0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FM24CL64B-GA

FM24CL64B-GA

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    SOICN-8_4.9X3.9MM

  • 描述:

    IC FRAM 64KBIT I2C 1MHZ 8SOIC

  • 数据手册
  • 价格&库存
FM24CL64B-GA 数据手册
FM24CL64B 64-Kbit (8 K × 8) Serial (I2C) Automotive F-RAM 64-Kbit (8 K × 8) Serial (I2C) Automotive F-RAM Features Functional Description ■ 64-Kbit ferroelectric random access memory (F-RAM) logically organized as 8 K × 8 13 ❐ High-endurance 10 trillion (10 ) read/writes ❐ 121-year data retention (See the Data Retention and Endurance table) ❐ NoDelay™ writes ❐ Advanced high-reliability ferroelectric process The FM24CL64B is a 64-Kbit nonvolatile memory employing an advanced ferroelectric process. A ferroelectric random access memory or F-RAM is nonvolatile and performs reads and writes similar to a RAM. It provides reliable data retention for 121 years while eliminating the complexities, overhead, and system-level reliability problems caused by EEPROM and other nonvolatile memories. ■ Fast 2-wire Serial interface (I2C) ❐ Up to 1-MHz frequency 2 ❐ Direct hardware replacement for serial (I C) EEPROM ❐ Supports legacy timings for 100 kHz and 400 kHz ■ Low power consumption ❐ 120 A (typ) active current at 100 kHz ❐ 6 A (typ) standby current ■ Voltage operation: VDD = 3.0 V to 3.6 V ■ Automotive-E temperature: –40 C to +125 C Unlike EEPROM, the FM24CL64B performs write operations at bus speed. No write delays are incurred. Data is written to the memory array immediately after each byte is successfully transferred to the device. The next bus cycle can commence without the need for data polling. In addition, the product offers substantial write endurance compared with other nonvolatile memories. Also, F-RAM exhibits much lower power during writes than EEPROM since write operations do not require an internally elevated power supply voltage for write circuits. The FM24CL64B is capable of supporting 1013 read/write cycles, or 10 million times more write cycles than EEPROM. ■ 8-pin small outline integrated circuit (SOIC) package ■ AEC Q100 Grade 1 compliant ■ Restriction of hazardous substances (RoHS) compliant These capabilities make the FM24CL64B ideal for nonvolatile memory applications, requiring frequent or rapid writes. Examples range from data logging, where the number of write cycles may be critical, to demanding industrial controls where the long write time of EEPROM can cause data loss. The combination of features allows more frequent data writing with less overhead for the system. The FM24CL64B provides substantial benefits to users of serial (I2C) EEPROM as a hardware drop-in replacement. The device specifications are guaranteed over an automotive-e temperature range of –40 C to +125 C. For a complete list of related resources, click here. Logic Block Diagram Address Latch Counter 8Kx8 F-RAM Array 13 8 SDA Serial to Parallel Converter Data Latch 8 SCL WP Control Logic A2-A0 Cypress Semiconductor Corporation Document Number: 001-84457 Rev. *F • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised August 14, 2015 FM24CL64B Contents Pinout ................................................................................ 3 Pin Definitions .................................................................. 3 Functional Overview ........................................................ 4 Memory Architecture ........................................................ 4 I2C Interface ...................................................................... 4 STOP Condition (P) ..................................................... 4 START Condition (S) ................................................... 4 Data/Address Transfer ................................................ 5 Acknowledge / No-acknowledge ................................. 5 Slave Device Address ................................................. 6 Addressing Overview .................................................. 6 Data Transfer .............................................................. 6 Memory Operation ............................................................ 6 Write Operation ........................................................... 6 Read Operation ........................................................... 7 Maximum Ratings ............................................................. 9 Operating Range ............................................................... 9 DC Electrical Characteristics .......................................... 9 Data Retention and Endurance ..................................... 10 Example of an F-RAM Life Time in an AEC-Q100 Automotive Application ..................... 