The following document contains information on Cypress products. The document has the series
name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will
offer these products to new and existing customers with the series name, product name, and
ordering part number with the prefix “CY”.
How to Check the Ordering Part Number
1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click
Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes
For More Information
Please contact your local sales office for additional information about Cypress products and
solutions.
About Cypress
Cypress is the leader in advanced embedded system solutions for the world's most innovative
automotive, industrial, smart home appliances, consumer electronics and medical products.
Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable,
high-performance memories help engineers design differentiated products and get them to market
first. Cypress is committed to providing customers with the best support and development
resources on the planet enabling them to disrupt markets by creating new product categories in
record time. To learn more, go to www.cypress.com.
MB96650 Series
F2MC-16FX 16-bit Microcontroller
MB96650 series is based on Cypress’s advanced F2MC-16FX architecture (16-bit with instruction pipeline for RISC-like performance).
The CPU uses the same instruction set as the established F2MC-16LX family thus allowing for easy migration of F 2MC-16LX
Software to the new F2MC-16FX products. F2MC-16FX product improvements compared to the previous generation include
significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time. For
high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz
operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns going
together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU
voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed.
Features
Technology
Low voltage detection function
0.18m CMOS
Reset is generated when supply voltage falls below
programmable reference voltage
CPU
Code Security
F2MC-16FX CPU
Protects Flash Memory content from unintended read-out
Optimized instruction set for controller applications
(bit, byte, word and long-word data types, 23 different
addressing modes, barrel shift, variety of pointers)
DMA
Automatic transfer function independent of CPU, can be
assigned freely to resources
8-byte instruction queue
Signed multiply (16-bit 16-bit) and divide (32-bit/16-bit)
instructions available
Interrupts
System clock
Fast Interrupt processing
On-chip PLL clock multiplier (1 to 8, 1 when PLL stop)
8 programmable priority levels
4MHz to 8MHz crystal oscillator
Non-Maskable Interrupt (NMI)
(maximum frequency when using ceramic resonator
depends on Q-factor)
Up to 8MHz external clock for devices with fast clock input
feature
100kHz/2MHz internal RC clock for quick and safe startup,
clock stop detection function, watchdog
Clock source selectable from mainclock oscillator, subclock
oscillator and on-chip RC oscillator, independently for CPU
and 2 clock domains of peripherals
The subclock oscillator is enabled by the Boot ROM program
controlled by a configuration marker after a Power or
External reset
Low Power Consumption - 13 operating modes (different
Run, Sleep, Timer, Stop modes)
Bit rates up to 1Mbps
32 message objects
Each message object has its own identifier mask
Programmable FIFO mode (concatenation of message
objects)
Maskable interrupt
Disabled Automatic Retransmission mode for Time Triggered
CAN applications
Programmable loop-back mode for self-test operation
USART
On-chip voltage regulator
Internal voltage regulator supports a wide MCU supply
voltage range (Min=2.7V), offering low power consumption
Document Number: 002-04707 Rev. *B
Supports CAN protocol version 2.0 part A and B
ISO16845 certified
32.768kHz subsystem quartz clock
Cypress Semiconductor Corporation
CAN
•
Full duplex USARTs (SCI/LIN)
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised January 9, 2018
MB96650 Series
Wide range of baud rate settings using a dedicated reload
timer
Special synchronous options for adapting to different
synchronous serial protocols
LIN functionality working either as master or slave LIN device
Extended support for LIN-Protocol to reduce interrupt load
Output Compare Units
16-bit wide
Signals an interrupt when a match with Free-running Timer
occurs
A pair of compare registers can be used to generate an
output signal
I2C
Programmable Pulse Generator
Up to 400kbps
16-bit down counter, cycle and duty setting registers
Master and Slave functionality, 7-bit and 10-bit addressing
Can be used as 2 8-bit PPG
A/D converter
Interrupt at trigger, counter borrow and/or duty match
SAR-type
PWM operation and one-shot operation
8/10-bit resolution
Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock
Signals interrupt on conversion end, single conversion mode,
continuous conversion mode,
stop conversion mode, activation by software, external
trigger, reload timers and PPGs
as counter clock or of selected Reload timer underflow as
clock input
Can be triggered by software or reload timer
Can trigger ADC conversion
Range Comparator Function
Timing point capture
Scan Disable Function
Start delay
Source Clock Timers
Quadrature Position/Revolution Counter (QPRC)
Three independent clock timers (23-bit RC clock timer, 23-bit
Main clock timer, 17-bit Sub clock timer)
Hardware Watchdog Timer
Hardware watchdog timer is active after reset
Window function of Watchdog Timer is used to select the
lower window limit of the watchdog interval
Up/down count mode, Phase difference count mode, Count
mode with direction
16-bit position counter
16-bit revolution counter
Two 16-bit compare registers with interrupt
Detection edge of the three external event input pins AIN,
BIN and ZIN is configurable
Reload Timers
16-bit wide
Prescaler with 1/21, 1/22, 1/23, 1/24, 1/25, 1/26 of peripheral
clock frequency
Event count function
Real Time Clock
Operational on main oscillation (4MHz), sub oscillation
(32kHz) or RC oscillation (100kHz/2MHz)
Capable to correct oscillation deviation of Sub clock or RC
oscillator clock (clock calibration)
Free-Running Timers
Read/write accessible second/minute/hour registers
Signals an interrupt on overflow, supports timer clear upon
Can signal interrupts every half
match with Output Compare (0, 4)
Prescaler with 1, 1/21, 1/22, 1/23, 1/24, 1/25, 1/26, 1/27, 1/28 of
second/second/minute/hour/day
Internal clock divider and prescaler provide exact 1s clock
peripheral clock frequency
External Interrupts
Input Capture Units
Edge or Level sensitive
16-bit wide
Interrupt mask bit per channel
Signals an interrupt upon external event
Each available CAN channel RX has an external interrupt for
Rising edge, Falling edge or Both (rising & falling) edges
sensitive
wake-up
Selected USART channels SIN have an external interrupt for
wake-up
Document Number: 002-04707 Rev. *B
Page 2 of 66
MB96650 Series
Non Maskable Interrupt
Flash Memory
Disabled after reset, can be enabled by Boot-ROM
Dual operation flash allowing reading of one Flash bank
depending on ROM configuration block
Once enabled, can not be disabled other than by reset
High or Low level sensitive
while programming or erasing the other bank
Command sequencer for automatic execution of
programming algorithm and for supporting DMA for
programming of the Flash Memory
Pin shared with external interrupt 0
Supports automatic programming, Embedded Algorithm
I/O Ports
Write/Erase/Erase-Suspend/Resume commands
Most of the external pins can be used as general purpose I/O
A flag indicating completion of the automatic algorithm
All push-pull outputs (except when used as I2C SDA/SCL
Erase can be performed on each sector individually
line)
Sector protection
Bit-wise programmable as input/output or peripheral signal
Flash Security feature to protect the content of the Flash
Bit-wise programmable input enable
Low voltage detection during Flash erase or write
One input level per GPIO-pin (either Automotive or CMOS
hysteresis)
Bit-wise programmable pull-up resistor
Built-in On Chip Debugger (OCD)
One-wire debug tool interface
Break function:
Hardware
-Software
break: 6 points (shared with code event)
break: 4096 points
Event function
Code
event: 6 points (shared with hardware break)
event: 6 points
Event sequencer: 2 levels + reset
-Data
Execution time measurement function
Trace function: 42 branches
Security function
Document Number: 002-04707 Rev. *B
Page 3 of 66
MB96650 Series
Contents
1. Product Lineup .................................................................................................................................................................. 5
2. Block Diagram ................................................................................................................................................................... 6
3. Pin Assignment ................................................................................................................................................................. 7
4. Pin Description .................................................................................................................................................................. 8
5. Pin Circuit Type ............................................................................................................................................................... 10
6. I/O Circuit Type................................................................................................................................................................ 14
7. Memory Map .................................................................................................................................................................... 19
8. Ramstart Addresses ....................................................................................................................................................... 20
9. User ROM Memory Map for Flash Devices ................................................................................................................... 21
10. Serial Programming Communication Interface ............................................................................................................ 22
11. Interrupt Vector Table ..................................................................................................................................................... 23
12. Handling Precautions ..................................................................................................................................................... 27
12.1 Precautions for Product Design ................................................................................................................................... 27
12.2 Precautions for Package Mounting .............................................................................................................................. 28
12.3 Precautions for Use Environment ................................................................................................................................ 29
13. Handling Devices ............................................................................................................................................................ 30
14. Electrical Characteristics ............................................................................................................................................... 33
14.1 Absolute Maximum Ratings ......................................................................................................................................... 33
14.2 Recommended Operating Conditions.......................................................................................................................... 35
14.3 DC Characteristics....................................................................................................................................................... 36
14.3.1 Current Rating .............................................................................................................................................................. 36
14.3.2 Pin Characteristics ....................................................................................................................................................... 40
14.4 AC Characteristics ....................................................................................................................................................... 42
14.4.1 Main Clock Input Characteristics .................................................................................................................................. 42
14.4.2 Sub Clock Input Characteristics ................................................................................................................................... 44
14.4.3 Built-in RC Oscillation Characteristics .......................................................................................................................... 45
14.4.4 Internal Clock Timing ................................................................................................................................................... 45
14.4.5 Operating Conditions of PLL ........................................................................................................................................ 46
14.4.6 Reset Input ................................................................................................................................................................... 46
14.4.7 Power-on Reset Timing................................................................................................................................................ 47
14.4.8 USART Timing ............................................................................................................................................................. 48
14.4.9 External Input Timing ................................................................................................................................................... 50
14.4.10 I2C Timing ................................................................................................................................................................. 51
14.5 A/D Converter .............................................................................................................................................................. 52
14.5.1 Electrical Characteristics for the A/D Converter ........................................................................................................... 52
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time ......................................................................................... 53
14.5.3 Definition of A/D Converter Terms ............................................................................................................................... 54
14.6 Low Voltage Detection Function Characteristics ......................................................................................................... 56
14.7 Flash Memory Write/Erase Characteristics ................................................................................................................. 58
15. Example Characteristics ................................................................................................................................................ 59
16. Ordering Information ...................................................................................................................................................... 62
17. Package Dimension ........................................................................................................................................................ 63
18. Major Changes ................................................................................................................................................................ 64
Document History ................................................................................................................................................................. 65
Document Number: 002-04707 Rev. *B
Page 4 of 66
MB96650 Series
1. Product Lineup
Features
Product Type
Subclock
Dual Operation Flash Memory
64.5KB + 32KB
128.5KB + 32KB
256.5KB + 32KB
384.5KB + 32KB
Package
DMA
USART
with automatic LIN-Header
transmission/reception
with 16 byte RX- and
TX-FIFO
I2C
8/10-bit A/D Converter
with Data Buffer
with Range Comparator
with Scan Disable
with ADC Pulse Detection
16-bit Reload Timer (RLT)
16-bit Free-Running Timer (FRT)
MB96650
RAM
10KB
16KB
24KB
28KB
16-bit Input Capture Unit (ICU)
Product Options
R: MCU with CAN
A: MCU without CAN
Yes (only 1ch)
LIN-USART 0
LIN-USART 0 to 2/4/5/7
No
2ch
29ch
No
Yes
Yes
No
5ch
3ch
7ch
(1 channel for LIN-USART)
16-bit Output Compare Unit (OCU)
7ch
8/16-bit Programmable Pulse Generator (PPG)
with Timing point capture
with Start delay
with Ramp
Quadrature Position/Revolution Counter
(QPRC)
16ch (16-bit) / 32ch (8-bit)
Yes
Yes
No
CAN Interface
1ch
External Interrupts (INT)
Non-Maskable Interrupt (NMI)
Real Time Clock (RTC)
Clock Calibration Unit (CAL)
Clock Output Function
16ch
1ch
1ch
99 (Dual clock mode)
101 (Single clock mode)
1ch
2ch
Low Voltage Detection Function
Yes
Hardware Watchdog Timer
On-chip RC-oscillator
On-chip Debugger
Yes
Yes
Yes
I/O Ports
Remark
Flash Memory Product
Subclock can be set by software
MB96F653R, MB96F653A
MB96F655R, MB96F655A
MB96F656R
MB96F657R
LQFP-120: LQM120
4ch
6ch
2ch
I2C 0/1
AN 0 to 28
RLT 0 to 3/6
FRT 0 to 2
ICU 0/1/4 to 7/9
ICU 9 for LIN-USART
OCU 0 to 4/6/7
(OCU 4 for FRT clear)
PPG 0 to 15
QPRC 0/1
CAN 0
32 Message Buffers
INT 0 to 15
Low voltage detection function can
be
disabled by software
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the general I/O port according to your function use.
