MB9A150RA Series
TM
32-bit ARM CortexTM-M3 based Microcontroller
MB9AF154MA/NA/RA, MB9AF155MA/NA/RA,
MB9AF156MA/NA/RA
Data Sheet (Full Production)
Notice to Readers: This document states the current technical specifications regarding the Spansion
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production
volume such that subsequent versions of this document are not expected to change. However,
typographical or specification corrections, or modifications to the valid combinations offered may occur.
Publication Number MB9AF156RA_DS706-00047
Revision 2.0
Issue Date April 4, 2014
D a t a S h e e t
Notice On Data Sheet Designations
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers
of product information or intended specifications throughout the product life cycle, including development,
qualification, initial production, and full production. In all cases, however, readers are encouraged to
verify that they have the latest information before finalizing their design. The following descriptions of
Spansion data sheet designations are presented here to highlight their presence and definitions.
Advance Information
The Advance Information designation indicates that Spansion Inc. is developing one or more specific
products, but has not committed any design to production. Information presented in a document with this
designation is likely to change, and in some cases, development on the product may discontinue.
Spansion Inc. therefore places the following conditions upon Advance Information content:
“This document contains information on one or more products under development at Spansion
Inc. The information is intended to help you evaluate this product. Do not design in this product
without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on
this proposed product without notice.”
Preliminary
The Preliminary designation indicates that the product development has progressed such that a
commitment to production has taken place. This designation covers several aspects of the product life
cycle, including product qualification, initial production, and the subsequent phases in the manufacturing
process that occur before full production is achieved. Changes to the technical specifications presented
in a Preliminary document should be expected while keeping these aspects of production under
consideration. Spansion places the following conditions upon Preliminary content:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. The Preliminary status of this document indicates that product qualification
has been completed, and that initial production has begun. Due to the phases of the
manufacturing process that require maintaining efficiency and quality, this document may be
revised by subsequent versions or modifications due to changes in technical specifications.”
Combination
Some data sheets contain a combination of products with different designations (Advance Information,
Preliminary, or Full Production). This type of document distinguishes these products and their
designations wherever necessary, typically on the first page, the ordering information page, and pages
with the DC Characteristics table and the AC Erase and Program table (in the table notes). The
disclaimer on the first page refers the reader to the notice on this page.
Full Production (No Designation on Document)
When a product has been in production for a period of time such that no changes or only nominal
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes
may include those affecting the number of ordering part numbers available, such as the addition or
deletion of a speed option, temperature range, package type, or VIO range. Changes may also include
those needed to clarify a description or to correct a typographical error or incorrect specification.
Spansion Inc. applies the following conditions to documents in this category:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. Spansion Inc. deems the products to have been in sufficient production
volume such that subsequent versions of this document are not expected to change. However,
typographical or specification corrections, or modifications to the valid combinations offered may
occur.”
Questions regarding these document designations may be directed to your local sales office.
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
MB9A150RA Series
32-bit ARMTM CortexTM-M3 based Microcontroller
MB9AF154MA/NA/RA, MB9AF155MA/NA/RA,
MB9AF156MA/NA/RA
Data Sheet (Full Production)
DESCRIPTION
The MB9A150RA Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers
with low-power consumption mode and competitive cost.
These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have
peripheral functions such as various timers, ADCs, and Communication Interfaces (UART, CSIO, I2C).
The products which are described in this data sheet are placed into TYPE8 product categories in "FM3
Family PERIPHERAL MANUAL".
Note: ARM and Cortex are the trademarks of ARM Limited in the EU and other countries.
Publication Number MB9AF156RA_DS706-00047
Revision 2.0
Issue Date April 4, 2014
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the
valid combinations offered may occur.
D a t a S h e e t
FEATURES
• 32-bit ARM Cortex-M3 Core
Processor version: r2p1
Up to 40 MHz Frequency Operation
Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and
48 peripheral interrupts and 16 priority levels
24-bit System timer (Sys Tick): System timer for OS task management
• On-chip Memories
[Flash memory]
Dual operation Flash memory
Dual Operation Flash memory has the upper bank and the lower bank.
So, this series could implement erase, write and read operations
for each bank simultaneously.
Main area: Up to 512Kbytes (Upto 496Kbytes upper bank + 16Kbytes lower bank)
Work area: 32Kbytes (lower bank)
Read cycle: 0 wait-cycle
Security function for code protection
[SRAM]
This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is
connected to I-code bus or D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.
SRAM0: Up to 32 Kbytes
SRAM1: Up to 32 Kbytes
• External Bus Interface
Supports SRAM, NOR NAND Flash memory device
Up to 8 chip selects
8/16-bit Data width
Up to 25-bit Address bit
Maximum area size : Up to 256 Mbytes
Supports Address/Data multiplex
Supports external RDY function
• Multi-function Serial Interface (Max 16channels)
16 channels with 16steps×9-bit FIFO
Operation mode is selectable from the followings for each channel.
UART
CSIO
I2C
[UART]
Full-duplex double buffer
Selection with or without parity supported
Built-in dedicated baud rate generator
External clock available as a serial clock
Hardware Flow control: Automatically control the transmission/reception by CTS/RTS (only ch.4)
Various error detection functions available (parity errors, framing errors, and overrun errors)
[CSIO]
Full-duplex double buffer
Built-in dedicated baud rate generator
Overrun error detection function available
2
[I C]
Standard-mode (Max 100kbps) / Fast-mode (Max 400kbps) supported
4
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• DMA Controller (8channels)
The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process
simultaneously.
