull
I: noPull
I: NoPull
c
I:
NoPullc
High-Z, NoPull
High-Z, NoPull
Out-of-Reset; Before
SW Download
(BT_REG_ON High;
WL_REG_ON High)
(WL_REG_ON High and
BT_REG_ON Low) and Power Rail
VDDIOs Are Present
I:
PU (SDIO Mode)
I: PU (SDIO Mode)
I: NoPull
I: NoPull
I: PD
I: PD
VDDIO_SD
BT_VDDIO
BT_PCM_IN
BT_PCM_OUT
BT_PCM_SYNC
BT_I2S_WS
I: Floating, but input
disabled
I: NoPulld
I: NoPulld
I: PD
BT_I2S_CLK
BT_I2S_DI
BT_I2S_DO
Document Number: 002-14809 Rev. *L
Page 98 of 162
CYW4354
Table 29. I/O States (Cont.)
Name
GPIO_0
I/O Keepera
I/O
Y
GPIO_1
Y
GPIO_2
Y
Active Mode
Power-downb
Low Power State/Sleep (All
(BT_REG_ON and
Power Present)
WL_REG_ON Held Low)
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
High-Z, NoPull
GPIO_3
Y
GPIO_4
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
GPIO_5
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
I: PD
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
High-Z, NoPull
I/O: PU, PD, NoPull
Programmable
I/O: PU, PD, NoPull
Programmable
Out-of-Reset; Before
SW Download
(BT_REG_ON High;
WL_REG_ON High)
(WL_REG_ON High and
BT_REG_ON Low) and Power Rail
VDDIOs Are Present
I: NoPull
I: NoPull
I: PD
I: PD
I: NoPull
I: NoPull
Ie
I: NoPull
GPIO_6
Y
GPIO_7
Y
GPIO_8
Y
GPIO_9
Y
GPIO_10
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
High-Z, NoPull
I: PD
I: PD
GPIO_11
Y
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
I: PD
I: NoPull
I: NoPull
GPIO_12
Y
I/O: PU, PD, NoPull
Programmable [PU]
I/O: PU, PD, NoPull
Programmable [PU]
High-Z, NoPull
I: PU
I: PU
GPIO_13
Y
I/O: PU, PD, NoPull
Programmable [NoPull]
I: NoPull
Y
I/O: PU, PD, NoPull
Programmable [NoPull]
I: NoPull
GPIO_14
O: NoPull
O: NoPull
O: NoPull
: NoPull
GPIO_15
RF_SW_CTRL_X
VDDIO
I: PD
Y
I/O
Y
I: PD
VDDIO_RF
a. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in Power-down state. If there is no keeper, and it is an input and there is Nopull, then the
pad should be driven to prevent leakage due to floating pad (SDIO_CLK, for example).
b. In the Power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.
c. Depending on whether the PCM interface is enabled and the configuration of PCM is in master or slave mode, it can be either input or output.
d. Depending on whether the I2S interface is enabled and the configuration of I2S is in master or slave mode, it can be either input or output.
e. For WLBGA this GPIO has NoPull in this state. For WLCSP this GPIO has a PU in this state.
Document Number: 002-14809 Rev. *L
Page 99 of 162
CYW4354
14. DC Characteristics
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization
14.1 Absolute Maximum Ratings
Caution: The absolute maximum ratings in Table 30 indicate levels where permanent damage to the device can occur, even if these
limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute
maximum conditions for extended periods can adversely affect long-term reliability of the device.
Table 30. Absolute Maximum Ratings
Rating
DC supply for VBAT and PA driver supply
a
DC supply voltage for digital I/O
DC supply voltage for RF switch I/Os
DC input supply voltage for CLDO and LNLDO
DC supply voltage for RF analog
DC supply voltage for core
WRF_TCXO_VDD
Maximum undershoot voltage for I/O
Maximum overshoot voltage for I/O
b
b
Maximum junction temperature
Symbol
Value
Unit
VBAT
–0.5 to +6.0
V
VDDIO
–0.5 to 3.9
V
VDDIO_RF
–0.5 to 3.9
V
–
–0.5 to 1.575
V
VDDRF
–0.5 to 1.32
V
VDDC
–0.5 to 1.32
V
–
–0.5 to 3.63
V
Vundershoot
–0.5
V
Vovershoot
VDDIO + 0.5
V
Tj
125
°C
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.
b. Duration not to exceed 25% of the duty cycle.
14.2 Environmental Ratings
The environmental ratings are shown in Table 31.
Table 31. Environmental Ratings
Characteristic
Value
Units
Conditions/Comments
–30 to +85
°C
Functional operationa
Storage Temperature
–40 to +125
°C
–
Relative Humidity
Less than 60
%
Storage
Less than 85
%
Operation
Ambient Temperature (TA)
a. Functionality is guaranteed but specifications require derating at extreme temperatures; see the specification tables for details.
14.3 Electrostatic Discharge Specifications
Proper use of wrist and heel grounding straps is required to discharge static electricity when handling the CYW4354.
Caution: Electrostatic discharge (ESD) damage can occur if the CYW4354 is mishandled. Always wear an ESD-preventive wrist or
heel ground strap when handling the CYW4354. As with all electrical devices of this type, take all necessary safety precautions to
prevent damage to the equipment. When not being used, always store the CYW4354 in antistatic packaging
Table 32. Electrostatic Discharge Specifications
Pin Type
Symbol
a
ESD
ESD_HAND_HBM
CDM
ESD_HAND_CDM
Condition
ESD Rating
Unit
Human body model contact discharge per JEDEC EID/
JESD22-A114.
WLBGA:1.k
WLCSP:1.5k
V
Charged device model contact JEDEC EIA/JESD22C101.
WLBGA:300
WLCSP:500
V
a. Handling Reference: NQY00083, Section 3.4, Group D9, Table B.
Document Number: 002-14809 Rev. *L
Page 100 of 162
CYW4354
14.4 Recommended Operating Conditions and DC Characteristics
Caution: Functional operation is not guaranteed outside of the limits shown in Table 33, and operation outside these limits for
extended periods can adversely affect long-term reliability of the device.
Table 33. Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Value
Minimum
Typical
Maximum
Unit
DC supply voltage for VBAT
VBAT
3.0a
–
5.25b
V
DC supply voltage for core
VDD
1.14
1.2
1.26
V
DC supply voltage for RF blocks in chip
VDDRF
1.14
1.2
1.26
V
DC supply voltage for TCXO input buffer
WRF_TCXO_VDD
1.62
1.8
1.98
V
DC supply voltage for digital I/O
VDDIO, VDDIO_SD
1.62
–
3.63
V
VDDIO_RF
3.13
3.3
3.46
V
TSSI
0.15
–
0.95
V
Vth_POR
0.4
–
0.7
V
DC supply voltage for RF switch I/Os
External TSSI input
Internal POR threshold
SDIO Interface I/O Pins
For VDDIO_SD = 1.8V:
Input high voltage
VIH
1.27
–
–
V
Input low voltage
VIL
–
–
0.58
V
Output high voltage @ 2 mA
VOH
1.40
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.45
V
VIH
0.625 ×
VDDIO
–
–
V
For VDDIO_SD = 3.3V:
Input high voltage
Input low voltage
VIL
–
–
0.25 × VDDIO
V
Output high voltage @ 2 mA
VOH
0.75 ×
VDDIO
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.125 ×
VDDIO
V
0.65 ×
VDDIO
–
–
V
Other Digital I/O Pins
For VDDIO = 1.8V:
Input high voltage
Input low voltage
VIH
VIL
–
–
0.35 × VDDIO
V
Output high voltage @ 2 mA
VOH
VDDIO –
0.45
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.45
V
Input high voltage
VIH
2.00
–
–
V
Input low voltage
VIL
–
–
0.80
V
Output high voltage @ 2 mA
VOH
VDDIO – 0.4
–
–
V
Output low Voltage @ 2 mA
VOL
–
–
0.40
V
For VDDIO = 3.3V:
Document Number: 002-14809 Rev. *L
Page 101 of 162
CYW4354
Table 33. Recommended Operating Conditions and DC Characteristics (Cont.)
