Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
CYW4356/CG8674
ADVANCE
Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/
Baseband/Radio with Integrated Bluetooth 5.0
The Cypress CYW4356 is a complete dual-band (2.4 GHz and 5 GHz) 5G WiFi 2 × 2 MIMO MAC/PHY/Radio System-on-a-Chip. This
Wi-Fi single-chip device provides a high level of integration with dual-stream IEEE 802.11ac MAC/baseband/radio, Bluetooth 5.0.
Additionally, it supports wireless charging. In IEEE 802.11ac mode, the WLAN operation supports rates of MCS0–MCS9 (up to 256
QAM) in 20 MHz, 40 MHz, and 80 MHz channels for data rates up to 867 Mbps. In addition, all the rates specified in IEEE 802.11a/
b/g/n are supported. Included on-chip are 2.4 GHz and 5 GHz transmit power amplifiers and receive low noise amplifiers.
For the WLAN section, several alternative host interface options are included: an SDIO v3.0 interface that can operate in 4b or 1b
modes, and a PCIe v3.0 compliant interface running at Gen1 speeds. For the Bluetooth section, host interface options of a high-speed
4-wire UART and USB 2.0 full-speed (12 Mbps) are provided.
The CYW4356 uses advanced design techniques and process technology to reduce active and idle power, and includes an embedded
power management unit that simplifies the system power topology.
In addition, the CYW4356 implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms
that ensure that WLAN and Bluetooth collaboration is optimized for maximum performance. Coexistence support for external radios
(such as LTE cellular and GPS) is provided via an external interface. As a result, enhanced overall quality for simultaneous voice,
video, and data transmission on a handheld system is achieved.
This data sheet provides details on the functional, operational, and electrical characteristics for the Cypress CYW4356. It is intended
for hardware design, application, and OEM engineers.
Cypress Part Numbering Scheme
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides
Cypress ordering part number that matches an existing IoT part number.
Table 1. Mapping Table for Part Number between Broadcom and Cypress
Broadcom Part Number
Cypress Part Number
BCM4356
CYW4356
BCM4330
CYW4330
BCM4356XKWBG
CYW4356XKWBG
CG8674AAT (BCM4356XKUBGT)
CG8674BAT (CYW4356XKUBGT)
CG8674AA (BCM4356XKUBG)
CG8674BA (CYW4356XKUBG)
Figure 1. Functional Block Diagram
‘
VIO
VBAT
WL_REG_ON
WLAN
Host I/F
PCIe
SDIO
5G WLAN
T/R Switch
Ant1
Diplexer
External
Coexistence I/F
COEX
2G WLAN
T/R Switch
5G WLAN
T/R Switch
CLK_REQ
BT_REG_ON
CYW4356
USB 2.0
I2S
Bluetooth Host I/F
PCM
Ant0
Diplexer
UART
2G WLAN Tx
2.G WL/BT Rx
3PST Switch
BT_DEV_WAKE
BT_HOST_WAKE
Cypress Semiconductor Corporation
Document Number: 002-20538 Rev. *B
•
198 Champion Court
BT Tx
•
San Jose, CA 95134-1709
•
408-943-2600
Revised Friday, July 27, 2018
ADVANCE
CYW4356/CG8674
Features
IEEE 802.11X Key Features
■
Internal fractional nPLL allows support for a wide range of
reference clock frequencies.
■
Supports IEEE 802.15.2 external coexistence interface to
optimize bandwidth utilization with other co-located wireless
technologies such as LTE or GPS.
■
IEEE 802.11ac Draft compliant.
■
Dual-stream spatial multiplexing up to
867 Mbps data rate.
■
Supports 20, 40, and 80 MHz channels with optional SGI (256
QAM modulation).
■
Supports standard SDIO v3.0 (up to SDR104 mode at
208 MHz, 4-bit and 1-bit) host interfaces.
■
Full IEEE 802.11a/b/g/n legacy compatibility with enhanced
performance.
■
Backward compatible with SDIO v2.0 host interfaces.
■
TX and RX low-density parity check (LDPC) support for
improved range and power efficiency.
■
PCIe mode complies with PCI Express base specification
revision 3.0 for ×1 lane and power management running at
Gen1 speeds.
■
Supports IEEE 802.11ac/n beamforming.
■
Supports Active State Power Management (ASPM).
■
On-chip power amplifiers and low-noise amplifiers for both
bands.
■
■
Supports various RF front-end architectures including:
❐ Two antennas with one each dedicated to Bluetooth and
WLAN.
❐ Two antennas with WLAN diversity and a shared Bluetooth
antenna.
Integrated ARMCR4 processor with tightly coupled memory
for complete WLAN subsystem functionality, minimizing the
need to wake up the applications processor for standard
WLAN functions. This allows for further minimization of power
consumption, while maintaining the ability to field upgrade with
future features. On-chip memory includes 768 KB SRAM and
640 KB ROM.
■
Shared Bluetooth and WLAN receive signal path eliminates
the need for an external power splitter while maintaining
excellent sensitivity for both Bluetooth and WLAN.
■
OneDriver™ software architecture for easy migration from
existing embedded WLAN and Bluetooth devices as well as
future devices.
■
Supports A4WP wireless charging with the BCM59350.
■
Interface support, host controller interface (HCI) using a USB
or high-speed UART interface and PCM for audio data.
■
USB 2.0 full-speed (12 Mbps) supported for Bluetooth.
■
Low power consumption improves battery life of handheld
devices.
■
Supports multiple simultaneous Advanced Audio Distribution
Profiles (A2DP) for stereo sound.
■
Automatic frequency detection for standard crystal and TCXO
values.
■
Security:
❐ WPA and WPA2 (Personal) support for powerful encryption
and authentication
❐ AES and TKIP in hardware for faster data encryption and
IEEE 802.11i compatibility
❐ Reference WLAN subsystem provides Cisco Compatible
Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0)
❐ Reference WLAN subsystem provides Wi-Fi Protected Setup (WPS)
■
Worldwide regulatory support: Global products supported with
worldwide homologated design.
Bluetooth Key Features
■
Qualified for Bluetooth Core Specification 5.0:
❐ QDID: 115131
❐ Declaration ID: D038396
■
Supports Basic Rate (BR), Enhanced Data Rate (EDR) and
Bluetooth Low Energy (BLE)
■
Bluetooth Class 1 or Class 2 transmitter operation.
■
Supports extended synchronous connections (eSCO), for
enhanced voice quality by allowing for retransmission of
dropped packets.
■
Adaptive frequency hopping (AFH) for reducing radio
frequency interference.
General Features
■
Supports battery range from 3.0V to 5.25V supplies with
internal switching regulator
■
Programmable dynamic power management
■
484 bytes of user-accessible OTP for storing board parameters
■
GPIOs: 11 in WLBGA, 16 in WLCSP
■
Package options:
❐ 192-ball WLBGA (4.87 mm × 7.67 mm, 0.4 mm pitch
❐ 395-bump WLCSP (4.87 mm × 7.67 mm, 0.2 mm pitch)
Document Number: 002-20538 Rev. *B
Page 2 of 144
ADVANCE
CYW4356/CG8674
Contents
1. Overview ........................................................................ 5
1.1 Overview ............................................................... 5
1.2 Features ................................................................ 7
1.3 Standards Compliance .......................................... 8
2. Power Supplies and Power Management ................... 9
2.1 Power Supply Topology ........................................ 9
2.2 CYW4356/CG8674 PMU Features ....................... 9
2.3 WLAN Power Management ................................. 11
2.4 PMU Sequencing ................................................ 11
2.5 Power-Off Shutdown ........................................... 12
2.6 Power-Up/Power-Down/Reset Circuits ............... 12
2.7 Wireless Charging ............................................... 12
3. Frequency References ............................................... 15
3.1 Crystal Interface and Clock Generation .............. 15
3.2 External Frequency Reference ............................ 15
3.3 External 32.768 kHz Low-Power Oscillator ......... 17
4. Bluetooth Subsystem Overview ................................ 18
4.1 Features .............................................................. 18
4.2 Bluetooth Radio ................................................... 19
5. Bluetooth Baseband Core ......................................... 20
5.1 Bluetooth 4.1 Features ........................................ 20
5.2 Bluetooth 5.0/4.2 ................................................. 20
5.3 Link Control Layer ............................................... 21
5.4 Test Mode Support .............................................. 21
5.5 Bluetooth Power Management Unit ..................... 22
5.6 Adaptive Frequency Hopping .............................. 25
5.7 Advanced Bluetooth/WLAN Coexistence ............ 25
5.8 Fast Connection (Interlaced Page and Inquiry Scans)
25
6. Microprocessor and Memory Unit for Bluetooth ..... 26
6.1 RAM, ROM, and Patch Memory .......................... 26
6.2 Reset ................................................................... 26
7. Bluetooth Peripheral Transport Unit ........................ 27
7.1 SPI Interface ........................................................ 27
7.2 SPI/UART Transport Detection ........................... 27
7.3 PCM Interface ..................................................... 27
7.4 USB Interface ...................................................... 34
7.5 UART Interface .................................................... 36
7.6 I2S Interface ........................................................ 37
7.7 External Coexistence Interface ........................... 40
7.8 UART Interface .................................................... 41
7.9 JTAG Interface .................................................... 41
7.10 SPROM Interface .............................................. 41
8. WLAN Host Interfaces ................................................ 42
8.1 SDIO v3.0 ............................................................ 42
8.2 PCI Express Interface ......................................... 44
9. Wireless LAN MAC and PHY ..................................... 46
9.1 IEEE 802.11ac Draft MAC ................................... 46
9.2 IEEE 802.11ac Draft PHY ................................... 48
10. WLAN Radio Subsystem ......................................... 50
10.1 Receiver Path .................................................... 52
10.2 Transmit Path .................................................... 52
10.3 Calibration ......................................................... 52
11. Pin Information ......................................................... 53
Document Number: 002-20538 Rev. *B
11.1 Ball Maps ........................................................... 53
11.2 Pin Lists ............................................................. 54
11.3 Signal Descriptions ............................................ 70
11.4 WLAN/BT GPIO Signals and Strapping Options 84
11.5 GPIO Alternative Signal Functions .................... 85
11.6 I/O States .......................................................... 87
12. DC Characteristics ................................................... 90
12.1 Absolute Maximum Ratings ............................... 90
12.2 Environmental Ratings ...................................... 90
12.3 Electrostatic Discharge Specifications .............. 90
12.4 Recommended Operating Conditions and DC
Characteristics ................................................... 91
13. Bluetooth RF Specifications .................................... 92
14. WLAN RF Specifications .......................................... 98
14.1 Introduction ........................................................ 98
14.2 2.4 GHz Band General RF Specifications ......... 98
14.3 WLAN 2.4 GHz Receiver Performance
Specifications ..................................................... 99
14.4 WLAN 2.4 GHz Transmitter Performance
Specifications .................................................. 104
14.5 WLAN 5 GHz Receiver Performance
Specifications ................................................... 106
14.6 WLAN 5 GHz Transmitter Performance
Specifications ................................................... 112
15. Internal Regulator Electrical Specifications ........ 113
15.1 Core Buck Switching Regulator ....................... 113
15.2 3.3V LDO (LDO3P3) ....................................... 114
15.3 3.3V LDO (LDO3P3_B) ................................... 115
15.4 2.5V LDO (BTLDO2P5) ................................... 116
15.5 CLDO .............................................................. 117
15.6 LNLDO ............................................................ 118
16. System Power Consumption ................................. 119
16.1 WLAN Current Consumption ........................... 119
16.2 Bluetooth Current Consumption ...................... 121
17. Interface Timing and AC Characteristics ............. 122
17.1 SDIO Timing .................................................... 122
17.2 PCI Express Interface Parameters .................. 130
17.3 JTAG Timing ................................................... 131
18. Power-Up Sequence and Timing ........................... 132
18.1 Sequencing of Reset and Regulator Control
Signals ............................................................. 132
19. Package Information .............................................. 137
19.1 Package Thermal Characteristics ................... 137
19.2 Junction Temperature Estimation and PSIJT
Versus ThetaJC ..............................................................137
19.3 Environmental Characteristics ......................... 137
20. Mechanical Information ......................................... 138
21. Ordering Information .............................................. 142
22. Additional Information ........................................... 142
22.1 Acronyms and Abbreviations ........................... 142
22.2 References ...................................................... 142
23. IoT Resources ......................................................... 142
Document History ........................................................ 143
Sales, Solutions, and Legal Information ................... 144
Page 3 of 144
ADVANCE
CYW4356/CG8674
1. Overview
1.1 Overview
The Cypress CYW4356/CG8674 single-chip device provides the highest level of integration for an IoT or Embedded system, with
integrated IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 5.0 and Alliance for Wireless Power (A4WP) support. The wireless
charging feature works in collaboration with the Wireless Power Transfer (WPT) BCM59350 front-end IC. It provides a small formfactor solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in
size, form, and function. Comprehensive power management circuitry and software ensure the system can meet the needs of highly
mobile devices that require minimal power consumption and reliable operation.
Figure 2 shows the interconnect of all the major physical blocks in the CYW4356/CG8674 and their associated external interfaces,
which are described in greater detail in the following sections.
Table 2. Device Options and Features
Feature
WLBGA
WLCSP
Package ball count
192 pins
395 bumps
PCIe
Yes
Yes
USB2.0 (Bluetooth)
Yes
Yes
I2S
Multiplexed onto six parallel Flash pins
No
GPIO
11
16
SDIO 3.0
Yes
Yes
WPT (BSC, GPIO)
Yes
Yes
SPROM
Yes
Yes
Document Number: 002-20538 Rev. *B
Page 5 of 144
ADVANCE
CYW4356/CG8674
Figure 2. CYW4356/CG8674 Block Diagram
CYW4356
JTAG
WLAN
BT
XTAL OSC
RAM
ROM
APB
Patch
WD Timer
Inter Ctrl
SW Timer
DMA
OTP
Bus Arb
GPIO
AHB
SLIMBus
RAM
Debug UART
ROM
BT RF
BT PHY
CLB
I2S/PCM1
802.11abgn
SMPS Control
GNSS LNA ANT
Control
BT Control Clock
Sleep
Clock
PMU
Timer Management
Wake/Sleep
Control
LPO
PMU
Controller
XO
Buffer
BT‐WLAN ECI
POR
UART
JTAG
JTAG
I2S/PCM2
GPIO
GPIO
UART
2X2 LCNXNPHY
BT Digital IO
IO Port Control
MEIF
OTP
ARM
AXI BACKPLANE
GPIO Ctrl
XTAL
POR
AHB2 APB
Bridge
JTAG
AHB Bus Matrix
PTU
UART/USB
Power Supply
LDO
LPO
AHB
Power
SW REG
Radio
CORE0
CORE1
2.4 GHz
5 GHz
2.4 GHz
5 GHz
WPT
PMU
Controller
SDIO
ETM
JTAG
SDP
Cortex M3
BSC, GPIO
*SDIO or *PCIe 2.0
PCIe
Debug
5 GHz IPA
BPF
LNA
2.4 GHz IPA
Diplexer
BPF
LNA
5 GHz IPA
BPF
LNA
2.4 GHz IPA
Diplexer
BPF
Shared LNA
BT RX
BT TX
XTAL
Document Number: 002-20538 Rev. *B
VBAT VREG
POR
EXT LNA RF Switch Control
Page 6 of 146
ADVANCE
CYW4356/CG8674
1.2 Features
The CYW4356/CG8674 supports the following features:
■
IEEE 802.11a/b/g/n/ac dual-band 2x2 MIMO radio with virtual-simultaneous dual-band operation
■
Bluetooth 5.0 with integrated Class 1 PA
■
Concurrent Bluetooth, and WLAN operation
■
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality
■
Single- and dual-antenna support
❐ Single antenna with shared LNA
❐ Simultaneous BT/WLAN receive with single antenna
■
WLAN host interface options:
❐ SDIO v3.0 (1 bit/4 bit)—up to 208 MHz clock rate in SDR104 mode
❐ PCIe v3.0 for x1 lane and power management, running at Gen 1 speeds
■
BT host digital interface (can be used concurrently with above interfaces):
❐ UART (up to 4 Mbps)
■
BT supports full-speed USB 2.0-compliant interface
■
ECI—enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives
■
I2S/PCM for BT audio
■
HCI high-speed UART (H4, H4+, H5) transport support
■
Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air coding, both through I2S
and PCM interface)
■
Bluetooth SmartAudio® technology improves voice and music quality to headsets
■
Bluetooth low power inquiry and page scan
■
Bluetooth Low Energy (BLE) support
■
Bluetooth Packet Loss Concealment (PLC)
■
Bluetooth Wideband Speech (WBS)
■
Audio rate-matching algorithms
■
Multiple simultaneous A2DP audio stream
■
A4WP support
Document Number: 002-20538 Rev. *B
Page 7 of 144
ADVANCE
CYW4356/CG8674
1.3 Standards Compliance
The CYW4356/CG8674 supports the following standards:
■ Bluetooth 5.0 with Basic Rate (BR), Enhanced Data Rate (EDR) and Bluetooth Low Energy (BLE)
■ IEEE802.11ac mandatory and optional requirements for 20 MHz, 40 MHz, and 80 MHz channels
■ IEEE 802.11n—Handheld Device Class (Section 11)
■ IEEE 802.11a
■ IEEE 802.11b
■ IEEE 802.11g
■ IEEE 802.11d
■ IEEE 802.11h
■ IEEE 802.11i
■ Security:
❐ WEP
❐ WPA Personal
❐ WPA2 Personal
❐ WMM
❐ WMM-PS (U-APSD)
❐ WMM-SA
❐ AES (Hardware Accelerator)
❐ TKIP (HW Accelerator)
❐ CKIP (SW Support)
■ Proprietary Protocols:
❐ CCXv2
❐ CCXv3
❐ CCXv4
❐ CCXv5
■ IEEE 802.15.2 Coexistence Compliance—on silicon solution compliant with IEEE 3 wire requirements
The CYW4356/CG8674 will support the following future drafts/standards:
■ IEEE 802.11w—Secure Management Frames
■ A4WP Wireless Power Transfer System Baseline System Specification V1.0
■ IEEE 802.11 Extensions:
❐ IEEE 802.11e QoS Enhancements (In accordance with the WMM specification, QoS is already supported.)
❐ IEEE 802.11h 5 GHz Extensions
❐ IEEE 802.11i MAC Enhancements
❐ IEEE 802.11k Radio Resource Measurement
Document Number: 002-20538 Rev. *B
Page 8 of 144
ADVANCE
CYW4356/CG8674
2. Power Supplies and Power Management
2.1 Power Supply Topology
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW4356/CG8674. All
regulators are programmable via the PMU. These blocks simplify power supply design for Bluetooth functions in embedded designs.
A single VBAT (3.0V to 5.25V DC max.) and VIO supply (1.8V to 3.3V) can be used, with all additional voltages being provided by the
regulators in the CYW4356/CG8674.
Two control signals, BT_REG_ON and WL_REG_ON, are used to power-up the regulators and take the respective section out of
reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are deasserted. All regulators are powered down only
when both BT_REG_ON and WL_REG_ON are deasserted. The CLDO and LNLDO may be turned off/on based on the dynamic
demands of the digital baseband.
The CYW4356/CG8674 allows for an extremely low power-consumption mode by completely shutting down the CBUCK, CLDO, and
LNLDO regulators. When in this state, LPLDO1 (which is a low-power linear regulator supplied by the system VIO supply) provides
the CYW4356/CG8674 with all the voltages it requires, further reducing leakage currents.
2.2 CYW4356/CG8674 PMU Features
■
VBAT to 1.35Vout (600 mA maximum) Core-Buck (CBUCK) switching regulator
■
VBAT to 3.3Vout (600 mA maximum) LDO3P3
■
VBAT to 3.3Vout (150 mA maximum) LDO3P3_B
■
VBAT to 2.5V out (70 mA maximum) BTLDO2P5
■
1.35V to 1.2Vout (150 mA maximum) LNLDO
■
1.35V to 1.2Vout (300 mA maximum) CLDO with bypass mode for deep-sleep
■
Additional internal LDOs (not externally accessible)
Figure 3 illustrates the typical power topology for the CYW4356/CG8674. The shaded areas are internal to the CYW4356/CG8674.
Document Number: 002-20538 Rev. *B
Page 9 of 144
ADVANCE
CYW4356/CG8674
Figure 3. Typical Power Topology for the CYW4356/CG8674
Internal LNLDO
Internal LNLDO
Internal VCOLDO
Internal LNLDO
XTAL LDO
30 mA
1.2V
WL RF – AFE
1.2V
WL RF – TX (2.4 GHz, 5 GHz)
1.2V
WL RF – LOGEN (2.4 GHz, 5 GHz)
1.2V
WL RF – RX/LNA (2.4 GHz, 5 GHz)
1.2V
WL RF – XTAL
WL RF – RFPLL PFD/MMD
LNLDO
Max. 150 mA
1.2V
BT RF
DFE/DFLL
WL_REG_ON
PCIE PLL/RXTX
BT_REG_ON
Core Buck
Regulator
CBUCK
Mx. 600 mA
VBAT
WLAN BBPLL/DFLL
1.35V
WLAN/BT/CLB/Top, Always‐on
WL OTP
VDDIO
LPLDO1
3 mA
1.1V
CLDO
Max. 300 mA
(Bypass in deep
sleep)
WL PHY
1.2V–1.1V
WL DIGITAL
BT DIGITAL
WL/BT SRAMs
BTLDO2P5
Max. 70 mA
2.5V
BT CLASS 1 PA
WL RF‐PA (2.4 GHz, 5 GHz)
LDO3P3
Max. 600 mA
WL PAD (2.4 GHz, 5 GHz)
3.3V
VDDIO_RF
3.3V
Internal LNLDO
Internal LNLDO
Document Number: 002-20538 Rev. *B
2.5V
LDO3P3_B
Max. 150 mA
2.5V
WL OTP 3.3V
WL RF – VCO
WL RF – CP
Page 10 of 146
ADVANCE
CYW4356/CG8674
2.3 WLAN Power Management
The CYW4356/CG8674 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas
of the chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage
current and supply voltages. Additionally, the CYW4356/CG8674 integrated RAM is a high Vt memory with dynamic clock control.
The dominant supply current consumed by the RAM is leakage current only. Additionally, the CYW4356/CG8674 includes an
advanced WLAN power management unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the
CYW4356/CG8674 into various power management states appropriate to the current environment and activities that are being
performed. The power management unit enables and disables internal regulators, switches, and other blocks based on a computation
of the required resources and a table that describes the relationship between resources and the time needed to enable and disable
them. Power up sequences are fully programmable. Configurable, free-running counters (running at 32.768 kHz LPO clock) in the
PMU sequencer are used to turn on/turn off individual regulators and power switches. Clock speeds are dynamically changed (or
gated altogether) for the current mode. Slower clock speeds are used wherever possible.
The CYW4356/CG8674 WLAN power states are described as follows:
■
Active mode— All WLAN blocks in the CYW4356/CG8674 are powered up and fully functional with active carrier sensing and frame
transmission and receiving. All required regulators are enabled and put in the most efficient mode based on the load current. Clock
speeds are dynamically adjusted by the PMU sequencer.
■
Deep-sleep mode—Most of the chip including both analog and digital domains and most of the regulators are powered off. All main
clocks (PLL, crystal oscillator, or TCXO) are shut down to reduce active power to the minimum. The 32.768 kHz LPO clock is
available only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition
to Active mode. Logic states in the digital core are saved and preserved into a retention memory in the always-ON domain before
the digital core is powered off. Upon a wake-up event triggered by the PMU timers, an external interrupt or a host resumes through
the SDIO bus and logic states in the digital core are restored to their pre-deep-sleep settings to avoid lengthy HW reinitialization.
In Deep-sleep mode, the primary source of power consumption is leakage current.
■
Power-down mode—The CYW4356/CG8674 is effectively powered off by shutting down all internal regulators. The chip is brought
out of this mode by external logic reenabling the internal regulators.
2.4 PMU Sequencing
The PMU sequencer is responsible for minimizing system power consumption. It enables and disables various system resources
based on a computation of the required resources and a table that describes the relationship between resources and the time needed
to enable and disable them.
Resource requests may come from several sources: clock requests from cores, the minimum resources defined in the ResourceMin
register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of
resources required to produce the requested clocks.
Each resource is in one of four states: enabled, disabled, transition_on, and transition_off and has a timer that contains 0 when the
resource is enabled or disabled and a non-zero value in the transition states. The timer is loaded with the time_on or time_off value
of the resource when the PMU determines that the resource must be enabled or disabled. That timer decrements on each 32.768 kHz
PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to enabled. If the time_on value is
0, the resource can go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go
immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the immediate transition or
the timer load-decrement sequence.
During each clock cycle, the PMU sequencer performs the following actions:
■
Computes the required resource set based on requests and the resource dependency table.
■
Decrements all timers whose values are non zero. If a timer reaches 0, the PMU clears the ResourcePending bit for the resource
and inverts the ResourceState bit.
■
Compares the request with the current resource status and determines which resources must be enabled or disabled.
■
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no powered up dependents.
■
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies enabled.