Document Number: 002-04707 Rev. *B
Page 5 of 66
MB96650 Series
2. Block Diagram
NMI
CKOT0, CKOT0_R, CKOT1, CKOT1_R
CKOTX0, CKOTX1, CKOTX1_R
X0, X1
X0A, X1A
RSTX
MD
Interrupt
Controller
Flash
Memory A
DEBUG I/F
16FX
CPU
OCD
Clock &
Mode Controller
16FX Core Bus (CLKB)
Peripheral
Bus Bridge
Watchdog
2
IC
2ch
AVcc
AVss
AVRH
AVRL
AN0 to AN28
ADTG
8/10-bit ADC
29ch
TIN0 to TIN3
TIN1_R, TIN2_R
TOT0 to TOT3
TOT1_R, TOT2_R
16-bit Reload
Timer
0/1/2/3/6
5ch
FRCK0, FRCK0_R
IN0, IN0_R, IN1, IN1_R
I/O Timer 0
FRT0
ICU 0/1
OCU 0/1/2/3
OUT0 to OUT3
OUT0_R to OUT3_R
FRCK1
IN6, IN7
IN4_R to IN7_R
OUT6, OUT7
I/O Timer 1
FRT1
ICU 4/5/6/7
OCU 4/6/7
Peripheral
Bus Bridge
Peripheral Bus 2 (CLKP2)
SDA0, SDA1
SCL0, SCL1
RAM
CAN
Interface
1ch
USART
6ch
Peripheral Bus 1 (CLKP1)
DMA
Controller
Boot ROM
Voltage
Regulator
RX0
Vcc
Vss
C
TX0
SIN0 to SIN2, SIN4, SIN5, SIN7, SIN5_R, SIN7_R
SOT0 to SOT2, SOT4, SOT5, SOT7, SOT5_R, SOT7_R
SCK0 to SCK2, SCK4, SCK5, SCK7, SCK5_R, SCK7_R
TTG0 to TTG7, TTG12 to TTG15
PPG
16ch (16-bit)/
32ch (8-bit)
PPG0 to PPG7, PPG12 to PPG15
PPG0_R to PPG5_R, PPG8_R to PPG13_R
PPG0_B to PPG15_B
AIN0, AIN1
QPRC
2ch
BIN0, BIN1
ZIN0, ZIN1
FRCK2
INT0 to INT15
INT1_R to INT7_R
Document Number: 002-04707 Rev. *B
I/O Timer 2
FRT2
ICU 9
External
Interrupt
16ch
Real Time
Clock
WOT, WOT_R
Page 6 of 66
MB96650 Series
3. Pin Assignment
Vcc
P00_2 / INT5_R
P00_1 / INT4_R
P00_0 / INT3_R / FRCK2
P12_7 / INT1_R
P12_6 / TOT2_R / PPG3_B
P12_5 / TIN2_R / PPG2_B
P12_4 / OUT3_R
P12_3 / OUT2_R
P12_2 / TOT1_R / PPG1_B
P12_1 / TIN1_R / PPG0_B
P12_0 / IN1_R / BIN1
P11_7 / IN0_R / AIN1
P11_6 / FRCK0_R / ZIN1
P11_5 / PPG4_R
P11_4 / PPG3_R
P11_3 / PPG2_R
P11_2 / PPG1_R
P11_1 / PPG0_R
P11_0
RSTX
P04_1 / X1A*3
P04_0 / X0A*3
Vss
X1
X0
MD
P17_0
DEBUG I/F
Vss
(Top view)
90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
91
59
92
58
93
57
94
56
95
55
96
54
97
53
98
52
99
51
100
50
101
49
102
48
103
47
104
46
105
45
106
44
107
43
108
42
109
41
110
40
111
39
112
38
113
37
114
36
115
35
116
34
117
33
118
32
119
31
120
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
LQFP - 120
Vcc
P10_3 / PPG7
P10_2 / SCK2 / PPG6*1
P10_1 / SOT2 / TOT3
P10_0 / SIN2 / TIN3 / AN28 / INT11*1
P09_7 / PPG15
P17_2 / PPG13_R
P17_1 / PPG12_R
P09_6 / PPG14
P09_5 / PPG13
P09_4 / PPG12
P09_3 / AN27 / PPG11_R
P09_2 / AN26 / PPG10_R
P09_1 / AN25 / PPG9_R
P09_0 / AN24 / PPG8_R
P08_7 / AN23 / PPG7_B
P08_6 / AN22 / PPG6_B
P08_5 / AN21 / OUT7
P04_7 / SCL1*2
P04_6 / SDA1*2
P08_4 / AN20 / OUT6
P08_3 / AN19
P08_2 / AN18
P08_1 / AN17
P08_0 / AN16
P05_7 / AN15 / TOT2
P05_6 / AN14 / TIN2
P05_5 / AN13
P05_4 / AN12 / INT2_R / WOT_R
Vss
Vss
C
P03_7 / INT1 / SIN1*1
P13_0 / INT2 / SOT1
P13_1 / INT3 / SCK1*1
P13_2 / PPG0 / TIN0 / FRCK1
P13_3 / PPG1 / TOT0 / WOT
P13_4 / SIN0 / INT6*1
P13_5 / SOT0 / ADTG / INT7
P13_6 / SCK0 / CKOTX0*1
P13_7 / PPG2 / CKOT0
P04_4 / PPG3 / SDA0*2
P04_5 / PPG4 / SCL0*2
P06_0 / AN0 / SCK5*1
P06_1 / AN1 / SOT5
P06_2 / AN2 / INT5 / SIN5*1
P06_3 / AN3 / FRCK0
P06_4 / AN4 / IN0 / TTG0 / TTG4
P06_5 / AN5 / IN1 / TTG1 / TTG5
P06_6 / AN6 / TIN1 / IN4_R
P06_7 / AN7 / TOT1 / IN5_R
AVcc
AVRH
AVRL
AVss
P05_0 / AN8
P05_1 / AN9
P05_2 / AN10 / OUT2
P05_3 / AN11 / OUT3
Vcc
Vss
P00_3 / INT6_R / PPG8_B
P00_4 / INT7_R / PPG9_B
P00_5 / IN6 / TTG2 / TTG6 / PPG10_B
P00_6 / IN7 / TTG3 / TTG7 / PPG11_B
P00_7 / INT14
P01_0 / SCK7*1
P01_1 / CKOT1 / OUT0 / SOT7
P01_2 / CKOTX1 / OUT1 / INT15 / SIN7*1
P01_3 / PPG5
P01_4 / SIN4 / INT8*1
P01_5 / SOT4
P01_6 / SCK4 / TTG12*1
P01_7 / CKOTX1_R / INT9 / TTG13 / ZIN0 / SCK7_R*1
P02_0 / CKOT1_R / INT10 / TTG14 / AIN0 / SOT7_R
P02_1 / IN6_R / TTG15
P02_2 / IN7_R / CKOT0_R / INT12 / BIN0 / SIN7_R*1
P02_3 / PPG12_B
P02_4 / PPG13_B
P02_5 / OUT0_R / INT13 / SIN5_R*1
P02_6 / OUT1_R
P02_7 / PPG5_R
P03_0 / PPG4_B
P03_1 / PPG5_B
P03_2 / PPG14_B / SOT5_R
P03_3 / PPG15_B / SCK5_R*1
P03_4 / RX0 / INT4*1
P03_5 / TX0
P03_6 / INT0 / NMI
Vcc
(LQM120)
*1: CMOS input level only
*2: CMOS input level only for I2C
*3: Please set ROM Configuration Block (RCB) to use the subclock.
Other than those above, general-purpose pins have only Automotive input level.
Document Number: 002-04707 Rev. *B
Page 7 of 66
MB96650 Series
4. Pin Description
Pin name
Feature
Description
ADTG
ADC
A/D converter trigger input pin
AINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
ANn
ADC
A/D converter channel n input pin
AVcc
Supply
Analog circuits power supply pin
AVRH
ADC
A/D converter high reference voltage input pin
AVRL
ADC
A/D converter low reference voltage input pin
AVss
Supply
Analog circuits power supply pin
BINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
C
Voltage regulator
Internally regulated power supply stabilization capacitor pin
CKOTn
Clock Output function
Clock Output function n output pin
CKOTn_R
Clock Output function
Relocated Clock Output function n output pin
CKOTXn
Clock Output function
Clock Output function n inverted output pin
CKOTXn_R
Clock Output function
Relocated Clock Output function n inverted output pin
DEBUG I/F
OCD
On Chip Debugger input/output pin
FRCKn
Free-Running Timer
Free-Running Timer n input pin
FRCKn_R
Free-Running Timer
Relocated Free-Running Timer n input pin
INn
ICU
Input Capture Unit n input pin
INn_R
ICU
Relocated Input Capture Unit n input pin
INTn
External Interrupt
External Interrupt n input pin
INTn_R
External Interrupt
Relocated External Interrupt n input pin
MD
Core
Input pin for specifying the operating mode
NMI
External Interrupt
Non-Maskable Interrupt input pin
OUTn
OCU
Output Compare Unit n waveform output pin
OUTn_R
OCU
Relocated Output Compare Unit n waveform output pin
Pnn_m
GPIO
General purpose I/O pin
PPGn
PPG
Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R
PPG
Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B
PPG
Programmable Pulse Generator n output pin (16bit/8bit)
RSTX
Core
Reset input pin
RXn
CAN
CAN interface n RX input pin
SCKn
USART
USART n serial clock input/output pin
SCKn_R
USART
Relocated USART n serial clock input/output pin
2
SCLn
IC
I2C interface n clock I/O input/output pin
SDAn
I2C
I2C interface n serial data I/O input/output pin
SINn
USART
USART n serial data input pin
SINn_R
USART
Relocated USART n serial data input pin
SOTn
USART
USART n serial data output pin
SOTn_R
USART
Relocated USART n serial data output pin
TINn
Reload Timer
Reload Timer n event input pin
TINn_R
Reload Timer
Relocated Reload Timer n event input pin
Document Number: 002-04707 Rev. *B
Page 8 of 66
MB96650 Series
Pin name
Feature
Description
TOTn
Reload Timer
Reload Timer n output pin
TOTn_R
Reload Timer
Relocated Reload Timer n output pin
TTGn
PPG
Programmable Pulse Generator n trigger input pin
TXn
CAN
CAN interface n TX output pin
Vcc
Supply
Power supply pin
Vss
Supply
Power supply pin
WOT
RTC
Real Time clock output pin
WOT_R
RTC
Relocated Real Time clock output pin
X0
Clock
Oscillator input pin
X0A
Clock
Subclock Oscillator input pin
X1
Clock
Oscillator output pin
X1A
Clock
Subclock Oscillator output pin
ZINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
Document Number: 002-04707 Rev. *B
Page 9 of 66
MB96650 Series
5. Pin Circuit Type
Pin no.