Parameter
Value
Symbol
Minimum
Typical
Maximum
Unit
RF Switch Control Output Pinsc
For VDDIO_RF = 3.3V:
Output high voltage @ 2 mA
VOH
VDDIO – 0.4
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.40
V
Input capacitance
CIN
–
–
5
pF
a. The CYW4354 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is guaranteed only
for 3.13V < VBAT < 4.8V.
b. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.
Document Number: 002-14809 Rev. *L
Page 102 of 162
CYW4354
15. Bluetooth RF Specifications
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.
Unless otherwise stated, limit values apply for the conditions specified in Table 31 on page 100 and Table 33 on page 101. Typical
values apply for an ambient temperature of +25°C.
Figure 35. RF Port Location for Bluetooth Testing
CYW4354
RF Switch
(0.5 dB Insertion Loss)
WLAN Tx
Filter
BT Tx
WLAN/BT Rx
Antenna
Port
RF Port
Chip
Port
Note: All Bluetooth specifications are measured at the chip port unless otherwise specified.
Table 34. Bluetooth Receiver RF Specifications
Parameter
Conditions
Minimum
Typical
Maximum
Unit
Note: The specifications in this table are measured at the chip port output unless otherwise specified.
General
Frequency range
–
2402
–
2480
MHz
RX sensitivity
GFSK, 0.1% BER, 1 Mbps
–
–93.5
–
dBm
/4–DQPSK, 0.01% BER,
2 Mbps
–
–95.5
–
dBm
–
–89.5
–
dBm
Input IP3
–
8–DPSK, 0.01% BER, 3 Mbps
–16
–
–
dBm
Maximum input at antenna
–
–
–
–20
dBm
–
–90.0
–80.0
dBm
RX LO Leakage
2.4 GHz band
–
Document Number: 002-14809 Rev. *L
Page 103 of 162
CYW4354
Table 34. Bluetooth Receiver RF Specifications (Cont.)
Parameter
Conditions
Minimum
Typical
Maximum
Unit
Interference Performancea
C/I co-channel
GFSK, 0.1% BER
–
8
11
dB
C/I 1 MHz adjacent channel
GFSK, 0.1% BER
–
–7
0
dB
C/I 2 MHz adjacent channel
GFSK, 0.1% BER
–
–38
–30
dB
C/I 3 MHz adjacent channel
GFSK, 0.1% BER
–
–56
–40
dB
C/I image channel
GFSK, 0.1% BER
–
–31
–9
dB
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER
–
–46
–20
dB
C/I co-channel
/4–DQPSK, 0.1% BER
–
9
13
dB
C/I 1 MHz adjacent channel
/4–DQPSK, 0.1% BER
–
–11
0
dB
C/I 2 MHz adjacent channel
/4–DQPSK, 0.1% BER
–
–39
–30
dB
C/I 3 MHz adjacent channel
/4–DQPSK, 0.1% BER
–
–55
–40
dB
C/I image channel
/4–DQPSK, 0.1% BER
–
–23
–7
dB
C/I 1 MHz adjacent to image channel /4–DQPSK, 0.1% BER
–
–43
–20
dB
C/I co-channel
8–DPSK, 0.1% BER
–
17
21
dB
C/I 1 MHz adjacent channel
8–DPSK, 0.1% BER
–
–4
5
dB
C/I 2 MHz adjacent channel
8–DPSK, 0.1% BER
–
–37
–25
dB
C/I 3 MHz adjacent channel
8–DPSK, 0.1% BER
–
–53
–33
dB
C/I Image channel
8–DPSK, 0.1% BER
–
–16
0
dB
C/I 1 MHz adjacent to image channel 8–DPSK, 0.1% BER
–
–37
–13
dB
Out-of-Band Blocking Performance (CW)
30–2000 MHz
0.1% BER
–
–10.0
–
dBm
2000–2399 MHz
0.1% BER
–
–27
–
dBm
2498–3000 MHz
0.1% BER
–
–27
–
dBm
0.1% BER
–
–10.0
–
dBm
–
dBm
3000 MHz–12.75 GHz
Out-of-Band Blocking Performance, Modulated Interferer
GFSK (1 Mbps)b
698–716 MHz
WCDMA
776–849 MHz
WCDMA
–
–13.8
–
dBm
824–849 MHz
GSM850
–
–13.5
–
dBm
824–849 MHz
WCDMA
–
–14.3
–
dBm
880–915 MHz
E-GSM
–
–13.1
–
dBm
880–915 MHz
WCDMA
–
–13.1
–
dBm
1710–1785 MHz
GSM1800
–
–18.1
–
dBm
1710–1785 MHz
WCDMA
–
–17.4
–
dBm
1850–1910 MHz
GSM1900
–
–19.4
–
dBm
1850–1910 MHz
WCDMA
–
–18.8
–
dBm
1880–1920 MHz
TD-SCDMA
–
–19.7
–
dBm
1920–1980 MHz
WCDMA
–
–19.6
–
dBm
2010–2025 MHz
TD–SCDMA
–
–20.4
–
dBm
Document Number: 002-14809 Rev. *L
–
–13.5
Page 104 of 162
CYW4354
Table 34. Bluetooth Receiver RF Specifications (Cont.)