Document Number: 002-20538 Rev. *B
Page 11 of 144
ADVANCE
CYW4356/CG8674
2.5 Power-Off Shutdown
The CYW4356/CG8674 provides a low-power shutdown feature that allows the device to be turned off while the host, and any other
devices in the system, remain operational. When the CYW4356/CG8674 is not needed in the system, VDDIO_RF and VDDC are shut
down while VBAT and VDDIO remain powered. This allows the CYW4356/CG8674 to be effectively off while keeping the I/O pins
powered so that they do not draw extra current from any other devices connected to the I/O.
During a low-power shut-down state, provided VDDIO remains applied to the CYW4356/CG8674, all outputs are tristated, and most
inputs signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current
paths or create loading on any digital signals in the system, and enables the CYW4356/CG8674 to be fully integrated in an embedded
device and take full advantage of the lowest power-savings modes.
When the CYW4356/CG8674 is powered on from this state, it is the same as a normal power-up and the device does not retain any
information about its state from before it was powered down.
2.6 Power-Up/Power-Down/Reset Circuits
The CYW4356/CG8674 has two signals (see Table 3) that enable or disable the Bluetooth and WLAN circuits and the internal regulator
blocks, allowing the host to control power consumption. For timing diagrams of these signals and the required power-up sequences,
see Section 18. Power-Up Sequence and Timing.
Table 3. Power-Up/Power-Down/Reset Control Signals
Signal
Description
WL_REG_ON
This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is also OR-gated
with the BT_REG_ON input to control the internal CYW4356/CG8674 regulators. When this pin is high,
the regulators are enabled and the WLAN section is out of reset. When this pin is low, the WLAN section
is in reset. If BT_REG_ON and WL_REG_ON are both low, the regulators are disabled. This pin has
an internal 200 k pull-down resistor that is enabled by default. It can be disabled through programming.
BT_REG_ON
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal
CYW4356/CG8674 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be
disabled. This pin has an internal 200 k pull-down resistor that is enabled by default. It can be disabled
through programming.
2.7 Wireless Charging
The CYW4356/CG8674 combo IC is designed for paired operation with the BCM59350 wireless power transfer front-end chip.
Working together, the two chips form a power receiver unit (PRU) that is compliant with the Alliance for Wireless Power specification
(A4WP). High-level functional block diagram for wireless charging is provided in Figure 4. The power transmit unit (PTU) resides in
the charging pad while the power receive unit is integrated into the mobile device. The charging process begins as the mobile device
is placed onto the charging pad. The power is transferred from PTU to PRU through the TX and RX coils by means of magnetic
induction. The Bluetooth control link handles communications, i.e., handshaking, between them. PTU is a BLE client, which gets
performance data from the BLE server (PRU) in order to adapt its power to the mobile's need.
Figure 4. High-Level Functional Block Diagram for Wireless Charging
Power Transmit Unit (PTU)
Power Receiver Unit (PRU)
USB
VBUS Detect
VBUCK
WPT
Transmit
WPT
Tx Coil
Resonator
Wireless Power
Transfer
WPT
Rx Coil
Resonator
BCM59350
WPT
Front End
WPT Control
BLE
BT Antenna
Bluetooth Control
Link
Document Number: 002-20538 Rev. *B
BT Antenna
Power
Switch
Battery
PMU
GPIO
WPT 1.8/3.3
System power
CYW4356
Bluetooth
Low‐Energy (BLE)
Charger
System control i/f
Application
Processor
Page 12 of 144
ADVANCE
CYW4356/CG8674
Further details on the PRU are depicted in Figure 5. It shows both ICs along with a power switch, charger, power management IC, and the application processor (system).
Figure 5. Power Receiver Unit
Switch kept always ON
unless disabled by 59350
USB
connector
VBUS
DP
DM
GND
VRECT
cntl
filter
VBUS
sense
59350 VRECT
VRECT
VIN_BUCK
VBUS detect
AUXLDO
Register
controlled
input select
WPC /PMA
coil
Vrect_low
Vrect_high
20V
LDO
VBUCK
AUXLDO
VRECT
comparator
1.8V VSRC
PWR
MGR
POR
OTP
A4WP coil
RECT
control
VLDO
VLDO
VRECT
VBUCK
IBUCK
FieldCLK
Charger
/ OTG
Buck cntl
1.2A
CLK GEN
CHGsrc
FB
PMIC
System
interface
VBUCK_FB
VBUCK
ADC
Tjunc
Tntc
VRECT
WPC / PMA
controller
Control
Logic
both LDOs ON
(FIELD_S)
VBUCK
1V8
LDO
3V3
LDO
100 mA
100 mA
Register
controlled
LDO input
select
SYSVDDIO (1.8V)
VBAT (2.9V‐4.5V)
Pre‐OVP
Z‐Tune
BSC, INTb, GPIO
NTC ADC
bias in
GPIO GPIO
1V8
1p8
SPDT
VBAT
SPDT
VDDO
Digtest VDD5otp VSRC
INTb
SCL
SDA
Test pins
BSC INTb
VDDIO
VBAT
WPT interface
PMU
BLE
antenna
Logical OR
BLE
subsys
POR
WLAN‐BLE combo
Document Number: 002-20538 Rev. *B
POR Internal
pwr
System interfaces
(SDIO, PCIe, LPO, GPIO)
BT_REG_ON
WL_REG_ON
Page 13 of 146
ADVANCE
CYW4356/CG8674
Figure 6 shows pin-to-pin connections between the CYW4356/CG8674 and BCM59350, which consist of the following:
■
Two Broadcom Serial Control (BSC)1 data and clock lines.
■
Two DC power supply lines.
■
One interrupt (INTb) to the WLAN chip.
■
One GPIO line, which is passed through an OR gate along with another signal from the application processor AP. This is for
BT_REG_ON function, as illustrated in Figure 6.
Figure 6. BCM59350 and CYW4356/CG8674 Interface
BCM59350
CYW4356
3V3LDO
VBAT
1V8LDO
VDDIO
SCL
SDA
INTb
GPIO
AP
BT_GPIO_5
BT_GPIO_4
BT_GPIO_3
BT_REG_ON
BT_GPIO_2
1. The Broadcom Serial Control bus is a proprietary bus compliant with the Philips I2C bus/interface.
Document Number: 002-20538 Rev. *B
Page 14 of 144
ADVANCE
CYW4356/CG8674
3. Frequency References
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency
reference may be used. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.
3.1 Crystal Interface and Clock Generation
The CYW4356/CG8674 can use an external crystal to provide a frequency reference. The recommended configuration for the crystal
oscillator including all external components is shown in Figure 7. Consult the reference schematics for the latest configuration.
Figure 7. Recommended Oscillator Configuration
C*
W R F _X TA L _IN
3 7 .4 M H z
C*
X o h m s*
W R F _X TA L _O U T
* V alu e s d e te rm in e d b y crystal
d rive le ve l. Se e re fe re n ce
sch e m atics fo r d e tails .
A fractional-N synthesizer in the CYW4356/CG8674 generates the radio frequencies, clocks, and data/packet timing, enabling it to
operate using a wide selection of frequency references.
For SDIO and PCIe WLAN host applications, the recommended default frequency reference is a 37.4 MHz crystal. For PCIe applications, see Table 4 for details on alternatives for the external frequency reference. The signal characteristics for the crystal oscillator
interface are also listed in Table 4.
Note: Although the fractional-N synthesizer can support alternative reference frequencies, frequencies other than the default require
support to be added in the driver, plus additional extensive system testing. Contact Cypress for further details.
3.2 External Frequency Reference
For operation in SDIO mode only, an alternative to a crystal (an external precision frequency reference) can be used. The recommended default frequency is 52 MHz ±10 ppm, and it must meet the phase noise requirements listed in Table 4.
If used, the external clock should be connected to the WRF_XTAL_IN pin through an external 1000 pF coupling capacitor, as shown
in Figure 8. The internal clock buffer connected to this pin will be turned OFF when the CYW4356/CG8674 goes into sleep mode.
When the clock buffer turns ON and OFF there will be a small impedance variation. Power must be supplied to the WRF_XTAL_VDD1P5 pin.
Figure 8. Recommended Circuit to Use with an External Reference Clock
1000 pF
Reference
Clock
WRF_XTAL_IN
NC
Document Number: 002-20538 Rev. *B
WRF_XTAL_OUT
Page 15 of 144
ADVANCE
CYW4356/CG8674
Table 4. Crystal Oscillator and External Clock—Requirements and Performance
Parameter
Min.
Frequency
External Frequency
Referenceb, c
Crystala
Conditions/Notes
Typ.
Max.
Min.
Typ.
Max.
Units
2.4G and 5G bands: IEEE 802.11ac 35
operation, SDIO3.0, and PCIe
WLAN interfaces
37.4
–
–
52
–
MHz
2.4G and 5G bands, IEEE 802.11ac –
operation, PCIe interface alternative
frequency
40
–
–
–
–
MHz
5G band: IEEE 802.11n operation
only
19
–
52
35
–
52
MHz
2.4G band: IEEE 802.11n
operation, and both bands legacy
802.11a/b/g operation only
Ranges between 19 MHz and 52 MHzd, e
Frequency tolerance over the
lifetime of the equipment,
including temperaturef
Without trimming
–20
–
20
–20
–
20
ppm
Crystal load capacitance
–
–
12
–
–
–
–
pF
ESR
–
–
–
60
–
–
–
Ω
Drive level
External crystal must be able to
tolerate this drive level.
200
–
–
–
–
–
μW
Input impedance (WRF_XTAL_IN)
Resistive
–
–
–
30
100
–
kΩ
Capacitive
–
–
7.5
–
–
7.5
pF
WRF_XTAL_IN
Input low level
DC-coupled digital signal
–
–
–
0
–
0.2
V
WRF_XTAL_IN
Input high level
DC-coupled digital signal
–
–
–
1.0
–
1.26
V
WRF_XTAL_IN
input voltage
(see Figure 8)
AC-coupled analog signal
–
–
–
400
–
1200
mVp-p
Duty cycle
37.4 MHz clock
–
–
–
40
50
60
%
g
Phase Noise
(IEEE 802.11b/g)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–129
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–136
dBc/Hz
Phase Noiseg
(IEEE 802.11a)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–137
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–144
dBc/Hz
Phase Noiseg
(IEEE 802.11n, 2.4 GHz)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–134
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–141
dBc/Hz
Phase Noiseg,h
(IEEE 802.11n, 5 GHz)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–142
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–149
dBc/Hz
Phase Noiseg
(IEEE 802.11ac, 5 GHz)
37.4 MHz clock at 10 kHz offset
–
–
–
–
–
–150
dBc/Hz
37.4 MHz clock at 100 kHz offset
–
–
–
–
–
–157
dBc/Hz
a. (Crystal) Use WRF_XTAL_IN and WRF_XTAL_OUT.
b. See External Frequency Reference for alternate connection methods.
c. For a clock reference other than 37.4 MHz, 20 × log10(f/ 37.4) dB should be added to the limits, where f = the reference clock frequency in MHz.
d. BT_TM6 should be tied low for a 52 MHz clock reference. For other frequencies, BT_TM6 should be tied high. Note that 52 MHz is not an
auto–detected frequency using the LPO clock.
e. The frequency step size is approximately 80 Hz resolution.
f. It is the responsibility of the equipment designer to select oscillator components that comply with these specifications.
g. Assumes that external clock has a flat phase noise response above 100 kHz.
h. If the reference clock frequency is 100k
Ω
0.35T
tHC > 0.35T
V H = 2.0V
SCK
V L = 0.8V
thtr > 0
totr < 0.8T
SD and WS
T = Clock period
Ttr = Minimum allowed clock period for transmitter
T = Ttr
* tRC is only relevant for transmitters in slave mode.
Figure 22. I2S Receiver Timing
T
tLC > 0.35T
tHC > 0.35
VH = 2.0V
SCK
VL = 0.8V
tsr > 0.2T
thr > 0
SD and WS
T = Clock period
Tr = Minimum allowed clock period for transmitter
T > Tr
Document Number: 002-20538 Rev. *B
Page 39 of 144
ADVANCE
CYW4356/CG8674
7.7 External Coexistence Interface
An external handshake interface is available to enable signaling between the device and an external co-located wireless device, such
as GPS, LTE, or UWB, to manage wireless medium sharing for optimal performance.
Figure 27 and Figure 24 show the LTE coexistence interface (including UART) for each CYW4356/CG8674 package type. See
Table 27 for further details on multiplexed signals, such as the GPIO pins.
See Table 16 for the UART baud rate.
Figure 23. Cypress GCI Mode LTE Coexistence Interface
SECI_OUT
WLAN
SECI_IN
UART_IN
UART_OUT
GCI
BT
CYW4356
LTE/IC
Notes:
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by
setting the GPIO mask registers appropriately.
SECI_OUT and SECI_IN are multiplexed on the GPIOs.
Figure 24. Legacy 3-Wire LTE Coexistence Interface
GCI_GPIO_2
WLAN
WCN_PRIORITY
GCI_GPIO_1
GCI
MWS_RX, LTE_PRIORITY
GCI_GPIO_0
LTE_FRAME_SYNC
BT
CYW4356
LTE/IC
Note: OR’ing to generate WCN_PRIORITY FOR ERCX_TXCONF or BT_RX_PRIORITY is achieved by
setting the GPIO mask registers appropriately.
Document Number: 002-20538 Rev. *B
Page 40 of 144
ADVANCE
CYW4356/CG8674
7.8 UART Interface
One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins. Refer to Table 27. Provided primarily
for debugging during development, this UART enables the CYW4356/CG8674 to operate as RS-232 data termination equipment
(DTE) for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550 UART, and
provides a FIFO size of 64 × 8 in each direction.
7.9 JTAG Interface
The CYW4356/CG8674 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and PCB assembly
testing during manufacturing. In addition, the JTAG interface allows Cypress to assist customers by using proprietary debug and
characterization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins by means
of test points or a header on all PCB designs.
Refer to Table 27 for JTAG pin assignments.
7.10 SPROM Interface
Various hardware configuration parameters may be stored in an external SPROM instead of the OTP. The SPROM is read by system
software after device reset. In addition, depending on the board design, customer-specific parameters may be stored in SPROM.
The four SPROM control signals —SPROM_CS, SPROM_CLK, SPROM_MI, and SPROM_MO are multiplexed on the SDIO interface
(see Table 27 for additional details). By default, the SPROM interface supports 2 Kbit serial SPROMs, and it can also support 4 Kbit
and 16 Kbit serial SPROMs by using the appropriate strapping option.
Document Number: 002-20538 Rev. *B
Page 41 of 144
ADVANCE
CYW4356/CG8674
8. WLAN Host Interfaces
8.1 SDIO v3.0
All three package options of the CYW4356/CG8674 WLAN section provide support for SDIO version 3.0, including the new UHS-I
modes:
■
DS: Default speed (DS) up to 25 MHz, including 1- and 4-bit modes (3.3V signaling).
■
HS: High-speed up to 50 MHz (3.3V signaling).
■
SDR12: SDR up to 25 MHz (1.8V signaling).
■
SDR25: SDR up to 50 MHz (1.8V signaling).
■
SDR50: SDR up to 100 MHz (1.8V signaling).
■
SDR104: SDR up to 208 MHz (1.8V signaling)
■
DDR50: DDR up to 50 MHz (1.8V signaling).
Note: The CYW4356/CG8674 is backward compatible with SDIO v2.0 host interfaces.
The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an interrupt different
from the one provided by the SDIO interface. The ability to force control of the gated clocks from within the device is also provided.
SDIO mode is enabled by strapping options. Refer to Table 24 WLAN GPIO Functions and Strapping Options.
The following three functions are supported:
■
Function 0 Standard SDIO function (max. BlockSize/ByteCount = 32B)
■
Function 1 Backplane Function to access the internal system-on-chip (SoC) address space
(max. BlockSize/ByteCount = 64B)
■
Function 2 WLAN Function for efficient WLAN packet transfer through DMA
(max. BlockSize/ByteCount = 512B)
8.1.1 SDIO Pins
Table 18. SDIO Pin Descriptions
SD 4-Bit Mode
DATA0
SD 1-Bit Mode
Data line 0
DATA
Data line
DATA1
Data line 1 or Interrupt
IRQ
Interrupt
DATA2
Data line 2 or Read Wait
RW
Read Wait
DATA3
Data line 3
N/C
Not used
CLK
Clock
CLK
Clock
CMD
Command line
CMD
Command line
Figure 25. Signal Connections to SDIO Host (SD 4-Bit Mode)
CLK
SD Host
CMD
CYW4356
DAT[3:0]
Document Number: 002-20538 Rev. *B
Page 42 of 144
ADVANCE
CYW4356/CG8674
Figure 26. Signal Connections to SDIO Host (SD 1-Bit Mode)
CLK
CMD
SD Host
DATA
CYW4356
IRQ
RW
Note: Per Section 6 of the SDIO specification, pull-ups in the 10 kΩ to 100 kΩ range are required on the four DATA lines and the CMD
line. This requirement must be met during all operating states either through the use of external pull-up resistors or through proper
programming of the SDIO host’s internal pull-ups.
Document Number: 002-20538 Rev. *B
Page 43 of 144
ADVANCE
CYW4356/CG8674
8.2 PCI Express Interface
The PCI Express (PCIe) core on the CYW4356/CG8674 is a high-performance serial I/O interconnect that is protocol compliant and
electrically compatible with the PCI Express Base Specification v3.0 running at Gen1 speeds. This core contains all the necessary
blocks, including logical and electrical functional subblocks to perform PCIe functionality and maintain high-speed links, using existing
PCI system configuration software implementations without modification.
Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as shown in Figure 27. A
configuration or link management block is provided for enumerating the PCIe configuration space and supporting generation and
reception of System Management Messages by communicating with PCIe layers.
Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication between the host and
CYW4356/CG8674 device. The transmit side processes outbound packets whereas the receive side processes inbound packets.
Packets are formed and generated in the Transaction and Data Link Layer for transmission onto the high-speed links and onto the
receiving device. A header is added at the beginning to indicate the packet type and any other optional fields.
Figure 27. PCI Express Layer Model
HW/SW Interface
HW/SW Interface
Transaction
Layer
Transaction
Layer
Data Link
Layer
Data Link
Layer
Physical Layer
Physical Layer
Logical Subblock
Logical Subblock
Electrical Subblock
Electrical Subblock
TX
RX
TX
RX
8.2.1 Transaction Layer Interface
The PCIe core employs a packet-based protocol to transfer data between the host and CYW4356/CG8674 device, delivering new
levels of performance and features. The upper layer of the PCIe is the Transaction Layer. The Transaction layer is primarily responsible
for assembly and disassembly of Transaction Layer Packets (TLPs). TLP structure contains header, data payload, and End-to-End
CRC (ECRC) fields, which are used to communicate transactions, such as read and write requests and other events.
A pipelined full split-transaction protocol is implemented in this layer to maximize efficient communication between devices with creditbased flow control of TLP, which eliminates wasted link bandwidth due to retries.
8.2.2 Data Link Layer
The data link layer serves as an intermediate stage between the transaction layer and the physical layer. Its primary responsibility is
to provide reliable, efficient mechanism for the exchange of TLPs between two directly connected components on the link. Services
provided by the data link layer include data exchange, initialization, error detection and correction, and retry services.
Data Link Layer Packets (DLLPs) are generated and consumed by the data link layer. DLLPs are the mechanism used to transfer link
management information between data link layers of the two directly connected components on the link, including TLP acknowledgement, power management, and flow control.
Document Number: 002-20538 Rev. *B
Page 44 of 144
ADVANCE
CYW4356/CG8674
8.2.3 Physical Layer
The physical layer of the PCIe provides a handshake mechanism between the data link layer and the high-speed signaling used for
Link data interchange. This layer is divided into the logical and electrical functional subblocks. Both subblocks have dedicated transmit
and receive units that allow for point-to-point communication between the host and CYW4356/CG8674 device. The transmit section
prepares outgoing information passed from the data link layer for transmission, and the receiver section identifies and prepares
received information before passing it to the data link layer. This process involves link initialization, configuration, scrambler, and data
conversion into a specific format.
8.2.4 Logical Subblock
The logical sub block primary functions are to prepare outgoing data from the data link layer for transmission and identify received
data before passing it to the data link layer.
8.2.5 Scrambler/Descrambler
This PCIe PHY component generates pseudo-random sequence for scrambling of data bytes and the idle sequence. On the transmit
side, scrambling is applied to characters prior to the 8b/10b encoding. On the receive side, descrambling is applied to characters after
8b/10b decoding. Scrambling may be disabled in polling and recovery for testing and debugging purposes.
8.2.6 8B/10B Encoder/Decoder
The PCIe core on the CYW4356/CG8674 uses an 8b/10b encoder/decoder scheme to provide DC balancing, synchronizing clock
and data recovery, and error detection. The transmission code is specified in the ANSI X3.230-1994, clause 11 and in IEEE 802.3z,
36.2.4.
Using this scheme, 8-bit data characters are treated as 3 bits and 5 bits mapped onto a 4-bit code group and a 6-bit code group,
respectively. The control bit in conjunction with the data character is used to identify when to encode one of the twelve Special Symbols
included in the 8b/10b transmission code. These code groups are concatenated to form a 10-bit symbol, which is then transmitted
serially. Special Symbols are used for link management, frame TLPs, and DLLPs, allowing these packets to be quickly identified and
easily distinguished.
8.2.7 Elastic FIFO
An elastic FIFO is implemented in the receiver side to compensate for the differences between the transmit clock domain and the
receive clock domain, with worse case clock frequency specified at 600 ppm tolerance. As a result, the transmit and receive clocks
can shift one clock every 1666 clocks. In addition, the FIFO adaptively adjusts the elastic level based on the relative frequency
difference of the write and read clock. This technique reduces the elastic FIFO size and the average receiver latency by half.
8.2.8 Electrical Subblock
The high-speed signals utilize the Common Mode Logic (CML) signaling interface with on-chip termination and de-emphasis for bestin-class signal integrity. A de-emphasis technique is employed to reduce the effects of Intersymbol Interference (ISI) due to the
interconnect by optimizing voltage and timing margins for worst case channel loss. This results in a maximally open “eye” at the
detection point, thereby allowing the receiver to receive data with acceptable Bit-Error Rate (BER).
To further minimize ISI, multiple bits of the same polarity that are output in succession are de-emphasized. Subsequent same bits are
reduced by a factor of 3.5 dB in power. This amount is specified by PCIe to allow for maximum interoperability while minimizing the
complexity of controlling the de-emphasis values. The high-speed interface requires AC coupling on the transmit side to eliminate the
DC common mode voltage from the receiver. The range of AC capacitance allowed is 75 nF to 200 nF.
8.2.9 Configuration Space
The PCIe function in the CYW4356/CG8674 implements the configuration space as defined in the PCI Express Base Specification
v3.0.
Document Number: 002-20538 Rev. *B
Page 45 of 144
ADVANCE
CYW4356/CG8674
9. Wireless LAN MAC and PHY
9.1 IEEE 802.11ac Draft MAC
The CYW4356/CG8674 WLAN MAC is designed to support high-throughput operation with low-power consumption. It does so without
compromising the Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In addition, several
power saving modes have been implemented that allow the MAC to consume very little power while maintaining network-wide timing
synchronization. The architecture diagram of the MAC is shown in Figure 28.
The following sections provide an overview of the important modules in the MAC.
Figure 28. WLAN MAC Architecture
Embedded CPU Interface
Host Registers, DMA Engines
TX‐FIFO
32 KB
PMQ
RX‐FIFO
10 KB
PSM
PSM
UCODE
Memory
IFS
Backoff, BTCX
WEP
TKIP, AES, WAPI
TSF
SHM
BUS
IHR
NAV
BUS
EXT‐ IHR
TXE
TX A‐MPDU
RXE
RX A‐MPDU
Shared Memory
6 KB
MAC‐PHY Interface
The CYW4356/CG8674 WLAN media access controller (MAC) supports features specified in the IEEE 802.11 base standard, and
amended by IEEE 802.11n. The key MAC features include:
■
Enhanced MAC for supporting IEEE 802.11ac Draft features
■
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT)
■
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP) and multiphase PSMP
operation
■
Support for immediate ACK and Block-ACK policies
■
Interframe space timing support, including RIFS
■
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges
■
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification
■
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time (TBTT)
generation in hardware
■
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management
■
Support for coexistence with Bluetooth and other external radios
■
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality
■
Statistics counters for MIB support
Document Number: 002-20538 Rev. *B
Page 46 of 144
ADVANCE
CYW4356/CG8674
PSM
The programmable state machine (PSM) is a micro-coded engine, which provides most of the low-level control to the hardware, to
implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow control operations, which are predominant in implementations of communication protocols. The instruction set and fundamental operations are simple and general, which
allows algorithms to be optimized until very late in the design process. It also allows for changes to the algorithms to track evolving
IEEE 802.11 specifications.
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for instructions, as a data
store, and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratchpad
memory (similar to a register bank) to store frequently accessed and temporary variables.
The PSM exercises fine-grained control over the hardware engines, by programming internal hardware registers (IHR). These IHRs
are co-located with the hardware functions they control, and are accessed by the PSM via the IHR bus.