I/O circuit type*
Pin name
1
Supply
Vss
2
F
C
3
M
P03_7 / INT1 / SIN1
4
H
P13_0 / INT2 / SOT1
5
M
P13_1 / INT3 / SCK1
6
H
P13_2 / PPG0 / TIN0 / FRCK1
7
H
P13_3 / PPG1 / TOT0 / WOT
8
M
P13_4 / SIN0 / INT6
9
H
P13_5 / SOT0 / ADTG / INT7
10
M
P13_6 / SCK0 / CKOTX0
11
H
P13_7 / PPG2 / CKOT0
12
N
P04_4 / PPG3 / SDA0
13
N
P04_5 / PPG4 / SCL0
14
I
P06_0 / AN0 / SCK5
15
K
P06_1 / AN1 / SOT5
16
I
P06_2 / AN2 / INT5 / SIN5
17
K
P06_3 / AN3 / FRCK0
18
K
P06_4 / AN4 / IN0 / TTG0 / TTG4
19
K
P06_5 / AN5 / IN1 / TTG1 / TTG5
20
K
P06_6 / AN6 / TIN1 / IN4_R
21
K
P06_7 / AN7 / TOT1 / IN5_R
22
Supply
AVcc
23
G
AVRH
24
G
AVRL
25
Supply
AVss
26
K
P05_0 / AN8
27
K
P05_1 / AN9
28
K
P05_2 / AN10 / OUT2
29
K
P05_3 / AN11 / OUT3
30
Supply
Vcc
31
Supply
Vss
32
K
P05_4 / AN12 / INT2_R / WOT_R
33
K
P05_5 / AN13
34
K
P05_6 / AN14 / TIN2
35
K
P05_7 / AN15 / TOT2
36
K
P08_0 / AN16
Document Number: 002-04707 Rev. *B
Page 10 of 66
MB96650 Series
Pin no.
I/O circuit type*
Pin name
37
K
P08_1 / AN17
38
K
P08_2 / AN18
39
K
P08_3 / AN19
40
K
P08_4 / AN20 / OUT6
41
N
P04_6 / SDA1
42
N
P04_7 / SCL1
43
K
P08_5 / AN21 / OUT7
44
K
P08_6 / AN22 / PPG6_B
45
K
P08_7 / AN23 / PPG7_B
46
K
P09_0 / AN24 / PPG8_R
47
K
P09_1 / AN25 / PPG9_R
48
K
P09_2 / AN26 / PPG10_R
49
K
P09_3 / AN27 / PPG11_R
50
H
P09_4 / PPG12
51
H
P09_5 / PPG13
52
H
P09_6 / PPG14
53
H
P17_1 / PPG12_R
54
H
P17_2 / PPG13_R
55
H
P09_7 / PPG15
56
I
P10_0 / SIN2 / TIN3 / AN28 / INT11
57
H
P10_1 / SOT2 / TOT3
58
M
P10_2 / SCK2 / PPG6
59
H
P10_3 / PPG7
60
Supply
Vcc
61
Supply
Vss
62
O
DEBUG I/F
63
H
P17_0
64
C
MD
65
A
X0
66
A
X1
67
Supply
Vss
68
B
P04_0 / X0A
69
B
P04_1 / X1A
70
C
RSTX
71
H
P11_0
72
H
P11_1 / PPG0_R
73
H
P11_2 / PPG1_R
74
H
P11_3 / PPG2_R
75
H
P11_4 / PPG3_R
Document Number: 002-04707 Rev. *B
Page 11 of 66
MB96650 Series
Pin no.
I/O circuit type*
Pin name
76
H
P11_5 / PPG4_R
77
H
P11_6 / FRCK0_R / ZIN1
78
H
P11_7 / IN0_R / AIN1
79
H
P12_0 / IN1_R / BIN1
80
H
P12_1 / TIN1_R / PPG0_B
81
H
P12_2 / TOT1_R / PPG1_B
82
H
P12_3 / OUT2_R
83
H
P12_4 / OUT3_R
84
H
P12_5 / TIN2_R / PPG2_B
85
H
P12_6 / TOT2_R / PPG3_B
86
H
P12_7 / INT1_R
87
H
P00_0 / INT3_R / FRCK2
88
H
P00_1 / INT4_R
89
H
P00_2 / INT5_R
90
Supply
Vcc
91
Supply
Vss
92
H
P00_3 / INT6_R / PPG8_B
93
H
P00_4 / INT7_R / PPG9_B
94
H
P00_5 / IN6 / TTG2 / TTG6 / PPG10_B
95
H
P00_6 / IN7 / TTG3 / TTG7 / PPG11_B
96
H
P00_7 / INT14
97
M
P01_0 / SCK7
98
H
P01_1 / CKOT1 / OUT0 / SOT7
99
M
P01_2 / CKOTX1 / OUT1 / INT15 / SIN7
100
H
P01_3 / PPG5
101
M
P01_4 / SIN4 / INT8
102
H
P01_5 / SOT4
103
M
P01_6 / SCK4 / TTG12
104
M
P01_7 / CKOTX1_R / INT9 / TTG13 / ZIN0 / SCK7_R
105
H
P02_0 / CKOT1_R / INT10 / TTG14 / AIN0 / SOT7_R
106
H
P02_1 / IN6_R / TTG15
107
M
P02_2 / IN7_R / CKOT0_R / INT12 / BIN0 / SIN7_R
108
H
P02_3 / PPG12_B
109
H
P02_4 / PPG13_B
110
M
P02_5 / OUT0_R / INT13 / SIN5_R
111
H
P02_6 / OUT1_R
112
H
P02_7 / PPG5_R
113
H
P03_0 / PPG4_B
114
H
P03_1 / PPG5_B
Document Number: 002-04707 Rev. *B
Page 12 of 66
MB96650 Series
Pin no.
I/O circuit type*
Pin name
115
H
P03_2 / PPG14_B / SOT5_R
116
M
P03_3 / PPG15_B / SCK5_R
117
M
P03_4 / RX0 / INT4
118
H
P03_5 / TX0
119
H
P03_6 / INT0 / NMI
120
Supply
Vcc
*: See “ I/O circuit type” for details on the I/O circuit types.
Document Number: 002-04707 Rev. *B
Page 13 of 66
MB96650 Series
6. I/O Circuit Type
Type
Circuit
Remarks
A
High-speed oscillation circuit:
Programmable between
X1
oscillation mode (external
crystal or resonator connected
to X0/X1 pins) and Fast
external Clock Input (FCI)
mode (external clock
connected to X0 pin)
R
0
1
FCI
X0
X out
Feedback resistor = approx.
1.0M
The amplitude: 1.8V±0.15V
to operate by the internal
supply voltage
FCI or Osc disable
Document Number: 002-04707 Rev. *B
Page 14 of 66
MB96650 Series
Type
Circuit
Remarks
B
Pull-up control
Low-speed oscillation circuit shared
with GPIO functionality:
Feedback resistor = approx.
5.0M
P-ch
Standby
control
for input
shutdown
P-ch
N-ch
GPIO functionality selectable
Pout
(CMOS level output (IOL =
4mA, IOH = -4mA), Automotive
input with input shutdown
function and programmable
pull-up resistor)
Nout
R
Automotive input
X1A
R
X out
0
1
FCI
X0A
FCI or Osc disable
Pull-up control
P-ch
Standby
control
for input
shutdown
P-ch
Pout
N-ch
Nout
R
C
Document Number: 002-04707 Rev. *B
Automotive input
CMOS hysteresis input pin
Page 15 of 66
MB96650 Series
Type
Circuit
Remarks
F
Power supply input protection circuit
P-ch
N-ch
G
A/D converter ref+ (AVRH)/
ref- (AVRL) power supply input
pin with protection circuit
P-ch
Without protection circuit
against VCC for pins
AVRH/AVRL
N-ch
H
CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
Automotive input with input
shutdown function
P-ch
P-ch
Pout
N-ch
Nout
Programmable pull-up resistor
R
Standby control
for input shutdown
Automotive input
I
CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
CMOS hysteresis input with
input shutdown function
P-ch
P-ch
Pout
Programmable pull-up resistor
Analog input
N-ch
Nout
R
Hysteresis input
Standby control
for input shutdown
Analog input
Document Number: 002-04707 Rev. *B
Page 16 of 66
MB96650 Series
Type
Circuit
Remarks
K
CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
Automotive input with input
P-ch
P-ch
Pout
shutdown function
Programmable pull-up resistor
Analog input
N-ch
Nout
R
Automotive input
Standby control
for input shutdown
Analog input
M
CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
CMOS hysteresis input with
input shutdown function
P-ch
P-ch
Pout
N-ch
Nout
R
Programmable pull-up resistor
Hysteresis input
Standby control
for input shutdown
N
CMOS level output
Pull-up control
(IOL = 3mA, IOH = -3mA)
CMOS hysteresis input with
input shutdown function
P-ch
P-ch
N-ch
R
Pout
Nout*
Programmable pull-up resistor
*: N-channel transistor has slew
rate control according to I2C
spec, irrespective of usage.
Hysteresis input
Standby control
for input shutdown
Document Number: 002-04707 Rev. *B
Page 17 of 66
MB96650 Series
Type
Circuit
Remarks
O
Open-drain I/O
Output 25mA, Vcc = 2.7V
TTL input
N-ch
Nout
R
Standby control
for input shutdown
Document Number: 002-04707 Rev. *B
TTL input
Page 18 of 66
MB96650 Series
7. Memory Map
FF:FFFFH
USER ROM*1
DE:0000H
DD:FFFFH
Reserved
10:0000H
0F:C000H
Boot-ROM
Peripheral
0E:9000H
Reserved
01:0000H
00:8000H
RAMSTART0*2
ROM/RAM
MIRROR
Internal RAM
bank0
Reserved
00:0C00H
00:0380H
Peripheral
00:0180H
GPR*3
00:0100H
DMA
00:00F0H
Reserved
00:0000H
Peripheral
*1: For details about USER ROM area, see “ USER ROM MEMORY MAP FOR FLASH DEVICES” on the
following pages.