8 independently configured and operated channels
Transfer can be started by software or request from the built-in peripherals
Transfer address area: 32-bit (4 Gbytes)
Transfer mode: Block transfer/Burst transfer/Demand transfer
Transfer data type: byte/half-word/word
Transfer block count: 1 to 16
Number of transfers: 1 to 65536
• A/D Converter (Max 24channels)
[12-bit A/D Converter]
Successive Approximation type
Built-in 2units
Conversion time: 2.0μs @ 2.7V to 3.6V
Priority conversion available (priority at 2levels)
Scanning conversion mode
Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion:
4steps)
• Base Timer (Max 16channels)
Operation mode is selectable from the followings for each channel.
16-bit PWM timer
16-bit PPG timer
16/32-bit reload timer
16/32-bit PWC timer
• General-Purpose I/O Port
This series can use its pins as general-purpose I/O ports when they are not used for external bus or
peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function
can be allocated to.
Capable of pull-up control per pin
Capable of reading pin level directly
Built-in the port relocate function
Up to 103 high-speed general-purpose I/O Ports@120pin Package
Some ports are 5V tolerant I/O
See " LIST OF PIN FUNCTIONS" and " I/O CIRCUIT TYPE" to confirm the corresponding pins.
• Dual Timer (32/16-bit Down Counter)
The Dual Timer consists of two programmable 32/16-bit down counters.
Operation mode is selectable from the followings for each channel.
Free-running
Periodic (=Reload)
One-shot
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
3
D a t a S h e e t
• Multi-function Timer
The Multi-function timer is composed of the following blocks.
16-bit free-run timer × 3ch.
Input capture × 4ch.
Output compare × 6ch.
A/D activation compare × 2ch.
Waveform generator × 3ch.
16-bit PPG timer × 3ch.
The following function can be used to achieve the motor control.
PWM signal output function
DC chopper waveform output function
Dead time function
Input capture function
A/D convertor activate function
DTIF (Motor emergency stop) interrupt function
• Quadrature Position/Revolution Counter (QPRC)
The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position
encoder. Moreover, it is possible to use as the up/down counter.
The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
16-bit position counter
16-bit revolution counter
Two 16-bit compare registers
• HDMI-CEC/Remote Control Reception (Up to 2channels)
HDMI-CEC transmission
Header block automatic transmission by judging Signal free
Generating status interrupt by detecting Arbitration lost
Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)
HDMI-CEC reception
Automatic ACK reply function available
Line error detection function available
Remote control reception
4 bytes reception buffer
Repeat code detection function available
• Real-time clock (RTC)
The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.
The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of
the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or
Minute.
Timer interrupt function after set time or each set time.
Capable of rewriting the time with continuing the time count.
Leap year automatic count is available.
• Watch Counter
The Watch counter is used for wake up from sleep and timer mode.
Interval timer: up to 64s (Max) @ Sub Clock : 32.768 kHz
4
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• External Interrupt Controller Unit
Up to 24 external interrupt input pins
Include one non-maskable interrupt (NMI) input pin
• Watchdog Timer (2channels)
A watchdog timer can generate interrupts or a reset when a time-out value is reached.
This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.
The "Hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the
"Hardware" watchdog is active in any low-power consumption modes except RTC, STOP, Deep standby
RTC and Deep standby STOP modes.
• CRC (Cyclic Redundancy Check) Accelerator
The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a
reduction of the integrity check processing load for reception data and storage.
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
CCITT CRC16 Generator Polynomial: 0x1021
IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
• Clock and Reset
[Clocks]
Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).
Main Clock
Sub Clock
Built-in high-speed CR Clock
Built-in low-speed CR Clock
Main PLL Clock
: 4 MHz to 48 MHz
: 32.768 kHz
: 4 MHz
: 100 kHz
[Resets]
Reset requests from INITX pin
Power-on reset
Software reset
Watchdog timers reset
Low-voltage detection reset
Clock Super Visor reset
• Clock Super Visor (CSV)
Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.
If external clock failure (clock stop) is detected, reset is asserted.
If external frequency anomaly is detected, interrupt or reset is asserted.
• Low-Voltage Detector (LVD)
This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the
voltage that has been set, Low-Voltage Detector generates an interrupt or reset.
LVD1: error reporting via interrupt
LVD2: auto-reset operation
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
5
D a t a S h e e t
• Low-Power Consumption Mode
Six low-power consumption modes supported.
SLEEP
TIMER
RTC
STOP
Deep standby RTC (selectable between keeping the value of RAM and not)
Deep standby STOP (selectable between keeping the value of RAM and not)
• Debug
Serial Wire JTAG Debug Port (SWJ-DP)
Embedded Trace Macrocells (ETM).*
*: MB9AF154MA, F155MA and F156MA support only SWJ-DP.
• Unique ID
Unique value of the device (41-bit) is set.