Parameter
Minimum
Typical
Maximum
Unit
WCDMA
–
–20.4
–
dBm
2500–2570 MHz
c
Band 7
–
–30.5
–
dBm
2300–2400 MHz
d
Band 40
–
–34.0
–
dBm
2570–2620 MHz
e
Band 38
–
–30.8
–
dBm
XGP Band
–
–29.5
–
dBm
–
–9.8
–
dBm
2500–2570 MHz
2545–2575 MHzf
Conditions
π/4 DPSK (2 Mbps)b
698–716 MHz
WCDMA
776–794 MHz
WCDMA
–
–9.7
–
dBm
824–849 MHz
GSM850
–
–10.7
–
dBm
824–849 MHz
WCDMA
–
–11.4
–
dBm
880–915 MHz
E-GSM
–
–10.4
–
dBm
880–915 MHz
WCDMA
–
–10.2
–
dBm
1710–1785 MHz
GSM1800
–
–15.8
–
dBm
1710–1785 MHz
WCDMA
–
–15.4
–
dBm
1850–1910 MHz
GSM1900
–
–16.6
–
dBm
1850–1910 MHz
WCDMA
–
–16.4
–
dBm
1880–1920 MHz
TD-SCDMA
–
–17.9
–
dBm
1920–1980 MHz
WCDMA
–
–16.8
–
dBm
2010–2025 MHz
TD-SCDMA
–
–18.6
–
dBm
2500–2570 MHz
WCDMA
–
–20.4
–
dBm
2500–2570 MHzc
Band 7
–
–31.9
–
dBm
2300–2400 MHz
d
Band 40
–
–35.3
–
dBm
2570–2620 MHz
e
Band 38
–
–31.8
–
dBm
2545–2575 MHz
f
XGP Band
–
–31.1
–
dBm
b
8DPSK (3 Mbps)
698–716 MHz
WCDMA
–
–12.6
–
dBm
776–794 MHz
WCDMA
–
–12.6
–
dBm
824–849 MHz
GSM850
–
–12.7
–
dBm
824–849 MHz
WCDMA
–
–13.7
–
dBm
880–915 MHz
E-GSM
–
–12.8
–
dBm
880–915 MHz
WCDMA
–
–12.6
–
dBm
1710–1785 MHz
GSM1800
–
–18.1
–
dBm
1710–1785 MHz
WCDMA
–
–17.4
–
dBm
1850–1910 MHz
GSM1900
–
–19.1
–
dBm
1850–1910 MHz
WCDMA
–
–18.6
–
dBm
1880–1920 MHz
TD-SCDMA
–
–19.3
–
dBm
1920–1980 MHz
WCDMA
–
–18.9
–
dBm
2010–2025 MHz
TD-SCDMA
–
–20.4
–
dBm
2500–2570 MHz
WCDMA
–
–21.4
–
dBm
Document Number: 002-14809 Rev. *L
Page 105 of 162
CYW4354
Table 34. Bluetooth Receiver RF Specifications (Cont.)
Parameter
Minimum
Typical
Maximum
Unit
Band 7
–
–31.0
–
dBm
2300–2400 MHz
d
Band 40
–
–34.5
–
dBm
2570–2620 MHz
e
Band 38
–
–31.2
–
dBm
2545–2575 MHz
f
XGP Band
–
–30.0
–
dBm
30 MHz–1 GHz
–
–95
–62
dBm
1–12.75 GHz
–
–70
–47
dBm
851–894 MHz
–
–147
–
dBm/Hz
925–960 MHz
–
–147
–
dBm/Hz
1805–1880 MHz
–
–147
–
dBm/Hz
1930–1990 MHz
–
–147
–
dBm/Hz
2110–2170 MHz
–
–147
–
dBm/Hz
2500–2570 MHzc
Conditions
Spurious Emissions
a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the version 4.1
specification.
b. Bluetooth reference level for the wanted signal at the Bluetooth Chip port = at 3 dB desense for each data rate.
c. Interferer: 2560 MHz, BW=10 MHz; measured at 2480 MHz.
d. Interferer: 2360 MHz, BW=10 MHz; measured at 2402 MHz.
e. Interferer: 2380 MHz, BW=10 MHz; measured at 2480 MHz.
f. Interferer: 2355 MHz, BW=10 MHz; measured at 2480 MHz.
Document Number: 002-14809 Rev. *L
Page 106 of 162
CYW4354
Table 35. Bluetooth Transmitter RF Specifications
Parameter
Conditions
Minimum
Typical
Maximum
Unit
Note: The specifications in this table are measured at the Chip port output unless otherwise specified.
General
Frequency range
2402
–
2480
MHz
Basic rate (GFSK) TX power at Bluetooth
–
13.0
–
dBm
QPSK TX power at Bluetooth
–
10.0
–
dBm
8PSK TX power at Bluetooth
–
10.0
–
dBm
2
4
8
dB
0.93
1
MHz
–38
–26.0
dBc
–31
–20.0
dBm
–43
–40.0
dBm
–
–36.0 b,c
Power control step
–
Note: Output power is with TCA and TSSI enabled.
GFSK In-Band Spurious Emissions
–20 dBc BW
–
–
EDR In-Band Spurious Emissions
1.0 MHz < |M – N| < 1.5 MHz
1.5 MHz < |M – N| < 2.5 MHz
|M – N| 2.5 MHz
a
M – N = the frequency range for which –
the spurious emission is measured
–
relative to the transmit center
–
frequency.
Out-of-Band Spurious Emissions
30 MHz to 1 GHz
–
–
dBm
b,d,e
dBm
1 GHz to 12.75 GHz
–
–
–
–30.0
1.8 GHz to 1.9 GHz
–
–
–
–47.0
dBm
5.15 GHz to 5.3 GHz
–
–
–
–47.0
dBm
–
–103
–
dBm
GPS Band Spurious Emissions
Spurious emissions
–
f
Out-of-Band Noise Floor
65–108 MHz
FM RX
–
–147
–
dBm/Hz
776–794 MHz
CDMA2000
–
–147
–
dBm/Hz
869–960 MHz
cdmaOne, GSM850
–
–147
–
dBm/Hz
925–960 MHz
E-GSM
–
–147
–
dBm/Hz
1570–1580 MHz
GPS
–
–146
–
dBm/Hz
1805–1880 MHz
GSM1800
–
–145
–
dBm/Hz
1930–1990 MHz
GSM1900, cdmaOne, WCDMA
–
–144
–
dBm/Hz
2110–2170 MHz
WCDMA
–
–141
–
dBm/Hz
2500–2570 MHz
Band 7
–
–140
–
dBm
2300–2400 MHz
Band 40
–
–140
–
dBm
2570–2620 MHz
Band 38
–
–140
–
dBm
2545–2575 MHz
XGP Band
–
–140
–
dBm
a.
b.
c.
d.
e.
f.
The typical number is measured at ± 3 MHz offset.
The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.
The spurious emissions during Idle mode are the same as specified in Table 35 on page 107.
Specified at the Bluetooth Antenna port.
Meets this specification using a front–end band–pass filter.
Transmitted power in cellular and FM bands at the Bluetooth Antenna port. See Figure 35 on page 103 for location of the port.
Document Number: 002-14809 Rev. *L
Page 107 of 162
CYW4354
Table 36. Local Oscillator Performance
Parameter
Minimum
Typical
Maximum
Unit
LO Performance
Lock time
–
72
–
s
Initial carrier frequency tolerance
–
±25
±75
kHz
Frequency Drift
DH1 packet
–
±8
±25
kHz
DH3 packet
–
±8
±40
kHz
DH5 packet
–
±8
±40
kHz
–
5
20
kHz/50 µs
Drift rate
Frequency Deviation
00001111 sequence in payloada
140
155
175
kHz
b
115
140
–
kHz
–
1
–
MHz
10101010 sequence in payload
Channel spacing
a. This pattern represents an average deviation in payload.
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.
Table 37. BLE RF Specifications
Parameter
Conditions
Minimum
Typical
Maximum
Unit
Frequency range
–
2402
–
2480
MHz
RX sensea
GFSK, 0.1% BER, 1 Mbps
–
–95.5
–
dBm
–
–
8.5
–
dBm
–
225
255
275
kHz
–
99.9
–
–
%
–
0.8
0.95
–
%
TX power
b
Mod Char: delta F1 average
Mod Char: delta F2 max.