*2: For RAMSTART addresses, see the table on the next page.
*3: Unused GPR banks can be used as RAM area.
GPR: General-Purpose Register
The DMA area is only available if the device contains the corresponding resource.
The available RAM and ROM area depends on the device.
Document Number: 002-04707 Rev. *B
Page 19 of 66
MB96650 Series
8. Ramstart Addresses
Bank 0
RAM size
Devices
RAMSTART0
MB96F653
10KB
00:5A00H
MB96F655
16KB
00:4200H
MB96F656
24KB
00:2200H
MB96F657
28KB
00:1200H
Document Number: 002-04707 Rev. *B
Page 20 of 66
MB96650 Series
9. User ROM Memory Map for Flash Devices
CPU mode
address
Flash memory
mode address
FF:FFFFH
3F:FFFFH
FF:0000H
3F:0000H
FE:FFFFH
3E:FFFFH
FE:0000H
3E:0000H
FD:FFFFH
3D:FFFFH
FD:0000H
3D:0000H
FC:FFFFH
3C:FFFFH
FC:0000H
3C:0000H
FB:FFFFH
3B:FFFFH
FB:0000H
3B:0000H
FA:FFFFH
3A:FFFFH
FA:0000H
3A:0000H
MB96F653
MB96F655
MB96F656
Flash size
Flash size
Flash size
Flash size
64.5KB + 32KB
128.5KB + 32KB
256.5KB + 32KB
384.5KB + 32KB
SA39 - 64KB
SA39 - 64KB
SA39 - 64KB
SA39 - 64KB
SA38 - 64KB
SA38 - 64KB
SA38 - 64KB
SA37 - 64KB
SA37 - 64KB
SA36 - 64KB
SA36 - 64KB
MB96F657
Bank A of Flash A
SA35 - 64KB
SA34 - 64KB
F9:FFFFH
Reserved
Reserved
Reserved
Reserved
DF:A000H
DF:9FFFH
1F:9FFFH
DF:8000H
1F:8000H
DF:7FFFH
1F:7FFFH
DF:6000H
1F:6000H
DF:5FFFH
1F:5FFFH
DF:4000H
1F:4000H
DF:3FFFH
1F:3FFFH
DF:2000H
1F:2000H
DF:1FFFH
1F:1FFFH
DF:0000H
1F:0000H
SA4 - 8KB
SA4 - 8KB
SA4 - 8KB
SA3 - 8KB
SA3 - 8KB
SA3 - 8KB
SA3 - 8KB
SA2 - 8KB
SA2 - 8KB
SA2 - 8KB
SA2 - 8KB
SA1 - 8KB
SA1 - 8KB
SA1 - 8KB
SA1 - 8KB
SAS - 512B*
SAS - 512B*
SAS - 512B*
SAS - 512B*
Reserved
Reserved
Reserved
Reserved
SA4 - 8KB
Bank B of Flash A
DE:FFFFH
DE:0000H
Bank A of Flash A
*: Physical address area of SAS-512B is from DF:0000H to DF:01FFH.
Others (from DF:0200H to DF:1FFFH) is mirror area of SAS-512B.
Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000H -DF:01FFH.
SAS can not be used for E2PROM emulation.
Document Number: 002-04707 Rev. *B
Page 21 of 66
MB96650 Series
10. Serial Programming Communication Interface
USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)
MB96650
Pin Number
USART Number
8
9
Normal Function
SIN0
USART0
SOT0
10
SCK0
3
SIN1
4
USART1
SOT1
5
SCK1
56
SIN2
57
USART2
SOT2
58
SCK2
101
SIN4
102
USART4
103
Document Number: 002-04707 Rev. *B
SOT4
SCK4
Page 22 of 66
MB96650 Series
11. Interrupt Vector Table
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
0
3FCH
CALLV0
No
-
CALLV instruction
1
3F8H
CALLV1
No
-
CALLV instruction
2
3F4H
CALLV2
No
-
CALLV instruction
3
3F0H
CALLV3
No
-
CALLV instruction
4
3ECH
CALLV4
No
-
CALLV instruction
5
3E8H
CALLV5
No
-
CALLV instruction
6
3E4H
CALLV6
No
-
CALLV instruction
7
3E0H
CALLV7
No
-
CALLV instruction
8
3DCH
RESET
No
-
Reset vector
9
3D8H
INT9
No
-
INT9 instruction
10
3D4H
EXCEPTION
No
-
Undefined instruction execution
11
3D0H
NMI
No
-
Non-Maskable Interrupt
12
3CCH
DLY
No
12
Delayed Interrupt
13
3C8H
RC_TIMER
No
13
RC Clock Timer
14
3C4H
MC_TIMER
No
14
Main Clock Timer
15
3C0H
SC_TIMER
No
15
Sub Clock Timer
16
3BCH
LVDI
No
16
Low Voltage Detector
17
3B8H
EXTINT0
Yes
17
External Interrupt 0
18
3B4H
EXTINT1
Yes
18
External Interrupt 1
19
3B0H
EXTINT2
Yes
19
External Interrupt 2
20
3ACH
EXTINT3
Yes
20
External Interrupt 3
21
3A8H
EXTINT4
Yes
21
External Interrupt 4
22
3A4H
EXTINT5
Yes
22
External Interrupt 5
23
3A0H
EXTINT6
Yes
23
External Interrupt 6
24
39CH
EXTINT7
Yes
24
External Interrupt 7
25
398H
EXTINT8
Yes
25
External Interrupt 8
26
394H
EXTINT9
Yes
26
External Interrupt 9
27
390H
EXTINT10
Yes
27
External Interrupt 10
28
38CH
EXTINT11
Yes
28
External Interrupt 11
29
388H
EXTINT12
Yes
29
External Interrupt 12
30
384H
EXTINT13
Yes
30
External Interrupt 13
31
380H
EXTINT14
Yes
31
External Interrupt 14
32
37CH
EXTINT15
Yes
32
External Interrupt 15
33
378H
CAN0
No
33
CAN Controller 0
34
374H
-
-
34
Reserved
35
370H
-
-
35
Reserved
36
36CH
-
-
36
Reserved
37
368H
-
-
37
Reserved
38
364H
PPG0
Yes
38
Programmable Pulse Generator 0
39
360H
PPG1
Yes
39
Programmable Pulse Generator 1
Document Number: 002-04707 Rev. *B
Page 23 of 66
MB96650 Series
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
40
35CH
PPG2
Yes
40
Programmable Pulse Generator 2
41
358H
PPG3
Yes
41
Programmable Pulse Generator 3
42
354H
PPG4
Yes
42
Programmable Pulse Generator 4
43
350H
PPG5
Yes
43
Programmable Pulse Generator 5
44
34CH
PPG6
Yes
44
Programmable Pulse Generator 6
45
348H
PPG7
Yes
45
Programmable Pulse Generator 7
46
344H
PPG8
Yes
46
Programmable Pulse Generator 8
47
340H
PPG9
Yes
47
Programmable Pulse Generator 9
48
33CH
PPG10
Yes
48
Programmable Pulse Generator 10
49
338H
PPG11
Yes
49
Programmable Pulse Generator 11
50
334H
PPG12
Yes
50
Programmable Pulse Generator 12
51
330H
PPG13
Yes
51
Programmable Pulse Generator 13
52
32CH
PPG14
Yes
52
Programmable Pulse Generator 14
53
328H
PPG15
Yes
53
Programmable Pulse Generator 15
54
324H
-
-
54
Reserved
55
320H
-
-
55
Reserved
56
31CH
-
-
56
Reserved
57
318H
-
-
57
Reserved
58
314H
RLT0
Yes
58
Reload Timer 0
59
310H
RLT1
Yes
59
Reload Timer 1
60
30CH
RLT2
Yes
60
Reload Timer 2
61
308H
RLT3
Yes
61
Reload Timer 3
62
304H
-
-
62
Reserved
63
300H
-
-
63
Reserved
64
2FCH
RLT6
Yes
64
Reload Timer 6
65
2F8H
ICU0
Yes
65
Input Capture Unit 0
66
2F4H
ICU1
Yes
66
Input Capture Unit 1
67
2F0H
-
-
67
Reserved
68
2ECH
-
-
68
Reserved
69
2E8H
ICU4
Yes
69
Input Capture Unit 4
70
2E4H
ICU5
Yes
70
Input Capture Unit 5
71
2E0H
ICU6
Yes
71
Input Capture Unit 6
72
2DCH
ICU7
Yes
72
Input Capture Unit 7
73
2D8H
-
-
73
Reserved
74
2D4H
ICU9
Yes
74
Input Capture Unit 9
75
2D0H
-
-
75
Reserved
76
2CCH
-
-
76
Reserved
77
2C8H
OCU0
Yes
77
Output Compare Unit 0
78
2C4H
OCU1
Yes
78
Output Compare Unit 1
79
2C0H
OCU2
Yes
79
Output Compare Unit 2
80
2BCH
OCU3
Yes
80
Output Compare Unit 3
Document Number: 002-04707 Rev. *B
Page 24 of 66
MB96650 Series
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
81
2B8H
OCU4
Yes
81
Output Compare Unit 4
82
2B4H
-
-
82
Reserved
83
2B0H
OCU6
Yes
83
Output Compare Unit 6
84
2ACH
OCU7
Yes
84
Output Compare Unit 7
85
2A8H
-
-
85
Reserved
86
2A4H
-
-
86
Reserved
87
2A0H
-
-
87
Reserved
88
29CH
-
-
88
Reserved
89
298H
FRT0
Yes
89
Free-Running Timer 0
90
294H
FRT1
Yes
90
Free-Running Timer 1
91
290H
FRT2
Yes
91
Free-Running Timer 2
92
28CH
-
-
92
Reserved
93
288H
RTC0
No
93
Real Time Clock
94
284H
CAL0
No
94
Clock Calibration Unit
95
280H
-
-
95
Reserved
96
27CH
IIC0
Yes
96
I2C interface 0
97
278H
IIC1
Yes
97
I2C interface 1
98
274H
ADC0
Yes
98
A/D Converter 0
99
270H
-
-
99
Reserved
100
26CH
-
-
100
Reserved
101
268H
LINR0
Yes
101
LIN USART 0 RX
102
264H
LINT0
Yes
102
LIN USART 0 TX
103
260H
LINR1
Yes
103
LIN USART 1 RX
104
25CH
LINT1
Yes
104
LIN USART 1 TX
105
258H
LINR2
Yes
105
LIN USART 2 RX
106
254H
LINT2
Yes
106
LIN USART 2 TX
107
250H
-
-
107
Reserved
108
24CH
-
-
108
Reserved
109
248H
LINR4
Yes
109
LIN USART 4 RX
110
244H
LINT4
Yes
110
LIN USART 4 TX
111
240H
LINR5
Yes
111
LIN USART 5 RX
112
23CH
LINT5
Yes
112
LIN USART 5 TX
113
238H
-
-
113
Reserved
114
234H
-
-
114
Reserved
115
230H
LINR7
Yes
115
LIN USART 7 RX
116
22CH
LINT7
Yes
116
LIN USART 7 TX
117
228H
-
-
117
Reserved
118
224H
-
-
118
Reserved
119
220H
-
-
119
Reserved
120
21CH
-
-
120
Reserved
Document Number: 002-04707 Rev. *B
Page 25 of 66
MB96650 Series
Vector
number
Offset in
vector table
Cleared by
DMA
Vector name
Index in
ICR to
program
Description
121
218H
-
-
121
Reserved
122
214H
-
-
122
Reserved
123
210H
-
-
123
Reserved
124
20CH
-
-
124
Reserved
125
208H
-
-
125
Reserved
126
204H
-
-
126
Reserved
127
200H
-
-
127
Reserved
128
1FCH
-
-
128
Reserved
129
1F8H
-
-
129
Reserved
130
1F4H
-
-
130
Reserved
131
1F0H
-
-
131
Reserved
132
1ECH
-
-
132
Reserved
133
1E8H
FLASHA
Yes
133
Flash memory A interrupt
134
1E4H
-
-
134
Reserved
135
1E0H
-
-
135
Reserved
136
1DCH
-
-
136
Reserved
137
1D8H
QPRC0
Yes
137
Quad Position/Revolution counter 0
138
1D4H
QPRC1
Yes
138
Quad Position/Revolution counter 1
139
1D0H
ADCRC0
No
139
A/D Converter 0 - Range Comparator
140
1CCH
-
-
140
Reserved
141
1C8H
-
-
141
Reserved
142
1C4H
-
-
142
Reserved
143
1C0H
-
-
143
Reserved
Document Number: 002-04707 Rev. *B
Page 26 of 66
MB96650 Series
12. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.