10 Document Number: 001-84457 Rev. *F Capacitance .................................................................... 10 Thermal Resistance ........................................................ 10 AC Test Loads and Waveforms ..................................... 11 AC Test Conditions ........................................................ 11 AC Switching Characteristics ....................................... 12 Power Cycle Timing ....................................................... 13 Ordering Information ...................................................... 14 Ordering Code Definitions ......................................... 14 Package Diagram ............................................................ 15 Acronyms ........................................................................ 16 Document Conventions ................................................. 16 Units of Measure ....................................................... 16 Document History Page ................................................. 17 Sales, Solutions, and Legal Information ...................... 18 Worldwide Sales and Design Support ....................... 18 Products .................................................................... 18 PSoC® Solutions ...................................................... 18 Cypress Developer Community ................................. 18 Technical Support ..................................................... 18 Page 2 of 18 FM24CL64B Pinout Figure 1. 8-pin SOIC pinout A0 1 A1 2 A2 3 VSS 4 Top View not to scale 8 VDD 7 WP 6 SCL 5 SDA Pin Definitions Pin Name I/O Type Description A2-A0 Input Device Select Address 2-0. These pins are used to select one of up to 8 devices of the same type on the same I2C bus. To select the device, the address value on the three pins must match the corresponding bits contained in the slave address. The address pins are pulled down internally. SDA Input/Output Serial Data/Address. This is a bi-directional pin for the I2C interface. It is open-drain and is intended to be wire-AND'd with other devices on the I2C bus. The input buffer incorporates a Schmitt trigger for noise immunity and the output driver includes slope control for falling edges. An external pull-up resistor is required. SCL Input Serial Clock. The serial clock pin for the I2C interface. Data is clocked out of the device on the falling edge, and into the device on the rising edge. The SCL input also incorporates a Schmitt trigger input for noise immunity. WP Input Write Protect. When tied to VDD, addresses in the entire memory map will be write-protected. When WP is connected to ground, all addresses are write enabled. This pin is pulled down internally. VSS Power supply Ground for the device. Must be connected to the ground of the system. VDD Power supply Power supply input to the device. Document Number: 001-84457 Rev. *F Page 3 of 18 FM24CL64B Functional Overview a new bus transaction can be shifted into the device, a write operation is complete. This is explained in more detail in the interface section. The FM24CL64B is a serial F-RAM memory. The memory array is logically organized as 8,192 × 8 bits and is accessed using an industry-standard I2C interface. The functional operation of the F-RAM is similar to serial (I2C) EEPROM. The major difference between the FM24CL64B and a serial (I2C) EEPROM with the same pinout is the F-RAM's superior write performance, high endurance, and low power consumption. I2C Interface The FM24CL64B employs a bi-directional I2C bus protocol using few pins or board space. Figure 2 illustrates a typical system configuration using the FM24CL64B in a microcontroller-based system. The industry standard I2C bus is familiar to many users but is described in this section. Memory Architecture By convention, any device that is sending data onto the bus is the transmitter while the target device for this data is the receiver. The device that is controlling the bus is the master. The master is responsible for generating the clock signal for all operations. Any device on the bus that is being controlled is a slave. The FM24CL64B is always a slave device. When accessing the FM24CL64B, the user addresses 8K locations of eight data bits each. These eight data bits are shifted in or out serially. The addresses are accessed using the I2C protocol, which includes a slave address (to distinguish other non-memory devices) and a two-byte address. The upper 3 bits of the address range are 'don't care' values. The complete address of 13 bits specifies each byte address uniquely. The bus protocol is controlled by transition states in the SDA and SCL signals. There are four conditions including START, STOP, data