Mod Char: ratio
c
a. Dirty TX is On.
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The output is capped at 12 dBm out.
The BLE TX power at the antenna port cannot exceed the 10 dBm specification limit.
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.
Document Number: 002-14809 Rev. *L
Page 108 of 162
CYW4354
16. FM Receiver Specifications
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.
Unless otherwise stated, limit values apply for the conditions specified inTable 31 on page 100 and Table 33 on page 101. Typical
values apply for an ambient temperature +25°C.
Table 38. FM Receiver Specifications
Conditionsa
Parameter
Minimum
Typical
Maximum
Units
Frequencies inclusive
65
–
108
MHz
FM only
SNR ≥ 26 dB
–
0
–
dBµV EMF
–
1
–
µV EMF
–
–6
–
dBuV
–
Measured for 30 dB SNR at the audio output.
Wanted Signal: 23 dBµV EMF (14.1 µV EMF), at
± 200 kHz.
51
–
dB
At ± 400 kHz
–
62
–
dB
45
53
–
dB
RF Parameters
Operating frequencyb
c
Sensitivity
Receiver adjacent channel
selectivityc,d
Intermediate signal plus noise- Vin = 20 dBµV EMF (10 µV EMF)
to-noise ratio (S+N)/N, stereoc
Intermodulation performancec,d
Blocker level increased until desired at 30 dB
–
SNR
Wanted Signal: 33 dBµV EMF (45 µV EMF)
Modulated Interferer: At fWanted ±400 kHz and
±4 MHz
CW Interferer: At fWanted ± 800 kHz and ±8 MHz
55
–
dBc
AM suppression, monoc
Vin = 23 dBµV EMF (14.1 µV EMF)
AM at 400 Hz with m = 0.3
No A-weighted or any other filtering applied.
40
–
–
dB
–
16
–
dBµV EMF
–
6.3
–
µV EMF
–
10
–
dBuV
–
12
–
dBµV EMF
–
4
–
µV EMF
–
6
–
dBuV
RDS
RDS sensitivity
e,f
RDS deviation = 1.2 kHz
RDS deviation = 2 kHz
RDS selectivityf
Wanted Signal: 33 dBµV EMF (45 µV EMF), 2 kHz RDS deviation
Interferer: ∆f = 40 kHz, fmod = 1 kHz
± 200 kHz
–
49
–
dB
± 300 kHz
–
52
–
dB
± 400 kHz
–
52
–
dB
RF input impedance
–
1.5
–
–
kΩ
Antenna tuning capacitor
–
2.5
–
30
pF
Maximum input levelc
SNR > 26 dB
–
–
113
dBµV EMF
–
–
446
mV EMF
–
–
107
dBuV
Document Number: 002-14809 Rev. *L
Page 109 of 162
CYW4354
Table 38. FM Receiver Specifications (Cont.)
Conditionsa
Parameter
RF conducted emissions
(measured into a 50Ω load)
RF blocking levels at the FM
antenna input 40 dB SNR
(assumes a 50Ω at the radio
input and excludes spurs)
Minimum
Typical
Local oscillator breakthrough measured on the
reference port
–
–
–55
Maximum
dBm
Units
869–894 MHz, 925–960 MHz,
1805–1880 MHz, 1930–1990 MHz.
GPS
–
–
–90
dBm
GSM850, E-GSM (std), BW = 0.2 MHz,
824–849 MHz
880–915 MHz
–
7
–
dBm
GSM850, E-GSM (edge), BW = 0.2 MHz,
824–849 MHz
880–915 MHz
–
–1
–
dBm
GSM DCS 1800, PCS 1900 (std/edge),
BW = 0.2 MHz,
1710–1785 MHz
1850–1910 MHz
–
12
–
dBm
WCDMA: II(I), III(IV, X),
BW = 5 MHz,
1850–1980 MHz (1920–1980 MHz),
1710–1785 MHz (1710–1755 MHz, 1710–
1770 MHz)
–
12
–
dBm
WCDMA: V(VI), VIII, XII, XIII, XIV, BW = 5 MHz,
824–849 MHz (830–840 MHz),
880–915 MHz
–
5
–
dBm
CDMA2000, cdmaOne, BW = 1.25 MHz,
824–849 MHz,
887–925 MHz,
776–794 MHz
–
0
–
dBm
CDMA2000, cdmaOne, BW = 1.25 MHz,
1850–1910 MHz,
1750–1780 MHz,
1920–1980 MHz
–
12
–
dBm
Bluetooth, BW = 1 MHz,
2402–2480 MHz
–
11
–
dBm
IEEE 802.11g/b, BW = 20 MHz,
2400–2483.5 MHz
–
11
–
dBm
IEEE 802.11a, BW = 20 MHz,
4915–5825 MHz
–
6
–
dBm
2500–2570 MHz
Band 7
–
11
–
dBm
2300–2400 MHz
Band 40
–
11
–
dBm
2570–2620 MHz
Band 38
–
11
–
dBm
2545–2575 MHz
XGP Band
–
11
–
dBm
10
Tuning
Frequency step
–
–
–
kHz
Settling time
Single-frequency switch in any direction to a
–
frequency within the bands 88–108 MHz or 76–
90 MHz. Time measured to within 5 kHz of the
final frequency.
150
–
µs
Search time
Total time for an automatic search to sweep from –
88–108 MHz or 76–90 MHz (and reverse
direction) assuming no channels are found.
–
8
sec
Document Number: 002-14809 Rev. *L
Page 110 of 162
CYW4354
Table 38. FM Receiver Specifications (Cont.)
Conditionsa
Parameter
Minimum
Typical
Maximum
Units
–
–14.5
–
–12.5
dBFS
–
–
–
0
dBFS
General Audio
Audio output levelg
Maximum audio output level
h
g
–
72
–
88
mV rms
Maximum DAC audio output
levelh
–
–
333
–
mV rms
Audio DAC output level
differencei
–
–1
–
1
dB
Left and right AC mute
FM input signal fully muted with DAC enabled
60
–
–
dB
Left and right hard mute
FM input signal fully muted with DAC disabled
80
Audio DAC output level
–
–
dB
Soft mute attenuation and start Muting is performed dynamically proportional to –
level
the FM wanted input signal C/N. The muting
characteristic is fully programmable. Refer to
“Audio Features” on page 43 for further details.