12.1 Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and
input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the
device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current
conditions at the design stage.
(2) Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current
flows. Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to
abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current
levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to
abnormal noise, surge levels, etc.
(2) Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-04707 Rev. *B
Page 27 of 66
MB96650 Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may
directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded
(such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.
12.2 Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board,
or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be
subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to
Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily
deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open
connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking
of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of
recommended conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction
strength may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption
of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel,
reducing moisture resistance and causing packages to crack. To prevent, do the following:
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between
5°C and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
(3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a
silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-04707 Rev. *B
Page 28 of 66
MB96650 Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following
precautions:
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may
be needed to remove electricity.
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of
1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
(4) Ground all fixtures and instruments, or protect with anti-static measures.
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
12.3 Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
(1) Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such
cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device.
If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
(5) Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If
devices begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-04707 Rev. *B
Page 29 of 66
MB96650 Series
13. Handling Devices
Special care is required for the following when handling the device:
Latch-up prevention
Unused pins handling
External clock usage
Notes on PLL clock mode operation
Power supply pins (Vcc/Vss)
Crystal oscillator and ceramic resonator circuit
Turn on sequence of power supply to A/D converter and analog inputs
Pin handling when not using the A/D converter
Notes on Power-on
Stabilization of power supply voltage
Serial communication
Mode Pin (MD)
1. Latch-up prevention
CMOS IC chips may suffer latch-up under the following conditions:
- A voltage higher than VCC or lower than VSS is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AVCC power supply is applied before the VCC voltage.
Latch-up may increase the power supply current dramatically, causing thermal damages to the device.
For the same reason, extra care is required to not let the analog power-supply voltage (AVCC, AVRH) exceed
the digital power-supply voltage.
2. Unused pins handling
Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register
PIER = 0).
Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent
damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more
than 2k.
Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with
either input disabled or external pull-up/pull-down resistor as described above.
Document Number: 002-04707 Rev. *B
Page 30 of 66
MB96650 Series
3. External clock usage
The permitted frequency range of an external clock depends on the oscillator type and configuration.
See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as
follows:
(1) Single phase external clock for Main oscillator
When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open.
And supply 1.8V power to the external clock.
X0
X1
(2) Single phase external clock for Sub oscillator
When using a single phase external clock for the Sub oscillator, “External clock mode” must be selected and
X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.
(3) Opposite phase external clock
When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has
the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.
X0
X1
4. Notes on PLL clock mode operation
If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied,
the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be
guaranteed.
5. Power supply pins (Vcc/Vss)
It is required that all VCC-level as well as all VSS-level power supply pins are at the same potential. If there is more than one VCC
or VSS level, the device may operate incorrectly or be damaged even within the guaranteed operating range.
Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.
The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.
Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1F between
Vcc and Vss pins as close as possible to Vcc and Vss pins.
Document Number: 002-04707 Rev. *B
Page 31 of 66
MB96650 Series
6. Crystal oscillator and ceramic resonator circuit
Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest
possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the
utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground
area for stabilizing the operation.
It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer,
especially when using low-Q resonators at higher frequencies.
7. Turn on sequence of power supply to A/D converter and analog inputs
It is required to turn the A/D converter power supply (AVCC, AVRH, AVRL) and analog inputs (ANn) on after turning the digital
power supply (VCC) on.
It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH
must not exceed AVCC . Input voltage for ports shared with analog input ports also must not exceed AVCC (turning the analog
and digital power supplies simultaneously on or off is acceptable).
8. Pin handling when not using the A/D converter
If the A/D converter is not used, the power supply pins for A/D converter should be connected such as AV CC = VCC, AVSS =
AVRH =AVRL = VSS.
9. Notes on Power-on
To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be
slower than 50s from 0.2V to 2.7V.
10. Stabilization of power supply voltage
If the power supply voltage varies acutely even within the operation safety range of the V CC power supply voltage, a malfunction
may occur. The VCC power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage
must be stabilized in such a way that VCC ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz)
fall within 10% of the standard VCC power supply voltage and the transient fluctuation rate becomes 0.1V/s or less in
instantaneous fluctuation for power supply switching.
11. Serial communication
There is a possibility to receive wrong data due to noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit
the data if an error occurs.
12. Mode Pin (MD)
Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out
the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance
connection.
Document Number: 002-04707 Rev. *B
Page 32 of 66
MB96650 Series
14. Electrical Characteristics
14.1 Absolute Maximum Ratings
Parameter
Symbol
Condition
Rating
Unit
VCC
-
AVCC
-
VSS - 0.3
VSS + 6.0
V
VCC = AVCC*2
Analog reference
voltage*1
AVRH,
AVRL
-
VSS - 0.3
VSS + 6.0
V
AVCC≥ AVRH,
AVCC ≥ AVRL,
AVRH > AVRL,
AVRL ≥ AVSS
Input voltage*1
Output voltage*1
Maximum Clamp
Current
Total Maximum Clamp
Current
"L" level maximum
output current
"L" level average output
current
"L" level maximum
overall output current
"L" level average overall
output current
"H" level maximum
output current
"H" level average output
current
"H" level maximum
overall output current
"H" level average
overall output current
Power consumption*5
Operating ambient
temperature
Storage temperature
VI
VO
-
VSS - 0.3
VSS - 0.3
VSS + 6.0
VSS + 6.0
V
V
ICLAMP
-
-4.0
+4.0
mA
Σ|ICLAMP|
-
-
33
mA
IOL
-
-
15
mA
IOLAV
-
-
4
mA
ΣIOL
-
-
82
mA
ΣIOLAV
-
-
41
mA
IOH
-
-
-15
mA
IOHAV
-
-
-4
mA
ΣIOH
-
-
-82
mA
ΣIOHAV
-
-
-41
Power supply voltage*
Analog power supply
voltage*1
1
Max
VSS + 6.0
V
Remarks
Min
VSS - 0.3
VI ≤ VCC + 0.3V*3
VO ≤ VCC + 0.3V*3
Applicable to general
purpose I/O pins *4
Applicable to general
purpose I/O pins *4
mA
*6
PD
TA= +125°C
-
446
mW
TA
-
-40
+125*7
°C
TSTG
-
-55
+150
°C
*1: This parameter is based on VSS = AVSS = 0V.
*2: AVCC and VCC must be set to the same voltage. It is required that AVCC does not exceed VCC and that the voltage at the analog
inputs does not exceed AVCC when the power is switched on.
*3: VI and VO should not exceed VCC + 0.3V. VI should also not exceed the specified ratings. However if the maximum current
to/from an input is limited by some means with external components, the I CLAMP rating supersedes the VI rating. Input/Output
voltages of standard ports depend on VCC.
*4: • Applicable to all general purpose I/O pins (Pnn_m).
• Use within recommended operating conditions.
• Use at DC voltage (current).
• The +B signal should always be applied a limiting resistance placed between the +B signal and the
microcontroller.
• The value of the limiting resistance should be set so that when the +B signal is applied the input current to
the
microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
• Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass
through the protective diode and increase the potential at the V CC pin, and this may affect other devices.
• Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided
from the pins, so that incomplete operation may result.
• Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
voltage may not be sufficient to operate the Power reset.
• The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current
(4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to
maximum 6.0V.
Document Number: 002-04707 Rev. *B
Page 33 of 66
MB96650 Series
• Sample recommended circuits:
Protective diode
VCC
Limiting
resistance
P-ch
+B input (0V to 16V)
N-ch
R
*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal
conductance of the package on the PCB.
The actual power dissipation depends on the customer application and can be calculated as follows:
PD = PIO + PINT
PIO = Σ (VOL IOL + VOH IOH) (I/O load power dissipation, sum is performed on all I/O ports)
PINT = VCC (ICC + IA) (internal power dissipation)
ICC is the total core current consumption into VCC as described in the “DC characteristics” and depends on the selected operation
mode and clock frequency and the usage of functions like Flash programming.
IA is the analog current consumption into AVCC.
*6: Worst case value for a package mounted on single layer PCB at specified T A without air flow.
*7: Write/erase to a large sector in flash memory is warranted with TA ≤ + 105°C.
WARNING
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
absolute maximum ratings. Do not exceed these ratings.
Document Number: 002-04707 Rev. *B
Page 34 of 66
MB96650 Series
14.2 Recommended Operating Conditions
(VSS = AVSS = 0V)
Parameter
Symbol
Power supply voltage
VCC, AVCC
Smoothing capacitor at
C pin
CS
Value
Typ
Min
Max
Unit
2.7
-
5.5
V
2.0
-
5.5
V
0.5
1.0 to 3.9
4.7
F
Remarks
Maintains RAM data in stop mode
1.0F (Allowance within ± 50%)
3.9µF (Allowance within ± 20%)
Please use the ceramic capacitor or the capacitor
of the frequency response of this level.
The smoothing capacitor at VCC must use the one
of a capacity value that is larger than CS.
WARNING
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the
device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or
combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact
their representatives beforehand.