bit, or acknowledge. Figure 3 and Figure 4 illustrates the signal conditions that specify the four states. Detailed timing diagrams are shown in the electrical specifications section. The access time for the memory operation is essentially zero, beyond the time needed for the serial protocol. That is, the memory is read or written at the speed of the I2C bus. Unlike a serial (I2C) EEPROM, it is not necessary to poll the device for a ready condition because writes occur at bus speed. By the time Figure 2. System Configuration using Serial (I2C) nvSRAM V DD RPmin = (VDD - VOLmax) / IOL RPmax = tr / (0.8473 * Cb) SDA Microcontroller SCL V DD V DD A0 SCL A0 SCL A0 SCL A1 SDA A1 SDA A1 SDA WP A2 WP A2 #0 #1 A2 WP #7 STOP Condition (P) START Condition (S) A STOP condition is indicated when the bus master drives SDA from LOW to HIGH while the SCL signal is HIGH. All operations using the FM24CL64B should end with a STOP condition. If an operation is in progress when a STOP is asserted, the operation will be aborted. The master must have control of SDA in order to assert a STOP condition. A START condition is indicated when the bus master drives SDA from HIGH to LOW while the SCL signal is HIGH. All commands should be preceded by a START condition. An operation in progress can be aborted by asserting a START condition at any time. Aborting an operation using the START condition will ready the FM24CL64B for a new operation. If during operation the power supply drops below the specified VDD minimum, the system should issue a START condition prior to performing another operation. Document Number: 001-84457 Rev. *F Page 4 of 18 FM24CL64B Figure 3. START and STOP Conditions full pagewidth SDA SDA SCL SCL S P STOP Condition START Condition Figure 4. Data Transfer on the I2C Bus handbook, full pagewidth P SDA Acknowledgement signal from slave MSB SCL S 1 2 7 9 8 1 Acknowledgement signal from receiver 2 3 4-8 ACK START condition 9 ACK All data transfers (including addresses) take place while the SCL signal is HIGH. Except under the three conditions described above, the SDA signal should not change while SCL is HIGH. Acknowledge / No-acknowledge The acknowledge takes place after the 8th data bit has been transferred in any transaction. During this state the transmitter should release the SDA bus to allow the receiver to drive it. The receiver drives the SDA signal LOW to acknowledge receipt of the byte. If the receiver does not drive SDA LOW, the condition is a no-acknowledge and the operation is aborted. S or P STOP or START condition Byte complete Data/Address Transfer S The receiver would fail to acknowledge for two distinct reasons. First is that a byte transfer fails. In this case, the no-acknowledge ceases the current operation so that the device can be addressed again. This allows the last byte to be recovered in the event of a communication error. Second and most common, the receiver does not acknowledge to deliberately end an operation. For example, during a read operation, the FM24CL64B will continue to place data onto the bus as long as the receiver sends acknowledges (and clocks). When a read operation is complete and no more data is needed, the receiver must not acknowledge the last byte. If the receiver acknowledges the last byte, this will cause the FM24CL64B to attempt to drive the bus on the next clock while the master is sending a new command such as STOP. Figure 5. Acknowledge on the I2C Bus handbook, full pagewidth DATA OUTPUT BY MASTER No Acknowledge DATA OUTPUT BY SLAVE Acknowledge SCL FROM MASTER 1 2 8 9 S START Condition Document Number: 001-84457 Rev. *F Clock pulse for acknowledgement Page 5 of 18 FM24CL64B Slave Device Address sequential byte. If the acknowledge is not sent, the FM24CL64B will end the read operation. For a write operation, the FM24CL64B will accept 8 data bits from the master then send an acknowledge. All data transfer occurs MSB (most significant bit) first. The first byte that the FM24CL64B expects after a START condition is the slave address. As shown in Figure 6, the slave address contains the device type or slave ID, the device select address bits, and a bit that specifies if the transaction is a read or a write. Memory Operation Bits 7-4 are the device type (slave ID) and should be set to 1010b for the FM24CL64B. These bits allow other function types to reside on the I2C bus within an identical address range. Bits 3-1 are the device select address bits. They must match the corresponding value on the external address pins to select the device. Up to eight FM24CL64B devices can reside on the same I2C bus by assigning a different address to each. Bit 0 is the read/write bit (R/W). R/W = ‘1’ indicates a read operation and R/W = ‘0’ indicates a write operation. The FM24CL64B is designed to operate in a manner very similar to other I2C interface memory products. The major differences result from the higher performance write capability of F-RAM technology. These improvements result in some differences between the FM24CL64B and a similar configuration EEPROM during writes. The complete operation for both writes and reads is explained below. Write Operation Figure 6. Memory Slave Device Address MSB handbook, halfpage 1 All writes begin with a slave address, then a memory address. The bus master indicates a write operation by setting the LSB of the slave address (R/W bit) to a '0'. After addressing, the bus master sends each byte of data to the memory and the memory generates an acknowledge condition. Any number of sequential bytes may be written. If the end of the address range is reached internally, the address counter will wrap from 1FFFh to 0000h. LSB 0 1 Slave ID 0 A2 A1 A0 R/W Device Select Addressing Overview Unlike other nonvolatile memory technologies, there is no effective write delay with F-RAM. Since the read and write access times of the underlying memory are the same, the user experiences no delay through the bus. The entire memory cycle occurs in less time than a single bus clock. Therefore, any operation including read or write can occur immediately following a write. Acknowledge polling, a technique used with EEPROMs to determine if a write is complete is unnecessary and will always return a ready condition. After the FM24CL64B (as receiver) acknowledges the slave address, the master can place the memory address on the bus for a write operation. The address requires two bytes. The complete 13-bit address is latched internally. Each access causes the latched address value to be incremented automatically. The current address is the value that is held in the latch; either a newly written value or the address following the last access. The current address will be held for as long as power remains or until a new value is written. Reads always use the current address. A random read address can be loaded by beginning a write operation as explained below. Internally, an actual memory write occurs after the 8th data bit is transferred. It will be complete before the acknowledge is sent. Therefore, if the user desires to abort a write without altering the memory contents, this should be done using START or STOP condition prior to the 8th data bit. The FM24CL64B uses no page buffering. After transmission of each data byte, just prior to the acknowledge, the FM24CL64B increments the internal address latch. This allows the next sequential byte to be accessed with no additional addressing. After the last address (1FFFh) is reached, the address latch will roll over to 0000h. There is no limit to the number of bytes that can be accessed with a single read or write operation. The memory array can be write-protected using the WP pin. Setting the WP pin to a HIGH condition (VDD) will write-protect all addresses. The FM24CL64B will not acknowledge data bytes that are written to protected addresses. In addition, the address counter will not increment if writes are attempted to these addresses. Setting WP to a LOW state (VSS) will disable the write protect. WP is pulled down internally. Data Transfer After the address bytes have been transmitted, data transfer between the bus master and the FM24CL64B can begin. For a read operation the FM24CL64B will place 8 data bits on the bus then wait for an acknowledge from the master. If the acknowledge occurs, the FM24CL64B will transfer the next Figure 7 and Figure 8 below illustrate a single-byte and multiple-byte write cycles. Figure 7. Single-Byte Write By Master Start S Stop Address & Data Slave Address 0 A Address MSB A Address LSB A Data Byte A P By F-RAM Acknowledge Document Number: 001-84457 Rev. *F Page 6 of 18 FM24CL64B Figure 8. Multi-Byte Write Start Stop Address & Data By Master S Slave Address 0 A Address MSB A Address LSB A Data Byte A Data Byte A P By F-RAM Acknowledge Read Operation There are two basic types of read operations. They are current address read and selective address read. In a current address read, the FM24CL64B uses the internal address latch to supply the address. In a selective read, the user performs a procedure to set the address to a specific value. Current Address & Sequential Read As mentioned above the FM24CL64B uses an internal latch to supply the address for a read operation. A current address read uses the existing value in the address latch as a starting place for the read operation. The system reads from the address immediately