–
–
–
Maximum signal plus noise-to- –
noise ratio (S + N)/N, mono i
–
69
–
dB
Maximum signal plus noise-to- –
noise ratio (S + N)/N, stereog
–
64
–
dB
Total harmonic distortion,
mono
Vin = 66 dBµV EMF (2 mV EMF),
Δf = 75 kHz, fmod = 400 Hz
–
–
0.8
%
Δf = 75 kHz, fmod = 1 kHz
–
–
0.8
%
Δf = 75 kHz, fmod = 3 kHz
–
–
0.8
%
Δf = 100 kHz, fmod = 1 kHz
–
–
1.0
%
Total harmonic distortion,
stereo
Vin = 66 dBµV EMF (2 mV EMF)
–
Δf = 67.5 kHz, fmod = 1 kHz, ∆f Pilot = 7.5 kHz,
L=R
–
1.5
%
Audio spurious productsi
Range from 300 Hz to 15 kHz, with respect to 1 –
kHz tone
–
–60
dBc
Audio bandwidth, upper (–3 dB Vin = 66 dBµV EMF (2 mV EMF)
point)
Δf = 8 kHz, for 50 µs
15
–
–
kHz
Audio bandwidth, lower (–3 dB
point)
–
–
20
Hz
Audio in-band ripple
100 Hz to 13 kHz,
Vin = 66 dBµV EMF (2 mV EMF)
Δf = 8 kHz, for 50 µs
–0.5
–
0.5
dB
De-emphasis time constant
tolerance
With respect to 50 and 75 µs
–
–
±5
%
RSSI range
With 1 dB resolution and ± 5 dB accuracy at
room temp
3
–
83
dBµV EMF
1.41
–
14.1m
µV EMF
–3
–
77
dBuV
–
48
–
dB
Stereo Decoder
Stereo channel separation
Forced Stereo mode
Vin = 66 dBµV EMF (2 mV EMF),
Δf = 67.5 kHz, fmod = 1 kHz,
∆f Pilot = 6.75 kHz
R = 0, L = 1
Document Number: 002-14809 Rev. *L
Page 111 of 162
CYW4354
Table 38. FM Receiver Specifications (Cont.)
Conditionsa
Parameter
Minimum
Typical
Maximum
Units
Mono stereo blend and
switching
Blending and switching is dynamically proportional to the FM wanted input signal C/N. The blending
and switching characteristics are fully programmable. Refer to “Audio Features” on page 43 for
further details.
Pilot suppression
Vin = 66 dBµV EMF (2 mV EMF), Δf = 75 kHz,
fmod = 1 kHz
46
–
–
dB
Pause detection
Audio level at which a pause is Relative to 1 kHz tone, Δf = 22.5 kHz
detected
Four values in 3 dB steps
–
–
–
–
–21
–
–12
dB
Audio pause duration
20
–
40
ms
Four values
a. Following conditions are applied to all relevant tests unless otherwise indicated: Pre-emphasis and de-emphasis of 50 us, R = L for mono,
DAC Load ≥ 20 kΩ, BAF = 300 Hz to 15 kHz, and A-weighted filtering applied.
b. Contact Broadcom regarding applications that operate between 65 and 76 MHz.
c. Wanted Signal: Δf = 22.5 kHz, and fmod = 1 kHz.
d. Interferer: ∆f = 22.5 kHz, and fmod = 1 kHz.
e. RDS sensitivity numbers are for 87.5–108 MHz only.
f. Vin = ∆f = 32 kHz, fmod = 1 kHz, ∆f Pilot = 7.5 kHz, and 95% of blocks decoded with no errors after correction.
g. Vin = 66 dBµV EMF (2 mV EMF), Δf = 22.5 kHz, fmod = 1 kHz, and ∆f Pilot = 6.75 kHz.
h. Vin = 66 dBµV EMF (2 mV EMF), Δf = 100 kHz, fmod = 1 kHz, and Δf Pilot = 6.75 kHz.
i. Vin = 66 dBµV EMF (2 mV EMF), Δf = 22.5 kHz, and fmod = 1 kHz.
Document Number: 002-14809 Rev. *L
Page 112 of 162
CYW4354
17. WLAN RF Specifications
17.1 Introduction
The CYW4354 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the 5 GHz bands. This section
describes the RF characteristics of the 2.4 GHz and 5 GHz radios.
Note: Values in this section of the data sheet are design goals and are subject to change based on the results of device characterization.
Unless otherwise stated, limit values apply for the conditions specified inTable 31 on page 100 and Table 33 on page 101. Typical
values apply for an ambient temperature +25°C.
Figure 36. Port Locations (Applies to 2.4 GHz and 5 GHz)
CYW4354
RF Switch
(0.5 dB Insertion Loss)
WLAN Tx
Filter
BT Tx
WLAN/BT Rx
Antenna
Port
RF Port
Chip
Port
17.2 2.4 GHz Band General RF Specifications
Table 39. 2.4 GHz Band General RF Specifications
Item
Condition
Minimum
Typical
Maximum
Unit
TX/RX switch time
Including TX ramp down
–
–
5
µs
RX/TX switch time
Including TX ramp up
–
–
2
µs
Power-up and power-down ramp time
DSSS/CCK modulations
–
–
100 mA VBAT = 3.6V
2.8
4
5.2
MHz
PWM output current
–
–
–
600
mA
Output current limit
–
–
1400
–
mA
Output voltage range
Programmable, 30 mV steps
Default = 1.35V
1.2
1.35
1.5
V
PWM output voltage
DC accuracy
Includes load and line regulation.
Forced PWM mode
–4
–
4
%
PWM ripple voltage, static
Measure with 20 MHz bandwidth limit.
Static Load. Max. ripple based on VBAT = 3.6V,
Vout = 1.35V,
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH, Cap +
Board total-ESR < 20 mΩ,
Cout > 1.9 μF, ESL 1.35V, Co= 2.2 µF, Vo = 1.2V
20
–
–
dB
LDO Turn-on Time
LDO turn-on time when rest of chip is up
–
140
180
µs
0.5a
2.2
4.7
µF
–
1
2.2
µF
External Output Capacitor, Co
Total ESR (trace/capacitor):
5 mΩ–240 mΩ
External Input Capacitor
Only use an external input capacitor at the
VDD_LDO pin if it is not supplied from CBUCK
output.
Total ESR (trace/capacitor): 30 mΩ–200 mΩ
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and
aging.
Document Number: 002-14809 Rev. *L
Page 134 of 162
CYW4354
19. System Power Consumption
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.
Unless otherwise stated, these values apply for the conditions specified in Table 33: “Recommended Operating Conditions and DC
Characteristics,” on page 113.
19.1 WLAN Current Consumption
The WLAN current consumption measurements are shown in Table 50.
All values in Table 50 are with the Bluetooth core in reset (that is, Bluetooth and FM are OFF).