Document Number: 002-04707 Rev. *B
Page 35 of 66
MB96650 Series
14.3 DC Characteristics
14.3.1 Current Rating
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Pin
name
Conditions
Value
Unit
Remarks
Min
Typ
Max
-
27
-
mA
TA = +25°C
-
-
37
mA
TA = +105°C
-
-
38.5
mA
TA = +125°C
-
3.5
-
mA
TA = +25°C
-
-
8
mA
TA = +105°C
-
-
9.5
mA
TA = +125°C
-
1.8
-
mA
TA = +25°C
-
-
6
mA
TA = +105°C
-
-
7.5
mA
TA = +125°C
-
0.16
-
mA
TA = +25°C
-
-
3.5
mA
TA = +105°C
-
-
5
mA
TA = +125°C
-
0.1
-
mA
TA = +25°C
-
-
3.3
mA
TA = +105°C
-
-
4.8
mA
TA = +125°C
PLL Run mode with CLKS1/2 = CLKB
= CLKP1/2 = 32MHz
ICCPLL
Flash 0 wait
(CLKRC and CLKSC stopped)
Main Run mode with CLKS1/2 =
CLKB = CLKP1/2 = 4MHz
ICCMAIN
Flash 0 wait
(CLKPLL, CLKSC and CLKRC
stopped)
RC Run mode with CLKS1/2 = CLKB
= CLKP1/2 = CLKRC = 2MHz
Power supply
current in Run
modes*1
ICCRCH
Vcc
Flash 0 wait
(CLKMC, CLKPLL and CLKSC
stopped)
RC Run mode with CLKS1/2 = CLKB
= CLKP1/2 = CLKRC = 100kHz
ICCRCL
Flash 0 wait
(CLKMC, CLKPLL and CLKSC
stopped)
Sub Run mode with CLKS1/2 = CLKB
= CLKP1/2 = 32kHz
ICCSUB
Flash 0 wait
(CLKMC, CLKPLL and CLKRC
stopped)
Document Number: 002-04707 Rev. *B
Page 36 of 66
MB96650 Series
Parameter
Symbol
Pin
name
PLL Sleep mode with
CLKS1/2 = CLKP1/2 = 32MHz
(CLKRC and CLKSC stopped)
ICCSPLL
Main Sleep mode with
CLKS1/2 = CLKP1/2 = 4MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKRC and CLKSC
stopped)
ICCSMAIN
Power supply
current in Sleep
modes*1
ICCSRCH
ICCSRCL
ICCSSUB
Document Number: 002-04707 Rev. *B
Conditions
Vcc
RC Sleep mode with CLKS1/2
= CLKP1/2 = CLKRC = 2MHz,
SMCR:LPMSS = 0
(CLKMC, CLKPLL and CLKSC
stopped)
RC Sleep mode with CLKS1/2
= CLKP1/2 = CLKRC = 100kHz
(CLKMC, CLKPLL and CLKSC
stopped)
Sub Sleep mode with
CLKS1/2 = CLKP1/2 = 32kHz,
(CLKMC, CLKPLL and CLKRC
stopped)
Value
Typ
Min
Max
Unit
Remarks
-
8.5
-
mA
TA = +25°C
-
-
14
mA
TA = +105°C
-
-
15.5
mA
TA = +125°C
-
1
-
mA
TA = +25°C
-
-
4.5
mA
TA = +105°C
-
-
6
mA
TA = +125°C
-
0.6
-
mA
TA = +25°C
-
-
3.8
mA
TA = +105°C
-
-
5.3
mA
TA = +125°C
-
0.07
-
mA
TA = +25°C
-
-
2.8
mA
TA = +105°C
-
-
4.3
mA
TA = +125°C
-
0.04
-
mA
TA = +25°C
-
-
2.5
mA
TA = +105°C
-
-
4
mA
TA = +125°C
Page 37 of 66
MB96650 Series
Parameter
Symbol
Pin
name
ICCTMAIN
ICCTRCH
Vcc
ICCTRCL
ICCTSUB
Document Number: 002-04707 Rev. *B
Value
Typ
Min
Max
Unit
Remarks
-
1800
2250
A
TA = +25°C
-
-
3220
A
TA = +105°C
-
-
4205
A
TA = +125°C
Main Timer mode with
CLKMC = 4MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKRC and CLKSC
stopped)
-
285
330
A
TA = +25°C
-
-
1195
A
TA = +105°C
-
-
2165
A
TA = +125°C
RC Timer mode with
CLKRC = 2MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKMC and CLKSC
stopped)
-
160
215
A
TA = +25°C
-
-
1095
A
TA = +105°C
-
-
2075
A
TA = +125°C
-
35
75
A
TA = +25°C
-
-
905
A
TA = +105°C
-
-
1880
A
TA = +125°C
-
25
65
A
TA = +25°C
-
-
885
A
TA = +105°C
-
-
1850
A
TA = +125°C
PLL Timer mode with CLKPLL =
32MHz (CLKRC and CLKSC stopped)
ICCTPLL
Power supply
current in Timer
modes*2
Conditions
RC Timer mode with
CLKRC = 100kHz
(CLKPLL, CLKMC and CLKSC
stopped)
Sub Timer mode with
CLKSC = 32kHz
(CLKMC, CLKPLL and CLKRC
stopped)
Page 38 of 66
MB96650 Series
Parameter
Power supply current in
Stop mode*3
Flash Power Down
current
Symbol
Pin
name
ICCH
Conditions
-
ICCFLASHPD
-
Value
Typ
Min
Unit
Max
Remarks
-
20
60
A
TA = +25°C
-
-
880
A
TA = +105°C
-
-
1845
A
TA = +125°C
-
36
70
A
-
5
-
A
TA = +25°C
-
-
12.5
A
TA = +125°C
-
12.5
-
mA
TA = +25°C
-
-
20
mA
TA = +125°C
Vcc
Power supply current
for active Low
Voltage detector*4
Flash Write/
Erase current*5
ICCLVD
ICCFLASH
Low voltage detector
enabled
-
*1: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and
a 32kHz external clock connected to the Sub oscillator. See chapter “Standby mode and voltage regulator control circuit” of the
Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power
supply current in Run mode does not include Flash Write / Erase current.
*2: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.
When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.
The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock
connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.
*3: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.
When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.
*4: When low voltage detector is enabled, ICCLVD must be added to Power supply current.
*5: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.
Document Number: 002-04707 Rev. *B
Page 39 of 66
MB96650 Series
14.3.2 Pin Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
VIH
"H" level input
voltage
Port inputs
Pnn_m
Conditions
External clock in
"Fast Clock Input mode"
External clock in
"Oscillation mode"
VIHX0S
X0
VIHX0AS
X0A
VIHR
RSTX
-
VIHM
MD
-
VIHD
DEBUG I/F
-
VIL
Port inputs
Pnn_m
VILX0S
"L" level input
voltage
Pin name
X0
External clock in "Fast Clock
Input mode"
External clock in
"Oscillation mode"
VILX0AS
X0A
VILR
RSTX
-
VILM
MD
-
VILD
DEBUG I/F
-
Document Number: 002-04707 Rev. *B
Min
VCC
0.7
VCC
0.8
VD
0.8
VCC
0.8
VCC
0.8
VCC
- 0.3
2.0
VSS
- 0.3
VSS
- 0.3
VSS
VSS
- 0.3
VSS
- 0.3
VSS
- 0.3
VSS
- 0.3
Value
Typ
-
Max
VCC
+ 0.3
VCC
+ 0.3
VD
VCC
+ 0.3
VCC
+ 0.3
VCC
+ 0.3
VCC
+ 0.3
VCC
0.3
VCC
0.5
VD
0.2
VCC
0.2
VCC
0.2
VSS
+ 0.3
0.8
Unit
Remarks
V
CMOS Hysteresis input
V
AUTOMOTIVE
Hysteresis input
V
VD=1.8V±0.15V
V
V
CMOS Hysteresis input
V
CMOS Hysteresis input
V
TTL Input
V
CMOS Hysteresis input
V
AUTOMOTIVE
Hysteresis input
V
VD=1.8V±0.15V
V
V
CMOS Hysteresis input
V
CMOS Hysteresis input
V
TTL Input
Page 40 of 66
MB96650 Series
Parameter
Symbol
Pin name
VOH4
4mA type
VOH3
3mA type
VOL4
4mA type
VOL3
3mA type
VOLD
DEBUG I/F
IIL
Pnn_m
RPU
Pnn_m
CIN
Other than
C,
Vcc,
Vss,
AVcc,
AVss,
AVRH,
AVRL
"H" level
output voltage
"L" level
output voltage
Input leak
current
Pull-up
resistance
value
Input
capacitance
Document Number: 002-04707 Rev. *B
Conditions
4.5V ≤ VCC ≤ 5.5V
IOH = -4mA
2.7V ≤ VCC < 4.5V
IOH = -1.5mA
4.5V ≤ VCC ≤ 5.5V
IOH = -3mA
2.7V ≤ VCC < 4.5V
IOH = -1.5mA
4.5V ≤ VCC ≤ 5.5V
IOL = +4mA
2.7V ≤ VCC < 4.5V
IOL = +1.7mA
2.7V ≤ VCC < 5.5V
IOL = +3mA
VCC = 2.7V
IOL = +25mA
VSS < VI < VCC
AVSS, AVRL < VI < AVCC, AVRH
Min
Value
Typ
Max
Unit
VCC
- 0.5
-
VCC
V
VCC
- 0.5
-
VCC
V
-
-
0.4
V
-
-
0.4
V
0
-
0.25
V
-1
-
+1
A
VCC = 5.0V ±10%
25
50
100
k
-
-
5
15
pF
Remarks
Page 41 of 66
MB96650 Series
14.4 AC Characteristics
14.4.1 Main Clock Input Characteristics
(VCC = AVCC = 2.7V to 5.5V, VD=1.8V±0.15V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Input frequency
Symbol
fC
Pin name
X0,
X1
fFCI
Unit
Max
4
-
8
MHz
-
-
8
MHz
4
-
8
MHz
Input frequency
Value
Typ
Min
-
8
When using a crystal oscillator,
PLL off
When using an opposite phase
external
clock, PLL off
When using a crystal oscillator
or opposite
phase external clock, PLL on
MHz
When using a single phase
external
clock in “Fast Clock Input
mode”, PLL off
When using a single phase
external
clock in “Fast Clock Input
mode”, PLL on
X0
4
-
8
MHz
Input clock cycle
tCYLH
-
125
-
-
ns
Input clock pulse width
PWH,
PWL
-
55
-
-
ns
Document Number: 002-04707 Rev. *B
Remarks
Page 42 of 66
MB96650 Series
Document Number: 002-04707 Rev. *B
Page 43 of 66
MB96650 Series
14.4.2 Sub Clock Input Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Input frequency
Pin
name
Symbol
fCL
Value
Conditions
Min
Typ
Max
Unit
-
-
32.768
-
kHz
-
-
-
100
kHz
X0A
-
-
-
50
kHz
X0A,
X1A
Input clock cycle
tCYLL
-
-
10
-
-
s
Input clock pulse width
-
-
PWH/tCYLL,
PWL/tCYLL
30
-
70
%
Document Number: 002-04707 Rev. *B
Remarks
When using an oscillation
circuit
When using an opposite
phase external clock
When using a single
phase external clock
Page 44 of 66
MB96650 Series
14.4.3 Built-in RC Oscillation Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Value
Symbol
Clock frequency
Min
Typ
Unit
Max
50
100
200
kHz
1
2
4
MHz
80
160
320
s
64
128
256
s
Remarks
When using slow frequency of RC
oscillator
When using fast frequency of RC
oscillator
When using slow frequency of RC
oscillator
(16 RC clock cycles)
When using fast frequency of RC
oscillator
(256 RC clock cycles)
fRC
RC clock stabilization time
tRCSTAB
14.4.4 Internal Clock Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Value