The PSM fetches instructions from the microcode memory using an address determined by the program counter, instruction literal,
or a program stack. For ALU operations the operands are obtained from shared memory, scratchpad, IHRs, or instruction literals, and
the results are written into the shared memory, scratchpad, or IHRs.
There are two basic branch instructions: conditional branches and ALU based branches. To better support the many decision points
in the IEEE 802.11 algorithms, branches can depend on either a readily available signals from the hardware modules (branch condition
signals are available to the PSM without polling the IHRs), or on the results of ALU operations.
WEP
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the encryption and decryption, and
MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP, WPA2 AESCCMP.
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to be used. It supplies
the keys to the hardware engines from an on-chip key table. The WEP interfaces with the TXE to encrypt and compute the MIC on
transmit frames, and the RXE to decrypt and verify the MIC on receive frames.
TXE
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit frames
in the TXFIFO. It interfaces with WEP module to encrypt frames, and transfers the frames across the MAC-PHY interface at the
appropriate time determined by the channel access mechanisms.
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical queues to support traffic
streams that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to schedule
a queue from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on a
precise timing trigger received from the IFS module.
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for transmission. The hardware
module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.
RXE
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to drain the received frames
from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames. The
decrypted data is stored in the RXFIFO.
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames based on several criteria
such as receiver address, BSSID, and certain frame types.
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate
them into component MPDUS.
Document Number: 002-20538 Rev. *B
Page 47 of 144
ADVANCE
CYW4356/CG8674
IFS
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also contains multiple
backoff engines required to support prioritized access to the medium as specified by WMM.
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These timers
provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or perform
transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or
pause the backoff counters. When the backoff counters reach 0, the TXE gets notified, so that it may commence frame transmission.
In the event of multiple backoff counters decrementing to 0 at the same time, the hardware resolves the conflict based on policies
provided by the PSM.
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power
save mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized by
the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. Once the timer
expires the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration ensuring that the TSF
is synchronized to the network.
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.
TSF
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon transmission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon
and probe response frames in order to maintain synchronization with the network.
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and downlink
transmission times used in PSMP.
NAV
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received frames.
This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.
MAC-PHY Interface
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is an
programming interface, which can be controlled either by the host or the PSM to configure and control the PHY.
9.2 IEEE 802.11ac Draft PHY
The CYW4356/CG8674 WLAN Digital PHY is designed to comply with IEEE 802.11ac Draft and IEEE 802.11a/b/g/n dual-stream
specifications to provide wireless LAN connectivity supporting data rates from 1 Mbps to 866.7 Mbps for low-power, high-performance
handheld applications.
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other impairments. It incorporates
optimized implementations of the filters, FFT and Viterbi decoder algorithms. Efficient algorithms have been designed to achieve
maximum throughput and reliability, including algorithms for carrier sense/rejection, frequency/phase/timing acquisition and tracking,
channel estimation and tracking. The PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY carrier sense has
been tuned to provide high throughput for IEEE 802.11g/11b hybrid networks with Bluetooth coexistence. It has also been designed
for sharing an antenna between WL and BT to support simultaneous RX-RX.
The key PHY features include:
■
Programmable data rates from MCS0–15 in 20 MHz, 40 MHz, and 80 MHz channels, as specified in IEEE 802.11ac Draft
■
Supports Optional Short GI and Green Field modes in TX and RX
■
TX and RX LDPC for improved range and power efficiency
■
Beamforming support
■
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse operations in the receive
direction.
■
Supports IEEE 802.11h/k for worldwide operation
■
Advanced algorithms for low power, enhanced sensitivity, range, and reliability
Document Number: 002-20538 Rev. *B
Page 48 of 144
ADVANCE
CYW4356/CG8674
■
Algorithms to improve performance in presence of Bluetooth
■
Closed loop transmit power control
■
Digital RF chip calibration algorithms to handle CMOS RF chip non-idealities
■
On-the-fly channel frequency and transmit power selection
■
Supports per packet RX antenna diversity
■
Available per-packet channel quality and signal strength measurements
■
Designed to meet FCC and other worldwide regulatory requirements
Figure 29. WLAN PHY Block Diagram
CCK/DSSS
Demodulate
Filters and
Radio Comp
Frequency and
Timing Synch
OFDM
Demodulate
Radio Control
Block
Carrier Sense, AGC,
and Rx FSM
Buffers
Viterbi Decoder
Descramble
and Deframe
MAC
Interface
FFT/IFFT
AFE
and
Radio
Tx FSM
Common Logic
Block
Modulation
and Coding
Frame and
Scramble
Filters and Radio
Comp
PA Comp
Modulate/
Spread
COEX
Document Number: 002-20538 Rev. *B
Page 49 of 144
ADVANCE
CYW4356/CG8674
10. WLAN Radio Subsystem
The CYW4356/CG8674 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in 2.4 GHz and 5 GHz
Wireless LAN systems. It has been designed to provide low-power, low-cost, and robust communications for applications operating
in the globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII bands. The transmit and receive sections include all on-chip filtering,
mixing, and gain control functions.
Sixteen RF control signals are available (eight per core) to drive external RF switches and support optional external power amplifiers
and low-noise amplifiers for each band. See the reference board schematics for further details.
A block diagram of the radio subsystem (core 0) is shown in Figure 30. Core 1, is identical to Core 0 without the Bluetooth blocks.
Note that integrated on-chip baluns (not shown) convert the fully differential transmit and receive paths to single-ended signal pins.
Document Number: 002-20538 Rev. *B
Page 50 of 144
ADVANCE
CYW4356/CG8674
Figure 30. Radio Functional Block Diagram (Core 0)
WL DAC
WL PA
WL PAD
WL PGA
WL A‐PA
WL A‐PAD
WL A‐PGA
WL TXLPF
WL TX G‐Mixer
WL DAC
WL TXLPF
WL TX A‐Mixer
WL RX A‐Mixer
Voltage
Regulators
WLAN BB
WL ADC
WL A‐LNA11
WL A‐LNA12
WL RXLPF
MUX
WL ADC
SLNA
WL G‐LNA12
WL RXLPF
WL RX G‐Mixer
WL ATX
CLB
WL ARX
WL GTX
WL GRX
WL LOGEN
WL PLL
Gm
BT LNA GM
Shared XO
BT RX
BT TX
BT LOGEN
BT PLL
LPO/Ext LPO/RCAL
BT ADC
BT RXLPF
BT ADC
BT LNA Load
BT RX Mixer
BT RXLPF
BT BB
BT PA
BT
BT DAC
BT DAC
BT TX Mixer
Document Number: 002-20538 Rev. *B
BT TXLPF
Page 51 of 144
ADVANCE
CYW4356/CG8674
10.1 Receiver Path
The CYW4356/CG8674 has a wide dynamic range, direct conversion receiver that employs high order on-chip channel filtering to
ensure reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. An on-chip low noise amplifier (LNA) in the
2.4 GHz path in core 0 is shared between the Bluetooth and WLAN receivers, whereas the 5 GHz receive path and the core 1 2.4
GHz receive path have dedicated on-chip LNAs. Control signals are available that can support the use of external LNAs for each
band, which can increase the receive sensitivity by several dB.
10.2 Transmit Path
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5 GHz U-NII bands, respectively. Linear on-chip power amplifiers
are included, which are capable of delivering high output power while meeting IEEE 802.11ac and IEEE 802.11a/b/g/n specifications,
and without the need for external PAs. When using the internal PAs, closed-loop output power control is completely integrated.
10.3 Calibration
The CYW4356/CG8674 features dynamic and automatic on-chip calibration to continually compensate for temperature and process
variations across components. These calibration routines are performed periodically in the course of normal radio operation. Examples
of some of the automatic calibration algorithms are baseband filter calibration for optimum transmit and receive performance, and
LOFT calibration for carrier leakage reduction. In addition, I/Q Calibration, R Calibration, and VCO Calibration are performed on-chip.
No per-board calibration is required in manufacturing test, which helps to minimize the test time and cost in large volume production.
Document Number: 002-20538 Rev. *B
Page 52 of 144
ADVANCE
CYW4356/CG8674
11. Pin Information
11.1 Ball Maps
Figure 31 shows the WLBGA ball map.
Figure 31. CYW4356/CG8674 A2 WLBGA BALL MAP; 12 × 18 Array; 192 Balls; Bottom View (Balls Facing Up)
12
11
10
9
8
7
6
5
4
3
2
A
SR_PVSS
SR_VLX
WL_REG_ON
SDIO_CMD
SDIO_CLK
BT_GPIO_5
BT_GPIO_2
PCIE_REFCLKN
PCIE_REFCLKP
PCIE_TDN
PCIE_TDP
B
SR_VDDBATP5V
SR_VDDBATA5V
PMU_AVSS
SDIO_DATA_0
SDIO_DATA_2
VDDC
NC
PCIE_PLL_AVSS
PCIE_RXTX_AVSS
PCIE_PLL_AVDD1P2
PCIE_RXTX_AVDD1
P2
PCIE_RDN
B
C
LDO_VDD1P5
VOUT_CLDO
VSSC
SDIO_DATA_1
SDIO_DATA_3
NC
NC
PCIE_PME_L
PCIE_PERST_L
PCIE_TESTP
PCIE_TESTN
PCIE_RDP
C
D
VOUT_BTLDO2P5
VOUT_LNLDO
BT_REG_ON
JTAG_SEL
BT_GPIO_3
VSSC
PCIE_CLKREQ_L
VDDC
VSSC
E
LDO_VDDBAT5V
VOUT_LDO3P3_B
VDDIO
VDDC
VDDIO_SD
GPIO_7
GPIO_9
BT_USB_DN
BT_VDDC
F
VOUT_3P3
GPIO_2
GPIO_1
GPIO_5
GPIO_6
GPIO_8
LPO_IN
BT_USB_DP
CLK_REQ
G
VSSC
GPIO_0
VDDC
GPIO_3
VSSC
AVSS_BBPLL
BT_I2S_DO
BT_I2S_DI
H
GPIO_10
VDDIO_RF
GPIO_4
J
VDDC
RF_SW_CTRL_9
RF_SW_CTRL_12
K
RF_SW_CTRL_8
M
RF_SW_CTRL_10
N
WRF_XTAL_OUT
P
WRF_XTAL_IN
VDDC
RF_SW_CTRL_11
RF_SW_CTRL_14
WRF_XTAL_GND1P2 WRF_XTAL_VDD1P2
WRF_XTAL_VDD1P5
A
D
FM_AUDIOVDD1P2
FM_AOUT1
E
FM_PLLVDD1P2
FM_AUDIOVSS
FM_AOUT2
F
VSSC
FM_PLLVSS
FM_VCOVSS
FM_LNAVCOVDD1P
2
G
BT_UART_RXD
BT_PCM_OUT
BT_VDDC
FM_LNAVSS
FM_RFIN
H
BT_I2S_CLK
BT_UART_TXD
BT_PCM_IN
BT_HOST_WAKE
BT_VCOVSS
BT_VCOVDD1P2
J
BT_VDDO
BT_PCM_SYNC
BT_UART_RTS_N
BT_GPIO_4
BT_IFVDD1P2
BT_PLLVDD1P2
BT_LNAVDD1P2
K
RF_SW_CTRL_15
VSSC
BT_I2S_WS
BT_UART_CTS_N
BT_DEV_WAKE
BT_PLLVSS
BT_PAVSS
BT_RF
L
RF_SW_CTRL_7
VDDC
BT_PCM_CLK
BT_VDDC
VSSC
BT_IFVSS
BT_PAVDD2P5
M
RF_SW_CTRL_1
RF_SW_CTRL_3
RF_SW_CTRL_4
RF_SW_CTRL_5
RF_SW_CTRL_6
AVDD_BBPLL
VDDC
RF_SW_CTRL_13
VSSC
L
1
RF_SW_CTRL_2
WRF_AFE_GND1P2_ WRF_TX_GND1P2_
CORE0
CORE0
WRF_PA2G_VBAT_ WRF_RFOUT_2G_C
GND3P3_CORE0
ORE0
N
P
R
WRF_BUCK_GND1P WRF_BUCK_VDD1P
5_CORE1
5_CORE1
WRF_LOGEN_GND1 WRF_LOGENG_GND WRF_GPIO_OUT_C WRF_PADRV_VBAT WRF_PA2G_VBAT_
P2
1P2
ORE0
_VDD3P3_CORE0
GND3P3_CORE0
WRF_PA2G_VBAT_
VDD3P3_CORE0
R
T
WRF_RX5G_GND1P WRF_TSSI_A_CORE WRF_PADRV_VBAT WRF_PADRV_VBAT WRF_TX_GND1P2_ WRF_RX2G_GND1P
WRF_PADRV_VBAT WRF_PA5G_VBAT_
WRF_MMD_GND1P2 WRF_MMD_VDD1P2 WRF_PFD_VDD1P2
2_CORE1
1
_GND3P3_CORE1
_VDD3P3_CORE1
CORE1
2_CORE1
_GND3P3_CORE0
GND3P3_CORE0
WRF_PA5G_VBAT_
VDD3P3_CORE0
T
U
WRF_LNA_5G_GND WRF_PA5G_VBAT_
1P2_CORE1
GND3P3_CORE1
WRF_PA2G_VBAT_ WRF_LNA_2G_GND
WRF_BUCK_VDD1P WRF_TSSI_A_CORE WRF_PA5G_VBAT_ WRF_RFOUT_5G_C
WRF_VCO_GND1P2 WRF_PFD_GND1P2
GND3P3_CORE1
1P2_CORE1
5_CORE0
0
GND3P3_CORE0
ORE0
U
V
WRF_RFIN_5G_COR WRF_RFOUT_5G_C WRF_PA5G_VBAT_
E1
ORE1
VDD3P3_CORE1
12
11
WRF_GPIO_OUT_C WRF_AFE_GND1P2_
ORE1
CORE1
WRF_RX2G_GND1P WRF_LNA_2G_GND WRF_RFIN_2G_COR
2_CORE0
1P2_CORE0
E0
WRF_PA5G_VBAT_
GND3P3_CORE1
WRF_PA2G_VBAT_
GND3P3_CORE1
RF_SW_CTRL_0
WRF_PA2G_VBAT_ WRF_RFOUT_2G_C WRF_RFIN_2G_COR WRF_SYNTH_VBAT
VDD3P3_CORE1
ORE1
E1
_VDD3P3
10
Document Number: 002-20538 Rev. *B
9
8
7
6
WRF_CP_GND1P2
5
WRF_BUCK_GND1P WRF_RX5G_GND1P WRF_LNA_5G_GND WRF_RFIN_5G_COR
5_CORE0
2_CORE0
1P2_CORE0
E0
4
3
2
V
1
Page 53 of 144
ADVANCE
CYW4356/CG8674
11.2 Pin Lists
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
A10
WL_REG_ON
A11
SR_VLX
A12
SR_PVSS
A2
PCIE_TDP0
A3
PCIE_TDN0
A4
PCIE_REFCLKP
A5
PCIE_REFCLKN
A6
BT_GPIO_2
A7
BT_GPIO_5
A8
SDIO_CLK
A9
SDIO_CMD
B1
PCIE_RDN0
B10
PMU_AVSS
B11
SR_VDDBATA5V
B12
SR_VDDBATP5V
B2
PCIE_RXTX_AVDD1P2
B3
PCIE_PLL_AVDD1P2
B4
PCIE_RXTX_AVSS
B5
PCIE_PLL_AVSS
B6
NC
B7
VDD/VDDC
B8
SDIO_DATA_2
B9
SDIO_DATA_0
C1
PCIE_RDP0
C10
VSSC/VSS
C11
VOUT_CLDO
C12
LDO_VDD1P5
C2
PCIE_TESTN
C3
PCIE_TESTP
C4
PCIE_PERST_L
C5
PCIE_PME_L
C6
NC
C7
NC
C8
SDIO_DATA_3
C9
SDIO_DATA_1
D10
BT_REG_ON
D11
VOUT_LNLDO
D12
VOUT_BTLDO2P5
D3
VSSC/VSS
D4
VDD/VDDC
D5
PCIE_CLKREQ_L
Document Number: 002-20538 Rev. *B
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
D6
VSSC/VSS
D7
BT_GPIO_3
D9
JTAG_SEL
E1
FM_AOUT1
E10
VDDIO
E11
VOUT_LDO3P3_B
E12
LDO_VDDBAT5V
E2
FM_AUDIOVDD1P2
E4
BT_VDDC
E5
BT_USB_DN
E6
GPIO_9
E7
GPIO_7
E8
VDDIO_SD
E9
VDD/VDDC
F1
FM_AOUT2
F10
GPIO_1
F11
GPIO_2
F12
VOUT_3P3
F2
FM_AUDIOVSS
F3
FM_PLLVDD1P2
F4
CLK_REQ
F5
BT_USB_DP
F6
LPO_IN
F7
GPIO_8
F8
GPIO_6
F9
GPIO_5
G1
FM_LNAVCOVDD1P2
G10
VDD/VDDC
G11
GPIO_0
G12
VSSC/VSS
G2
FM_VCOVSS
G3
FM_PLLVSS
G4
VSSC/VSS
G5
BT_I2S_DI
G6
BT_I2S_DO
G7
AVSS_BBPLL
G8
VSSC/VSS
G9
GPIO_3
H1
FM_RFIN
H11
VDDIO_RF
H12
GPIO_10
Page 54 of 144
ADVANCE
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
CYW4356/CG8674
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
H2
FM_LNAVSS
M6
BT_PCM_CLK
H3
BT_VDDC
M7
VDD/VDDC
H4
BT_PCM_OUT
M8
RF_SW_CTRL_7
H5
BT_UART_RXD
N1
WRF_RFIN_2G_CORE0
H7
AVDD_BBPLL
N10
WRF_XTAL_VDD1P2
H9
GPIO_4
N11
WRF_XTAL_GND1P2
J1
BT_VCOVDD1P2
N12
WRF_XTAL_OUT
J11
RF_SW_CTRL_9
N2
WRF_LNA_2G_GND1P2_CORE0
J12
VDD/VDDC
N3
WRF_RX2G_GND1P2_CORE0
J2
BT_VCOVSS
N5
RF_SW_CTRL_4
J3
BT_HOST_WAKE
N7
RF_SW_CTRL_3
J4
BT_PCM_IN
N8
RF_SW_CTRL_1
J5
BT_UART_TXD
P1
WRF_RFOUT_2G_CORE0
J6
BT_I2S_CLK
P11
WRF_XTAL_VDD1P5
J8
VDD/VDDC
P12
WRF_XTAL_IN
J9
RF_SW_CTRL_12
P2
WRF_PA2G_VBAT_GND3P3_CORE0
K1
BT_LNAVDD1P2
P3
WRF_TX_GND1P2_CORE0
K10
RF_SW_CTRL_13
P4
WRF_AFE_GND1P2_CORE0
K12
RF_SW_CTRL_8
P5
RF_SW_CTRL_6
K2
BT_PLLVDD1P2
P7
RF_SW_CTRL_5
K3
BT_IFVDD1P2
P9
RF_SW_CTRL_2
K4
BT_GPIO_4
R1
WRF_PA2G_VBAT_VDD3P3_CORE0
K5
BT_UART_RTS_L
R11
WRF_BUCK_VDD1P5_CORE1
K6
BT_PCM_SYNC
R12
WRF_BUCK_GND1P5_CORE1
K7
BT_VDDIO
R2
WRF_PA2G_VBAT_GND3P3_CORE0
L1
BT_RF
R3
WRF_PADRV_VBAT_VDD3P3_CORE0
L10
VDD/VDDC
R4
WRF_GPIO_OUT_CORE0
L11
VSSC/VSS
R5
WRF_LOGENG_GND1P2
L2
BT_PAVSS
R6
WRF_LOGEN_GND1P2
L3
BT_PLLVSS
R7
RF_SW_CTRL_0
L4
BT_DEV_WAKE
R8
WRF_AFE_GND1P2_CORE1
L5
BT_UART_CTS_L
R9
WRF_GPIO_OUT_CORE1
L6
BT_I2S_WS
T1
WRF_PA5G_VBAT_VDD3P3_CORE0
L7
VSSC/VSS
T10
WRF_PADRV_VBAT_GND3P3_CORE1
L8
RF_SW_CTRL_15
T11
WRF_TSSI_A_CORE1
L9
RF_SW_CTRL_11
T12
WRF_RX5G_GND1P2_CORE1
M1
BT_PAVDD2P5
T2
WRF_PA5G_VBAT_GND3P3_CORE0
M10
RF_SW_CTRL_14
T3
WRF_PADRV_VBAT_GND3P3_CORE0
M12
RF_SW_CTRL_10
T4
WRF_PFD_VDD1P2
M3
BT_IFVSS
T5
WRF_MMD_VDD1P2
M4
VSSC/VSS
T6
WRF_MMD_GND1P2
M5
BT_VDDC
T7
WRF_RX2G_GND1P2_CORE1
Document Number: 002-20538 Rev. *B
Page 55 of 144
ADVANCE
CYW4356/CG8674
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)
WLBGA
Ball#
Pin Name
T8
WRF_TX_GND1P2_CORE1
T9
WRF_PADRV_VBAT_VDD3P3_CORE1
U1
WRF_RFOUT_5G_CORE0
U10
WRF_PA5G_VBAT_GND3P3_CORE1
U11
WRF_PA5G_VBAT_GND3P3_CORE1
U12
WRF_LNA_5G_GND1P2_CORE1
U2
WRF_PA5G_VBAT_GND3P3_CORE0
U3
WRF_TSSI_A_CORE0
U4
WRF_BUCK_VDD1P5_CORE0
U5
WRF_PFD_GND1P2
U6
WRF_VCO_GND1P2
U7
WRF_LNA_2G_GND1P2_CORE1
U8
WRF_PA2G_VBAT_GND3P3_CORE1
U9
WRF_PA2G_VBAT_GND3P3_CORE1
V1
WRF_RFIN_5G_CORE0
V10
WRF_PA5G_VBAT_VDD3P3_CORE1
V11
WRF_RFOUT_5G_CORE1
V12
WRF_RFIN_5G_CORE1
V2
WRF_LNA_5G_GND1P2_CORE0
V3
WRF_RX5G_GND1P2_CORE0
V4
WRF_BUCK_GND1P5_CORE0
V5
WRF_CP_GND1P2
V6
WRF_SYNTH_VBAT_VDD3P3