• Power Supply
Wide range voltage: VCC = 1.65V to 3.6V
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
PRODUCT LINEUP
• Memory size
Product name
On-chip
Flash
memory
On-chip
SRAM
MB9AF154MA/NA/RA
MB9AF155MA/NA/RA
MB9AF156MA/NA/RA
Main area
256 Kbytes
384 Kbytes
512 Kbytes
Work area
32 Kbytes
32 Kbytes
32 Kbytes
SRAM0
SRAM1
Total
16 Kbytes
16 Kbytes
32 Kbytes
24 Kbytes
24 Kbytes
48 Kbytes
32 Kbytes
32 Kbytes
64 Kbytes
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
7
D a t a S h e e t
Function
Product name
Pin count
MB9AF154MA
MB9AF155MA
MB9AF156MA
80/96
CPU
Freq.
Power supply voltage range
DMAC
External Bus Interface
Multi-function Serial Interface
(UART/CSIO/I2C)
100/112
Cortex-M3
40 MHz
1.65V to 3.6V
8ch.
Addr: 21-bit (Max)
Addr: 25-bit (Max) R/W
R/W Data: 8-bit (Max) Data: 8/16-bit (Max) CS:
CS: 4 (Max)
8 (Max)
Support: SRAM,
Support: SRAM,
NOR Flash memory
NOR Flash memory
10ch. (Max)
Enabled channels :
ch.0 to ch.7, ch.10,
ch.11
Base Timer
(PWC/Reload timer/PWM/PPG)
A/D activation
2ch.
compare
Input capture
4ch.
Free-run timer
3ch.
MFTimer Output compare
6ch.
Waveform
3ch.
generator
PPG
3ch.
QPRC
Dual Timer
HDMI-CEC/ Remote Control
Reception
Real-Time Clock
Watch Counter
CRC Accelerator
Watchdog timer
External Interrupts
MB9AF154NA
MB9AF155NA
MB9AF156NA
14ch. (Max)
Enabled channels :
ch.0 to ch.13
MB9AF154RA
MB9AF155RA
MB9AF156RA
120
Addr: 25-bit (Max)
R/W Data: 8/16-bit
(Max)
CS: 8 (Max)
Support: SRAM,
NOR Flash memory,
NAND Flash memory
16ch. (Max)
Enabled channels :
ch.0 to ch.15
16ch. (Max)
1 unit (Max)
2ch. (Max)
1 unit
2ch. (Max)
1 unit
1 unit
Yes
1ch. (SW) + 1ch. (HW)
23pins (Max) +
NMI × 1
66pins (Max)
17ch. (2 units)
24pins (Max) + NMI × 1
I/O ports
83pins (Max)
103pins (Max)
12-bit A/D converter
24ch. (2 units)
CSV (Clock Super Visor)
Yes
LVD (Low-Voltage Detector)
2ch.
High-speed
4 MHz
Built-in
CR
Low-speed
100 kHz
Debug Function
SWJ-DP
SWJ-DP/ETM
Unique ID
Yes
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the I/O port according to your function use.
See " ELECTRICAL CHARACTERISTICS 4.AC Characteristics (3)Built-in CR Oscillation
Characteristics" for accuracy of built-in CR.
8
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
PACKAGES
Product name
Package
LQFP: FPT-80P-M37 (0.5mm pitch)
BGA: BGA-96P-M07 (0.5mm pitch)
LQFP: FPT-100P-M23 (0.5mm pitch)
BGA: BGA-112P-M04 (0.8mm pitch)
LQFP: FPT-120P-M37 (0.5mm pitch)
: Supported
MB9AF154MA
MB9AF155MA
MB9AF156MA
MB9AF154NA
MB9AF155NA
MB9AF156NA
MB9AF154RA
MB9AF155RA
MB9AF156RA
-
-
Note: See "PACKAGE DIMENSIONS" for detailed information on each package.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
9
D a t a S h e e t
PIN ASSIGNMENT
• FPT-120P-M37
VCC
91
92
P02/TDI/SOT8_0/TIOB14_2/MCSX6_0
P00/TRSTX/SCK8_0/TIOA14_2/MCSX7_0
93
P04/TDO/SWO P03/TMS/SWDIO
P05/AN20/TRACED0/SIN8_0/SIN4_2/TIOA5_2/INT00_1/MCSX5_0
P06/AN21/TRACED1/SOT4_2/TIOB5_2/INT01_1/MCSX4_0
P07/AN22/ADTG_0/TRACED2/SCK4_2/INT23_1/MCLKOUT_0
P08/AN23/TRACED3/CTS4_2/TIOA0_2/INT16_0/MCSX3_0
P09/TRACECLK/RTS4_2/TIOB0_2/INT17_0/MCSX2_0
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
P0F/NMIX/CROUT_1/RTCCO_0/SUBO UT_0/WKUP0
P68/SCK3_0/TIOB7_2/INT12_2
P01/TCK/SWCLK
94
95
96
97
98
99
100
101
102
103
104
105
106
P64/SOT5_1/TIOA7_0/INT10_2
112
P67/SOT3_0/TIOA7_2/INT22_0