following that of the last operation. To perform a current address read, the bus master supplies a slave address with the LSB set to a '1'. This indicates that a read operation is requested. After receiving the complete slave address, the FM24CL64B will begin shifting out data from the current address on the next clock. The current address is the value held in the internal address latch. Beginning with the current address, the bus master can read any number of bytes. Thus, a sequential read is simply a current address read with multiple byte transfers. After each byte the internal address counter will be incremented. Note Each time the bus master acknowledges a byte, this indicates that the FM24CL64B should read out the next sequential byte. There are four ways to properly terminate a read operation. Failing to properly terminate the read will most likely create a bus contention as the FM24CL64B attempts to read out additional data onto the bus. The four valid methods are: 1. The bus master issues a no-acknowledge in the 9th clock cycle and a STOP in the 10th clock cycle. This is illustrated in the diagrams below. This is preferred. 2. The bus master issues a no-acknowledge in the 9th clock cycle and a START in the 10th. 3. The bus master issues a STOP in the 9th clock cycle. 4. The bus master issues a START in the 9th clock cycle. If the internal address reaches 1FFFh, it will wrap around to 0000h on the next read cycle. Figure 9 and Figure 10 below show the proper operation for current address reads. Figure 9. Current Address Read By Master Start No Acknowledge Address Stop S Slave Address By F-RAM 1 A Acknowledge Data Byte 1 P Data Figure 10. Sequential Read By Master Start Address No Acknowledge Acknowledge Stop S Slave Address By F-RAM Document Number: 001-84457 Rev. *F 1 A Acknowledge Data Byte A Data Byte 1 P Data Page 7 of 18 FM24CL64B Selective (Random) Read There is a simple technique that allows a user to select a random address location as the starting point for a read operation. This involves using the first three bytes of a write operation to set the internal address followed by subsequent read operations. To perform a selective read, the bus master sends out the slave address with the LSB (R/W) set to 0. This specifies a write operation. According to the write protocol, the bus master then sends the address bytes that are loaded into the internal address latch. After the FM24CL64B acknowledges the address, the bus master issues a START condition. This simultaneously aborts the write operation and allows the read command to be issued with the slave address LSB set to a '1'. The operation is now a current address read. Figure 11. Selective (Random) Read Start Address By Master Start No Acknowledge Address Stop S Slave Address 0 A Address MSB A Address LSB By F-RAM Acknowledge Document Number: 001-84457 Rev. *F A S Slave Address 1 A Data Byte 1 P Data Page 8 of 18 FM24CL64B Maximum Ratings Package power dissipation capability (TA = 25 °C) ................................................. 1.0 W Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Surface mount lead soldering temperature (10 seconds) ....................................... +260 C Storage temperature ................................ –55 C to +150 C Electrostatic Discharge Voltage Human Body Model (AEC-Q100-002 Rev. E) ..................... 4 kV Maximum accumulated storage time At 150 °C ambient temperature ................................. 1000 h At 125 °C ambient temperature ................................11000 h At 85 °C ambient temperature .............................. 121 Years Ambient temperature with power applied ................................... –55 °C to +125 °C Supply voltage on VDD relative to VSS .........–1.0 V to +4.5 V Input voltage .......... –1.0 V to + 4.5 V and VIN < VDD + 1.0 V DC voltage applied to outputs in High-Z state .................................... –0.5 V to VDD + 0.5 V Transient voltage (< 20 ns) on any pin to ground potential ................. –2.0 V to VDD + 2.0 V Charged Device Model (AEC-Q100-011 Rev. B) ............. 1.25 kV Machine Model (AEC-Q100-003 Rev. E) ............................ 