V7
WRF_RFIN_2G_CORE1
V8
WRF_RFOUT_2G_CORE1
V9
WRF_PA2G_VBAT_VDD3P3_CORE1
Document Number: 002-20538 Rev. *B
Page 56 of 144
ADVANCE
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
Pin Name
CYW4356/CG8674
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
Pin Name
WLBGA Ball#
WLBGA Ball#
AVDD_BBPLL
H7
FM_LNAVCOVDD1P2
AVSS_BBPLL
G7
FM_LNAVSS
H2
BT_DEV_WAKE
L4
FM_PLLVDD1P2
F3
BT_GPIO_2
A6
FM_PLLVSS
G3
BT_GPIO_5
A7
FM_RFIN
H1
BT_GPIO_3
D7
FM_VCOVSS
G2
BT_GPIO_4
K4
GPIO_0
G11
BT_HOST_WAKE
J3
GPIO_1
F10
BT_I2S_CLK
J6
GPIO_10
H12
BT_I2S_DI
G5
GPIO_2
F11
BT_I2S_DO
G6
GPIO_3
G9
BT_I2S_WS
L6
GPIO_4
H9
BT_IFVDD1P2
K3
GPIO_5
F9
BT_IFVSS
M3
GPIO_6
F8
BT_LNAVDD1P2
K1
GPIO_7
E7
BT_PAVDD2P5
M1
GPIO_8
F7
BT_PAVSS
L2
GPIO_9
E6
BT_PCM_CLK
M6
JTAG_SEL
D9
BT_PCM_IN
J4
LDO_VDD1P5
C12
BT_PCM_OUT
H4
LDO_VDDBAT5V
E12
BT_PCM_SYNC
K6
LPO_IN
F6
BT_PLLVDD1P2
K2
NC
B6
BT_PLLVSS
L3
NC
C7
BT_REG_ON
D10
NC
C6
BT_RF
L1
PCIE_PME_L
C5
BT_UART_CTS_L
L5
PCIE_CLKREQ_L
D5
BT_UART_RTS_L
K5
PCIE_PERST_L
C4
BT_UART_RXD
H5
PCIE_PLL_AVDD1P2
B3
BT_UART_TXD
J5
PCIE_PLL_AVSS
B5
BT_USB_DN
E5
PCIE_RDN0
B1
BT_USB_DP
F5
PCIE_RDP0
C1
BT_VCOVDD1P2
J1
PCIE_REFCLKN
A5
BT_VCOVSS
J2
PCIE_REFCLKP
A4
BT_VDDC
E4
PCIE_RXTX_AVDD1P2
B2
BT_VDDC
H3
PCIE_RXTX_AVSS
B4
BT_VDDC
M5
PCIE_TDN0
A3
BT_VDDIO
K7
PCIE_TDP0
A2
CLK_REQ
F4
PCIE_TESTN
C2
FM_AOUT1
E1
PCIE_TESTP
C3
FM_AOUT2
F1
PMU_AVSS
B10
FM_AUDIOVDD1P2
E2
RF_SW_CTRL_0
R7
FM_AUDIOVSS
F2
RF_SW_CTRL_1
N8
Document Number: 002-20538 Rev. *B
G1
Page 57 of 144
ADVANCE
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
Pin Name
CYW4356/CG8674
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
WLBGA Ball#
Pin Name
WLBGA Ball#
RF_SW_CTRL_10
M12
VSSC/VSS
D6
RF_SW_CTRL_11
L9
VSSC/VSS
G12
RF_SW_CTRL_12
J9
VSSC/VSS
G4
RF_SW_CTRL_13
K10
VSSC/VSS
G8
RF_SW_CTRL_14
M10
VSSC/VSS
L11
RF_SW_CTRL_15
L8
VSSC/VSS
L7
RF_SW_CTRL_2
P9
VSSC/VSS
M4
RF_SW_CTRL_3
N7
WL_REG_ON
A10
RF_SW_CTRL_4
N5
WRF_AFE_GND1P2_CORE0
P4
RF_SW_CTRL_5
P7
WRF_AFE_GND1P2_CORE1
R8
RF_SW_CTRL_6
P5
WRF_BUCK_GND1P5_CORE0
V4
RF_SW_CTRL_7
M8
WRF_BUCK_GND1P5_CORE1
R12
RF_SW_CTRL_8
K12
WRF_BUCK_VDD1P5_CORE0
U4
RF_SW_CTRL_9
J11
WRF_BUCK_VDD1P5_CORE1
R11
SDIO_CLK
A8
WRF_CP_GND1P2
V5
SDIO_CMD
A9
WRF_GPIO_OUT_CORE0
R4
SDIO_DATA_0
B9
WRF_GPIO_OUT_CORE1
R9
SDIO_DATA_1
C9
WRF_LNA_2G_GND1P2_CORE0
N2
SDIO_DATA_2
B8
WRF_LNA_2G_GND1P2_CORE1
U7
SDIO_DATA_3
C8
WRF_LNA_5G_GND1P2_CORE0
V2
SR_PVSS
A12
WRF_LNA_5G_GND1P2_CORE1
U12
SR_VDDBATA5V
B11
WRF_LOGEN_GND1P2
R6
SR_VDDBATP5V
B12
WRF_LOGENG_GND1P2
R5
SR_VLX
A11
WRF_MMD_GND1P2
T6
VDD/VDDC
B7
WRF_MMD_VDD1P2
T5
VDD/VDDC
D4
WRF_PA2G_VBAT_GND3P3_CORE0
P2
VDD/VDDC
E9
WRF_PA2G_VBAT_GND3P3_CORE0
R2
VDD/VDDC
G10
WRF_PA2G_VBAT_GND3P3_CORE1
U8
VDD/VDDC
J12
WRF_PA2G_VBAT_GND3P3_CORE1
U9
VDD/VDDC
J8
WRF_PA2G_VBAT_VDD3P3_CORE0
R1
VDD/VDDC
L10
WRF_PA2G_VBAT_VDD3P3_CORE1
V9
VDD/VDDC
M7
WRF_PA5G_VBAT_GND3P3_CORE0
T2
VDDIO
E10
WRF_PA5G_VBAT_GND3P3_CORE0
U2
VDDIO_RF
H11
WRF_PA5G_VBAT_GND3P3_CORE1
U10
VDDIO_SD
E8
WRF_PA5G_VBAT_GND3P3_CORE1
U11
VOUT_3P3
F12
WRF_PA5G_VBAT_VDD3P3_CORE0
T1
VOUT_BTLDO2P5
D12
WRF_PA5G_VBAT_VDD3P3_CORE1
V10
VOUT_CLDO
C11
WRF_PADRV_VBAT_GND3P3_CORE0
T3
VOUT_LDO3P3_B
E11
WRF_PADRV_VBAT_GND3P3_CORE1
T10
VOUT_LNLDO
D11
WRF_PADRV_VBAT_VDD3P3_CORE0
R3
VSSC/VSS
C10
WRF_PADRV_VBAT_VDD3P3_CORE1
T9
VSSC/VSS
D3
WRF_PFD_GND1P2
U5
Document Number: 002-20538 Rev. *B
Page 58 of 144
ADVANCE
CYW4356/CG8674
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)
Pin Name
WLBGA Ball#
WRF_PFD_VDD1P2
T4
WRF_RFIN_2G_CORE0
N1
WRF_RFIN_2G_CORE1
V7
WRF_RFIN_5G_CORE0
V1
WRF_RFIN_5G_CORE1
V12
WRF_RFOUT_2G_CORE0
P1
WRF_RFOUT_2G_CORE1
V8
WRF_RFOUT_5G_CORE0
U1
WRF_RFOUT_5G_CORE1
V11
WRF_RX2G_GND1P2_CORE0
N3
WRF_RX2G_GND1P2_CORE1
T7
WRF_RX5G_GND1P2_CORE0
V3
WRF_RX5G_GND1P2_CORE1
T12
WRF_SYNTH_VBAT_VDD3P3
V6
WRF_TSSI_A_CORE0
U3
WRF_TSSI_A_CORE1
T11
WRF_TX_GND1P2_CORE0
P3
WRF_TX_GND1P2_CORE1
T8
WRF_VCO_GND1P2
U6
WRF_XTAL_GND1P2
N11
WRF_XTAL_IN
P12
WRF_XTAL_OUT
N12
WRF_XTAL_VDD1P2
N10
WRF_XTAL_VDD1P5
P11
Document Number: 002-20538 Rev. *B
Page 59 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
1
PCIE_RXTX_AVSS
2300.51
3659.87
–2300.51
3659.87
2
PCIE_PLL_AVSS
1966.81
3659.87
–1966.81
3659.87
3
PCIE_REFCLKP
1966.81
3434.87
–1966.81
3434.87
4
PCIE_REFCLKN
1800.31
3547.37
–1800.31
3547.37
5
PCIE_TDN0
2134.01
3547.37
–2134.01
3547.37
6
PCIE_TDP0
2134.01
3322.37
–2134.01
3322.37
7
PCIE_RXTX_AVDD1P2
2134.01
3068.53
–2134.01
3068.53
8
PCIE_RDP0
2300.51
3209.87
–2300.51
3209.87
9
PCIE_RDN0
2300.51
3434.87
–2300.51
3434.87
10
PCIE_PLL_AVSS
1966.81
3209.87
–1966.81
3209.87
11
PCIE_PLL_AVDD1P2
1800.31
3322.37
–1800.31
3322.37
12
NC
508.44
3481.00
–508.44
3481.00
13
NC
768.62
3062.57
–768.62
3062.57
14
NC
508.44
3281.00
–508.44
3281.00
15
NC
1177.22
3062.57
–1177.22
3062.57
16
NC
972.92
3062.57
–972.92
3062.57
17
NC
553.11
3681.00
–553.11
3681.00
18
NC
753.11
3681.00
–753.11
3681.00
19
NC
773.17
3481.00
–773.17
3481.00
20
NC
773.17
3281.00
–773.17
3281.00
21
NC
974.72
3481.00
–974.72
3481.00
22
NC
974.72
3281.00
–974.72
3281.00
23
NC
982.37
3681.00
–982.37
3681.00
24
NC
1176.88
3281.00
–1176.88
3281.00
25
NC
1176.88
3481.00
–1176.88
3481.00
26
NC
1186.67
3681.00
–1186.67
3681.00
27
NC
526.91
3062.57
–526.91
3062.57
28
NC
1177.22
2860.07
–1177.22
2860.07
29
NC
768.62
2860.07
–768.62
2860.07
30
GND
1601.79
3595.19
–1601.79
3595.19
31
NC
1601.79
2792.39
–1601.79
2792.39
32
GND
1401.09
3394.49
–1401.09
3394.49
33
NC
1601.79
3394.49
–1601.79
3394.49
34
GND
1601.79
2993.09
–1601.79
2993.09
35
NC
1601.79
3193.79
–1601.79
3193.79
36
GND
1401.09
2792.39
–1401.09
2792.39
37
GND
1401.09
3595.19
–1401.09
3595.19
38
NC
1401.09
2993.09
–1401.09
2993.09
39
GND
1401.09
3193.79
–1401.09
3193.79
Document Number: 002-20538 Rev. *B
Page 60 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
40
BT_PAVSS
2217.95
–736.50
–2217.95
–736.50
41
BT_AGPIO
2017.95
–1298.03
–2017.95
–1298.03
42
BT_IFVDD1P2
1768.91
–1298.03
–1768.91
–1298.03
43
BT_IFVSS
1568.92
–1298.03
–1568.92
–1298.03
44
BT_LNAVDD1P2
2228.18
–392.72
–2228.18
–392.72
45
BT_LNAVSS
1843.60
–524.82
–1843.60
–524.82
46
BT_PAVDD2P5
2176.03
–1164.53
–2176.03
–1164.53
47
BT_PLLVDD1P2
1768.91
–223.55
–1768.91
–223.55
48
BT_PLLVSS
1568.92
–223.55
–1568.92
–223.55
49
BT_RF
2252.39
–936.50
–2252.39
–936.50
50
BT_VCOVDD1P2
2227.01
–189.65
–2227.01
–189.65
51
BT_VCOVSS
1967.62
–45.40
–1967.62
–45.40
52
FM_AUDIOVDD1P2
2044.00
931.81
–2044.00
931.81
53
FM_AUDIOAVSS
2044.00
1143.58
–2044.00
1143.58
54
FM_AOUT1
2244.00
1143.58
–2244.00
1143.58
55
FM_AOUT2
2244.00
931.81
–2244.00
931.81
56
FM_IFVDD1P2
1614.95
371.79
–1614.95
371.79
57
FM_IFVSS
1614.95
171.80
–1614.95
171.80
58
FM_PLLVSS
1793.21
871.61
–1793.21
871.61
59
FM_PLLVDD1P2
1686.40
695.87
–1686.40
695.87
60
FM_RFAUX
2273.40
68.08
–2273.40
68.08
61
FM_RFIN
2260.02
313.69
–2260.02
313.69
62
FM_LNAVDD1P2
2060.02
354.59
–2060.02
354.59
63
FM_LNAVSS
2060.02
154.59
–2060.02
154.59
64
FM_VCOVDD1P2
2273.40
731.81
–2273.40
731.81
65
FM_VCOVSS
2273.40
531.81
–2273.40
531.81
66
RF_SW_CTRL_0
–2202.33
–1494.00
2202.33
–1494.00
67
VDDC
–661.10
–1355.99
661.10
–1355.99
68
VSSC
740.99
2052.00
–740.99
2052.00
69
VSSC
–616.50
–408.01
616.50
–408.01
70
VSSC
–459.00
–198.00
459.00
–198.00
71
VSSC
–546.71
–1008.00
546.71
–1008.00
72
VSSC
–546.71
–708.00
546.71
–708.00
73
VSSC
–459.00
252.00
459.00
252.00
74
VDDC
–661.10
–21.01
661.10
–21.01
75
VSSC
740.99
2352.00
–740.99
2352.00
76
VDDIO_SD
–405.00
2299.50
405.00
2299.50
77
SDIO_DATA_1
–337.05
2531.57
337.05
2531.57
78
SDIO_CLK
–337.05
2731.57
337.05
2731.57
79
SDIO_DATA_3
–337.05
2931.58
337.05
2931.58
Document Number: 002-20538 Rev. *B
Page 61 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
80
SDIO_DATA_2
–337.05
3131.59
337.05
3131.59
81
SDIO_CMD
–337.05
3331.59
337.05
3331.59
82
SDIO_DATA_0
–337.05
3531.60
337.05
3531.60
83
VSSC
–316.50
–408.01
316.50
–408.01
84
VSSC
–266.51
–1008.00
266.51
–1008.00
85
VSSC
–266.51
–708.00
266.51
–708.00
86
RF_SW_CTRL_4
–2072.12
–1125.00
2072.12
–1125.00
87
VDDC
–261.11
–21.01
261.11
–21.01
88
VSSC
–259.00
1651.99
259.00
1651.99
89
VSSC
–159.00
252.00
159.00
252.00
90
VSSC
–159.00
552.00
159.00
552.00
91
VSSC
–159.00
851.99
159.00
851.99
92
VSSC
–159.00
1151.99
159.00
1151.99
93
VSSC
–159.00
1451.99
159.00
1451.99
94
VSSC
–159.00
2052.00
159.00
2052.00
95
VSSC
–459.00
552.00
459.00
552.00
96
GND
–67.05
2286.36
67.05
2286.36
97
GND
–67.05
2486.57
67.05
2486.57
98
VDDC_98
–67.05
2686.57
67.05
2686.57
99
NC
–67.05
2886.58
67.05
2886.58
100
NC
–67.05
3086.59
67.05
3086.59
101
NC
–67.05
3286.59
67.05
3286.59
102
VDDC_102
–67.05
3486.60
67.05
3486.60
103
VDDC
–61.11
–1220.99
61.11
–1220.99
104
VSSC
–61.11
–1008.00
61.11
–1008.00
105
VSSC
–61.11
–708.00
61.11
–708.00
106
VSSC
–61.11
–408.01
61.11
–408.01
107
VDDC
–61.11
–21.01
61.11
–21.01
108
VDDC
–61.11
1843.97
61.11
1843.97
109
VDDC
138.89
–1220.99
–138.89
–1220.99
110
VDDC
138.89
–1021.00
–138.89
–1021.00
111
VDDC
138.89
–821.00
–138.89
–821.00
112
VDDC
–261.11
–1220.99
261.11
–1220.99
113
VDDC
138.89
–421.00
–138.89
–421.00
114
VDDC
138.89
–221.00
–138.89
–221.00
115
VDDC
138.89
–21.01
–138.89
–21.01
116
VSSC
140.99
252.00
–140.99
252.00
117
VSSC
140.99
552.00
–140.99
552.00
118
VSSC
140.99
851.99
–140.99
851.99
119
VSSC
140.99
1151.99
–140.99
1151.99
Document Number: 002-20538 Rev. *B
Page 62 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
120
VSSC
140.99
1451.99
–140.99
1451.99
121
VSSC
140.99
1651.99
–140.99
1651.99
122
VSSC
140.99
2052.00
–140.99
2052.00
123
PACKAGEOPTION_4
140.99
2352.00
–140.99
2352.00
124
BT_VSSC
768.37
–1186.86
–768.37
–1186.86
125
BT_VSSC
816.40
21.84
–816.40
21.84
126
BT_VSSC
599.69
–715.49
–599.69
–715.49
127
VDDC
338.89
443.99
–338.89
443.99
128
VDDC
338.89
643.99
–338.89
643.99
129
VDDC
338.89
1843.97
–338.89
1843.97
130
VSSC
–459.00
851.99
459.00
851.99
131
PACKAGEOPTION_2
440.99
2352.00
–440.99
2352.00
132
PACKAGEOPTION_3
440.99
2592.00
–440.99
2592.00
133
BT_VSSC
468.37
–1186.86
–468.37
–1186.86
134
VDDC
538.88
643.99
–538.88
643.99
135
VDDC
538.88
843.98
–538.88
843.98
136
VDDC
538.88
1043.98
–538.88
1043.98
137
VDDC
538.88
1243.98
–538.88
1243.98
138
VDDC
538.88
1443.98
–538.88
1443.98
139
VDDC
538.88
1643.98
–538.88
1643.98
140
VDDC
538.88
1843.97
–538.88
1843.97
141
BT_VDDC_ISO_1
601.19
–970.04
–601.19
–970.04
142
BT_VDDC_ISO_2
620.91
–500.07
–620.91
–500.07
143
AVDD_BBPLL
655.50
168.14
–655.50
168.14
144
AVSS_BBPLL
655.50
437.48
–655.50
437.48
145
BT_VDDC
1480.37
555.67
–1480.37
555.67
146
PACKAGEOPTION_1
740.99
2592.00
–740.99
2592.00
147
BT_VDDC
1480.37
780.66
–1480.37
780.66
148
BT_VDDIO
830.29
–445.06
–830.29
–445.06
149
BT_VDDIO
840.29
–724.53
–840.29
–724.53
150
BT_VDDIO
865.28
–245.06
–865.28
–245.06
151
BT_VDDIO
915.28
–973.39
–915.28
–973.39
152
PACKAGEOPTION_0
1040.99
2592.00
–1040.99
2592.00
153
BT_GPIO_5
1048.37
420.67
–1048.37
420.67
154
BT_GPIO_3
1048.37
620.67
–1048.37
620.67
155
BT_GPIO_2
1048.37
820.67
–1048.37
820.67
156
BT_I2S_DI
1444.06
1426.01
–1444.06
1426.01
157
BT_UART_TXD
1444.06
1643.00
–1444.06
1643.00
158
BT_I2S_WS
1143.51
1940.00
–1143.51
1940.00
159
LPO_IN
1143.51
2237.00
–1143.51
2237.00
Document Number: 002-20538 Rev. *B
Page 63 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
160
OTP_VDD33
1348.51
2444.00
–1348.51
2444.00
161
BT_CLK_REQ
1644.06
1426.01
–1644.06
1426.01
162
BT_UART_RXD
1644.06
1643.00
–1644.06
1643.00
163
BT_PCM_SYNC
1343.51
1940.00
–1343.51
1940.00
164
BT_USB_DN
1343.51
2237.00
–1343.51
2237.00
165
PCIE_PME_L
1548.50
2444.00
–1548.50
2444.00
166
BT_TM1
1844.06
1346.00
–1844.06
1346.00
167
BT_I2S_CLK
1844.06
1643.00
–1844.06
1643.00
168
BT_GPIO_4
1543.51
1940.00
–1543.51
1940.00
169
BT_USB_DP
1543.51
2237.00
–1543.51
2237.00
170
BT_HOST_WAKE
2044.05
1346.00
–2044.05
1346.00
171
BT_I2S_DO
2044.05
1643.00
–2044.05
1643.00
172
BT_UART_CTS_N
1743.51
1940.00
–1743.51
1940.00
173
BT_PCM_IN
1743.51
2237.00
–1743.51
2237.00
174
PCIE_CLKREQ_L
1858.50
2534.00
–1858.50
2534.00
175
RF_SW_CTRL_1
–2002.32
–1494.00
2002.32
–1494.00
176
BT_DEV_WAKE
2244.05
1346.00
–2244.05
1346.00
177
BT_PCM_OUT
2244.05
1643.00
–2244.05
1643.00
178
BT_UART_RTS_N
1943.51
1940.00
–1943.51
1940.00
179
BT_PCM_CLK
1943.51
2237.00
–1943.51
2237.00
180
PERST_L
2058.50
2534.00
–2058.50
2534.00
181
RF_SW_CTRL_8
–1945.91
–806.00
1945.91
–806.00
182
GPIO_13
–2040.71
516.01
2040.71
516.01
183
RF_SW_CTRL_5
–1872.11
–1125.00
1872.11
–1125.00
184
RF_SW_CTRL_12
–1760.12
–327.01
1760.12
–327.01
185
GPIO_10
–1959.30
229.01
1959.30
229.01
186
RF_SW_CTRL_2
–1802.31
–1494.00
1802.31
–1494.00
187
RF_SW_CTRL_9
–1745.90
–806.00
1745.90
–806.00
188
GPIO_14
–1840.71
516.01
1840.71
516.01
189
GPIO_7
–1853.50
–18.00
1853.50
–18.00
190
RF_SW_CTRL_6
–1672.10
–1125.00
1672.10
–1125.00
191
RF_SW_CTRL_13
–1560.11
–327.01
1560.11
–327.01
192
GPIO_11
–1759.91
279.00
1759.91
279.00
193
RF_SW_CTRL_3
–1602.31
–1494.00
1602.31
–1494.00
194
RF_SW_CTRL_10
–1545.89
–806.00
1545.89
–806.00
195
GPIO_15
–1640.70
516.01
1640.70
516.01
196
GPIO_8
–1593.91
22.00
1593.91
22.00
197
RF_SW_CTRL_7
–1472.09
–1125.00
1472.09
–1125.00
198
RF_SW_CTRL_14
–1360.11
–327.01
1360.11
–327.01
199
GPIO_12
–1559.91
279.00
1559.91
279.00
Document Number: 002-20538 Rev. *B
Page 64 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
X
Top Side
Y
X
Y
200
VSSC
–459.00
1151.99
459.00
1151.99
201
VSSC
–459.00
1451.99
459.00
1451.99
202
RF_SW_CTRL_11
–1346.09
–756.00
1346.09
–756.00
203
VDDC
–459.00
1651.99
459.00
1651.99
204
VDDC
–1345.37
1017.54
1345.37
1017.54
205
GPIO_9
–1393.90
22.00
1393.90
22.00
206
VDDIO
–1215.90
576.00
1215.90
576.00
207
RF_SW_CTRL_15
–1160.10
–327.01
1160.10
–327.01
208
VDDC
–1261.10
1843.97
1261.10
1843.97
209
VDDC
–1061.11
–1156.00
1061.11
–1156.00
210
VDDC
–1061.11
–776.00
1061.11
–776.00
211
VDDC
–1061.10
–1355.99
1061.10
–1355.99
212
VDDC_ISO_PHY
–1402.10
–1494.00
1402.10
–1494.00
213
VDDC
–1180.10
–587.00
1180.10
–587.00
214
VDDC_ISO_PHY
–1151.11
–956.00
1151.11
–956.00
215
VDDC_ISO_DIG
–1058.99
2052.00
1058.99
2052.00
216
VDDC_ISO_DIG
–816.10
1843.97
816.10
1843.97
217
VSSC
–459.00
2052.00
459.00
2052.00
218
GPIO_0
–996.05
2877.58
996.05
2877.58
219
GPIO_1
–996.05
3077.59
996.05
3077.59
220
GPIO_2
–996.05
3277.59
996.05
3277.59
221
GPIO_3
–996.05
3477.60
996.05
3477.60
222
VDDIO
–990.90
576.00
990.90
576.00
223
VDDIO_RF
–960.10
–117.00
960.10
–117.00
224
VDDC
–1061.10
1843.97
1061.10
1843.97
225
VDDC_ISO_PHY
–1061.10
843.98
1061.10
843.98
226
VDDC_ISO_PHY
–1058.99
1151.99
1058.99
1151.99
227
VDDIO_RF
–852.10
–387.00
852.10
–387.00
228
VDDC
–461.11
–1355.99
461.11
–1355.99
229
GPIO_4
–769.05
3196.59
769.05
3196.59
230
VDDIO_PCIE
–759.00
252.00
759.00
252.00
231
VDDIO
–759.00
552.00
759.00
552.00
232
VSSC
–1359.90
279.00
1359.90
279.00
233
VSSC
–1319.39
2052.00
1319.39
2052.00
234
VSSC
–1358.99
2302.00
1358.99
2302.00
235
VSSC
–1351.11
–956.00
1351.11
–956.00
236
GPIO_6
–751.05
2996.59
751.05
2996.59
237
GPIO_5
–751.05
3396.60
751.05
3396.60
238
VDDIO_SD
–745.50
2352.00
745.50
2352.00
239
JTAG_SEL
–733.05
2796.58
733.05
2796.58
Document Number: 002-20538 Rev. *B
Page 65 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
240
VDDC_ISO_PHY
–729.00
–220.50
729.00
–220.50
241
VDDC
–951.31
–956.00
951.31
–956.00
242
VDDC
–861.10
–1355.99
861.10
–1355.99
243
VSSC
–1440.90
576.00
1440.90
576.00
244
VSSC
–1159.90
–98.00
1159.90
–98.00
245
VSSC
–1159.90
279.00
1159.90
279.00
246
VDDC
–616.10
1843.97
616.10
1843.97
247
WRF_SYNTH_VBAT_VDD3P3
75.91
–3598.00
–75.91
–3598.00
248
WRF_XTAL_GND1P2
–2003.12
–1834.98
2003.12
–1834.98
249
WRF_XTAL_VDD1P5
–2003.12
–2065.65
2003.12
–2065.65
250
WRF_VCO_GND1P2
251
WRF_XTAL_IN
252
WRF_LOGEN_GND1P2
253
WRF_XTAL_OUT
254
WRF_XTAL_VDD1P2
255
WRF_TX_GND1P2_CORE1
256
WRF_BUCK_GND1P5_CORE1
–2137.36
–2823.85
2137.36
–2823.85
257
WRF_RX5G_GND1P2_CORE1
–1968.14
–2944.01
1968.14
–2944.01
258
WRF_GPIO_OUT_CORE1
–877.08
–2398.01
877.08
–2398.01
259
WRF_RX2G_GND1P2_CORE1
–167.27
–2716.52
167.27
–2716.52
260
WRF_RFIN_5G_CORE1
–2253.44
–3538.14
2253.44
–3538.14
261
WRF_RFIN_2G_CORE1
–201.47
–3598.00
201.47
–3598.00
198.52
–3109.71
–198.52
–3109.71
–2205.82
–2065.65
2205.82
–2065.65
126.11
–2303.63
–126.11
–2303.63
–2205.82
–1818.42
2205.82
–1818.42
–1807.98
–1960.54
1807.98
–1960.54
–437.83
–2417.93
437.83
–2417.93
262
WRF_PFD_VDD1P2
901.40
–2994.96
–901.40
–2994.96
263
WRF_PFD_GND1P2
818.12
–3198.01
–818.12
–3198.01
264
WRF_PADRV_VBAT_VDD3P3_CORE1
–1090.70
–2792.61
1090.70
–2792.61
265