P63/SIN5_1/TIOB15_1/INT03_0/MWEX_0
113
107
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
114
P66/SIN3_0/TIOA12_2/INT11_2
P61/SOT5_0/TIOB2_2
115
108
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
116
P65/SCK5_1/TIOB7_0/TIOB12_2/INT23_0
VCC
117
109
P80/TIOB15_0/INT16_1
118
110
P81/TIOA15_0/INT17_1
119
111
VSS
120
(TOP VIEW)
VCC
1
90
VSS
P50/SIN3_1/AIN0_2/TIOB8_0/INT 00_0/MADAT A00_0
2
89
P20/AN19/CROUT _0/AIN1_1/TIOA10_2/INT 05_0/MAD24_0
P51/SOT 3_1/BIN0_2/TIOB9_0/INT 01_0/MADAT A01_0
3
88
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT 06_1/WKUP2
P52/SCK3_1/ZIN0_2/TIOB10_0/INT 02_0/MADAT A02_0
4
87
P22/AN17/SOT 0_0/ZIN1_1/TIOB7_1
P53/SIN6_0/TIOB11_0/TIOA1_2/INT 07_2/MADAT A03_0
5
86
P23/AN16/SCK0_0/RT O00_1/TIOA7_1
P54/SOT 6_0/TIOB12_0/TIOB1_2/INT 18_1/MADAT A04_0
6
85
P24/SIN2_1/RT O01_1/TIOB14_1/INT 01_2
P55/ADT G_1/SCK6_0/TIOB13_0/INT 19_1/MADAT A05_0
7
84
P25/SOT 2_1/RT O02_1/TIOA14_1/TIOB11_2
P56/SIN1_0/TIOA8_0/INT 08_2/CEC1_1/M ADAT A06_0
8
83
P26/SCK2_1/RT O03_1/TIOA11_2
P57/SOT 1_0/TIOA9_0/MADAT A07_0
9
82
P27/SIN15_0/RT O04_1/TIOA6_2/INT 02_2
P58/SCK1_0/TIOA10_0/M ADAT A08_0
10
81
P28/ADT G_4/SOT 15_0/RT O05_1/TIOB6_2
P59/SIN7_0/TIOA11_0/INT 09_2/MADAT A09_0
11
80
P1F/AN15/ADT G_5/SCK15_0/FRCK0_1/TIOB9_2/MAD23_0
P5A/SOT 7_0/TIOA12_0/INT 16_2/MADAT A10_0
12
79
P1E/AN14/RT S4_1/DT TI0X_1/TIOA9_2/INT 23_2/MAD22_0
P5B/SCK7_0/TIOA13_0/INT 17_2/MADAT A11_0
13
78
P1D/AN13/CT S4_1/IC03_1/TIOA13_1/INT 22_2/MAD21_0
77
P1C/AN12/SCK4_1/IC02_1/TIOA12_1/INT 21_2/M AD20_0
LQFP - 120
P30/AIN0_0/TIOB0_1/TIOA13_2/INT 03_2/WKUP4/MADAT A12_0
14
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT 04_2/MADAT A13_0
15
76
P32/SOT 6_1/ZIN0_0/TIOB2_1/INT 05_2/MADAT A14_0
16
75
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT 05_1/MAD18_0
P33/ADT G_6/SIN9_0/SIN6_1/TIOB3_1/INT 04_0/MADAT A15_0
17
74
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P34/SOT 9_0/FRCK0_0/TIOB4_1/TIOA15_2/MNALE_0
18
73
P18/AN08/SOT 2_2/TIOA8_1/MAD16_0
P35/SCK9_0/IC03_0/TIOB5_1/TIOB15_2/INT 08_1/MNCLE_0
P1B/AN11/SOT 4_1/IC01_1/TIOA11_1/INT 20_2/MAD19_0
19
72
AVSS
P36/SIN5_2/IC02_0/TIOB14_0/INT 09_1/MNWEX_0
20
71
AVRH
P37/SOT 5_2/IC01_0/TIOA14_0/INT 10_1/MNREX_0
21
70
AVCC
P38/SCK5_2/IC00_0/TIOA8_2/INT 11_1
22
69
P17/AN07/SIN2_2/INT 04_1/MAD15_0
60
59
VSS
57
58
PE3/X1
MD0
PE2/X0
56
55
PE0/MD1
P74/SCK2_0
54
53
P73/SOT2_0/TIOB6_0/INT15_2
52
P72/SIN2_0/TIOA6_0/INT14_2
51
P71/SCK14_0/TIOB4_2/INT13_2
50
P70/SOT14_0/TIOA4_2
P4E/SIN14_0/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
49
48
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
47
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
46
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
45
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
44
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
INITX
P48/SIN3_2/INT14_1/MAD02_0
P47/X1A
43
VCC
42
61
41
30
40
P10/AN00
VSS
P46/X0A
62
39
29
VSS VCC
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT 02_1/WKUP1/MAD09_0
P3F/RT O05_0/TIOA5_1
38
63
C
28
P45/SCK13_0/TIOA5_0/INT11_0/MAD01_0
P12/AN02/SOT 1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RT O04_0/TIOA4_1/INT 19_2
37
64
36
27
P44/SOT13_0/TIOA4_0/INT10_0/MAD00_0
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RT CCO_1/SUBOUT _1/MAD11_0
P3D/SOT 11_0/RT O03_0/TIOA3_1