300 V Latch-up current .................................................... > 140 mA * Exception: The “VIN < VDD + 1.0 V” restriction does not apply to the SCL and SDA inputs. Operating Range Range Ambient Temperature (TA) VDD Automotive-E –40 C to +125 C 3.0 V to 3.6 V DC Electrical Characteristics Over the Operating Range Parameter Description VDD Power supply IDD Average VDD current Test Conditions SCL toggling between VDD – 0.2 V and VSS, other inputs VSS or VDD – 0.2 V. Min Typ [1] Max Unit 3.0 3.3 3.6 V fSCL = 100 kHz – – 120 A fSCL = 400 kHz – – 200 A fSCL = 1 MHz – – 340 A SCL = SDA = VDD. All TA = 85 C other inputs VSS or TA = 125 C VDD. Stop command issued. – – 6 A – – 20 A Input leakage current (Except WP and A2-A0) VSS < VIN < VDD –1 – +1 A Input leakage current (for WP and A2-A0) VSS < VIN < VDD –1 – +100 A ILO Output leakage current VSS < VIN < VDD –1 – +1 A VIH Input HIGH voltage 0.75 × VDD – VDD + 0.3 V VIL Input LOW voltage – 0.3 – 0.25 × VDD V VOL Output LOW voltage IOL = 3 mA – – 0.4 V Rin[2] Input resistance (WP, A2-A0) For VIN = VIL (Max) 40 – – k 1 – – M VHYS[3] Input hysteresis 0.05 × VDD – – V ISB ILI Standby current For VIN = VIH (Min) Notes 1. Typical values are at 25 °C, VDD = VDD (typ). Not 100% tested. 2. The input pull-down circuit is strong (40 k) when the input voltage is below VIL and weak (1 M) when the input voltage is above VIH. 3. This parameter is guaranteed by design and is not tested. Document Number: 001-84457 Rev. *F Page 9 of 18 FM24CL64B Data Retention and Endurance Parameter TDR NVC Description Test condition TA = 125 C Data retention Endurance Min Max Unit 11000 – Hours TA = 105 C 11 – Years TA = 85 C 121 – Years Over Operating Temperature 1013 – Cycles Example of an F-RAM Life Time in an AEC-Q100 Automotive Application An application does not operate under a steady temperature for the entire usage life time of the application. Instead, it is often expected to operate in multiple temperature environments throughout the application’s usage life time. Accordingly, the retention specification for F-RAM in applications often needs to be calculated cumulatively. An example calculation for a multi-temperature thermal profiles is given below. Acceleration Factor with respect to Tmax A [4] Temperature T Time Factor t T1 = 125 C T2 = 105 C T3 = 85 C T4 = 55 C LT A = ------------------------ = e L  Tmax  t1 = 0.1 t2 = 0.15 t3 = 0.25 t4 = 0.50 1  Ea  1 --------------------- --- – k  T Tmax Profile Factor P Profile Life Time L (P) 1 P = -------------------------------------------------------t1- -----t2- -----t3- -----t4-  ----- A1 + A2 + A3 + A4 L  P  = P  L  Tmax  8.33 > 10.46 Years A1 = 1 A2 = 8.67 A3 = 95.68 A4 = 6074.80 Capacitance Parameter [5] Description CO Output pin capacitance (SDA) CI Input pin capacitance Test Conditions Max Unit 8 pF 6 pF TA = 25 C, f = 1 MHz, VDD = VDD(typ) Thermal Resistance Parameter [5] JA JC Description Thermal resistance (junction to ambient) Thermal resistance (junction to case) Test Conditions 8-pin SOIC Unit Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA / JESD51. 147 C/W 47 C/W Notes 4. Where k is the Boltzmann constant 8.617 × 10-5 eV/K, Tmax is the highest temperature specified for the product, and T is any temperature within the F-RAM product specification. All temperatures are in Kelvin in the equation. 5. This parameter is periodically sampled and not 100% tested. Document Number: 001-84457 Rev. *F Page 10 of 18 FM24CL64B AC Test Loads and Waveforms Figure 12. AC Test Loads and Waveforms 3.6 V 1.8 k OUTPUT 100 pF AC Test Conditions Input pulse levels .................................10% and 90% of VDD Input rise and fall times .................................................10 ns Input and output timing reference levels ................0.5 × VDD Output load capacitance ............................................ 100 pF Document Number: 001-84457 Rev. *F Page 11 of 18 FM24CL64B AC Switching Characteristics Over the Operating Range Alt. Parameter[6] Parameter Description fSCL[7] SCL clock frequency Min Max Min Max Min Max Unit – 0.1 – 0.4 – 1.0 MHz tSU; STA Start condition setup for repeated Start 4.7 – 0.6 – 0.25 – s tHD;STA Start condition hold time 4.0 – 0.6 – 0.25 – s tLOW Clock LOW period 4.7 – 1.3 – 0.6 – s tHIGH Clock HIGH period 4.0 – 0.6 – 0.4 – s tSU;DAT tSU;DATA Data in setup 250 – 100 – 100 – ns tHD;DAT tHD;DATA Data in hold 0 – 0 – 0 – ns Data output hold (from SCL @ VIL) 0 – 0 – 0 – ns – 1000 – 300 – 300 ns tDH [8] tr Input rise time tF[8] tf Input fall time tR – 300 – 300 – 100 ns 4.0 – 0.6 – 0.25 – s SCL LOW to SDA Data Out Valid – 3 – 0.9 – 0.55 s tBUF Bus free before new transmission 4.7 – 1.3 – 0.5 – s tSP Noise suppression time constant on SCL, SDA – 50 – 50 – 50 ns STOP condition setup tSU;STO tVD;DATA tAA Figure 13. Read Bus Timing Diagram tHIGH tR ` tF tSP tLOW tSP SCL tSU:SDA 1/fSCL tBUF tHD:DAT tSU:DAT SDA tDH tAA Stop Start Start Acknowledge Figure 14. Write Bus Timing Diagram tHD:DAT SCL tHD:STA tSU:STO tSU:DAT tAA SDA Start Stop Start Acknowledge Notes 6. Test conditions assume signal transition time of 10 ns or less, timing reference levels of VDD/2, input pulse levels of 0 to VDD(typ), and output loading of the specified IOL and load capacitance shown in Figure 12. 