Table 50. Typical WLAN Power Consumption
Bandwidth
(MHz)
Mode
Band
(GHz)
Vbat = 3.6V)
mA
Vio = 1.8V
uAa
–
–
0.003
5.5
Sleep Modes
OFF
b
c
–
–
0.005
260
d
IEEE power save, DTIM 1 1 RX core
20
2.4
1.2
260
IEEE power save, DTIM 3 1 RX cored
20
2.4
0.4
260
d
20
5
1.2
260
d
20
5
0.4
260
d
IEEE power save, DTIM 1 1 RX core
40
5
1.5
260
IEEE power save, DTIM 3 1 RX cored
40
5
0.5
260
d
80
5
2.0
260
d
80
5
0.7
260
20
2.4
350
60
20
2.4
270
60
TMCS8, Nss 2, HT20, SGI
20
2.4
540
60
MCS7, SGIf, g,i
20
5
310
60
20
5
620
60
Sleep
IEEE power save, DTIM 1 1 RX core
IEEE power save, DTIM 3 1 RX core
IEEE power save, DTIM 1 1 RX core
IEEE power save, DTIM 3 1 RX core
Active Modes
Transmit
CCK 1 chaine
f,g,h
MCS8, Nss 1, HT20, SGI
f,g,h
MCS15, SGI
f, g,i
f,g,i
40
5
315
60
f,g,j
MCS9, Nss 1, SGI
40
5
295
60
MCS9, Nss 2, SGIf,g,j
40
5
590
60
f,g,j
80
5
305
60
f,g,j
80
5
610
60
20
2.4
59
60
20
2.4
75
60
20
2.4
62
60
20
2.4
81
60
20
2.4
86
60
20
2.4
57
60
20
2.4
76
60
20
5
71
60
MCS7
MCS9, Nss 1, SGI
MCS9, Nss 2, SGI
Receive
1 Mbps, 1 RX core
1 Mbps, 2 RX cores
k
MCS7, HT20 1 RX core
MCS7, HT20 2 RX cores
k
MCS15, HT20k
l
CRS 1 RX core
CRS 2 RX cores
l
k
Receive MCS7, SGI 1 RX core
Document Number: 002-14809 Rev. *L
Page 135 of 162
CYW4354
Table 50. Typical WLAN Power Consumption (Cont.)
Bandwidth
(MHz)
Band
(GHz)
Vbat = 3.6V)
mA
Vio = 1.8V
uAa
Receive MCS7, SGI 2 RX coresk
20
5
102
60
Receiver MCS15, SGIk
20
5
106
60
20
5
67
60
20
5
96
60
Mode
l
CRS 1 RX core
CRS 2 RX cores
l
k
40
5
91
60
Receive MCS 7, SGI 2 RX coresk
40
5
135
60
Receive MCS 15, SGIk
40
5
141
60
40
5
80
60
40
5
121
60
80
5
123
60
80
5
189
60
80
5
206
60
CRS 1 RX core
80
5
102
60
CRS 2 RX coresl
80
5
163
60
Receive MCS 7, SGI 1 RX core
l
CRS 1 RX core
CRS 2 RX cores
l
Receive MCS9, Nss 1, SGIk
k
Receive MCS9, Nss 1, SGI 2 RX cores
k
Receive MCS9, Nss 2, SGI
l
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.
Specified with all pins idle (not switching) and not driving any loads.
WL_REG_ON, BT_REG_ON low, no VDDIO.
Idle, not associated, or inter-beacon.
Beacon Interval = 102.4 ms. Beacon duration = 1 ms @1 Mbps. Average current over 3 DTIM intervals.
Output power per core at RF port = 21 dBm
Duty cycle is 100%
Measured using packet engine test mode.
Output power per core at RF port = 17 dBm.
Output power per core at RF port = 17.5 dBm.
Output power per core at RF port = 14 dBm.
Duty cycle is 100%. Carrier sense (CS) detect/packet receive.
Carrier sense (CCA) when no carrier present.
Document Number: 002-14809 Rev. *L
Page 136 of 162
CYW4354
19.2 Bluetooth and FM Current Consumption
The Bluetooth, BLE, and FM current consumption measurements are shown in Table 51.
Note:
■
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 51.
■
For FM measurements, the Bluetooth core is in Sleep mode.
■
The BT current consumption numbers are measured based
on GFSK TX output power = 10 dBm.
Table 51. Bluetooth BLE and FM Current Consumption
Operating Mode
Sleep
VBAT (VBAT = 3.6V) Typical
VDDIO (VDDIO = 1.8V) Typical
Units
13
198
µA
0.217
0.197
mA
440
194
µA
500 ms Sniff Master
0.168
0.195
mA
500 ms Sniff Slave
0.124
0.190
mA
DM1/DH1 Master
25.3
0.024
mA
DM3/DH3 Master
30.6
0.035
mA
DM5/DH5 Master
31.4
0.037
mA
3DH5 Master
29.2
0.094
mA
SCO HV3 Master
11.45
0.089
mA
Standard 1.28s Inquiry Scan
P and I Scanb
a
11.7
0.090
mA
2S Audio
8.0
–
mA
FMRX Analog Audio only
8.6
–
mA
FMRX I2S Audio + RDS
8.0
–
mA
FMRX Analog Audio + RDS
8.6
–
mA
244
196
µA
HV3 + Sniff + Scan
FMRX I
b
BLE Scan
BLE Scan 10 ms
21.34
0.013
mA
BLE Adv—Unconnectable 1.00 sec
67
199
µA
BLE Adv—Unconnectable 1.28 sec
55
199
µA
BLE Adv—Unconnectable 2.00 sec
58
199
µA
BLE Connected 7.5 ms
3.95
0.013
mA
BLE Connected 1 sec.
57
198
µA
BLE Connected 1.28 sec.
52
197
µA
a. At maximum class 1 TX power, 500 ms sniff, four attempts (slave), P = 1.28s, and I = 2.56s.
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.
Document Number: 002-14809 Rev. *L
Page 137 of 162
CYW4354
20. Interface Timing and AC Characteristics
20.1 SDIO Timing
20.1.1 SDIO Default Mode Timing
SDIO default mode timing is shown by the combination of Figure 37 and Table 52.
Figure 37. SDIO Bus Timing (Default Mode)
f PP
tW L
tW H
SD IO _ C LK
t TH L
t TLH
t ISU
t IH
Inpu t
O utp ut
t O D LY
t O D LY
(m ax)
(m in)
Table 52. SDIO Bus Timinga Parameters (Default Mode)
Parameter
Symbol
Minimum
Typical
Maximum
Unit
b)
SDIO CLK (All values are referred to minimum VIH and maximum VIL
Frequency – Data Transfer mode
fPP
0
–
25
MHz
Frequency – Identification mode
fOD
0
–
400
kHz
Clock low time
tWL
10
–
–
ns
Clock high time
tWH
10
–
–
ns
Clock rise time
tTLH
–
–
10
ns
Clock low time
tTHL
–
–
10
ns
Inputs: CMD, DAT (referenced to CLK)
Input setup time
Input hold time
tISU
5
–
–
ns
tIH
5
–
–
ns
Outputs: CMD, DAT (referenced to CLK)
Output delay time – Data Transfer mode
tODLY
0
–
14
ns
Output delay time – Identification mode
tODLY
0
–
50
ns
a. Timing is based on CL 40pF load on CMD and Data.
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.
Document Number: 002-14809 Rev. *L
Page 138 of 162
CYW4354
20.1.2 SDIO High-Speed Mode Timing
SDIO high-speed mode timing is shown by the combination of Figure 38 and Table 53.
Figure 38. SDIO Bus Timing (High-Speed Mode)
fPP
tWL
tWH
50% VDD
SDIO_CLK
tTHL
tISU
tTLH
tIH
Input
Output
tODLY
tOH
Table 53. SDIO Bus Timinga Parameters (High-Speed Mode)
Parameter
Symbol
Minimum
Typical
Maximum
Unit
–
50
MHz
b)
SDIO CLK (all values are referred to minimum VIH and maximum VIL
Frequency – Data Transfer Mode
fPP
Frequency – Identification Mode
fOD
0
–
400
kHz
Clock low time
tWL
7
–
–
ns
Clock high time
tWH
7
–
–
ns
Clock rise time
tTLH
–
–
3
ns
Clock low time
tTHL
–
–
3
ns
–
–
–
–
–
Input setup Time
tISU
6
–
–
ns
Input hold Time
tIH
2
–
–
ns
Inputs: CMD, DAT (referenced to CLK)
Outputs: CMD, DAT (referenced to CLK)
0
–
–
–
–
–
tODLY
–
–
14
ns
Output hold time
tOH
2.5
–
–
ns
Total system capacitance (each line)
CL
–
–
40
pF
Output delay time – Data Transfer Mode
a. Timing is based on CL 40pF load on CMD and Data.