35
65
P43/ADTG_7/SIN13_0/TIOA3_0/INT09_0
26
34
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT 03_1/MAD12_0
P3C/SIN11_0/RT O02_0/TIOA2_1/INT 18_2
P42/SCK12_0/TIOA2_0/INT08_0
66
33
25
32
P15/AN05/SOT 0_1/IC03_2/TIOB12_1/INT 14_0/MAD13_0
P3B/SCK10_0/RT O01_0/TIOA1_1
31
P16/AN06/SCK0_1/TIOB13_1/INT 15_0/MAD14_0
67
VCC
68
24
P40/SIN12_0/TIOA0_0/INT12_1
23
P41/SOT12_0/TIOA1_0/INT13_1
P39/ADT G_2/SIN10_0/DT T I0X_0/TIOB8_2/INT 06_0
P3A/SOT 10_0/RT O00_0/TIOA0_1/INT 07_0/RT CCO_2/SUBOUT _2
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• FPT-100P-M23
P00/TRSTX/SCK8_0/TIOA14_2/MCSX7_0
P01/TCK/SWCLK
P02/TDI/SOT8_0/TIOB14_2/MCSX6_0
P04/TDO/SWO P03/TMS/SWDIO
P06/AN21/TRACED1/SOT4_2/TIOB5_2/INT01_1/MCSX4_0
P05/AN20/TRACED0/SIN8_0/SIN4_2/TIOA5_2/INT00_1/MCSX5_0
P07/AN22/ADTG_0/TRACED2/SCK4_2/INT23_1/MCLKOUT_0
P08/AN23/TRACED3/CTS4_2/TIOA0_2/INT16_0/MCSX3_0
P09/TRACECLK/RTS4_2/TIOB0_2/INT17_0/MCSX2_0
VCC
76
77
78
79
80
81
82
83
84
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
91
85
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
92
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P63/TIOB15_1/INT03_0/MWEX_0
93
86
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
94
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
P61/SOT5_0/TIOB2_2
95
87
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
96
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
VCC
97
88
P80/TIOB15_0/INT16_1
98
89
P81/TIOA15_0/INT17_1
99
90
VSS
100
(TOP VIEW)
VCC
1
75
VSS
P50/SIN3_1/AIN0_2/TIOB8_0/INT 00_0/MADAT A00_0
2
74
P20/AN19/CROUT_0/AIN1_1/TIOA10_2/INT05_0/MAD24_0
3
73
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT06_1/WKUP2
P52/SCK3_1/ZIN0_2/TIOB10_0/INT02_0/MADAT A02_0
4
72
P22/AN17/SOT 0_0/ZIN1_1/TIOB7_1
P51/SOT 3_1/BIN0_2/TIOB9_0/INT01_0/MADAT A01_0
P53/SIN6_0/TIOB11_0/TIOA1_2/INT07_2/MADAT A03_0
5
71
P23/AN16/SCK0_0/TIOA7_1
P54/SOT 6_0/TIOB12_0/TIOB1_2/INT18_1/MADAT A04_0
6
70
P1F/AN15/ADT G_5/FRCK0_1/TIOB9_2/MAD23_0
P55/ADT G_1/SCK6_0/TIOB13_0/INT19_1/MADAT A05_0
7
69
P1E/AN14/RT S4_1/DTTI0X_1/TIOA9_2/INT23_2/MAD22_0
8
68
P1D/AN13/CT S4_1/IC03_1/TIOA13_1/INT22_2/MAD21_0
9
67
P1C/AN12/SCK4_1/IC02_1/TIOA12_1/INT21_2/MAD20_0
10
66
P1B/AN11/SOT 4_1/IC01_1/TIOA11_1/INT 20_2/MAD19_0
P32/SOT 6_1/ZIN0_0/TIOB2_1/INT05_2/MADAT A09_0
11
65
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT05_1/MAD18_0
P33/ADT G_6/SIN9_0/SIN6_1/TIOB3_1/INT 04_0/MADAT A10_0
12
64
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P34/SOT 9_0/FRCK0_0/TIOB4_1/TIOA15_2/MADAT A11_0
13
63
P18/AN08/SOT 2_2/TIOA8_1/MAD16_0
P56/INT08_2/CEC1_1/MADAT A06_0
P30/AIN0_0/TIOB0_1/TIOA13_2/INT03_2/WKUP4/MADAT A07_0
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT04_2/MADAT A08_0
LQFP - 100
14
62
AVSS
P36/SIN5_2/IC02_0/TIOB14_0/INT09_1/MADAT A13_0
15
61
AVRH
P37/SOT 5_2/IC01_0/TIOA14_0/INT10_1/MADAT A14_0
16
60
AVCC
P38/SCK5_2/IC00_0/TIOA8_2/INT11_1/MADAT A15_0
17
59
P17/AN07/SIN2_2/INT 04_1/MAD15_0
P39/ADT G_2/SIN10_0/DTTI0X_0/TIOB8_2/INT06_0
18
58
P16/AN06/SCK0_1/TIOB13_1/INT15_0/MAD14_0
P3A/SOT 10_0/RT O00_0/TIOA0_1/INT 07_0/RTCCO_2/SUBOUT _2
P35/SCK9_0/IC03_0/TIOB5_1/TIOB15_2/INT08_1/MADAT A12_0
50
49
VSS
PE3/X1
48
47
46
MD0
PE2/X0
PE0/MD1
45
44
P4E/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
43