WRF_PADRV_VBAT_GND3P3_CORE1
–1401.46
–2798.01
1401.46
–2798.01
266
WRF_PA5G_VBAT_VDD3P3_CORE1
–1401.46
–3679.00
1401.46
–3679.00
267
WRF_AFE_GND1P2_CORE1
–631.56
–2293.35
631.56
–2293.35
268
WRF_PA5G_VBAT_GND3P3_CORE0
1825.51
–2798.01
–1825.51
–2798.01
269
WRF_PA5G_VBAT_VDD3P3_CORE0
2297.50
–2998.01
–2297.50
–2998.01
270
WRF_MMD_VDD1P2
692.41
–2994.96
–692.41
–2994.96
271
WRF_MMD_GND1P2
499.12
–2798.01
–499.12
–2798.01
272
WRF_PA2G_VBAT_GND3P3_CORE0
1744.51
–1940.22
–1744.51
–1940.22
273
WRF_LNA_5G_GND1P2_CORE0
1877.39
–3673.49
–1877.39
–3673.49
274
WRF_CP_GND1P2
539.26
–3598.00
–539.26
–3598.00
275
WRF_LNA_2G_GND1P2_CORE0
1798.51
–1598.02
–1798.51
–1598.02
276
WRF_TSSI_A_CORE1
–1839.15
–2716.77
1839.15
–2716.77
277
WRF_BUCK_VDD1P5_CORE0
1024.35
–3433.91
–1024.35
–3433.91
278
WRF_LOGENG_GND1P2
770.31
–2353.01
–770.31
–2353.01
279
WRF_RFOUT_2G_CORE1
–601.47
–3679.00
601.47
–3679.00
Document Number: 002-20538 Rev. *B
Page 66 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
280
WRF_RFOUT_5G_CORE0
2288.50
–3198.01
–2288.50
–3198.01
281
WRF_AFE_GND1P2_CORE0
880.13
–2028.11
–880.13
–2028.11
282
WRF_LNA_2G_GND1P2_CORE1
–201.47
–3198.01
201.47
–3198.01
283
WRF_LNA_5G_GND1P2_CORE1
–2276.94
–3276.89
2276.94
–3276.89
284
WRF_PA2G_VBAT_GND3P3_CORE1
–543.68
–3144.01
543.68
–3144.01
285
WRF_PA2G_VBAT_VDD3P3_CORE1
–801.47
–3697.00
801.47
–3697.00
286
WRF_PA5G_VBAT_GND3P3_CORE1
–1801.46
–3225.01
1801.46
–3225.01
287
WRF_PA5G_VBAT_VDD3P3_CORE0
2279.50
–2798.01
–2279.50
–2798.01
288
WRF_PADRV_VBAT_GND3P3_CORE0
1398.51
–2798.01
–1398.51
–2798.01
289
WRF_PADRV_VBAT_VDD3P3_CORE0
1393.11
–2487.25
–1393.11
–2487.25
290
WRF_RFIN_2G_CORE0
2198.50
–1598.02
–2198.50
–1598.02
291
WRF_RX2G_GND1P2_CORE0
1317.02
–1563.82
–1317.02
–1563.82
292
WRF_RX5G_GND1P2_CORE0
1544.51
–3364.69
–1544.51
–3364.69
293
WRF_TX_GND1P2_CORE0
1018.43
–1834.38
–1018.43
–1834.38
294
WRF_TSSI_A_CORE0
1317.27
–3235.69
–1317.27
–3235.69
295
WRF_BUCK_GND1P5_CORE0
1424.35
–3533.90
–1424.35
–3533.90
296
WRF_BUCK_VDD1P5_CORE1
–2237.36
–2423.85
2237.36
–2423.85
297
WRF_GPIO_OUT_CORE0
998.51
–2273.63
–998.51
–2273.63
298
WRF_RFOUT_2G_CORE0
2279.50
–1998.02
–2279.50
–1998.02
299
WRF_RFOUT_5G_CORE1
–1801.46
–3688.00
1801.46
–3688.00
300
WRF_PA2G_VBAT_GND3P3_CORE0
1714.63
–2523.25
–1714.63
–2523.25
301
WRF_PA2G_VBAT_GND3P3_CORE1
–1126.70
–3114.13
1126.70
–3114.13
302
WRF_RFIN_5G_CORE0
2138.64
–3649.99
–2138.64
–3649.99
303
WRF_PA5G_VBAT_GND3P3_CORE0
1825.51
–3198.01
–1825.51
–3198.01
304
WRF_PA5G_VBAT_GND3P3_CORE1
–1401.46
–3225.01
1401.46
–3225.01
305
WRF_PA2G_VBAT_VDD3P3_CORE0
2279.50
–2398.01
–2279.50
–2398.01
306
WRF_PA2G_VBAT_VDD3P3_CORE0
2297.50
–2198.02
–2297.50
–2198.02
307
WRF_RX2G_GND1P2_CORE0
1488.79
–1700.51
–1488.79
–1700.51
308
WRF_BUCK_VDD1P5_CORE0
1024.35
–3633.90
–1024.35
–3633.90
309
WRF_BUCK_VDD1P5_CORE0
1224.35
–3633.90
–1224.35
–3633.90
310
WRF_BUCK_VDD1P5_CORE0
1224.35
–3433.91
–1224.35
–3433.91
311
WRF_BUCK_VDD1P5_CORE1
–2037.36
–2423.85
2037.36
–2423.85
312
WRF_BUCK_VDD1P5_CORE1
–2037.36
–2623.85
2037.36
–2623.85
313
WRF_BUCK_VDD1P5_CORE1
–2237.36
–2623.85
2237.36
–2623.85
314
WRF_PA5G_VBAT_VDD3P3_CORE1
–1601.46
–3697.00
1601.46
–3697.00
315
WRF_PA2G_VBAT_VDD3P3_CORE1
–1001.47
–3679.00
1001.47
–3679.00
316
WRF_LOGEN_GND1P2
317
WRF_RX2G_GND1P2_CORE1
318
WRF_CP_GND1P2
319
WL_REG_ON
Document Number: 002-20538 Rev. *B
326.11
–2303.63
–326.11
–2303.63
–303.96
–2888.29
303.96
–2888.29
339.26
–3598.00
–339.26
–3598.00
–1710.77
3277.01
1710.77
3277.01
Page 67 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
320
BT_REG_ON
–1569.35
1721.37
1569.35
1721.37
321
LDO_VDDBAT5V
–1852.20
1721.37
1852.20
1721.37
322
LDO_VDDBAT5V
–1852.20
1438.53
1852.20
1438.53
323
LDO_VDDBAT5V
–1852.20
1155.69
1852.20
1155.69
324
VOUT_3P3
–1993.62
1297.11
1993.62
1297.11
325
VOUT_3P3
–2135.04
1155.69
2135.04
1155.69
326
VDDIO_PMU
–1710.77
1297.11
1710.77
1297.11
327
LDO_VDDBAT5V
–1852.20
872.84
1852.20
872.84
328
LDO_VDDBAT5V
–2135.04
872.84
2135.04
872.84
329
LDO_VDDBAT5V
–2276.46
1014.26
2276.46
1014.26
330
VOUT_3P3_SENSE
–2276.46
1297.11
2276.46
1297.11
331
LDO_VDDBAT5V
–1710.77
1862.79
1710.77
1862.79
332
VOUT_3P3
–1993.62
1579.95
1993.62
1579.95
333
VSSC
–1569.35
1155.69
1569.35
1155.69
334
VSSC
–1569.35
1438.53
1569.35
1438.53
335
PMU_AVSS
–1569.35
2287.06
1569.35
2287.06
336
SR_VLX
–1569.35
2852.74
1569.35
2852.74
337
SR_VLX
–1569.35
3135.59
1569.35
3135.59
338
SR_PVSS
–1852.20
3135.59
1852.20
3135.59
339
SR_VLX
–1852.20
2852.74
1852.20
2852.74
340
SR_VDDBATA5V
–1852.20
2569.90
1852.20
2569.90
341
VOUT_CLDO
–1852.20
2287.06
1852.20
2287.06
342
LDO_VDD1P5
–1852.20
2004.21
1852.20
2004.21
343
LDO_VDDBAT5V
–1993.62
1014.26
1993.62
1014.26
344
VOUT_3P3
–2135.04
1438.53
2135.04
1438.53
345
LDO_VDDBAT5V
–2135.04
1721.37
2135.04
1721.37
346
VOUT_LDO3P3_B
–2135.04
2004.21
2135.04
2004.21
347
LDO_VDD1P5
–2135.04
2287.06
2135.04
2287.06
348
SR_VDDBATP5V
–2135.04
2569.90
2135.04
2569.90
349
SR_PVSS
–2135.04
3135.59
2135.04
3135.59
350
VDDIO_PMU
–1710.77
1579.95
1710.77
1579.95
351
VOUT_LNLDO
–1710.77
2145.64
1710.77
2145.64
352
VOUT_CLDO
–1710.77
2428.48
1710.77
2428.48
353
SR_VLX
–1710.77
2711.32
1710.77
2711.32
354
SR_VLX
–1710.77
2994.17
1710.77
2994.17
355
VOUT_LDO3P3_B
–1993.62
1862.79
1993.62
1862.79
356
LDO_VDD1P5
–1993.62
2145.64
1993.62
2145.64
357
VOUT_CLDO
–1993.62
2428.48
1993.62
2428.48
358
SR_VDDBATP5V
–1993.62
2711.32
1993.62
2711.32
359
SR_VLX
–1993.62
2994.17
1993.62
2994.17
Document Number: 002-20538 Rev. *B
Page 68 of 144
ADVANCE
CYW4356/CG8674
Table 21. 395-Bump WLCSP Coordinates (Cont.)
Coordinates (0,0 center of die)
No.
Net Name
Bump Side
Top Side
X
Y
X
Y
360
SR_PVSS
–1993.62
3277.01
1993.62
3277.01
361
VOUT_3P3
–2276.46
1862.79
2276.46
1862.79
362
VOUT_BTLDO2P5
–2276.46
2145.64
2276.46
2145.64
363
LDO_VDD1P5
–2276.46
2428.48
2276.46
2428.48
364
SR_PVSS
–2276.46
3277.01
2276.46
3277.01
365
VOUT_3P3
–2276.46
1579.95
2276.46
1579.95
366
SR_VDDBATP5V
–2276.46
2711.32
2276.46
2711.32
367
PCIE_TESTP
1800.31
3068.53
–1800.31
3068.53
368
PCIE_TESTN
1966.81
2956.03
–1966.81
2956.03
369
BT_VDDC
1480.37
1005.66
–1480.37
1005.66
370
BT_VDDC
1480.37
1225.66
–1480.37
1225.66
371
BT_VDDC
1408.19
248.05
–1408.19
248.05
372
BT_VDDC
1322.34
55.02
–1322.34
55.02
373
BT_VDDC
1060.28
–1186.86
–1060.28
–1186.86
374
BT_VDDC
666.40
–198.15
–666.40
–198.15
375
BT_VDDC
617.61
–1324.61
–617.61
–1324.61
376
BT_VSSC
338.89
–475.07
–338.89
–475.07
377
BT_VSSC
1040.28
–724.53
–1040.28
–724.53
378
BT_VSSC
1063.38
1020.66
–1063.38
1020.66
379
BT_VSSC
1063.38
1320.66
–1063.38
1320.66
380
BT_VSSC
1273.37
505.67
–1273.37
505.67
381
BT_VSSC
1273.37
705.66
–1273.37
705.66
382
BT_VSSC
1273.37
1005.66
–1273.37
1005.66
383
BT_VSSC
1273.37
1225.66
–1273.37
1225.66
384
VSSC
440.99
2052.00
–440.99
2052.00
385
VSSC
–1293.24
–1317.60
1293.24
–1317.60
386
VSSC
–1202.10
–1504.00
1202.10
–1504.00
387
VSSC
–1058.99
1451.99
1058.99
1451.99
388
VSSC
–1058.99
2302.00
1058.99
2302.00
389
VSSC
–959.90
279.00
959.90
279.00
390
VSSC
–759.00
851.99
759.00
851.99
391
VSSC
–759.00
1151.99
759.00
1151.99
392
VSSC
–759.00
1451.99
759.00
1451.99
393
VSSC
–759.00
2052.00
759.00
2052.00
394
VSSC
–746.31
–956.00
746.31
–956.00
395
VSSC
–746.31
–756.00
746.31
–756.00
Document Number: 002-20538 Rev. *B
Page 69 of 144
ADVANCE
CYW4356/CG8674
11.3 Signal Descriptions
The signal name, type, and description of each pin in the CYW4356/CG8674 is listed in Table 22 and Table 23. The symbols shown
under Type indicate pin directions (I/O = bidirectional, I = input, O = output) and the internal pull-up/pull-down characteristics (PU =
weak internal pull-up resistor and PD = weak internal pull-down resistor), if any.
Table 22. WLCSP Signal Descriptions
Bump#
Signal Name
Type
Description
WLAN and Bluetooth Receive RF Signal Interface
290
WRF_RFIN_2G_CORE0
I
2.4 GHz Bluetooth and WLAN CORE0 receiver
shared input
261
WRF_RFIN_2G_CORE1
I
2.4 GHz Bluetooth and WLAN CORE1 receiver
shared input
302
WRF_RFIN_5G_CORE0
I
5 GHz WLAN CORE0 receiver input
260
WRF_RFIN_5G_CORE1
I
5 GHz WLAN CORE1 receiver input
298
WRF_RFOUT_2G_CORE0
O
2.4 GHz WLAN CORE0 PA output
279
WRF_RFOUT_2G_CORE1
O
2.4 GHz WLAN CORE1 PA output
280
WRF_RFOUT_5G_CORE0
O
5 GHz WLAN CORE0 PA output
299
WRF_RFOUT_5G_CORE1
O
5 GHz WLAN CORE1 PA output
294
WRF_TSSI_A_CORE0
I
5 GHz TSSI CORE0 input from an optional
external power amplifier/power detector.
276
WRF_TSSI_A_CORE1
I
5 GHz TSSI CORE1 input from an optional
external power amplifier/power detector.
297
WRF_GPIO_OUT_CORE0
I/O
GPIO or 2.4 GHz TSSI CORE0 input from an
optional external power amplifier/power detector
258
WRF_GPIO_OUT_CORE1
I/O
GPIO or 2.4 GHz TSSI CORE1 input from an
optional external power amplifier/power detector
Programmable RF switch control lines. The
control lines are programmable via the driver and
NVRAM file.
RF Switch Control Lines
66
RF_SW_CTRL_0
O
175
RF_SW_CTRL_1
O
186
RF_SW_CTRL_2
O
193
RF_SW_CTRL_3
O
86
RF_SW_CTRL_4
O
183
RF_SW_CTRL_5
O
190
RF_SW_CTRL_6
O
197
RF_SW_CTRL_7
O
181
RF_SW_CTRL_8
O
187
RF_SW_CTRL_9
O
194
RF_SW_CTRL_10
O
202
RF_SW_CTRL_11
O
184
RF_SW_CTRL_12
O
191
RF_SW_CTRL_13
O
198
RF_SW_CTRL_14
O
207
RF_SW_CTRL_15
O
Document Number: 002-20538 Rev. *B
Page 70 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
OD
PCIe clock request signal which indicates when
the REFCLK to the PCIe interface can be gated.
1 = the clock can be gated
0 = the clock is required
I (PU)
PCIe System Reset. This input is the PCIe reset
as defined in the PCIe base specification version
1.1.
WLAN PCI Express Interface
174
PCIE_CLKREQ_L
180
PCIE_PERST_L
9
PCIE_RDN0
I
8
PCIE_RDP0
I
4
PCIE_REFCLKN
I
3
PCIE_REFCLKP
I
5
PCIE_TDN0
O
6
PCIE_TDP0
O
165
PCIE_PME_L
OD
367
PCIE_TESTP
–
368
PCIE_TESTN
–
Receiver differential pair (×1 lane)
PCIE Differential Clock inputs (negative and
positive). 100 MHz differential.
Transmitter differential pair (×1 lane)
PCI power management event output. Used to
request a change in the device or system power
state. The assertion and deassertion of this signal
is asynchronous to the PCIe reference clock.
This signal has an open-drain output structure, as
per the PCI Bus Local Bus Specification, revision
2.3.
PCIe test pin
WLAN SDIO Bus Interface
These signals can support alternate functionality depending on package and host interface mode. See Table 27.
78
SDIO_CLK
I
81
SDIO_CMD
I/O
SDIO command line
82
SDIO_DATA_0
I/O
SDIO data line 0
77
SDIO_DATA_1
I/O
SDIO data line 1
80
SDIO_DATA_2
I/O
SDIO data line 2
79
SDIO_DATA_3
I/O
SDIO data line 3
Document Number: 002-20538 Rev. *B
SDIO clock input
Page 71 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
WLAN GPIO Interface
The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table 24 and Table 27 for
additional details.
218
GPIO_0
I/O
Programmable GPIO pins
219
GPIO_1
I/O
220
GPIO_2
I/O
221
GPIO_3
I/O
229
GPIO_4
I/O
237
GPIO_5
I/O
236
GPIO_6
I/O
189
GPIO_7
I/O
196
GPIO_8
I/O
205
GPIO_9
I/O
185
GPIO_10
I/O
192
GPIO_11
I/O
199
GPIO_12
I/O
182
GPIO_13
I/O
188
GPIO_14
I/O
195
GPIO_15
I/O
239
JTAG_SEL
I/O
251
WRF_XTAL_IN
I
XTAL oscillator input
253
WRF_XTAL_OUT
O
XTAL oscillator output
159
LPO_IN
I
External sleep clock input (32.768 kHz)
161
CLK_REQ
O
Reference clock request (shared by BT and
WLAN). If not used, this can be no-connect.
JTAG Interface
JTAG select: pull high to select the JTAG
interface. If the JTAG interface is not used this pin
may be left floating or connected to ground.
Note: See Table 27 for the JTAG signal pins.
Clocks
Bluetooth/FM Transceivera
49
BT_RF
O
Bluetooth PA output
61
FM_RFIN
I
FM radio antenna port
60
FM_RFAUX
I
FM radio auxiliary antenna port
54
FM_AOUT1
O
FM DAC output 1
55
FM_AOUT2
O
FM DAC output 2
179
BT_PCM_CLK
I/O
PCM clock; can be master (output) or slave
(input)
173
BT_PCM_IN
Bluetooth PCM
I
PCM data input
177
BT_PCM_OUT
O
PCM data output
163
BT_PCM_SYNC
I/O
PCM sync; can be master (output) or slave
(input).
Document Number: 002-20538 Rev. *B
Page 72 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
Bluetooth USB Interface
164
BT_USB_DN
I/O
USB (Host) data negative. Negative terminal of
the USB transceiver.
169
BT_USB_DP
I/O
USB (Host) data positive. Positive terminal of the
USB transceiver.
Bluetooth UART
172
BT_UART_CTS_L
I
UART clear-to-send. Active-low clear-to-send
signal for the HCI UART interface.
178
BT_UART_RTS_L
O
UART request-to-send. Active-low request-tosend signal for the HCI UART interface. BT LED
control pin.
162
BT_UART_RXD
I
UART serial input. Serial data input for the HCI
UART interface.
157
BT_UART_TXD
O
UART serial output. Serial data output for the
HCI UART interface.
167
BT_I2S_CLK
I/O
I2S clock, can be master (output) or slave (input).
171
BT_I2S_DO
I/O
I2S data output
156
BT_I2S_DI
I/O
I2S data input
158
BT_I2S_WS
I/O
I2S WS; can be master (output) or slave (input).
155
BT_GPIO_2
I/O
Bluetooth general-purpose I/O
154
BT_GPIO_3
I/O
Bluetooth general-purpose I/O
168
BT_GPIO_4
I/O
Bluetooth general-purpose I/O
153
BT_GPIO_5
I/O
Bluetooth general-purpose I/O
Bluetooth/FM I2S
Bluetooth GPIOs
Miscellaneous
319
WL_REG_ON
I
Used by PMU to power up or power down the
internal CYW4356/CG8674 regulators used by
the WLAN section. Also, when deasserted, this
pin holds the WLAN section in reset. This pin has
an internal 200 kΩ pull-down resistor that is
enabled by default. It can be disabled through
programming.
320
BT_REG_ON
I
Used by PMU to power up or power down the
internal CYW4356/CG8674 regulators used by
the Bluetooth section. Also, when deasserted,
this pin holds the Bluetooth section in reset. This
pin has an internal 200 kΩ pull-down resistor that
is enabled by default. It can be disabled through
programming.
176
BT_DEV_WAKE
I/O
Bluetooth DEV_WAKE
170
BT_HOST_WAKE
I/O
Bluetooth HOST_WAKE
NC
NC
Do not connect these pins to anything. Leave
them floating.
12–29, 99–101, 31,
33, 35, 38
Document Number: 002-20538 Rev. *B
Page 73 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
Integrated Voltage Regulators
340
SR_VDDBATA5V
I
Quiet VBAT
348
SR_VDDBATP5V
I
Power VBAT
336
SR_VLX
O
Cbuck switching regulator output. Refer to
Table 43 for details of the inductor and capacitor
required on this output.
342
LDO_VDD1P5
I
LNLDO input
327
LDO_VDDBAT5V
I
LDO VBAT.
249
WRF_XTAL_VDD1P5
I
XTAL LDO input (1.35V)
254
WRF_XTAL_VDD1P2
O
XTAL LDO output (1.2V)
351
VOUT_LNLDO
O
Output of LNLDO
341
VOUT_CLDO
O
Output of core LDO
362
VOUT_BTLDO2P5
O
Output of BT LDO
346
VOUT_LDO3P3_B
O
Output of 3.3V LDO
324
VOUT_3P3
O
LDO 3.3V output
330
VOUT_3P3_SENSE
O
Voltage sense pin for LDO 3.3V output
Bluetooth Supplies
46
BT_PAVDD2P5
PWR
Bluetooth PA power supply
44
BT_LNAVDD1P2
PWR
Bluetooth LNA power supply
42
BT_IFVDD1P2
PWR
Bluetooth IF block power supply
47
BT_PLLVDD1P2
PWR
Bluetooth RF PLL power supply
50
BT_VCOVDD1P2
PWR
Bluetooth RF power supply
BT_VDDIO
PWR
Core supply
148, 149, 150,151
FM Transceiver Supplies
a
–
FM_LNAVCOVDD1P2
PWR
FM LNA and VCO 1.2V power supply
62
FM_LNAVDD1P2
PWR
FM LNA 1.2V power supply
64
FM_VCOVDD1P2
PWR
FM VCO 1.2V power supply
59
FM_PLLVDD1P2
PWR
FM PLL 1.2V power supply
52
FM_AUDIOVDD1P2
PWR
FM AUDIO power supply
Document Number: 002-20538 Rev. *B
Page 74 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
WLAN Supplies
277
WRF_BUCK_VDD1P5_CORE0
PWR
Internal capacitor-less CORE0 LDO supply
296
WRF_BUCK_VDD1P5_CORE1
PWR
Internal capacitor-less CORE1 LDO supply
262
WRF_SYNTH_VBAT_VDD3P3
PWR
Synth VDD 3.3V supply
289
WRF_PADRV_VBAT_VDD3P3_CORE0
PWR
CORE0 PA Driver VBAT supply
264
WRF_PADRV_VBAT_VDD3P3_CORE1
PWR
CORE1 PA Driver VBAT supply
269
WRF_PA5G_VBAT_VDD3P3_CORE0
PWR
5 GHz CORE0 PA 3.3V VBAT supply
266
WRF_PA5G_VBAT_VDD3P3_CORE1
PWR
5 GHz CORE1 PA 3.3V VBAT supply
305
WRF_PA2G_VBAT_VDD3P3_CORE0
PWR
2 GHz CORE0 PA 3.3V VBAT supply
285
WRF_PA2G_VBAT_VDD3P3_CORE1
PWR
2 GHz CORE1 PA 3.3V VBAT supply
270
WRF_MMD_VDD1P2
PWR
1.2V supply
262
WRF_PFD_VDD1P2
PWR
1.2V supply
OTP_VDD33
PWR
OTP 3.3V supply
67, 74, 87, 103,
107–115, 127–129,
134–140, 203, 204,
208–211, 213, 224,
228, 241, 242, 246
VDDC
PWR
1.2V core supply for WLAN
206, 222, 231
VDDIO
PWR
1.8V–3.3V supply for WLAN. Must be directly
connected to PMU_VDDIO and BT_VDDIO on
the PCB.
PWR
1.2V core supply for BT
Miscellaneous Supplies
160
145, 147, 369– 375, BT_VDDC
326
VDDIO_PMU
PWR
1.8V–3.3V supply for PMU controls. Must be
directly connected to VDDIO and BT_VDDIO on
the PCB.