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.
Document Number: 002-14809 Rev. *L
Page 139 of 162
CYW4354
20.1.3 SDIO Bus Timing Specifications in SDR Modes
Clock Timing
Figure 39. SDIO Clock Timing (SDR Modes)
tCLK
SDIO_CLK
tCR
tCF
tCR
Table 54. SDIO Bus Clock Timing Parameters (SDR Modes)
Parameter
–
Symbol
tCLK
Minimum
Maximum
Unit
Comments
40
–
ns
SDR12 mode
20
–
ns
SDR25 mode
10
–
ns
SDR50 mode
4.8
–
ns
SDR104 mode
–
tCR, tCF
–
0.2 × tCLK
ns
tCR, tCF < 2.00 ns (max.) @100 MHz, CCARD
= 10 pF
tCR, tCF < 0.96 ns (max.) @208 MHz, CCARD
= 10 pF
Clock duty
–
30
70
%
–
Document Number: 002-14809 Rev. *L
Page 140 of 162
CYW4354
Device Input Timing
Figure 40. SDIO Bus Input Timing (SDR Modes)
SDIO_CLK
tIS
tIH
CMD input
DAT[3:0] input
Table 55. SDIO Bus Input Timing Parameters (SDR Modes)
Symbol
Minimum
Maximum
Unit
Comments
SDR104 Mode
tIS
1.4
–
ns
CCARD = 10 pF, VCT = 0.975V
tIH
0.80
–
ns
CCARD = 5 pF, VCT = 0.975V
SDR50 Mode
tIS
3.00
–
ns
CCARD = 10 pF, VCT = 0.975V
tIH
0.80
–
ns
CCARD = 5 pF, VCT = 0.975V
Document Number: 002-14809 Rev. *L
Page 141 of 162
CYW4354
Device Output Timing
Figure 41. SDIO Bus Output Timing (SDR Modes up to 100 MHz)
tCLK
SDIO_CLK
tODLY
tOH
CMD input
DAT[3:0] input
Table 56. SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)
Symbol
Minimum
Maximum
Unit
Comments
tODLY
–
7.5
ns
tCLK ≥ 10 ns CL= 30 pF using driver type B for SDR50
tODLY
–
14.0
ns
tCLK ≥ 20 ns CL= 40 pF using for SDR12, SDR25
tOH
1.5
–
ns
Hold time at the tODLY (min.) CL= 15 pF
Figure 42. SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)
tCLK
SDIO_CLK
tOP
tODW
CMD input
DAT[3:0] input
Document Number: 002-14809 Rev. *L
Page 142 of 162
CYW4354
Table 57. SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz)
Symbol
Minimum
Maximum
Unit
2
UI
Comments
tOP
0
Card output phase
ΔtOP
–350
+1550
ps
Delay variation due to temp change after tuning
tODW
0.60
–
UI
tODW=2.88 ns @208 MHz
■
ΔtOP = +1550 ps for junction temperature of ΔtOP = 90 degrees during operation
■
ΔtOP = –350 ps for junction temperature of ΔtOP = –20 degrees during operation
■
ΔtOP = +2600 ps for junction temperature of ΔtOP = –20 to +125 degrees during operation
Figure 43. ΔtOP Consideration for Variable Data Window (SDR 104 Mode)
Data valid window
Sampling point after tuning
ȴtOP =
1550 ps
ȴtOP =
–350 ps
Data valid window
Sampling point after card junction heating
by +90°C from tuning temperature
Data valid window
Sampling point after card junction cooling
by –20°C from tuning temperature
Document Number: 002-14809 Rev. *L
Page 143 of 162
CYW4354
20.1.4 SDIO Bus Timing Specifications in DDR50 Mode
Figure 44. SDIO Clock Timing (DDR50 Mode)
tCLK
SDIO_CLK
tCR
tCF
tCR
Table 58. SDIO Bus Clock Timing Parameters (DDR50 Mode)
Parameter
Symbol
Minimum
Maximum
Unit
Comments
–
tCLK
20
–
ns
DDR50 mode
–
tCR,tCF
–
0.2 × tCLK
ns
tCR, tCF < 4.00 ns (max.) @50 MHz,
CCARD = 10 pF
Clock duty
–
45
55
%
–
Document Number: 002-14809 Rev. *L
Page 144 of 162
CYW4354
Data Timing, DDR50 Mode
Figure 45. SDIO Data Timing (DDR50 Mode)
FPP
SDIO_CLK
tISU2x
DAT[3:0]
input
Invalid
tIH2x
tISU2x
Data
Invalid
tIH2x
Data
Invalid
tODLY2x (max)
DAT[3:0]
output
Data
Invalid
tODLY2x (max)
tODLY2x
tODLY2x
(min)
(min)
Data
Available timing
window for card
output transition
Data
In DDR50 mode, DAT[3:0] lines are sampled on both edges of
the clock (not applicable for CMD line)
Data
Available timing
window for host to
sample data from card
Table 59. SDIO Bus Timing Parameters (DDR50 Mode)
Parameter
Symbol
Minimum
Maximum
Unit
Comments
Input CMD
Input setup time
tISU
6
Input hold time
tIH
0.8
–
ns
CCARD < 10 pF (1 Card)
–
ns
CCARD < 10 pF (1 Card)
Output CMD
Output delay time
tODLY
–
13.7
ns
CCARD < 30 pF (1 Card)
Output hold time
tOH
1.5
–
ns
CCARD < 15 pF (1 Card)
Input setup time
tISU2x
3
–
ns
CCARD < 10 pF (1 Card)
Input hold time
tIH2x
0.8
–
ns
CCARD < 10 pF (1 Card)
Input DAT
Output DAT
Output delay time
tODLY2x
–
7.5
ns
CCARD < 25 pF (1 Card)
Output hold time
tODLY2x
1.5
–
ns
CCARD < 15 pF (1 Card)
Document Number: 002-14809 Rev. *L
Page 145 of 162
CYW4354
20.2 HSIC Interface Specifications
Table 60. HSIC Interface Parameters
Parameter
Symbol
Minimum
Typical
Maximum
Unit
Comments
HSIC signaling voltage
VDD
1.1
1.2
1.3
V
–
I/O voltage input low
VIL
–0.3
–
0.35 × VDD
V
–
I/O Voltage input high
VIH
0.65 × VDD
–
VDD + 0.3
V
–
I/O voltage output low
VOL
–
–
0.25 × VDD
V
–
I/O voltage output high
VOH
0.75 × VDD
–
–
V
–
I/O pad drive strength
OD
40
–
60
Ω
Controlled output
impedance driver
I/O weak keepers
IL
20
–
70
mA
–
ZI
100
–
–
kΩ
–
CL
3
–
14
pF
–
Characteristic trace impedance
TI
45
50
55
Ω
–
Circuit board trace length
TL
–
–
10
cm
–
Circuit board trace propagation
skewb
TS
–
–
15
ps
–
STROBE frequencyc
FSTROBE
239.988
240
240.012
MHz
± 500 ppm
Slew rate (rise and fall) STROBE Tslew
and DATAC
0.60 × VDD
1.0
1.2
V/ns
Averaged from
30% ~ 70% points
Receiver data setup time (with
respect to STROBE)c
Ts
300
–
–
ps
Measured at the 50%
point
Receiver data hold time (with
respect to STROBE)c
Tb
300
–
–
ps
Measured at the 50%
point
I/O input impedance
Total capacitive load
a
a. Total Capacitive Load (CL), includes device Input/Output capacitance, and capacitance of a 50Ω PCB trace with a length of 10 cm.