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
42
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
41
40
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
39
38
P48/SIN3_2/INT14_1/MAD02_0
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
INITX
37
35
P46/X0A
36
34
P47/X1A
33
C
VSS VCC
VCC
32
51
P45/SCK13_0/TIOA5_0/INT11_0/MAD01_0
25
31
P10/AN00
VSS
P43/ADTG_7/SIN13_0/TIOA3_0/INT09_0
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT02_1/WKUP1/MAD09_0
52
P44/SOT13_0/TIOA4_0/INT10_0/MAD00_0
53
24
30
23
P3F/RT O05_0/TIOA5_1
29
P12/AN02/SOT 1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RT O04_0/TIOA4_1/INT19_2
P42/SCK12_0/TIOA2_0/INT08_0
54
28
22
P41/SOT12_0/TIOA1_0/INT13_1
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RTCCO_1/SUBOUT_1/MAD11_0
P3D/SOT 11_0/RT O03_0/TIOA3_1
27
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT03_1/MAD12_0
55
26
P15/AN05/SOT 0_1/IC03_2/TIOB12_1/INT 14_0/MAD13_0
56
21
VCC
57
20
P40/SIN12_0/TIOA0_0/INT12_1
19
P3B/SCK10_0/RT O01_0/TIOA1_1
P3C/SIN11_0/RT O02_0/TIOA2_1/INT18_2
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
11
D a t a S h e e t
• FPT-80P-M37
P02/TDI/TIOB14_2/MCSX6_0
P01/TCK/SWCLK
P03/TMS/SWDIO
P04/TDO/SWO
P07/AN22/ADTG_0/INT23_1/MCLKOUT_0
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P00/TRSTX/TIOA14 2/MCSX7 0
61
62
63
64
65
66
67
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
68
69
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
74
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P61/SOT5_0/TIOB2_2
75
70
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
76
P63/TIOB15_1/INT03_0/MWEX_0
VCC
77
71
P80/TIOB15_0/INT16_1
78
72
P81/TIOA15_0/INT17_1
79
73
VSS
80
(TOP VIEW)
VCC
1
60
P20/AN19/CROUT _0/AIN1_1/TIOA10_2/INT 05_0/MAD24_0
P50/SIN3_1/AIN0_2/TIOB8_0/INT00_0/MADATA00_0
2
59
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT06_1/WKUP2
P51/SOT 3_1/BIN0_2/TIOB9_0/INT01_0/MADATA01_0
3
58
P22/AN17/SOT 0_0/ZIN1_1/TIOB7_1
P52/SCK3_1/ZIN0_2/TIOB10_0/INT02_0/MADATA02_0
4
57
P23/AN16/SCK0_0/TIOA7_1
P53/SIN6_0/TIOB11_0/TIOA1_2/INT07_2/MADATA03_0
5
56
P1B/AN11/SOT 4_1/IC01_1/TIOA11_1/INT 20_2/MAD19_0
P54/SOT 6_0/TIOB12_0/TIOB1_2/INT18_1/MADATA04_0
6
55
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT 05_1/MAD18_0
P55/ADT G_1/SCK6_0/TIOB13_0/INT19_1/MADATA05_0
7
54
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P56/INT08_2/CEC1_1/MADAT A06_0
8
53
P18/AN08/SOT 2_2/TIOA8_1/MAD16_0
P30/AIN0_0/TIOB0_1/TIOA13_2/INT03_2/WKUP4/MADATA07_0
9
52
AVSS
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT 04_2/MADATA08_0
10
51
AVRH
P32/SOT 6_1/ZIN0_0/TIOB2_1/INT05_2/MADAT A09_0
11
50
AVCC
P33/ADT G_6/SIN6_1/TIOB3_1/INT04_0/MADATA10_0
12
49
P17/AN07/SIN2_2/INT04_1/MAD15_0
P39/ADT G_2/SIN10_0/DTTI0X_0/INT06_0
13
48
P16/AN06/SCK0_1/TIOB13_1/INT15_0/MAD14_0
P3A/SOT10_0/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT _2
14
47
P15/AN05/SOT 0_1/IC03_2/TIOB12_1/INT14_0/MAD13_0
P3B/SCK10_0/RT O01_0/TIOA1_1
15
46
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT03_1/MAD12_0
P3C/SIN11_0/RT O02_0/TIOA2_1/INT18_2
16
45
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RTCCO_1/SUBOUT _1/MAD11_0
P3D/SOT 11_0/RTO03_0/TIOA3_1
17
44
P12/AN02/SOT 1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RTO04_0/TIOA4_1/INT19_2
18
43