76
VDDIO_SD
PWR
1.8V–3.3V supply for SDIO pads and PCIe outof-band signals.
223
VDDIO_RF
PWR
IO supply for RF switch control pads (3.3V).
98
VDDC_98
PWR
1.2V supply from VOUT_CLDO (341, 352, 357).
102
VDDC_102
PWR
1.2V supply from VOUT_CLDO (341, 352, 357).
143
AVDD_BBPLL
PWR
Baseband PLL supply.
11
PCIE_PLL_AVDD1P2
PWR
1.2V supply for PCIe PLL. (This pin should be left
unconnected (NC) for SDIO operation.)
7
PCIE_RXTX_AVDD1P2
PWR
1.2V supply for PCIE TX and RX. (This pin
should be left unconnected (NC) for SDIO
operation.)
230
VDDIO_PCIE
PWR
Supply the same voltage to this pin as that used
for the PCIE out-of-band signals (that is,
PCIE_PME_L).
250
WRF_VCO_GND1P2
GND
VCO/LOGEN ground
281
WRF_AFE_GND1P2_CORE0
GND
CORE0 AFE ground
267
WRF_AFE_GND1P2_CORE1
GND
CORE1 AFE ground
295
WRF_BUCK_GND1P5_CORE0
GND
Internal capacitor-less CORE0 LDO ground
Ground
Document Number: 002-20538 Rev. *B
Page 75 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
256
WRF_BUCK_GND1P5_CORE1
GND
Internal capacitor-less CORE1 LDO ground
275
WRF_LNA_2G_GND1P2_CORE0
GND
2 GHz internal CORE0 LNA ground
282
WRF_LNA_2G_GND1P2_CORE1
GND
2 GHz internal CORE1 LNA ground
273
WRF_LNA_5G_GND1P2_CORE0
GND
5 GHz internal CORE0 LNA ground
283
WRF_LNA_5G_GND1P2_CORE1
GND
5 GHz internal CORE1 LNA ground
293
WRF_TX_GND1P2_CORE0
GND
TX CORE0 ground
255
WRF_TX_GND1P2_CORE1
GND
TX CORE1 ground
288
WRF_PADRV_VBAT_GND3P3_CORE0
GND
PAD CORE0 ground
265
WRF_PADRV_VBAT_GND3P3_CORE1
GND
PAD CORE1 ground
248
WRF_XTAL_GND1P2
GND
XTAL ground
291, 307
WRF_RX2G_GND1P2_CORE0
GND
RX 2GHz CORE0 ground
259, 317
WRF_RX2G_GND1P2_CORE1
GND
RX 2GHz CORE1 ground
292
WRF_RX5G_GND1P2_CORE0
GND
RX 5GHz CORE0 ground
257
WRF_RX5G_GND1P2_CORE1
GND
RX 5GHz CORE1 ground
WRF_LOGEN_GND1P2
GND
LOGEN ground
WRF_LOGENG_GND1P2
GND
LOGEN ground
268, 030
WRF_PA5G_VBAT_GND3P3_CORE0
GND
5 GHz PA CORE0 ground
286, 304
WRF_PA5G_VBAT_GND3P3_CORE1
GND
5 GHz PA CORE1 ground
272, 300
WRF_PA2G_VBAT_GND3P3_CORE0
GND
2 GHz PA CORE0 ground
284, 301
WRF_PA2G_VBAT_GND3P3_CORE1
GND
2 GHz PA CORE1 ground
252, 316
278
271
WRF_MMD_GND1P2
GND
Ground
WRF_CP_GND1P2
GND
Ground
WRF_PFD_GND1P2
GND
Ground
68–73, 75,83–85,
88–95, 104–106,
116–122, 130, 200,
201, 217, 232–235,
254–245, 333, 334,
384–395
VSSC
GND
Core ground for WLAN and BT
338, 349, 360, 364
SR_PVSS
GND
Power ground
274, 318
263
335
PMU_AVSS
30, 32, 34, 36, 37, 39, GND
96, 97
GND
Quiet ground
GND
–
40
BT_PAVSS
GND
Bluetooth PA ground
43
BT_IFVSS
GND
Bluetooth IF block ground
48
BT_PLLVSS
GND
Bluetooth PLL ground
51
BT_VCOVSS
GND
Bluetooth VCO ground
65
FM_VCOVSS
GND
FM VCO ground
63
FM_LNAVSS
GND
FM LNA ground
58
FM_PLLVSS
GND
FM PLL ground
53
FM_AUDIOVSS
GND
FM AUDIO ground
144
AVSS_BBPLL
GND
Baseband PLL ground
Document Number: 002-20538 Rev. *B
Page 76 of 144
ADVANCE
CYW4356/CG8674
Table 22. WLCSP Signal Descriptions (Cont.)
Bump#
Signal Name
Type
Description
10
PCIE_AVSS
GND
PCIe ground
1
PCIE_RXTX_AVSS
GND
PCIe ground
2
PCIE_PLL_AVSS
GND
PCIe ground
RGND
GND
Ground
BTRGND
GND
Ground
17, 18, 23, 26
–
a. Note: Cypress does not support FM on CYW4356/CG8674
Table 23. WLBGA Signal Descriptions
Ball#
Signal Name
Type
Description
WLAN and Bluetooth Receive RF Signal Interface
N1
WRF_RFIN_2G_CORE0
I
2.4 GHz Bluetooth and WLAN CORE0 receiver shared
input
V7
WRF_RFIN_2G_CORE1
I
2.4 GHz Bluetooth and WLAN CORE1 receiver shared
input
V1
WRF_RFIN_5G_CORE0
I
5 GHz WLAN CORE0 receiver input
V12
WRF_RFIN_5G_CORE1
I
5 GHz WLAN CORE1 receiver input
P1
WRF_RFOUT_2G_CORE0
O
2.4 GHz WLAN CORE0 PA output
V8
WRF_RFOUT_2G_CORE1
O
2.4 GHz WLAN CORE1 PA output
U1
WRF_RFOUT_5G_CORE0
O
5 GHz WLAN CORE0 PA output
V11
WRF_RFOUT_5G_CORE1
O
5 GHz WLAN CORE1 PA output
U3
WRF_TSSI_A_CORE0
I
5 GHz TSSI CORE0 input from an optional external power
amplifier/power detector.
T11
WRF_TSSI_A_CORE1
I
5 GHz TSSI CORE1 input from an optional external power
amplifier/power detector.
R4
WRF_GPIO_OUT_CORE0
I/O
GPIO or 2.4 GHz TSSI CORE0 input from an optional
external power amplifier/power detector
R9
WRF_GPIO_OUT_CORE1
I/O
GPIO or 2.4 GHz TSSI CORE1 input from an optional
external power amplifier/power detector
Document Number: 002-20538 Rev. *B
Page 77 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
Signal Name
Type
Description
RF Switch Control Lines
R7
RF_SW_CTRL_0
N8
RF_SW_CTRL_1
O
O
P9
RF_SW_CTRL_2
O
N7
RF_SW_CTRL_3
O
N5
RF_SW_CTRL_4
O
P7
RF_SW_CTRL_5
O
P5
RF_SW_CTRL_6
O
M8
RF_SW_CTRL_7
O
K12
RF_SW_CTRL_8
O
J11
RF_SW_CTRL_9
O
M12
RF_SW_CTRL_10
O
L9
RF_SW_CTRL_11
O
J9
RF_SW_CTRL_12
O
K10
RF_SW_CTRL_13
O
M10
RF_SW_CTRL_14
O
L8
RF_SW_CTRL_15
O
Programmable RF switch control lines. The control lines
are programmable via the driver and NVRAM file.
WLAN PCI Express Interface
D5
PCIE_CLKREQ_L
C4
PCIE_PERST_L
B1
PCIE_RDN0
OD
PCIe clock request signal which indicates when the
REFCLK to the PCIe interface can be gated.
1 = the clock can be gated
0 = the clock is required
I (PU)
PCIe System Reset. This input is the PCIe reset as
defined in the PCIe base specification version 1.1.
I
C1
PCIE_RDP0
I
A5
PCIE_REFCLKN
I
A4
PCIE_REFCLKP
I
A3
PCIE_TDN0
O
A2
PCIE_TDP0
C5
PCIE_PME_L
OD
C3
PCIE_TESTP
–
C2
PCIE_TESTN
–
Receiver differential pair (×1 lane)
PCIE Differential Clock inputs (negative and positive). 100
MHz differential.
Transmitter differential pair (×1 lane)
O
PCI power management event output. Used to request a
change in the device or system power state. The assertion
and deassertion of this signal is asynchronous to the PCIe
reference clock. This signal has an open-drain output
structure, as per the PCI Bus Local Bus Specification,
revision 2.3.
PCIe test pin
WLAN SDIO Bus Interface
Note: These signals can support alternate functionality depending on package and host interface mode. See Table 27 for additional
details.
A8
SDIO_CLK
I
A9
SDIO_CMD
I/O
Document Number: 002-20538 Rev. *B
SDIO clock input
SDIO command line
Page 78 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
B9
Signal Name
SDIO_DATA_0
Type
I/O
Description
SDIO data line 0
C9
SDIO_DATA_1
I/O
SDIO data line 1
B8
SDIO_DATA_2
I/O
SDIO data line 2
C8
SDIO_DATA_3
I/O
SDIO data line 3
WLAN GPIO Interface
Note: The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table 24 and
Table 27 for additional details.
G11
GPIO_0
I/O
F10
GPIO_1
I/O
F11
GPIO_2
I/O
G9
GPIO_3
I/O
H9
GPIO_4
I/O
F9
GPIO_5
I/O
F8
GPIO_6
I/O
E7
GPIO_7
I/O
F7
GPIO_8
I/O
E6
GPIO_9
I/O
Programmable GPIO pins
H12
GPIO_10
I/O
–
GPIO_11
I/O
–
GPIO_12
I/O
–
GPIO_13
I/O
–
GPIO_14
I/O
–
GPIO_15
I/O
D9
JTAG_SEL
I/O
P12
WRF_XTAL_IN
I
XTAL oscillator input
N12
WRF_XTAL_OUT
O
XTAL oscillator output
JTAG Interface
JTAG select: pull high to select the JTAG interface. If the
JTAG interface is not used this pin may be left floating or
connected to ground.
See Table 27 for the JTAG signal pins.
Clocks
F6
LPO_IN
I
External sleep clock input (32.768 kHz)
F4
CLK_REQ
O
Reference clock request (shared by BT and WLAN). If not
used, this can be no-connect.
Bluetooth/FM Transceiver a
L1
BT_RF
O
Bluetooth PA output
H1
FM_RFIN
I
FM radio antenna port
–
FM_RFAUX
I
FM radio auxiliary antenna port
E1
FM_AOUT1
O
FM DAC output 1
F1
FM_AOUT2
O
FM DAC output 2
Document Number: 002-20538 Rev. *B
Page 79 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
Signal Name
Type
Description
Bluetooth PCM
M6
BT_PCM_CLK
J4
BT_PCM_IN
I/O
I
PCM data input
PCM clock; can be master (output) or slave (input)
H4
BT_PCM_OUT
O
PCM data output
K6
BT_PCM_SYNC
I/O
PCM sync; can be master (output) or slave (input).
Bluetooth USB Interface
E5
BT_USB_DN
I/O
USB (Host) data negative. Negative terminal of the USB
transceiver.
F5
BT_USB_DP
I/O
USB (Host) data positive. Positive terminal of the USB
transceiver.
Bluetooth UART
L5
BT_UART_CTS_L
I
UART clear-to-send. Active-low clear-to-send signal for
the HCI UART interface.
K5
BT_UART_RTS_L
O
UART request-to-send. Active-low request-to-send signal
for the HCI UART interface. BT LED control pin.
H5
BT_UART_RXD
I
UART serial input. Serial data input for the HCI UART
interface.
J5
BT_UART_TXD
O
UART serial output. Serial data output for the HCI UART
interface.
J6
BT_I2S_CLK
I/O
I2S clock, can be master (output) or slave (input).
G6
BT_I2S_DO
I/O
I2S data output
G5
BT_I2S_DI
I/O
I2S data input
L6
BT_I2S_WS
I/O
I2S WS; can be master (output) or slave (input).
Bluetooth/FM I2S a
Bluetooth GPIO
A6
BT_GPIO_2
I/O
Bluetooth general-purpose I/O
D7
BT_GPIO_3
I/O
Bluetooth general-purpose I/O
K4
BT_GPIO_4
I/O
Bluetooth general-purpose I/O
A7
BT_GPIO_5
I/O
Bluetooth general-purpose I/O
Miscellaneous
A10
WL_REG_ON
I
Used by PMU to power up or power down the internal
CYW4356/CG8674 regulators used by the WLAN section.
Also, when deasserted, this pin holds the WLAN section in
reset. This pin has an internal 200 kΩ pull-down resistor
that is enabled by default. It can be disabled through
programming.
D10
BT_REG_ON
I
Used by PMU to power up or power down the internal
CYW4356/CG8674 regulators used by the Bluetooth/FM
section. Also, when deasserted, this pin holds the
Bluetooth/FM section in reset. This pin has an internal
200 kΩ pull-down resistor that is enabled by default. It can
be disabled through programming.
L4
BT_DEV_WAKE
I/O
Bluetooth DEV_WAKE
J3
BT_HOST_WAKE
I/O
Bluetooth HOST_WAKE
Document Number: 002-20538 Rev. *B
Page 80 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
Signal Name
Type
Description
Integrated Voltage Regulators
B11
SR_VDDBATA5V
I
Quiet VBAT
B12
SR_VDDBATP5V
I
Power VBAT
A11
SR_VLX
O
Cbuck switching regulator output. Refer to Table 43 for
details of the inductor and capacitor required on this output.
C12
LDO_VDD1P5
I
LNLDO input
E12
LDO_VDDBAT5V
I
LDO VBAT.
P11
WRF_XTAL_VDD1P5
I
XTAL LDO input (1.35V)
N10
WRF_XTAL_VDD1P2
O
XTAL LDO output (1.2V)
D11
VOUT_LNLDO
O
Output of LNLDO
C11
VOUT_CLDO
O
Output of core LDO
D12
VOUT_BTLDO2P5
O
Output of BT LDO
E11
VOUT_LDO3P3_B
O
Output of 3.3V LDO
F12
VOUT_3P3
O
LDO 3.3V output
VOUT_3P3_SENSE
O
Voltage sense pin for LDO 3.3V output
–
Bluetooth Supplies
M1
BT_PAVDD2P5
PWR
Bluetooth PA power supply
K1
BT_LNAVDD1P2
PWR
Bluetooth LNA power supply
K3
BT_IFVDD1P2
PWR
Bluetooth IF block power supply
K2
BT_PLLVDD1P2
PWR
Bluetooth RF PLL power supply
J1
BT_VCOVDD1P2
PWR
Bluetooth RF power supply
K7
BT_VDDIO
PWR
Core supply
FM Transceiver Supplies
G1
a
FM_LNAVCOVDD1P2
PWR
FM LNA and VCO 1.2V power supply
–
FM_LNAVDD1P2
PWR
FM LNA 1.2V power supply
–
FM_VCOVDD1P2
PWR
FM VCO 1.2V power supply
F3
FM_PLLVDD1P2
PWR
FM PLL 1.2V power supply
E2
FM_AUDIOVDD1P2
PWR
FM AUDIO power supply
U4
WRF_BUCK_VDD1P5_CORE0
PWR
Internal capacitor-less CORE0 LDO supply
R11
WRF_BUCK_VDD1P5_CORE1
PWR
Internal capacitor-less CORE1 LDO supply
WLAN Supplies
V6
WRF_SYNTH_VBAT_VDD3P3
PWR
Synth VDD 3.3V supply
R3
WRF_PADRV_VBAT_VDD3P3_CORE0
PWR
CORE0 PA Driver VBAT supply
T9
WRF_PADRV_VBAT_VDD3P3_CORE1
PWR
CORE1 PA Driver VBAT supply
T1
WRF_PA5G_VBAT_VDD3P3_CORE0
PWR
5 GHz CORE0 PA 3.3V VBAT supply
V10
WRF_PA5G_VBAT_VDD3P3_CORE1
PWR
5 GHz CORE1 PA 3.3V VBAT supply
R1
WRF_PA2G_VBAT_VDD3P3_CORE0
PWR
2 GHz CORE0 PA 3.3V VBAT supply
V9
WRF_PA2G_VBAT_VDD3P3_CORE1
PWR
2 GHz CORE1 PA 3.3V VBAT supply
T5
WRF_MMD_VDD1P2
PWR
1.2V supply
T4
WRF_PFD_VDD1P2
PWR
1.2V supply
Document Number: 002-20538 Rev. *B
Page 81 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
Signal Name
Type
Description
Miscellaneous Supplies
–
OTP_VDD33
PWR
OTP 3.3V supply
PWR
1.2V core supply for WLAN
VDDIO
PWR
1.8V–3.3V supply for WLAN. Must be directly connected
to PMU_VDDIO and BT_VDDIO on the PCB.
BT_VDDC
PWR
1.2V core supply for BT
VDDIO_PMU
PWR
1.8V–3.3V supply for PMU controls. Must be directly
connected to VDDIO and BT_VDDIO on the PCB.
E8
VDDIO_SD
PWR
1.8V–3.3V supply for SDIO pads and PCIe out-of-band
signals.
H11
VDDIO_RF
PWR
IO supply for RF switch control pads (3.3V)
H7
AVDD_BBPLL
PWR
Baseband PLL supply
B3
PCIE_PLL_AVDD1P2
PWR
1.2V supply for PCIe PLL. (This pin should be left unconnected (NC) for SDIO operation.)
B2
PCIE_RXTX_AVDD1P2
PWR
1.2V supply for PCIE TX and RX. (This pin should be left
unconnected (NC) for SDIO operation.)
U6
WRF_VCO_GND1P2
GND
VCO/LOGEN ground
P4
WRF_AFE_GND1P2_CORE0
GND
CORE0 AFE ground
R8
WRF_AFE_GND1P2_CORE1
GND
CORE1 AFE ground
B7, D4, E9, G10, J8, VDDC
J12, L10, M7
E10
E4, H3, M5
–
Ground
V4
WRF_BUCK_GND1P5_CORE0
GND
Internal capacitor-less CORE0 LDO ground
R12
WRF_BUCK_GND1P5_CORE1
GND
Internal capacitor-less CORE1 LDO ground
N2
WRF_LNA_2G_GND1P2_CORE0
GND
2 GHz internal CORE0 LNA ground
U7
WRF_LNA_2G_GND1P2_CORE1
GND
2 GHz internal CORE1 LNA ground
V2
WRF_LNA_5G_GND1P2_CORE0
GND
5 GHz internal CORE0 LNA ground
U12
WRF_LNA_5G_GND1P2_CORE1
GND
5 GHz internal CORE1 LNA ground
P3
WRF_TX_GND1P2_CORE0
GND
TX CORE0 ground
T8
WRF_TX_GND1P2_CORE1
GND
TX CORE1 ground
T3
WRF_PADRV_VBAT_GND3P3_CORE0
GND
PAD CORE0 ground
T10
WRF_PADRV_VBAT_GND3P3_CORE1
GND
PAD CORE1 ground
N11
WRF_XTAL_GND1P2
GND
XTAL ground
N3
WRF_RX2G_GND1P2_CORE0
GND
RX 2GHz CORE0 ground
T7
WRF_RX2G_GND1P2_CORE1
GND
RX 2GHz CORE1 ground
V3
WRF_RX5G_GND1P2_CORE0
GND
RX 5GHz CORE0 ground
T12
WRF_RX5G_GND1P2_CORE1
GND
RX 5GHz CORE1 ground
R6
WRF_LOGEN_GND1P2
GND
LOGEN ground
WRF_LOGENG_GND1P2
GND
LOGEN ground
T2, U2
R5
WRF_PA5G_VBAT_GND3P3_CORE0
GND
5 GHz PA CORE0 ground
U10, U11
WRF_PA5G_VBAT_GND3P3_CORE1
GND
5 GHz PA CORE1 ground
P2, R2
WRF_PA2G_VBAT_GND3P3_CORE0
GND
2 GHz PA CORE0 ground
U8, U9
WRF_PA2G_VBAT_GND3P3_CORE1
GND
2 GHz PA CORE1 ground
Document Number: 002-20538 Rev. *B
Page 82 of 144
ADVANCE
CYW4356/CG8674
Table 23. WLBGA Signal Descriptions (Cont.)
Ball#
Signal Name
Type
Description
T6
WRF_MMD_GND1P2
GND
Ground
V5
WRF_CP_GND1P2
GND
Ground
U5
WRF_PFD_GND1P2
GND
Ground
GND
Core ground for WLAN and BT
C10, D3, D6, G4, G8, VSSC
G12, L7, L11, M4
A12
SR_PVSS
GND
Power ground
B10
PMU_AVSS
GND
Quiet ground
L2
BT_PAVSS
GND
Bluetooth PA ground
M3
BT_IFVSS
GND
Bluetooth IF block ground
L3
BT_PLLVSS
GND
Bluetooth PLL ground
J2
BT_VCOVSS
GND
Bluetooth VCO ground
a
G2
FM_VCOVSS
H2
FM_LNAVSS a
G3
FM_PLLVSS a
a
GND
FM VCO ground
GND
FM LNA ground
GND
FM PLL ground
GND
FM AUDIO ground
F2
FM_AUDIOVSS
G7
AVSS_BBPLL
GND
Baseband PLL ground
PCIE_AVSS
GND
PCIe ground
B4
PCIE_RXTX_AVSS
GND
PCIe ground
B5
PCIE_PLL_AVSS
GND
PCIe ground
–
RGND
GND
Ground
–
BTRGND
GND
Ground
–
No Connect
B6, C6, C7
NC
NC
No connect. Leave floating.
a. Cypress does not support FM on CYW4356/CG8674.
Document Number: 002-20538 Rev. *B
Page 83 of 144
ADVANCE
CYW4356/CG8674
11.4 WLAN/BT GPIO Signals and Strapping Options
The pins listed in Table 24 and Table 25 are sampled at power-on reset (POR) to determine the various operating modes. Sampling
occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or
alternative function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD)
resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND,
using a 10 kΩ resistor or less.
Note: Refer to the reference board schematics for more information.
Table 24. WLAN GPIO Functions and Strapping Options
Pin Name
Default
Function
Description
GPIO_4
0
1: SPROM is present
0: SPROM is absent (default). Applicable in PCIe Host mode.
In SDIO Host mode, sdioPadVddio is 3.3V while set to 1, and 1.8V while set to 0.
GPIO_[10, 9, 8]
[0,0,0]
GPIO_12
1
Host interface selection: see Table 26.
1 = HTAvailable (default)
0 = ResourceModeInit is ALPAvailable. On PCBs, use a pull-down and tie to ALP
clock mode.
Table 25. BT GPIO Functions and Strapping Options
Pin Name
Default Function
BT_GPIO4
0
Description
1: BT Serial Flash is present.
0: BT Serial Flash is absent (default)
Table 26. GPIO_[10, 9, 8] Host Interface Selection
GPIO_[10, 9, 8]
Bit Setting
WLAN Host Interface Mode
Bluetooth Mode
000
SDIO
BTUART or BTUSB; BT tPorts stand-alone.
010
Not used
BTUART or BTUSB; BT tPorts stand-alone
011
PCIE
BTUART or BTUSB; BT tPorts stand-alone
Document Number: 002-20538 Rev. *B
Page 84 of 144
ADVANCE
CYW4356/CG8674
11.5 GPIO Alternative Signal Functions
Note: For all new designs, use GPIO_6 for SECI_IN instead of GPIO_4. For existing designs, GPIO_4 can be still used for SECI_IN provided the strapping requirements
discussed in “WLAN/BT GPIO Signals and Strapping Options” are fully satisfied.