Symbol
Min
Max
Unit
Internal System clock frequency
(CLKS1 and CLKS2)
fCLKS1, fCLKS2
-
54
MHz
Internal CPU clock frequency (CLKB),
Internal peripheral clock frequency (CLKP1)
fCLKB, fCLKP1
-
32
MHz
Internal peripheral clock frequency (CLKP2)
fCLKP2
-
32
MHz
Document Number: 002-04707 Rev. *B
Page 45 of 66
MB96650 Series
14.4.5 Operating Conditions of PLL
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Value
Min
Typ
Max
Unit
Remarks
PLL oscillation stabilization wait time
tLOCK
1
-
4
ms
For CLKMC = 4MHz
PLL input clock frequency
fPLLI
4
-
8
MHz
PLL oscillation clock frequency
fCLKVCO
56
-
108
MHz
Permitted VCO output frequency
of PLL (CLKVCO)
PLL phase jitter
tPSKEW
-5
-
+5
ns
For CLKMC (PLL input clock) ≥
4MHz
14.4.6 Reset Input
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Reset input time
tRSTL
Value
Pin name
Min
10
-
s
1
-
s
RSTX
Rejection of reset input time
Unit
Max
tRSTL
RSTX
0.2VCC
Document Number: 002-04707 Rev. *B
0.2VCC
Page 46 of 66
MB96650 Series
14.4.7 Power-on Reset Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Value
Pin name
Min
Typ
Unit
Max
Power on rise time
tR
Vcc
0.05
-
30
ms
Power off time
tOFF
Vcc
1
-
-
ms
Document Number: 002-04707 Rev. *B
Page 47 of 66
MB96650 Series
14.4.8 USART Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C, CL=50pF)
Symbo
l
Pin
name
Serial clock cycle time
tSCYC
SCK SOT delay time
tSLOVI
SOT SCK delay time
tOVSHI
SIN SCK setup time
tIVSHI
SCK SIN hold time
tSHIXI
SCKn
SCKn,
SOTn
SCKn,
SOTn
SCKn,
SINn
SCKn,
SINn
Parameter
Serial clock "L" pulse width
tSLSH
SCKn
Serial clock "H" pulse width
tSHSL
SCKn
SCK SOT delay time
tSLOVE
SIN SCK setup time
tIVSHE
SCK SIN hold time
tSHIXE
SCK fall time
SCK rise time
tF
tR
Notes:
SCKn,
SOTn
SCKn,
SINn
SCKn,
SINn
SCKn
SCKn
Conditions
Internal shift
clock mode
4.5V VCC 5.5V
Min
Max
2.7V VCC 4.5V
Min
Max
Uni
t
4tCLKP1
-
4tCLKP1
-
ns
- 20
+ 20
- 30
+ 30
ns
-
ns
-
ns
-
ns
-
ns
-
ns
2tCLKP1
+ 55
ns
-
ns
-
ns
20
20
ns
ns
NtCLKP1
– 20*
tCLKP1
+ 45
0
tCLKP1
+ 10
tCLKP1
+ 10
External shift
clock mode
tCLKP1/2
+ 10
tCLKP1
+ 10
-
2tCLKP1
+ 45
20
20
NtCLKP1
– 30*
tCLKP1
+ 55
0
tCLKP1
+ 10
tCLKP1
+ 10
tCLKP1/2
+ 10
tCLKP1
+ 10
-
• AC characteristic in CLK synchronized mode.
• CL is the load capacity value of pins when testing.
• Depending on the used machine clock frequency, the maximum possible baud rate can be limited by
some
parameters. These parameters are shown in “MB96600 series HARDWARE MANUAL”.
• tCLKP1 indicates the peripheral clock 1 (CLKP1), Unit: ns
• These characteristics only guarantee the same relocate port number.
For example, the combination of SCKn and SOTn_R is not guaranteed.
*: Parameter N depends on tSCYC and can be calculated as follows:
• If tSCYC = 2 k tCLKP1, then N = k, where k is an integer > 2
• If tSCYC = (2 k + 1) tCLKP1, then N = k + 1, where k is an integer > 1
Examples:
tSCYC
N
4 tCLKP1
2
5 tCLKP1, 6 tCLKP1
3
7 tCLKP1, 8 tCLKP1
4
...
...
Document Number: 002-04707 Rev. *B
Page 48 of 66
MB96650 Series
tSCYC
VOH
SCK
VOL
VOL
tOVSHI
tSLOVI
VOH
SOT
VOL
tIVSHI
SIN
tSHIXI
VIH
VIH
VIL
VIL
Internal shift clock mode
SCK
tSHSL
tSLSH
VIH
VIH
VIL
tF
SOT
VIL
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
External shift clock mode
Document Number: 002-04707 Rev. *B
Page 49 of 66
MB96650 Series
14.4.9 External Input Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Input pulse width
Symbol
tINH,
tINL
Value
Pin name
Min
Max
Unit
Remarks
Pnn_m
General Purpose I/O
ADTG
A/D Converter trigger input
TINn, TINn_R
TTGn
FRCKn,
FRCKn_R
INn, INn_R
Reload Timer
PPG trigger input
2tCLKP1 +200
(tCLKP1=
1/fCLKP1)*
-
ns
Free-Running Timer input clock
Input Capture
AINn,
BINn,
ZINn
Quadrature
Position/Revolution
Counter
INTn, INTn_R
NMI
200
-
ns
External Interrupt
Non-Maskable Interrupt
*: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.
tINH
External input timing
VIH
tINL
VIH
VIL
Document Number: 002-04707 Rev. *B
VIL
Page 50 of 66
MB96650 Series
14.4.10 I2C Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
SCL clock frequency
(Repeated) START condition hold time
SDA SCL
SCL clock "L" width
SCL clock "H" width
(Repeated) START condition setup time
SCL SDA
Data hold time
SCL SDA
Data setup time
SDA SCL
STOP condition setup time
SCL SDA
Bus free time between
"STOP condition" and
"START condition"
Pulse width of spikes which will be
suppressed by input noise filter
Conditions
Typical mode
High-speed mode*4
Unit
fSCL
Min
0
Max
100
Min
0
Max
400
kHz
tHDSTA
4.0
-
0.6
-
s
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
s
s
tSUSTA
4.7
-
0.6
-
s
0
3.45*2
0
0.9*3
s
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
s
tBUS
4.7
-
1.3
-
s
0
(1-1.5)
tCLKP1*5
0
(1-1.5)
tCLKP1*5
ns
tHDDAT
tSP
CL = 50pF,
R = (Vp/IOL)*1
-
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT only has to be met if the device does not extend the "L" width (tLOW) of the SCL signal.
*3: A high-speed mode I2C bus device can be used on a standard mode I2C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250ns".
*4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.
*5: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time.
SDA
tSUDAT
tSUSTA
tBUS
tLOW
SCL
tHDSTA
tHDDAT
Document Number: 002-04707 Rev. *B
tHIGH
tHDSTA
tSP
tSUSTO
Page 51 of 66
MB96650 Series
14.5 A/D Converter
14.5.1 Electrical Characteristics for the A/D Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Value
Typ
Symbol
Pin name
Resolution
-
-
-
-
10
bit
Total error
-
-
- 3.0
-
+ 3.0
LSB
Nonlinearity error
-
-
- 2.5
-
+ 2.5
LSB
Differential
Nonlinearity error
-
-
- 1.9
-
+ 1.9
LSB
VOT
ANn
Typ - 20
Typ + 20
mV
VFST
ANn
Typ - 20
Typ + 20
mV
Compare time*
-
-
Sampling time*
-
-
5.0
8.0
3.1
s
s
s
s
mA
Zero transition
voltage
Full scale transition
voltage
IA
Power supply current
Reference power
supply current
(between AVRH and
AVRL)
Analog input capacity
IAH
AVCC
IR
Min
Max
Unit
1.0
2.2
0.5
1.2
-
AVRL
+ 0.5LSB
AVRH
- 1.5LSB
2.0
-
-
3.3
A
-
520
810
A
A/D Converter active
-
-
1.0
A
A/D Converter not
operated
-
-
15.9
2050
3600
pF
AVRH
IRH
CVIN
ANn
Analog impedance
RVIN
ANn
Analog port input
current (during
conversion)
IAIN
ANn
- 0.3
-
+ 0.3
A
Analog input voltage
VAIN
ANn
AVRL
-
AVRH
V
-
AVRH
AVCC
- 0.1
-
AVCC
V
V
LSB
Reference voltage
range
Variation between
channels
Remarks
-
AVRL
AVSS
-
AVSS
+ 0.1
-
ANn
-
-
4.0
4.5V ≤ ΑVCC ≤ 5.5V
2.7V ≤ ΑVCC 4.5V
4.5V ≤ ΑVCC ≤ 5.5V
2.7V ≤ ΑVCC 4.5V
A/D Converter active
A/D Converter not
operated
4.5V ≤ AVCC ≤ 5.5V
2.7V ≤ AVCC < 4.5V
AVSS , AVRL VAIN
AVCC, AVRH
*: Time for each channel.
Document Number: 002-04707 Rev. *B
Page 52 of 66
MB96650 Series
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time
If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold
capacitor is insufficient, adversely affecting the A/D conversion precision.
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends
on the external driving impedance Rext, the board capacitance of the A/D converter input pin C ext and the AVCC voltage level. The
following replacement model can be used for the calculation:
MCU
Rext
Analog
input
RVIN
Source
Comparator
Cext
CVIN
Sampling switch
(During sampling:ON)
Rext: External driving impedance
Cext: Capacitance of PCB at A/D converter input
CVIN: Analog input capacity (I/O, analog switch and ADC are contained)
RVIN: Analog input impedance (I/O, analog switch and ADC are contained)
The following approximation formula for the replacement model above can be used:
Tsamp = 7.62 (Rext Cext + (Rext + RVIN) CVIN)
Do not select a sampling time below the absolute minimum permitted value.
(0.5s for 4.5V ≤ AVCC ≤ 5.5V, 1.2s for 2.7V ≤ AVCC < 4.5V)
If the sampling time cannot be sufficient, connect a capacitor of about 0.1F to the analog input pin.
A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL
(static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and
comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
The accuracy gets worse as |AVRH - AVRL| becomes smaller.
Document Number: 002-04707 Rev. *B
Page 53 of 66
MB96650 Series
14.5.3 Definition of A/D Converter Terms
Resolution
Nonlinearity error
: Analog variation that is recognized by an A/D converter.