7. The speed-related specifications are guaranteed characteristic points along a continuous curve of operation from DC to fSCL (max). 8. These parameters are guaranteed by design and are not tested. Document Number: 001-84457 Rev. *F Page 12 of 18 FM24CL64B Power Cycle Timing Over the Operating Range Parameter Description Min Max Unit tPU Power-up VDD(min) to first access (START condition) 1 – ms tPD Last access (STOP condition) to power-down (VDD(min)) 0 – µs tVR [9, 10] VDD power-up ramp rate 30 – µs/V tVF [9, 10] VDD power-down ramp rate 20 – µs/V VDD ~ ~ Figure 15. Power Cycle Timing VDD(min) tVR SDA I2 C START tVF tPD ~ ~ tPU VDD(min) I2 C STOP Note 9. Slope measured at any point on the VDD waveform. 10. Guaranteed by design. Document Number: 001-84457 Rev. *F Page 13 of 18 FM24CL64B Ordering Information Package Diagram Ordering Code FM24CL64B-GA 51-85066 Package Type 8-pin SOIC Operating Range Automotive-E FM24CL64B-GATR All these parts are Pb-free. Contact your local Cypress sales representative for availability of these parts. Ordering Code Definitions FM 24 CL 64 B - G A TR Option: Blank = Standard; T = Tape and Reel Temperature Range: A = Automotive-E (–40 C to +125 C) Package Type: G = 8-pin SOIC Die Revision = B Density: 64 = 64-kbit Voltage: CL = 3.0 V to 3.6 V I2C F-RAM Cypress Document Number: 001-84457 Rev. *F Page 14 of 18 FM24CL64B Package Diagram Figure 16. 8-pin SOIC (150 Mils) Package Outline, 51-85066 51-85066 *G Document Number: 001-84457 Rev. *F Page 15 of 18 FM24CL64B Acronyms Acronym Document Conventions Description Units of Measure ACK Acknowledge CMOS Complementary Metal Oxide Semiconductor °C degree Celsius EIA Electronic Industries Alliance Hz hertz I2C Inter-Integrated Circuit Kb 1024 bit I/O Input/Output kHz kilohertz JEDEC Joint Electron Devices Engineering Council k kilohm MHz megahertz M megaohm A microampere s microsecond mA milliampere Symbol Unit of Measure LSB Least Significant Bit MSB Most Significant Bit NACK No Acknowledge RoHS Restriction of Hazardous Substances R/W Read/Write ms millisecond SCL Serial Clock Line ns nanosecond SDA Serial Data Access  ohm SOIC Small Outline Integrated Circuit % percent WP Write Protect pF picofarad V volt W watt Document Number: 001-84457 Rev. *F Page 16 of 18 FM24CL64B Document History Page Document Title: FM24CL64B, 64-Kbit (8 K × 8) Serial (I2C) Automotive F-RAM Document Number: 001-84457 Rev. ECN No. Submission Date Orig. of Change ** 3902082 02/25/2013 GVCH New spec *A 3924523 03/07/2013 GVCH Changed to Production status. Changed tPU spec value from 10 ms to 1 ms Changed tVF spec value from 100 us/v to 20 us/v *B 3985108 05/07/2013 GVCH Updated SOIC package marking scheme *C 4283424 02/19/2014 GVCH Converted to Cypress standard format Updated Maximum Ratings table - Removed Moisture Sensitivity Level (MSL) - Added junction temperature and latch up current Added Input leakage current (ILI) for WP and A2-A0 Updated Data Retention and Endurance table Added “Example of an F-RAM Life Time in an AEC-Q100 Automotive Application” table Added footnote 4 Added Thermal Resistance table Removed Package Marking Scheme (top mark) Removed Ramtron revision history Completing Sunset Review *D 4740740 04/24/2015 PSR *E 4779534 05/28/2015 GVCH *F 4884976 08/14/2015 Document Number: 001-84457 Rev. *F Description of Change Updated Functional Description: Added “For a complete list of related resources, click here.” at the end. Updated Package Diagram: spec 51-85066 – Changed revision from *F to *G. Updated to new template. Updated Ordering Information: Fixed Typo (Replaced “001-85066” with “51-85066” in “Package Diagram” column). ZSK / PSR Updated Maximum Ratings: Updated ratings of “Storage temperature” (Replaced “+125 °C” with “+150 C”). Removed “Maximum junction temperature”. Added “Maximum accumulated storage time”. Added “Ambient temperature with power applied”. Page 17 of 18 FM24CL64B Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive Clocks & Buffers Interface Lighting & Power Control Memory cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/psoc cypress.com/go/touch USB Controllers Wireless/RF PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training cypress.com/go/memory PSoC Touch Sensing psoc.cypress.com/solutions Technical Support cypress.com/go/support cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2013-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-84457 Rev. *F Revised August 14, 2015 All products and company names mentioned in this document may be the trademarks of their respective holders. Page 18 of 18
FM24CL64B-GA 价格&库存

很抱歉,暂时无法提供与“FM24CL64B-GA”相匹配的价格&库存,您可以联系我们找货

免费人工找货