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT02_1/WKUP1/MAD09_0
P3F/RTO05_0/TIOA5_1
19
42
P10/AN00
VSS
20
41
VCC
40
VSS
39
PE3/X1
PE2/X0
38
37
MD0
PE0/MD1
36
35
P4E/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
34
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
33
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
32
28
INITX
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
27
P47/X1A
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
26
P46/X0A
31
25
VCC
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
24
VSS
30
23
C
29
22
P45/TIOA5_0/INT11_0/MAD01_0
P48/SIN3_2/INT14_1/MAD02_0
21
P44/TIOA4_0/INT10_0/MAD00_0
LQFP - 80
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
•
BGA-112P-M04
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
P81
P80
VCC
P0E
P0B
P07
TMS/
SWDIO
TRSTX
VCC
VSS
B
VCC
VSS
P52
P61
P0C
P08
TDO/
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P62
P0D
P09
P05
VSS
P20
P21
D
P53
P54
P55
VSS
P56
P63
P0A
VSS
P06
P23
AN15
E
P30
P31
P32
P33
Index
P22
AN14
AN12
AN11
F
P34
P35
P36
P39
AN13
AN10
AN09
AVRH
G
P37
P38
P3A
P3D
AN08
AN07
AN06
AVSS
H
P3B
P3C
P3E
VSS
P44
P4C
AN05
VSS
AN04
AN03
AVCC
J
VCC
P3F
VSS
P40
P43
P49
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P42
P48
P4B
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P41
P45
P4A
MD0
X0
X1
VSS
P0F
SWO
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
13
D a t a S h e e t
• BGA-96P-M07
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
P81
P80
VCC
VSS
P0F
VSS
P07
TMS/
SWDIO
TRSTX
VSS
B
VCC
VSS
P52
P61
P63
P0D
P0C
TDO/
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P0E
P0B
VSS
P20
P21
D
P53
P54
P55
Index
P22
P23
VSS
E
P56
P30
P31
AN11
AN10
AN09
F
VSS
VSS
VSS
AN08
AN07
AVRH
G
P32
P33
P39
AN06
AN05
AVSS
H
P3A
P3B
P3C
AN04
AN03
AVCC
J
P3D
P3E
VSS
P3F
P48
P4A
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P45
P49
P4C
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P44
VSS
P4B
MD0
X0
X1
VSS
P62
SWO
P0A
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
LIST OF PIN FUNCTION
• List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
Pin No
LQFP-120 LQFP-100 BGA-112
1
1
B1
LQFP-80
1
BGA-96
B1
2
2
C1
2
C1
3
3
C2
3
C2
4
4
B3
4
B3
5
5
D1
5
D1
6
6
D2
6
D2
7
7
D3
7
D3
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
VCC
P50
SIN3_1
AIN0_2
TIOB8_0
INT00_0
MADATA00_0
P51
SOT3_1
(SDA3_1)
BIN0_2
TIOB9_0
INT01_0
MADATA01_0
P52
SCK3_1
(SCL3_1)
ZIN0_2
TIOB10_0
INT02_0
MADATA02_0
P53
SIN6_0
TIOB11_0
TIOA1_2
INT07_2
MADATA03_0
P54
SOT6_0
(SDA6_0)
TIOB12_0
TIOB1_2
INT18_1
MADATA04_0
P55
ADTG_1
SCK6_0
(SCL6_0)
TIOB13_0
INT19_1
MADATA05_0
I/O circuit Pin state
type
type
-
E
K
E
K
E
K
E
K
E
K
E
K
15
D a t a S h e e t
Pin No
LQFP-120
LQFP-100 BGA-112 LQFP-80
8
D5
8
BGA-96
E1
8
1
-
-
-
-
9
-
-
-
-
10
-
-
-
-
11
-
-
-
-
12
-
-
-
-
13
-
-
-
-
14
-
-
-
-
-
9
E1
9
E2
Pin Name
P56
INT08_2
CEC1_1
MADATA06_0
SIN1_0
TIOA8_0
P57
SOT1_0
(SDA1_0)
TIOA9_0
MADATA07_0
P58
SCK1_0
(SCL1_0)
TIOA10_0
MADATA08_0
P59
SIN7_0
TIOA11_0
INT09_2
MADATA09_0
P5A
SOT7_0
(SDA7_0)
TIOA12_0
INT16_2
MADATA10_0
P5B
SCK7_0
(SCL7_0)
TIOA13_0
INT17_2
MADATA11_0
P30
AIN0_0
TIOB0_1
TIOA13_2
INT03_2
WKUP4
MADATA12_0
P30
AIN0_0
TIOB0_1
TIOA13_2
INT03_2
WKUP4
MADATA07_0
I/O circuit Pin state
type
type
H*
R
H*
J
H*
J
E
K
E
K
E
K
E
S
E
S