Table 27. GPIO Alternative Signal Functions
Pin
Names
Test Mode FAST UART
SPROM
BSC
4
5
Miscellaneous-0
(JTAG_SEL
= 1)
GCI
Miscellaneous-1
Miscellaneous-2
UART
7
8
9
3
PWDOG
10
Function Select
0
2
6
Additional
Functionality
GPIO_0
TEST_GPIO_0
FAST_UAR
T
_RX
–
BSC_CLK
–
GCI_GPIO_4
SDIO_SEP_I SDIO_SEP_I UART_DBG PWDOG
NT
NT
_TX
_GPIO_0
_OD
WL_HOST_W
AKE
GPIO_1
TEST_GPIO_1
FAST_UAR
T
_TX
–
BSC _SDA
RF_DISABLE_L
GCI_GPIO_5
–
–
UART_DBG PWDOG
_RX
_GPIO_1
WL_DEV_WA
KE
GPIO_2
TEST_GPIO_2
FAST_UAR
T
_CTS_IN
–
N/A
TCK
GCI_GPIO_1
–
–
–
–
–
GPIO_3
TEST_GPIO_3
FAST_UAR
T
_RTS_OUT
–
N/A
TMS
GCI_GPIO_0
–
–
–
–
–
GPIO_4
TEST_GPIO_4
–
–
N/A
TDI
SECI_INa
–
–
UART_DBG
_RX
–
–
GPIO_5
TEST_GPIO_5
–
–
N/A
TDO
SECI_OUT
–
–
UART_DBG
_TX
–
–
GPIO_6
TEST_GPIO_6
–
–
N/A
TRST_L
GCI_GPIO_2
SECI_INa
–
–
–
–
GPIO_7
TEST_GPIO_7
FAST_UAR SPROM_C
T
S
_RTS_OUT
BSC_SDA
PMU_TEST_ GCI_GO
PIO_3
–
UART_DBG_TX
–
PWDOG
_GPIO_2
WL_LED
(For WLBGA)
GPIO_8
TEST_GPIO_8
FAST_UAR SPROM_C
T
LK
_CTS_IN
BSC_CLK
–
–
–
––
–
PWDOG
_GPIO_3
–
GPIO_9
TEST_GPIO_9
FAST_UAR
T
_RX
–
SECI_OUT
PALDO_PD
–
–
PWDOG
_GPIO_4
–
–
GCI_GPIO_4
–
–
–
PWDOG
_GPIO_5
–
GPIO_1 TEST_G0
PIO_10
SPROM_MI PALDO
_PU
FAST_UAR SPROM_M –
T
O
_TX
Document Number: 002-20538 Rev. *B
–
Page 85 of 146
ADVANCE
CYW4356/CG8674
Table 27. GPIO Alternative Signal Functions (Cont.)
Pin
Names
Test Mode FAST UART
SPROM
BSC
4
5
Miscellaneous-0
(JTAG_SEL
= 1)
GCI
Miscellaneous-1
Miscellaneous-2
UART
7
8
9
3
PWDOG
10
Function Select
0
2
6
Additional
Functionality
GPIO_11 TEST_GPIO_11
FAST_UAR
T_RX
–
PALDO
_PU
–
GCI_GPIO_5
PALDO_PD
–
–
–
–
GPIO_1 TEST_G2
PIO_12
FAST_UAR
T
_TX
–
–
–
GCI_GPIO_1
–
–
–
–
GPIO_1 TEST_G3
PIO_13
–
–
–
–
GCI_GPIO_0
–
–
–
–
–
GPIO_1 TEST_G4
PIO_14
FAST_UAR
T
_RTS_OUT
–
–
–
GCI_GPIO_2
–
–
UART_DBG
_RX
–
–
GPIO_1 TEST_G5
PIO_15
FAST_UAR
T_CTS_IN
–
–
–
GCI_GPIO_3
–
–
UART_DBG
_TX
–
–
Note:
1. GPIO_0 and WL_DEV_WAKE signals are selected by using software.
2. SDIO_PADVDDIO = 1 (not in straps table) is set to 3.3V by default for all packages.
3. GPIO_7 can be used as WL_LED in WLBGA package.
a. For all new designs, use GPIO_6 for SECI_IN instead of GPIO_4. For existing designs, GPIO_4 can be still used for SECI_IN provided the strapping requirements discussed in “WLAN/
BT GPIO Signals and Strapping Options” are fully satisfied.
Table 28 defines status for all CYW4356/CG8674 GPIOs based on the tristate test mode.
Table 28. GPIO Status Vs. Test Modes
Test Mode
TRISTATE_IND
Function Select
12
Status for All GPIOs
Input disable
TRISTATE_PDN
13
Pull down
TRISTATE_PUP
14
Pull up
TRISTATE
15
Tristate
Document Number: 002-20538 Rev. *B
Page 86 of 146
ADVANCE
CYW4356/CG8674
11.6 I/O States
The following notations are used in Table 29:
■
I: Input signal
■
O: Output signal
■
I/O: Input/Output signal
■
PU = Pulled up
■
PD = Pulled down
■
NoPull = Neither pulled up nor pulled down
■
Where applicable, the default value is shown in bold brackets (for example, [default value])
Table 29. I/O States
Name
WL_REG_ON
I/O
Keepera
Active Mode
Low Power State/Sleep
(All Power Present)
I
N
I: PD
I: PD
Pull-down can be disabled Pull-down can be
disabled
I/O
Y
Open drain or push-pull
Programmable
Active high
BT_HOST_WAK I/O
E
Y
I/O: PU, PD, NoPull
Programmable
BT_REG_ON
CLK_REQ
Power-downb
(BT_REG_ON and
WL_REG_ON Held
Low)
I: PD (of 200K)
Out-of-Reset;
(WL_REG_ON High
Before SW Down- and
BT_REG_ON = 0) Power Rail
load (BT_REG_ON
and
VDDIOs Are
High; WL_REG_ON
Present
High)
I: PD (of 200K)
I: PD (of 200K)
–
Open drain or push-pull High-Z, NoPull
Programmable
Active high
Open drain
Active high
Open drain
Active high
BT_VDDIO
I/O: PU, PD, NoPull
Programmable
I: PD
I: PD
High-Z, NoPull
BT_DEV_WAKE
BT_GPIO 5
BT_GPIO 4
I: Floating, but input
disabled
BT_GPIO 2, 3
BT_UART_CTS
I
BT_UART_RTS
O
Y
I: NoPull; PU programmable
I: NoPull
O: NoPull
O: NoPull
BT_UART_RXD I
I: PU
I: NoPull
BT_UART_TXD
O
O: NoPull
O: NoPull
SDIO Data
I/O
I/O:
PU (SDIO Mode)
I:
PU (SDIO Mode)
I: NoPull
I: noPull
SDIO CMD
SDIO_CLK
I
N
Document Number: 002-20538 Rev. *B
I: PU
I: PU
High-Z, NoPull
I: PU
I: PU
High-Z, NoPull
I:
PU (SDIO Mode)
I:
PU (SDIO Mode)
I: NoPull
I: NoPull
VDDIO_SD
Page 87 of 146
ADVANCE
CYW4356/CG8674
Table 29. I/O States (Cont.)
Name
BT_PCM_CLK
I/O
I/O
Keepera
Y
Active Mode
I: NoPullc
Low Power State/Sleep
(All Power Present)
I: NoPullc
Power-downb
(BT_REG_ON and
WL_REG_ON Held
Low)
High-Z, NoPull
Out-of-Reset;
(WL_REG_ON High
Before SW Down- and
BT_REG_ON = 0)
load (BT_REG_ON
Power Rail
and VDDIOs Are
High; WL_REG_ON
Present
High)
I: PD
I: PD
BT_VDDIO
BT_PCM_IN
BT_PCM_OUT
BT_PCM_SYNC
I: Floating, but input
disabled
BT_I2S_WS
I: NoPulld
I: NoPulld
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
High-Z, NoPull
Programmable [NoPull]
I: NoPull
I: NoPull
I: PD
I: PD
I: PD
BT_I2S_CLK
BT_I2S_DI
BT_I2S_DO
GPIO_0
I/O
Y
GPIO_1
Y
GPIO_2
Y
GPIO_3
Y
GPIO_4
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
GPIO_5
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
I: NoPull
I: NoPull
I/O: PU, PD, NoPulle
I/O: PU, PD, NoPulle
Ie
Ie
GPIO_6
Y
GPIO_7
Y
GPIO_8
Y
GPIO_9
Y
GPIO_10
Y
I/O: PU, PD, NoPull
Programmable [PD]
I/O: PU, PD, NoPull
Programmable [PD]
I: PD
I: PD
GPIO_11
Y
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
I: NoPull
I: NoPull
GPIO_12
Y
I/O: PU, PD, NoPull
Programmable [PU]
I/O: PU, PD, NoPull
Programmable [PU]
I: PU
I: PU
I/O: PU, PD, NoPull
Programmable [NoPull]
I/O: PU, PD, NoPull
Programmable [NoPull]
I: NoPull
I: NoPull
GPIO_13
Y
GPIO_14
Y
GPIO_15
Y
Document Number: 002-20538 Rev. *B
VDDIO
Page 88 of 146
ADVANCE
CYW4356/CG8674
Table 29. I/O States (Cont.)
Name
RF_SW_CTRL_X
I/O
Keepera
Y
Active Mode
O: NoPull
Low Power State/Sleep
(All Power Present)
O: NoPull
Power-downb
(BT_REG_ON and
WL_REG_ON Held
Low)
Out-of-Reset;
(WL_REG_ON High
Before SW Down- and
BT_REG_ON = 0)
load (BT_REG_ON
Power Rail
and VDDIOs Are
High; WL_REG_ON
Present
High)
O: NoPull
: NoPull
a. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in Power-down state. If there is no keeper, and it is an input and there is Nopull, then the
pad should be driven to prevent leakage due to floating pad (for example, SDIO_CLK).
b. In the Power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.
c. Depending on whether the PCM interface is enabled and the configuration of PCM is in master or slave mode, it can be either input or output.
d. Depending on whether the I2S interface is enabled and the configuration of I2S is in master or slave mode, it can be either input or output.
e. For WLBGA these GPIOs have a PD in all states. For WLCSP these GPIOs have a PU in all states.
Document Number: 002-20538 Rev. *B
Page 89 of 146
ADVANCE
CYW4356/CG8674
12. DC Characteristics
12.1 Absolute Maximum Ratings
Caution! The absolute maximum ratings in Table 30 indicate levels where permanent damage to the device can occur, even if these
limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute
maximum conditions for extended periods can adversely affect long-term reliability of the device.
Table 30. Absolute Maximum Ratings
Rating
DC supply for VBAT and PA driver supplya
DC supply voltage for digital I/O
DC supply voltage for RF switch I/Os
DC input supply voltage for CLDO and LNLDO
Symbol
Value
Unit
VBAT
–0.5 to +6.0
V
VDDIO
–0.5 to 3.9
V
VDDIO_RF
–0.5 to 3.9
V
–
–0.5 to 1.575
V
DC supply voltage for RF analog
VDDRF
–0.5 to 1.32
V
DC supply voltage for core
VDDC
–0.5 to 1.32
V
–
–0.5 to 3.63
V
WRF_TCXO_VDD
Maximum undershoot voltage for I/Ob
Vundershoot
–0.5
V
Maximum overshoot voltage for I/Ob
Vovershoot
VDDIO + 0.5
V
Tj
125
°C
Maximum junction temperature
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.
b. Duration not to exceed 25% of the duty cycle.
12.2 Environmental Ratings
The environmental ratings are shown in Table 31.
Table 31. Environmental Ratings
Characteristic
Value
Units
Conditions/Comments
Ambient Temperature (TA)
–30 to +85
°C
Functional operationa
Storage Temperature
–40 to +125
°C
–
Relative Humidity
Less than 60
%
Storage
Less than 85
%
Operation
a. Functionality is guaranteed but specifications require derating at extreme temperatures; see the specification tables for details.
12.3 Electrostatic Discharge Specifications
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps
to discharge static electricity is required when handling these devices. Always store the unused material in its antistatic packaging.
Table 32. ESD Specifications
Pin Type
Symbol
Condition
ESD Rating
Unit
ESD, handling reference:
NQY00083, Section 3.4,
Group D9, Table B
ESD_HAND_HBM
Human body model contact 1K for WLBGA;
discharge per
1.5K for WLCSP
JEDEC EID/JESD22-A114
V
CDM
ESD_HAND_CDM
Charged device model
contact discharge per
JEDEC EIA/JESD22-C101
V
Document Number: 002-20538 Rev. *B
300 for WLBGA;
500 for WLCSP
Page 90 of 144
ADVANCE
CYW4356/CG8674
12.4 Recommended Operating Conditions and DC Characteristics
Caution! Functional operation is not guaranteed outside of the limits shown in Table 33, and operation outside these limits for
extended periods can adversely affect long-term reliability of the device.
Table 33. Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Value
Minimum
Typical
Maximum
Unit
DC supply voltage for VBAT
VBAT
3.0a
–
5.25b
V
DC supply voltage for core
VDD
1.14
1.2
1.26
V
DC supply voltage for RF blocks in chip
VDDRF
1.14
1.2
1.26
V
DC supply voltage for TCXO input buffer
WRF_TCXO_VDD
1.62
1.8
1.98
V
DC supply voltage for digital I/O
VDDIO, VDDIO_SD
1.62
–
3.63
V
VDDIO_RF
3.13
3.3
3.46
V
TSSI
0.15
–
0.95
V
Vth_POR
0.4
–
0.7
V
DC supply voltage for RF switch I/Os
External TSSI input
Internal POR threshold
SDIO Interface I/O Pins and PCIe Out-of-band Signals PCIE_PERST_L, PCIE_PME_L, and PCIE_CLKREQ_L
For VDDIO_SD = 1.8V:
Input high voltage
VIH
1.27
–
–
V
Input low voltage
VIL
–
–
0.58
V
Output high voltage @ 2 mA
VOH
1.40
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.45
V
VIH
0.625 × VDDIO
–
–
V
For VDDIO_SD = 3.3V:
Input high voltage
VIL
–
–
0.25 × VDDIO
V
Output high voltage @ 2 mA
Input low voltage
VOH
0.75 × VDDIO
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.125 × VDDIO
V
VIH
0.65 × VDDIO
–
–
V
Other Digital I/O Pins
For VDDIO = 1.8V:
Input high voltage
VIL
–
–
0.35 × VDDIO
V
Output high voltage @ 2 mA
Input low voltage
VOH
VDDIO – 0.45
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.45
V
Input high voltage
VIH
2.00
–
–
V
Input low voltage
VIL
–
–
0.80
V
Output high voltage @ 2 mA
VOH
VDDIO – 0.4
–
–
V
Output low Voltage @ 2 mA
VOL
–
–
0.40
V
Output high voltage @ 2 mA
VOH
VDDIO – 0.4
–
–
V
Output low voltage @ 2 mA
VOL
–
–
0.40
V
Input capacitance
CIN
–
–
5
pF
For VDDIO = 3.3V:
RF Switch Control Output Pinsc
For VDDIO_RF = 3.3V:
a. The CYW4356/CG8674 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is
guaranteed only for 3.13V < VBAT < 4.8V.
Document Number: 002-20538 Rev. *B
Page 91 of 144
ADVANCE
CYW4356/CG8674
b. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.
13. Bluetooth RF Specifications
Unless otherwise stated, limit values apply for the conditions specified in Table 31 and Table 33. Typical values apply for an ambient
temperature of +25°C.
Figure 32. RF Port Location for Bluetooth Testing
CYW4356
RF Switch
(0.5 dB Insertion Loss)
WLAN Tx
Filter
BT Tx
WLAN/BT Rx
Antenna
Port
Chip
Port
RF Port
Note: All Bluetooth specifications are measured at the chip port unless otherwise specified.
Document Number: 002-20538 Rev. *B
Page 92 of 144
ADVANCE
CYW4356/CG8674
Table 34. Bluetooth Receiver RF Specifications
Parameter
Conditions
Minimum
Typical
Maximum
Unit
2480
MHz
Note: The specifications in this table are measured at the chip port output unless otherwise specified.
General
Frequency range
–
RX sensitivity
GFSK, 0.1% BER, 1 Mbps
–
–93.5
–
dBm
/4-DQPSK, 0.01% BER, 2 Mbps
–
–95.5
–
dBm
8-DPSK, 0.01% BER, 3 Mbps
2402
–
–
–89.5
–
dBm
Input IP3
–
–16
–
–
dBm
Maximum input at antenna
–
–
–
–20
dBm
–
–
–90.0
–80.0
dBm
RX LO Leakage
2.4 GHz band
Interference Performancea
C/I co-channel
GFSK, 0.1% BER
–
8
11
dB
C/I 1 MHz adjacent channel
GFSK, 0.1% BER
–
–7
0
dB
C/I 2 MHz adjacent channel
GFSK, 0.1% BER
–
–38
–30
dB
C/I 3 MHz adjacent channel
GFSK, 0.1% BER
–
–56
–40
dB
C/I image channel
GFSK, 0.1% BER
–
–31
–9
dB
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER
–
–46
–20
dB
C/I co-channel
/4-DQPSK, 0.1% BER
–
9
13
dB
C/I 1 MHz adjacent channel
/4-DQPSK, 0.1% BER
–
–11
0
dB
C/I 2 MHz adjacent channel
/4-DQPSK, 0.1% BER
–
–39
–30
dB
C/I 3 MHz adjacent channel
/4-DQPSK, 0.1% BER
–
–55
–40
dB
C/I image channel
/4-DQPSK, 0.1% BER
–
–23
–7
dB
C/I 1 MHz adjacent to image channel /4-DQPSK, 0.1% BER
–
–43
–20
dB
C/I co-channel
8-DPSK, 0.1% BER
–
17
21
dB
C/I 1 MHz adjacent channel
8-DPSK, 0.1% BER
–
–4
5
dB
C/I 2 MHz adjacent channel
8-DPSK, 0.1% BER
–
–37
–25
dB
C/I 3 MHz adjacent channel
8-DPSK, 0.1% BER
–
–53
–33
dB
C/I Image channel
8-DPSK, 0.1% BER
–
–16
0
dB
C/I 1 MHz adjacent to image channel 8-DPSK, 0.1% BER
–
–37
–13
dB
Out-of-Band Blocking Performance (CW)
30–2000 MHz
0.1% BER
–
–10.0
–
dBm
2000–2399 MHz
0.1% BER
–
–27
–
dBm
2498–3000 MHz
0.1% BER
–
–27
–
dBm
3000 MHz–12.75 GHz
0.1% BER
–
–10.0
–
dBm
–
–13.5
–
dBm
Out-of-Band Blocking Performance, Modulated Interferer
GFSK (1 Mbps)b
698–716 MHz
WCDMA
776–849 MHz
WCDMA
–
–13.8
–
dBm
824–849 MHz
GSM850
–
–13.5
–
dBm
824–849 MHz
WCDMA
–
–14.3
–
dBm
880–915 MHz
E-GSM
–
–13.1
–
dBm
880–915 MHz
WCDMA
–
–13.1
–
dBm
Document Number: 002-20538 Rev. *B
Page 93 of 144
ADVANCE
CYW4356/CG8674
Table 34. Bluetooth Receiver RF Specifications (Cont.)
Parameter
Conditions
Minimum
Typical
Maximum
Unit
1710–1785 MHz
GSM1800
–
–18.1
–
dBm
1710–1785 MHz
WCDMA
–
–17.4
–
dBm
1850–1910 MHz
GSM1900
–
–19.4
–
dBm
1850–1910 MHz
WCDMA
–
–18.8
–
dBm
1880–1920 MHz
TD-SCDMA
–
–19.7
–
dBm
1920–1980 MHz
WCDMA
–
–19.6
–
dBm
2010–2025 MHz
TD–SCDMA
–
–20.4
–
dBm
2500–2570 MHz
WCDMA
–
–20.4
–
dBm
2500–2570
MHzc
Band 7
–
–30.5
–
dBm
2300–2400 MHzd
Band 40
–
–34.0
–
dBm
MHze
Band 38
–
–30.8
–
dBm
XGP Band
–
–29.5
–
dBm
WCDMA
–
–9.8
–
dBm
776–794 MHz
WCDMA
–
–9.7
–
dBm
824–849 MHz
GSM850
–
–10.7
–
dBm
824–849 MHz
WCDMA
–
–11.4
–
dBm
880–915 MHz
E-GSM
–
–10.4
–
dBm
880–915 MHz
WCDMA
–
–10.2
–
dBm
1710–1785 MHz
GSM1800
–
–15.8
–
dBm
1710–1785 MHz
WCDMA
–
–15.4
–
dBm
1850–1910 MHz
GSM1900
–
–16.6
–
dBm
2570–2620
2545–2575 MHzf
/4-DPSK (2
Mbps)b
698–716 MHz
1850–1910 MHz
WCDMA
–
–16.4
–
dBm
1880–1920 MHz
TD-SCDMA
–
–17.9
–
dBm
1920–1980 MHz
WCDMA
–
–16.8
–
dBm
2010–2025 MHz
TD-SCDMA
–
–18.6
–
dBm
2500–2570 MHz
WCDMA
–
–20.4
–
dBm
2500–2570 MHzc
Band 7
–
–31.9
–
dBm
2300–2400 MHzd
Band 40
–
–35.3
–
dBm
2570–2620 MHze
Band 38
–
–31.8
–
dBm
XGP Band
–
–31.1
–
dBm
698–716 MHz
WCDMA
–
–12.6
–
dBm
776–794 MHz
WCDMA
–
–12.6
–
dBm
824–849 MHz
GSM850
–
–12.7
–
dBm
824–849 MHz
WCDMA
–
–13.7
–
dBm
880–915 MHz
E-GSM
–
–12.8
–
dBm
880–915 MHz
WCDMA
–
–12.6
–
dBm
1710–1785 MHz
GSM1800
–
–18.1
–
dBm
1710–1785 MHz
WCDMA
–
–17.4
–
dBm
1850–1910 MHz
GSM1900
–
–19.1
–
dBm
1850–1910 MHz
WCDMA
–
–18.6
–
dBm
2545–2575
MHzf
8-DPSK (3 Mbps)b
Document Number: 002-20538 Rev. *B
Page 94 of 144
ADVANCE
CYW4356/CG8674
Table 34. Bluetooth Receiver RF Specifications (Cont.)
Parameter
Conditions
Minimum
Typical
Maximum
Unit
1880–1920 MHz
TD-SCDMA
–
–19.3
–
dBm
1920–1980 MHz
WCDMA
–
–18.9
–
dBm
2010–2025 MHz
TD-SCDMA
–
–20.4
–
dBm
2500–2570 MHz
WCDMA
–
–21.4
–
dBm
2500–2570
MHzc
Band 7
–
–31.0
–
dBm
2300–2400 MHzd
Band 40
–
–34.5
–
dBm
MHze
Band 38
–
–31.2
–
dBm
XGP Band
–
–30.0
–
dBm
–
–95
–62
dBm
2570–2620
2545–2575 MHzf
Spurious Emissions
30 MHz–1 GHz
1–12.75 GHz
–
–70
–47
dBm
851–894 MHz
–
–147
–
dBm/Hz
925–960 MHz
–
–147
–
dBm/Hz
1805–1880 MHz
–
–147
–
dBm/Hz
1930–1990 MHz
–
–147
–
dBm/Hz
2110–2170 MHz
–
–147
–
dBm/Hz
a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the v5.0 specification.
b. Bluetooth reference level for the wanted signal at the Bluetooth Chip port = at 3 dB desense for each data rate.
c. Interferer: 2560 MHz, BW=10 MHz; measured at 2480 MHz.
d. Interferer: 2360 MHz, BW=10 MHz; measured at 2402 MHz.
e. Interferer: 2380 MHz, BW=10 MHz; measured at 2480 MHz.
f. Interferer: 2355 MHz, BW=10 MHz; measured at 2480 MHz.
Document Number: 002-20538 Rev. *B
Page 95 of 144
ADVANCE
CYW4356/CG8674
Table 35. Bluetooth Transmitter RF Specifications
Parameter
Conditions
Minimum
Typical
Maximum
Unit
Note: The specifications in this table are measured at the Chip port output unless otherwise specified.
General
Frequency range
2402
–
2480
MHz
Basic rate (GFSK) TX power at Bluetooth
–
13.0
–
dBm
QPSK TX power at Bluetooth
–
10.0
–
dBm
8PSK TX power at Bluetooth
–
10.0
–
dBm
Power control step
2
4
8
dB
–
–
0.93
1
MHz
M – N = the frequency range for
which the spurious emission is
measured relative to the transmit
center frequency.
–
–38
–26.0
dBc
–
–31
–20.0
dBm
–
–43
–40.0
dBm
30 MHz to 1 GHz
–
–
–
–36.0 b,c
dBm
1 GHz to 12.75 GHz
–
–
–
–30.0 b,d,e
dBm
Output power is with TCA and TSSI enabled.
GFSK In-Band Spurious Emissions
–20 dBc BW
EDR In-Band Spurious Emissions
1.0 MHz < |M – N| < 1.5 MHz
1.5 MHz < |M – N| < 2.5 MHz
|M – N| 2.5 MHza
Out-of-Band Spurious Emissions
1.8 GHz to 1.9 GHz
–
–
–
–47.0
dBm
5.15 GHz to 5.3 GHz
–
–
–
–47.0
dBm
–
–
–103
–
dBm
65–108 MHz
FM RX
–
–147
–
dBm/Hz
776–794 MHz
CDMA2000
–
–147
–
dBm/Hz
869–960 MHz
cdmaOne, GSM850
–
–147
–
dBm/Hz
925–960 MHz
E-GSM
–
–147
–
dBm/Hz
1570–1580 MHz
GPS
–
–146
–
dBm/Hz
1805–1880 MHz
GSM1800
–
–145
–
dBm/Hz
1930–1990 MHz
GSM1900, cdmaOne, WCDMA
–
–144
–
dBm/Hz
2110–2170 MHz
WCDMA
–
–141
–
dBm/Hz
2500–2570 MHz
Band 7
–
–140
–
dBm
2300–2400 MHz
Band 40
–
–140
–
dBm
2570–2620 MHz
Band 38
–
–140
–
dBm
2545–2575 MHz
XGP Band
–
–140
–
dBm
GPS Band Spurious Emissions
Spurious emissions
Out-of-Band Noise
Floorf
a. The typical number is measured at ±3 MHz offset.
b. The maximum value represents the value required for Bluetooth qualification as defined in the v5.0 specification.
c. The spurious emissions during Idle mode are the same as specified in Table 35.
d. Specified at the Bluetooth Antenna port.
e. Meets this specification using a front-end band-pass filter.
f. Transmitted power in cellular and FM bands at the Bluetooth Antenna port. See Figure 32 for location of the port.