: Deviation of the actual conversion characteristics from a straight line that connects the zero transition
point (0b0000000000 ←→ 0b0000000001) to the full-scale transition point (0b1111111110 ←→
0b1111111111).
Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by
1LSB.
Total error
: Difference between the actual value and the theoretical value. The total error includes zero transition
error, full-scale transition error and nonlinearity error.
Zero transition voltage: Input voltage which results in the minimum conversion value.
Full scale transition voltage: Input voltage which results in the maximum conversion value.
Nonlinearity error of digital output N =
VNT - {1LSB (N - 1) + VOT}
1LSB
Differential nonlinearity error of digital output N =
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VOT
1022
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0x3FE to 0x3FF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
1LSB =
N
VOT
VFST
VNT
:
:
:
:
Document Number: 002-04707 Rev. *B
Page 54 of 66
MB96650 Series
1LSB (Ideal value) =
AVRH - AVRL
1024
Total error of digital output N =
[V]
VNT - {1LSB (N - 1) + 0.5LSB}
1LSB
N
: A/D converter digital output value.
VNT
: Voltage at which the digital output changes from 0x(N + 1) to 0xN.
VOT (Ideal value) = AVRL + 0.5LSB[V]
VFST (Ideal value) = AVRH - 1.5LSB[V]
Document Number: 002-04707 Rev. *B
Page 55 of 66
MB96650 Series
14.6 Low Voltage Detection Function Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Conditions
Value
Typ
Min
Max
Unit
VDL0
VDL1
CILCR:LVL = 0000B
CILCR:LVL = 0001B
2.70
2.79
2.90
3.00
3.10
3.21
V
V
VDL2
CILCR:LVL = 0010B
2.98
3.20
3.42
V
VDL3
CILCR:LVL = 0011B
3.26
3.50
3.74
V
VDL4
CILCR:LVL = 0100B
3.45
3.70
3.95
V
VDL5
CILCR:LVL = 0111B
3.73
4.00
4.27
V
VDL6
CILCR:LVL = 1001B
3.91
4.20
4.49
V
Power supply voltage change
rate*2
dV/dt
-
- 0.004
-
+ 0.004
V/s
CILCR:LVHYS=0
-
-
50
mV
Hysteresis width
VHYS
CILCR:LVHYS=1
80
100
120
mV
Detected voltage
*1
Stabilization time
TLVDSTAB
-
-
-
75
s
Detection delay time
td
-
-
-
30
s
*1: If the power supply voltage fluctuates within the time less than the detection delay time (t d), there is a possibility that the low
voltage detection will occur or stop after the power supply voltage passes the detection range.
*2: In order to perform the low voltage detection at the detection voltage (V DLX), be sure to suppress fluctuation of the power supply
voltage within the limits of the change ration of power supply voltage.
Document Number: 002-04707 Rev. *B
Page 56 of 66
MB96650 Series
Voltage
Vcc
dV
Detected Voltage
dt
VDLX max
VDLX min
Time
RCR:LVDE
···Low voltage detection
function enable
Document Number: 002-04707 Rev. *B
Low voltage detection
function disable
Stabilization time
TLVDSTAB
Low voltage detection
function enable···
Page 57 of 66
MB96650 Series
14.7 Flash Memory Write/Erase Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Sector erase time
Word (16-bit) write
time
Conditions
Min
Value
Typ
Unit
Max
Large Sector
TA ≤ + 105°C
-
1.6
7.5
s
Small Sector
-
-
0.4
2.1
s
Security Sector
-
-
0.31
1.65
s
Large Sector
TA ≤ + 105°C
-
25
400
s
Small Sector
-
-
25
400
s
TA ≤ + 105°C
-
11.51
55.05
s
Chip erase time
Remarks
Includes write time prior to
internal erase.
Not including system-level
overhead
time.
Includes write time prior to
internal erase.
Note: While the Flash memory is written or erased, shutdown of the external power (V CC) is prohibited. In the application system
where the external power (VCC) might be shut down while writing or erasing, be sure to turn the power off by using a low
voltage detection function.
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/s to
+0.004V/s) after the external power falls below the detection voltage (V DLX)*1.
Write/Erase cycles and data hold time
Write/Erase cycles
(cycle)
1,000
10,000
100,000
Data hold time
(year)
20 *2
10 *2
5 *2
*1: See "6. Low Voltage Detection Function Characteristics".
*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into
normalized value at + 85C).
Document Number: 002-04707 Rev. *B
Page 58 of 66
MB96650 Series
15. Example Characteristics
This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.
MB96F657
Run Mode
(VCC = 5.5V)
100.00
PLL clock (32MHz)
10.00
ICC [mA]
Main osc. (4MHz)
1.00
RC clock (2MHz)
RC clock (100kHz)
0.10
Sub osc. (32kHz)
0.01
-50
0
50
100
150
TA [ºC]
Sleep Mode
(VCC = 5.5V)
100.000
PLL clock (32MHz)
ICC [mA]
10.000
Main osc. (4MHz)
1.000
RC clock (2MHz)
0.100
RC clock (100kHz)
0.010
Sub osc. (32kHz)
0.001
-50
0
50
100
150
TA [ºC]
Document Number: 002-04707 Rev. *B
Page 59 of 66
MB96650 Series
MB96F657
Timer Mode
(VCC = 5.5V)
10.000
PLL clock (32MHz)
ICC [mA]
1.000
Main osc. (4MHz)
0.100
RC clock (2MHz)
RC clock (100kHz)
0.010
Sub osc. (32kHz)
0.001
-50
0
50
100
150
TA [ºC]
Stop Mode
(VCC = 5.5V)
1.000
ICC [mA]
0.100
0.010
0.001
-50
0
50
100
150
TA [ºC]
Document Number: 002-04707 Rev. *B
Page 60 of 66
MB96650 Series
Used setting
Selected Source
Clock
Mode
Run mode
Sleep mode
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
Main osc.
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
RC clock fast
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
RC clock slow
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
Sub osc.
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
PLL
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz
Regulator in Low Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz
Regulator in Low Power Mode,
(CLKB is stopped in this mode)
CLKMC = 4MHz, CLKPLL = 32MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 4MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 2MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 100kHz
(System clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
CLKMC = 32 kHz
(System clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
(All clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
Main osc.
RC clock fast
RC clock slow
Sub osc.
Timer mode
PLL
Main osc.
RC clock fast
RC clock slow
Sub osc.
Stop mode
Clock/Regulator and FLASH Settings
PLL
stopped
Document Number: 002-04707 Rev. *B
Page 61 of 66
MB96650 Series
16. Ordering Information
MCU with CAN controller
Part number
MB96F653RBPMC-GSE1
MB96F653RBPMC-GSE2
MB96F655RBPMC-GSE1
MB96F655RBPMC-GSE2
MB96F656RBPMC-GSE1
MB96F656RBPMC-GSE2
MB96F657RBPMC-GSE1
MB96F657RBPMC-GSE2
Flash memory
Package*
Flash A
(96.5KB)
120-pin plastic LQFP
(LQM120)
Flash A
(160.5KB)
120-pin plastic LQFP
(LQM120)
Flash A
(288.5KB)
120-pin plastic LQFP
(LQM120)
Flash A
(416.5KB)
120-pin plastic LQFP
(LQM120)
*: For details about package, see "Package Dimension".
MCU without CAN controller
Part number
MB96F653ABPMC-GSE1
MB96F653ABPMC-GSE2
MB96F655ABPMC-GSE1
MB96F655ABPMC-GSE2
Flash memory
Package*
Flash A
(96.5KB)
120-pin plastic LQFP
(LQM120)
Flash A
(160.5KB)
120-pin plastic LQFP
(LQM120)
*: For details about package, see "Package Dimension".
Document Number: 002-04707 Rev. *B
Page 62 of 66
MB96650 Series
17. Package Dimension
4
D
5 7
D1
90
61
91
61
60
90
91
60
E1
E
4
5
7
3
6
31
120
1
31
30
e
3
b
0.20 C A-B D
30
2 5 7
0.10
0.08
1
C A-B D
C A-B
D
BOTTOM VIEW
8
TOP VIEW
2
A
9
c
θ
A
A'
0.08 C
SEATI N G
PLA N E
0.25
A1
10
b
SECTION A -A'
L
SIDE VIEW
SYM BOL
DIM ENSIONS
M IN.
NOM . M AX.
0.05
0.15
A
A1
1. 70
b
0.17
c
0.115
0.22
D
18.00 BSC
D1
16.00 BSC
e
0.50 BSC
E
18.00 BSC
E1
L
θ
0.27
0.195
16.00 BSC
0.45
0°
0.60
0.75
8°
002-16172 **
PACKAGE OUTLINE, 120 LEAD LQFP
18.0X18.0X1.7 M M LQM 120 REV**
Document Number: 002-04707 Rev. *B
Page 63 of 66
MB96650 Series
18. Major Changes
Spansion Publication Number: MB96650_DS704-00003
Page
Section
Change Results
Revision 1.0
-
-
Initial release
Revision 2.0
39
Electrical Characteristics
Changed the Value of “Power supply current in Timer modes”
DC Characteristics
ICCTPLL
Current Rating
Typ: 2485μA → 1800μA (TA = +25°C)
Max: 2715μA → 2250μA (TA = +25°C)
Max: 4095μA → 3220μA (TA = +105°C)
Max: 5065μA → 4205μA (TA = +125°C)
Revision 2.1
-
-
Company name and layout design change
NOTE: Please see “Document History” about later revised information.
Page
Section
Change Results
Revision *B
5, 7, 62,
63
1. Product Lineup
3. Pin Assignment
16. Ordering Information
17. Package Dimension
Document Number: 002-04707 Rev. *B
Package description modified to JEDEC description.
FPT-120P-M21 → LQM120
Page 64 of 66
MB96650 Series
Document History
Document Title: MB96650 Series, F2MC-16FX 16-bit Microcontroller
Document Number: 002-04707
Revision
ECN
Orig. of
Change
Submission
Date
**
KSUN
01/31/2014
*A
5164895
KSUN
03/14/2016 Updated to Cypress template
*B
6005555
KSUN
01/09/2018
Document Number: 002-04707 Rev. *B
Description of Change
Migrated to Cypress and assigned document number 002-04707.
No change to document contents or format.
Updated the Cypress logo, Sales information and legal.
Refer to 18. Major Changes.
Page 65 of 66
MB96650 Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
Products
Arm® Cortex® Microcontrollers
Automotive
PSoC® Solutions
cypress.com/arm
cypress.com/automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/clocks
cypress.com/interface
PSoC
cypress.com/psoc
Power Management ICs
cypress.com/pmic
Wireless Connectivity
Community | Projects | Videos | Blogs | Training | Components
Technical Support
cypress.com/support
cypress.com/memory
cypress.com/mcu
USB Controllers
Cypress Developer Community
cypress.com/iot
Microcontrollers
Touch Sensing
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
cypress.com/touch
cypress.com/usb
cypress.com/wireless
© Cypress Semiconductor Corporation, 2013-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security
breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functi onality and safety of any application
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is
any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress
products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-04707 Rev. *B
January 9, 2018
Page 66 of 66