b. Maximum propagation delay skew in STROBE or DATA with respect to each other. The trace delay should be matched between STROBE
and DATA to ensure that the signal timing is within specification limits at the receiver.
c. Jitter and duty cycle are not separately specified parameters, they are incorporated into the values in the Table 60.
Document Number: 002-14809 Rev. *L
Page 146 of 162
CYW4354
20.3 PCI Express Interface Parameters
Table 61. PCI Express Interface Parameters
Parameter
Symbol
Comments
Minimum
Typical
Maximum
Unit
General
Baud rate
BPS
Reference clock amplitude Vref
–
–
5
–
Gbaud
LVPECL
1
–
–
V
Receiver
Differential termination
ZRX-DIFF-DC
Differential termination
80
100
120
Ω
DC impedance
ZRX-DC
DC common-mode
impedance
40
50
60
Ω
Powered down termination ZRX-HIGH-IMP-DC(POS)
POS
Power-down or RESET high 100k
impedance
–
–
Ω
Powered down termination ZRX-HIGH-IMP-DC(NEG)
NEG
Power-down or RESET high 1k
impedance
–
–
Ω
Input voltage
VRX-DIFFp-p
AC coupled, differential
p-p
175
–
–
mV
Jitter tolerance
TRX-EYE
Minimum receiver eye width 0.4
–
–
UI
Differential return loss
RLRX-DIFF
Differential return loss
10
–
–
dB
Common-mode return loss
6
–
–
dB
–
An unexpected electrical
idle must be recognized no
longer than this time to
signal an unexpected idle
condition.
–
10
ms
65
–
175
mV
Common-mode return loss RLRX-CM
Unexpected electrical idle
enter detect threshold
integration time
TRX-IDEL-DET-DIFFENTERTIME
Signal detect threshold
VRX-IDLE-DET-DIFFp- Electrical idle detect
p
threshold
Transmitter
Output voltage
VTX-DIFFp-p
Differential p-p, programmable in 16 steps
0.8
–
1200
mV
Output voltage rise time
VTX-RISE
20% to 80%
0.125
(2.5 GT/s)
0.15
(5 GT/s)
–
–
UI
Output voltage fall time
VTX-FALL
80% to 20%
0.125
(2.5 GT/s)
0.15
(5 GT/s)
–
–
UI
RX detection voltage swing VTX-RCV-DETECT
The amount of voltage
change allowed during
receiver detection.
–
–
600
mV
TX AC peak commonmode voltage
(5 GT/s)
VTX-CM-AC-PP
TX AC common mode
voltage (5 GT/s)
–
–
100
mV
TX AC peak commonmode voltage
(2.5 GT/s)
VTX-CM-AC-P
TX AC common mode
voltage (2.5 GT/s)
–
–
20
mV
Document Number: 002-14809 Rev. *L
Page 147 of 162
CYW4354
Table 61. PCI Express Interface Parameters (Cont.)
Parameter
Symbol
VTX-CM-DC-ACTIVEAbsolute delta of DC
IDLE-DELTA
common-model voltage
during L0 and electrical idle
Typical
Maximum
0
Absolute delta of DC
common-model voltage
during L0 and electrical idle.
Comments
Minimum
–
100
mV
Unit
Absolute delta of DC
common-model voltage
between D+ and D-
VTX-CM-DC-LINEDELTA
DC offset between D+ and
D-
0
–
25
mV
Electrical idle differential
peak output voltage
VTX-IDLE-DIFF-AC-p
Peak-to-peak voltage
0
–
20
mV
TX short circuit
current
ITX-SHORT
Current limit when TX
–
output is shorted to ground.
–
90
mA
DC differential TX termination
ZTX-DIFF-DC
Low impedance defined
80
during signaling (parameter
is captured for 5.0 GHz by
RLTX-DIFF)
–
120
Ω
Differential
return loss
RLTX-DIFF
Differential
return loss
10 (min.) for
0.05:
1.25 GHz
–
–
dB
Common-mode
return loss
RLTX-CM
Common-mode return loss
6
–
–
dB
TX eye width
TTX-EYE
Minimum TX
eye width
0.75
–
–
UI
20.4 JTAG Timing
Table 62. JTAG Timing Characteristics
Signal Name
Output
Maximum
Period
Output
Minimum
Setup
Hold
TCK
125 ns
–
–
–
–
TDI
–
–
–
20 ns
0 ns
TMS
–
–
–
20 ns
0 ns
TDO
–
100 ns
0 ns
–
–
JTAG_TRST
250 ns
–
–
–
–
Document Number: 002-14809 Rev. *L
Page 148 of 162
CYW4354
21. Power-Up Sequence and Timing
21.1 Sequencing of Reset and Regulator Control Signals
The CYW4354 has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and
internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the
signals for various operational states (see Figure 46, Figure 47 on page 150, and Figure 48 and Figure 49 on page 151). The timing
values indicated are minimum required values; longer delays are also acceptable.
21.1.1 Description of Control Signals
■
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the
internal CYW4354 regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin
is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.
■
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal CYW4354 regulators. If both the
BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the BT
section is in reset.
Note:
■
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles (where
both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then
there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.
■
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words, if FM is to be used, then the
Bluetooth core must be enabled.
■
The CYW4354 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC
and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO
accesses.
■
VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO
should NOT be present first or be held high before VBAT is high.
21.1.2 Control Signal Timing Diagrams
Figure 46. WLAN = ON, Bluetooth = ON
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high
before VBAT is high.
Document Number: 002-14809 Rev. *L
Page 149 of 162
CYW4354
Figure 47. WLAN = OFF, Bluetooth = OFF
32.678 kHz
Sleep Clock
VBAT*
VDDIO
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.
Figure 48. WLAN = ON, Bluetooth = OFF
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO . VDDIO should NOT be present first or be held high before VBAT is high .
Document Number: 002-14809 Rev. *L
Page 150 of 162
CYW4354
Figure 49. WLAN = OFF, Bluetooth = ON
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO . VDDIO should NOT be present first or be held high before VBAT is high .
Document Number: 002-14809 Rev. *L
Page 151 of 162
CYW4354
Figure 50 shows the WLAN boot-up sequence from power-up to firmware download.
Figure 50. WLAN Boot-Up Sequence
VBAT*
VDDIO
WL_REG_ON