Document Number: 002-20538 Rev. *B
Page 96 of 144
ADVANCE
CYW4356/CG8674
Table 36. Local Oscillator Performance
Parameter
Minimum
Typical
Maximum
Unit
Lock time
–
72
–
µs
Initial carrier frequency tolerance
–
±25
±75
kHz
DH1 packet
–
±8
±25
kHz
DH3 packet
–
±8
±40
kHz
DH5 packet
–
±8
±40
kHz
Drift rate
–
5
20
kHz/50 µs
00001111 sequence in payloada
140
155
175
kHz
payloadb
115
140
–
kHz
–
1
–
MHz
Typical
Maximum
Unit
2480
MHz
LO Performance
Frequency Drift
Frequency Deviation
10101010 sequence in
Channel spacing
a. This pattern represents an average deviation in payload.
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.
Table 37. BLE RF Specifications
Parameter
Conditions
Minimum
Frequency range
–
2402
RX sensea
GFSK, 0.1% BER, 1 Mbps
–
–95.5
–
dBm
TX powerb
–
–
8.5
–
dBm
Mod Char: delta F1 average
–
225
255
275
kHz
Mod Char: delta F2 max.c
–
99.9
–
–
%
Mod Char: ratio
–
0.8
0.95
–
%
a. Dirty TX is On.
b. BLE TX power can be increased to compensate for front-end losses such as BPF, duplexer, switch, etc.). The output is capped at 12 dBm out.
The BLE TX power at the antenna port cannot exceed the 10 dBm specification limit.
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.
Document Number: 002-20538 Rev. *B
Page 97 of 144
ADVANCE
CYW4356/CG8674
14. WLAN RF Specifications
14.1 Introduction
The CYW4356/CG8674 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the 5 GHz bands.
This section describes the RF characteristics of the 2.4 GHz and 5 GHz radios.
Unless otherwise stated, limit values apply for the conditions specified inTable 31 and Table 33. Typical values apply for an ambient
temperature +25°C.
Figure 33. Port Locations (Applies to 2.4 GHz and 5 GHz)
CYW4356
RF Switch
(0.5 dB Insertion Loss)
WLAN Tx
Filter
BT Tx
WLAN/BT Rx
Antenna
Port
Chip
Port
RF Port
14.2 2.4 GHz Band General RF Specifications
Table 38. 2.4 GHz Band General RF Specifications
Item
Condition
Minimum
Typical
Maximum
Unit
TX/RX switch time
Including TX ramp down
–
–
5
µs
RX/TX switch time
Including TX ramp up
–
–
2
µs
Power-up and power-down ramp
time
DSSS/CCK modulations
–
–
100 mA VBAT = 3.6V
2.8
4
5.2
MHz
PWM output current
–
–
–
600
mA
Output current limit
–
1400
Output voltage range
Programmable, 30 mV steps
Default = 1.35V
–
1.2
1.35
1.5
mA
V
PWM output voltage
DC accuracy
Includes load and line regulation.
Forced PWM mode
–4
–
4
%
PWM ripple voltage, static
Measure with 20 MHz bandwidth limit.
Static Load. Max. ripple based on
VBAT = 3.6V, Vout = 1.35V,
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH,
Cap + Board total-ESR < 20 mΩ,
Cout > 1.9 μF, ESL 1.35V, Co= 2.2 μF,
Vo = 1.2V
20
–
–
dB
LDO Turn-on Time
LDO turn-on time when rest of chip is up
External Output Capacitor, Co
Total ESR (trace/capacitor):
5 mΩ–240 mΩ
External Input Capacitor
Only use an external input capacitor at the
VDD_LDO pin if it is not supplied from CBUCK
output.
Total ESR (trace/capacitor): 30 mΩ–200 mΩ
–
140
180
μs
0.5a
2.2
4.7
μF
–
1
2.2
μF
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and
aging.
Document Number: 002-20538 Rev. *B
Page 118 of 144
ADVANCE
CYW4356/CG8674
16. System Power Consumption
Note: Unless otherwise stated, these values apply for the conditions specified in Table 33.
16.1 WLAN Current Consumption
The WLAN current consumption measurements are shown in Table 49. All values in Table 49 are with the Bluetooth core in reset (that
is, Bluetooth is OFF).
.
Table 49. Typical WLAN Power Consumption
Bandwidth
(MHz)
Mode
Band
(GHz)
Vbat = 3.6V
mA
Vio = 1.8V
μAa
Sleep Modes
OFFb
–
–
0.003
36
Sleepc
–
–
0.005
260
d
IEEE power save, DTIM 1 1 RX core
20
2.4
1.2
260
IEEE power save, DTIM 3 1 RX cored
20
2.4
0.4
260
IEEE power save, DTIM 1 1 RX cored
20
5
1.2
260
cored
20
5
0.4
260
IEEE power save, DTIM 1 1 RX cored
40
5
1.5
260
cored
40
5
0.5
260
IEEE power save, DTIM 1 1 RX cored
80
5
2.0
260
cored
80
5
0.7
260
CCK 1 chaine
20
2.4
450
60
MCS8, Nss 1, HT20, SGIf, g, h
20
2.4
330
60
f, g, h
MCS8, Nss 2, HT20, SGI
20
2.4
610
60
MCS7, SGIf, g, i
20
5
310
60
MCS15, SGIf, g, i
20
5
620
60
MCS7f, g, i
40
5
340
60
MCS9, Nss 1, SGIf, g, j
40
5
300
60
SGIf, g, j
40
5
590
60
MCS9, Nss 1, SGIf, g, j
80
5
330
60
MCS9, Nss 2, SGIf, g, j
80
5
610
60
1 Mbps, 1 RX core
20
2.4
65
60
1 Mbps, 2 RX cores
20
2.4
87
60
MCS7, HT20 1 RX corek
20
2.4
69
60
IEEE power save, DTIM 3 1 RX
IEEE power save, DTIM 3 1 RX
IEEE power save, DTIM 3 1 RX
Active Modes
Transmit
MCS9, Nss 2,
Receive
k
20
2.4
92
60
MCS15, HT20k
20
2.4
96
60
CRS 1 RX corel
20
2.4
66
60
20
2.4
86
60
20
5
84
60
MCS7, HT20 2 RX cores
CRS 2 RX
coresl
Receive MCS7, SGI 1 RX corek
k
20
5
111
60
Receiver MCS15, SGIk
20
5
116
60
CRS 1 RX corel
20
5
79
60
20
5
103
60
40
5
101
60
Receive MCS7, SGI 2 RX cores
CRS 2 RX
coresl
Receive MCS 7, SGI 1 RX corek
Document Number: 002-20538 Rev. *B
Page 119 of 144
ADVANCE
CYW4356/CG8674
Table 49. Typical WLAN Power Consumption (Cont.)
Bandwidth
(MHz)
Mode
Band
(GHz)
Vbat = 3.6V
mA
Vio = 1.8V
μAa
Receive MCS 7, SGI 2 RX coresk
40
5
140
60
Receive MCS 15, SGIk
40
5
151
60
CRS 1 RX corel
40
5
93
60
coresl
40
5
128
60
Receive MCS9, Nss 1, SGIk
80
5
136
60
CRS 2 RX
Receive MCS9, Nss 1, SGI 2 RX
coresk
80
5
189
60
Receive MCS9, Nss 2, SGIk
80
5
205
60
corel
80
5
117
60
80
5
172
60
CRS 1 RX
CRS 2 RX coresl
a. Specified with all pins idle (not switching) and not driving any loads.
b. WL_REG_ON and BT_REG_ON low.
c. Idle, not associated, or inter-beacon.
d. Beacon Interval = 102.4 ms. Beacon duration = 1 ms @1 Mbps. Average current over three DTIM intervals.
e. Output power per core at RF port = 21 dBm
f. Duty cycle is 100%.
g. Measured using packet engine test mode.
h. Output power per core at RF port = 17 dBm.
i. Output power per core at RF port = 17.5 dBm.
j. Output power per core at RF port = 14 dBm.
k. Duty cycle is 100%. Carrier sense (CS) detect/packet receive.
l. Carrier sense (CCA) when no carrier is present.
Document Number: 002-20538 Rev. *B
Page 120 of 144
ADVANCE
CYW4356/CG8674
16.2 Bluetooth Current Consumption
The Bluetooth current consumption measurements are shown in Table 50.
Note:
■
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 50.
■
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.
Table 50. Bluetooth Current Consumption
VBAT (VBAT = 3.6V)
Typical
VDDIO (VDDIO = 1.8V)
Typical
Units
13
198
µA
0.217
0.197
mA
440
194
µA
500 ms Sniff Master
0.168
0.195
mA
500 ms Sniff Slave
0.124
0.190
mA
DM1/DH1 Master
25.3
0.024
mA
DM3/DH3 Master
30.6
0.035
mA
DM5/DH5 Master
31.4
0.037
mA
3DH5 Master
29.2
0.094
mA
SCO HV3 Master
11.45
0.089
mA
HV3 + Sniff + Scana
11.7
0.090
mA
Operating Mode
Sleep
Standard 1.28s Inquiry Scan
P and I Scanb
BLE Scanb
BLE Scan 10 ms
244
196
µA
21.34
0.013
mA
BLE Adv—Unconnectable 1.00 sec
67
199
µA
BLE Adv—Unconnectable 1.28 sec
55
199
µA
BLE Adv—Unconnectable 2.00 sec
58
199
µA
BLE Connected 7.5 ms
3.95
0.013
mA
BLE Connected 1 sec.
57
198
µA
BLE Connected 1.28 sec.
52
197
µA
a. At maximum class 1 TX power, 500 ms sniff, four attempts (slave), P = 1.28s, and I = 2.56s.
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.
Document Number: 002-20538 Rev. *B
Page 121 of 144
ADVANCE
CYW4356/CG8674
17. Interface Timing and AC Characteristics
17.1 SDIO Timing
17.1.1 SDIO Default Mode Timing
SDIO default mode timing is shown by the combination of Figure 34 and Table 51.
Figure 34. SDIO Bus Timing (Default Mode)
fPP
tWL
tWH
SDIO_CLK
tTHL
tTLH
tISU
tIH
Input
Output
Document Number: 002-20538 Rev. *B
tODLY
tODLY
(max)
(min)
Page 122 of 144
ADVANCE
CYW4356/CG8674
Table 51. SDIO Bus Timinga Parameters (Default Mode)
Parameter
Symbol
SDIO CLK (All values are referred to minimum VIH and maximum
Frequency – Data Transfer mode
Minimum
Typical
Maximum
Unit
0
–
25
MHz
VILb)
fPP
Frequency – Identification mode
fOD
0
–
400
kHz
Clock low time
tWL
10
–
–
ns
Clock high time
tWH
10
–
–
ns
Clock rise time
tTLH
–
–
10
ns
Clock low time
tTHL
–
–
10
ns
Input setup time
tISU
5
–
–
ns
Input hold time
tIH
5
–
–
ns
Output delay time – Data Transfer mode
tODLY
0
–
14
ns
Output delay time – Identification mode
tODLY
0
–
50
ns
Inputs: CMD, DAT (referenced to CLK)
Outputs: CMD, DAT (referenced to CLK)
a. Timing is based on CL ≤ 40pF load on CMD and Data.
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.
17.1.2 SDIO High-Speed Mode Timing
SDIO high-speed mode timing is shown by the combination of Figure 35 and Table 52.
Figure 35. SDIO Bus Timing (High-Speed Mode)
fPP
tWL
tWH
50% VDD
SDIO_CLK
tTHL
tISU
tTLH
tIH
Input
Output
tODLY
Document Number: 002-20538 Rev. *B
tOH
Page 123 of 144
ADVANCE
CYW4356/CG8674
Table 52. SDIO Bus Timinga Parameters (High-Speed Mode)
Parameter
Symbol
Minimum
Typical
Maximum
Unit
fPP
0
–
50
MHz
Frequency – Identification Mode
fOD
0
–
400
kHz
Clock low time
tWL
7
–
–
ns
Clock high time
tWH
7
–
–
ns
Clock rise time
tTLH
–
–
3
ns
Clock low time
tTHL
–
–
3
ns
Input setup Time
tISU
6
–
–
ns
Input hold Time
tIH
2
–
–
ns
tODLY
–
–
14
ns
Output hold time
tOH
2.5
–
–
ns
Total system capacitance (each line)
CL
–
–
40
pF
SDIO CLK (all values are referred to minimum VIH and maximum
Frequency – Data Transfer Mode
VILb)
Inputs: CMD, DAT (referenced to CLK)
Outputs: CMD, DAT (referenced to CLK)
Output delay time – Data Transfer Mode
a. Timing is based on CL ≤ 40pF load on CMD and Data.
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.
17.1.3 SDIO Bus Timing Specifications in SDR Modes
Clock Timing
Figure 36. SDIO Clock Timing (SDR Modes)
tCLK
SDIO_CLK
tCR
tCF
tCR
Table 53. SDIO Bus Clock Timing Parameters (SDR Modes)
Parameter
–
Symbol
Minimum
Maximum
Unit
40
–
ns
SDR12 mode
20
–
ns
SDR25 mode
10
–
ns
SDR50 mode
tCLK
Comments
4.8
–
ns
SDR104 mode
–
tCR, tCF
–
0.2 × tCLK
ns
tCR, tCF < 2.00 ns (max.) @100 MHz, CCARD
= 10 pF
tCR, tCF < 0.96 ns (max.) @208 MHz, CCARD
= 10 pF
Clock duty
–
30
70
%
–
Document Number: 002-20538 Rev. *B
Page 124 of 144
ADVANCE
CYW4356/CG8674
Device Input Timing
Figure 37. SDIO Bus Input Timing (SDR Modes)
SDIO_CLK
tIS
tIH
CMD input
DAT[3:0] input
Table 54. SDIO Bus Input Timing Parameters (SDR Modes)
Symbol
Minimum
Maximum
Unit
Comments
tIS
1.4
–
ns
CCARD = 10 pF, VCT = 0.975V
tIH
0.80
–
ns
CCARD = 5 pF, VCT = 0.975V
tIS
3.00
–
ns
CCARD = 10 pF, VCT = 0.975V
tIH
0.80
–
ns
CCARD = 5 pF, VCT = 0.975V
SDR104 Mode
SDR50 Mode
Document Number: 002-20538 Rev. *B
Page 125 of 144
ADVANCE
CYW4356/CG8674
Device Output Timing
Figure 38. SDIO Bus Output Timing (SDR Modes up to 100 MHz)
tCLK
SDIO_CLK
tODLY
tOH
CMD input
DAT[3:0] input
Table 55. SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)
Symbol
Minimum
Maximum
Unit
Comments
tODLY
–
7.5
ns
tCLK ≥ 10 ns CL= 30 pF using driver type B for SDR50
tODLY
–
14.0
ns
tCLK ≥ 20 ns CL= 40 pF using for SDR12, SDR25
1.5
–
ns
Hold time at the tODLY (min.) CL= 15 pF
tOH
Document Number: 002-20538 Rev. *B
Page 126 of 144
ADVANCE
CYW4356/CG8674
Figure 39. SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)
tCLK
SDIO_CLK
tOP
tODW
CMD input
DAT[3:0] input
Table 56. SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz)
Symbol
Minimum
Maximum
Unit
0
2
UI
ΔtOP
–350
+1550
ps
Delay variation due to temp change after tuning
tODW
0.60
–
UI
tODW=2.88 ns @208 MHz
tOP
Comments
Card output phase
■
ΔtOP = +1550 ps for junction temperature of ΔtOP = 90 degrees during operation
■
ΔtOP = –350 ps for junction temperature of ΔtOP = –20 degrees during operation
■
ΔtOP = +2600 ps for junction temperature of ΔtOP = –20 to +125 degrees during operation
Document Number: 002-20538 Rev. *B
Page 127 of 144
ADVANCE
CYW4356/CG8674
Figure 40. ΔtOP Consideration for Variable Data Window (SDR 104 Mode)
Data valid window
Sampling point after tuning
ȴtOP =
1550 ps
Data valid window
ȴtOP =
–350 ps
Sampling point after card junction heating
by +90°C from tuning temperature
Data valid window
Sampling point after card junction cooling
by –20°C from tuning temperature
17.1.4 SDIO Bus Timing Specifications in DDR50 Mode
Figure 41. SDIO Clock Timing (DDR50 Mode)
tCLK
SDIO_CLK
tCR
tCF
tCR
Table 57. SDIO Bus Clock Timing Parameters (DDR50 Mode)
Minimum
Maximum
Unit
–
Parameter
tCLK
Symbol
20
–
ns
DDR50 mode
–
tCR,tCF
–
0.2 × tCLK
ns
tCR, tCF < 4.00 ns (max.) @50 MHz,
CCARD = 10 pF
Clock duty
–
45
55
%
–
Document Number: 002-20538 Rev. *B
Comments
Page 128 of 144
ADVANCE
CYW4356/CG8674
Data Timing, DDR50 Mode
Figure 42. SDIO Data Timing (DDR50 Mode)
FPP
SDIO_CLK
tISU2x
DAT[3:0]
input
Invalid
tIH2x
tISU2x
Data
Invalid
tIH2x
Data
Invalid
tODLY2x (max)
DAT[3:0]
output
Data
Invalid
tODLY2x (max)
tODLY2x
tODLY2x
(min)
(min)
Data
Available timing
window for card
output transition
Data
In DDR50 mode, DAT[3:0] lines are sampled on both edges of
the clock (not applicable for CMD line)
Data
Available timing
window for host to
sample data from card
Table 58. SDIO Bus Timing Parameters (DDR50 Mode)
Parameter
Symbol
Minimum
Maximum
Unit
Comments
Input CMD
Input setup time
tISU
6
–
ns
CCARD < 10pF (1 Card)
Input hold time
tIH
0.8
–
ns
CCARD < 10pF (1 Card)
Output delay time
tODLY
–
13.7
ns
CCARD < 30pF (1 Card)
Output hold time
tOH
1.5
–
ns
CCARD < 15pF (1 Card)
Output CMD
Input DAT
Input setup time
tISU2x
3
–
ns
CCARD < 10pF (1 Card)
Input hold time
tIH2x
0.8
–
ns
CCARD < 10pF (1 Card)
Output delay time
tODLY2x
–
7.5
ns
CCARD < 25pF (1 Card)
Output hold time
tODLY2x
1.5
–
ns
CCARD < 15pF (1 Card)
Output DAT
Document Number: 002-20538 Rev. *B
Page 129 of 144
ADVANCE
CYW4356/CG8674
17.2 PCI Express Interface Parameters
Table 59. PCI Express Interface Parameters
Parameter
Symbol
Comments
Minimum
Typical
Maximum
Unit
Generala
Baud rate
BPS
–
Reference clock peak-to-peak
differential amplitudeb
Vref
LVPECL
–
5
–
Gbaud
0.95
–
–
V
Differential termination
ZRX-DIFF-DC
Differential termination
80
100
120
Ω
DC impedance
ZRX-DC
DC common-mode
impedance
40
50
60
Ω
Powered down termination
(POS)
ZRX-HIGH-IMP-DC-POS
Power-down or RESET
high impedance
100k
–
–
Ω
Powered down termination
(NEG)
ZRX-HIGH-IMP-DC-NEG
Power-down or RESET
high impedance
1k
–
–
Ω
Input voltage
VRX-DIFFp-p
AC coupled, differential
p-p
175
–
–
mV
Jitter tolerance
TRX-EYE
Minimum receiver eye
width
0.4
–
–
UI
Differential return loss
RLRX-DIFF
Differential return loss
10
–
–
dB
Common-mode return loss
RLRX-CM
Common-mode return
loss
6
–
–
dB
Unexpected electrical idle enter TRX-IDEL-DET-DIFFdetect threshold integration time ENTERTIME
An unexpected electrical
idle must be recognized
no longer than this time to
signal an unexpected idle
condition.
–
–
10
ms
Signal detect threshold
VRX-IDLE-DET-DIFFp-p
Electrical idle detect
threshold
65
–
175
mV
Output voltage
VTX-DIFFp-p
Differential p-p, programmable in 16 steps
0.8
–
1200
mV
Output voltage rise time
VTX-RISE
20% to 80%
0.125
(2.5 GT/s)
0.15
(5 GT/s)
–
–
UI
Output voltage fall time
VTX-FALL
80% to 20%
0.125
(2.5 GT/s)
0.15
(5 GT/s)
–
–
UI
RX detection voltage swing
VTX-RCV-DETECT
The amount of voltage
change allowed during
receiver detection.
–
–
600
mV
TX AC peak common-mode
voltage
(5 GT/s)
VTX-CM-AC-PP
TX AC common mode
voltage (5 GT/s)
–
–
100
mV
TX AC peak common-mode
voltage
(2.5 GT/s)
VTX-CM-AC-P
TX AC common mode
voltage (2.5 GT/s)
–
–
20
mV
Receiver
Transmitter
Document Number: 002-20538 Rev. *B
Page 130 of 144
ADVANCE
CYW4356/CG8674
Table 59. PCI Express Interface Parameters (Cont.)
Parameter
Symbol
Comments
Minimum
Typical
Maximum
Unit
0
–
100
mV
Absolute delta of DC common- VTX-CM-DC-LINE-DELTA DC offset between D+
model voltage between D+ and
and DD-
0
–
25
mV
Electrical idle differential peak
output voltage
VTX-IDLE-DIFF-AC-p
Peak-to-peak voltage
0
–
20
mV
TX short circuit
current
ITX-SHORT
Current limit when TX
output is shorted to
ground.
–
–
90
mA
DC differential TX termination
ZTX-DIFF-DC
Low impedance defined
during signaling
(parameter is captured for
5.0 GHz by RLTX-DIFF)
80
–
120
Ω
Differential
return loss
RLTX-DIFF
Differential
return loss
10 (min.)
for 0.05:
1.25 GHz
–
–
dB
Common-mode
return loss
RLTX-CM
Common-mode return
loss
6
–
–
dB
TX eye width
TTX-EYE
Minimum TX
eye width
0.75
–
–
UI
Absolute delta of DC common- VTX-CM-DC-ACTIVEmodel voltage during L0 and
IDLE-DELTA
electrical idle
Absolute delta of DC
common-model voltage
during L0 and electrical
idle.
a. For out-of-band PCIe signal specifications, refer to Table 33.
b. The reference clock inputs comply with the requirements of the PCI Express CEM v2.0 Specification (see References).
17.3 JTAG Timing
Table 60. JTAG Timing Characteristics
Period
Output
Maximum
Output
Minimum
TCK
125 ns
–
–
–
–
TDI
–
–
–
20 ns
0 ns
TMS
–
–
–
20 ns
0 ns
TDO
–
100 ns
0 ns
–
–
250 ns
–
–
–
–
Signal Name
JTAG_TRST
Document Number: 002-20538 Rev. *B
Setup
Hold
Page 131 of 144
ADVANCE
CYW4356/CG8674
18. Power-Up Sequence and Timing
18.1 Sequencing of Reset and Regulator Control Signals
The CYW4356/CG8674 has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth,
WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper
sequencing of the signals for various operational states (see Figure 43, Figure 44, and Figure 45 and Figure 46). The timing values
indicated are minimum required values; longer delays are also acceptable.
18.1.1 Description of Control Signals
■
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the
internal CYW4356/CG8674 regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset.
When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are
disabled.
■
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal CYW4356/CG8674 regulators. If both
the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the
BT section is in reset.
Note:
■
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles (where
both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then
there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.
■
The CYW4356/CG8674 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms
after VDDC and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before
initiating SDIO accesses.
■
VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO
should NOT be present first or be held high before VBAT is high.
18.1.2 Control Signal Timing Diagrams
Figure 43. WLAN = ON, Bluetooth = ON
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high
before VBAT is high.
Document Number: 002-20538 Rev. *B
Page 132 of 144
ADVANCE
CYW4356/CG8674
Figure 44. WLAN = OFF, Bluetooth = OFF
32.678 kHz
Sleep Clock
VBAT*
VDDIO
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.
Figure 45. WLAN = ON, Bluetooth = OFF
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.
Document Number: 002-20538 Rev. *B
Page 133 of 144
ADVANCE
CYW4356/CG8674
Figure 46. WLAN = OFF, Bluetooth = ON
32.678 kHz
Sleep Clock
VBAT*
90% of VH
VDDIO
~ 2 Sleep cycles
WL_REG_ON
BT_REG_ON
*Notes:
1. VBAT should not rise 10%–90% faster than 40 microseconds.
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high .
Document Number: 002-20538 Rev. *B
Page 134 of 144
ADVANCE
CYW4356/CG8674
18.1.3 Power-up Sequences
Figure 47 shows the WLAN boot-up sequence from power-up to firmware download.
Figure 47. WLAN Boot-Up Sequence
VBAT*
VDDIO
WL_REG_ON