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80 BGA-96
15
-
-
-
-
-
10
E2
10
E3
16
-
-
-
-
-
11
E3
11
G1
17
-
-
-
-
-
12
E4
12
G2
-
-
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
P31
SCK6_1
(SCL6_1)
BIN0_0
TIOB1_1
TIOB13_2
INT04_2
MADATA13_0
P31
SCK6_1
(SCL6_1)
BIN0_0
TIOB1_1
TIOB13_2
INT04_2
MADATA08_0
P32
SOT6_1
(SDA6_1)
ZIN0_0
TIOB2_1
INT05_2
MADATA14_0
P32
SOT6_1
(SDA6_1)
ZIN0_0
TIOB2_1
INT05_2
MADATA09_0
P33
ADTG_6
SIN9_0
SIN6_1
TIOB3_1
INT04_0
MADATA15_0
P33
ADTG_6
SIN6_1
TIOB3_1
INT04_0
MADATA10_0
SIN9_0
I/O circuit
type
Pin state
type
E
K
E
K
E
K
E
K
E
K
E
K
17
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80 BGA-96
1
18
-
-
-
-
-
13
F1
-
-
19
-
-
-
-
-
14
F2
-
-
20
-
-
-
-
-
15
F3
-
-
-
-
-
-
F1
F2
F3
Pin Name
P34
SOT9_0
(SDA9_0)
FRCK0_0
TIOB4_1
TIOA15_2
MNALE_0
P34
SOT9_0
(SDA9_0)
FRCK0_0
TIOB4_1
TIOA15_2
MADATA11_0
P35
SCK9_0
(SCL9_0)
IC03_0
TIOB5_1
TIOB15_2
INT08_1
MNCLE_0
P35
SCK9_0
(SCL9_0)
IC03_0
TIOB5_1
TIOB15_2
INT08_1
MADATA12_0
P36
SIN5_2
IC02_0
TIOB14_0
INT09_1
MNWEX_0
P36
SIN5_2
IC02_0
TIOB14_0
INT09_1
MADATA13_0
VSS
VSS
VSS
I/O circuit Pin state
type
type
E
J
E
J
E
K
E
K
E
K
E
K
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120
LQFP-100 BGA-112 LQFP-80
BGA-96
21
-
-
-
-
-
16
G1
-
-
17
G2
-
-
18
F4
13
G3
-
-
22
-
23
24
19
G3
14
H1
25
20
H1
15
H2
26
21
H2
16
H3
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
P37
SOT5_2
(SDA5_2)
IC01_0
TIOA14_0
INT10_1
MNREX_0
P37
SOT5_2
(SDA5_2)
IC01_0
TIOA14_0
INT10_1
MADATA14_0
P38
SCK5_2
(SCL5_2)
IC00_0
TIOA08_2
INT11_1
MADATA15_0
P39
ADTG_2
SIN10_0
DTTI0X_0
INT06_0
TIOB8_2
P3A
SOT10_0
(SDA10_0)
RTO00_0
TIOA0_1
INT07_0
RTCCO_2
SUBOUT_2
P3B
SCK10_0
(SCL10_0)
RTO01_0
TIOA1_1
P3C
SIN11_0
RTO02_0
TIOA2_1
INT18_2
I/O circuit Pin state
type
type
E
K
E
K
E
K
E
K
E
K
E
J
E
K
19
D a t a S h e e t
Pin No
LQFP-120
LQFP-100 BGA-112
LQFP-80
27
22
G4
17
J1
-
-
B2
-
B2
28
23
H3
18
J2
29
24
J2
19
J4
30
31
25
26
L1
J1
20
-
L1
-
32
27
J4
-
-
33
28
L5
-
-
34
29
K5
-
-
35
30
J5
-
-
21
L5
-
-
36
37
31
32
H5
21
L5
22
-
K5
-
L6
22
2
BGA-96
K5
Pin Name
P3D
SOT11_0
(SDA11_0)
RTO03_0
TIOA3_1
VSS
P3E
SCK11_0
(SCL11_0)
RTO04_0
TIOA4_1
INT19_2
P3F
RTO05_0
TIOA5_1
VSS
VCC
P40
SIN12_0
TIOA0_0
INT12_1
P41
SOT12_0
(SDA12_0)
TIOA1_0
INT13_1
P42
SCK12_0
(SCL12_0)
TIOA2_0
INT08_0
P43
ADTG_7
SIN13_0
TIOA3_0
INT09_0
P44
SOT13_0
(SDA13_0)
TIOA4_0
INT10_0
MAD00_0
P45
SCK13_0
TIOA5_0
INT11_0
MAD01_0
I/O circuit Pin state
type
type
E
J
-
E
K
E
J
-
E
K
E
K
E
K
E
K
E
K
E
K
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80 BGA-96
K2
K2
J3
J3
H4
L6
38
33
L2
23
L2
39
34
L4
24
L4
40
35
K1
25
K1
41
36
L3
26
L3
42
37
K3
27
K3
43
38
K4
28
K4
44
39
K6
29
J5
45
40
J6
30
K6
46
41
L7
31
J6
47
42
K7
32
L7
48
43
H6
33
K7
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
VSS
VSS
VSS
VSS
C
VSS
VCC
P46
X0A
P47
X1A
INITX
P48
SIN3_2
INT14_1
MAD02_0
P49
SOT3_2
(SDA3_2)
AIN0_1
TIOB0_0
INT20_1
MAD03_0
P4A
SCK3_2
(SCL3_2)
BIN0_1
TIOB1_0
INT21_1
MAD04_0
P4B
IGTRG_0
ZIN0_1
TIOB2_0
INT22_1
MAD05_0
P4C
SCK7_1
(SCL7_1)
AIN1_2
TIOB3_0
INT12_0
CEC0_0
MAD06_0
I/O circuit
type
Pin state
type
-
D
F
D
G
B
C
E
K
E
K
E
K
E
K
H*
R
21
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112
49
BGA-96
44
J7
34
J7
45
K8
35
K8
-
-
-
-
51
-
-
-
-
52
-
-
-
-
53
-
-
-
-
54
-
-
-
-
55
-
-
-
-
56
46
K9
36
K9
57
47
L8
37
L8
58
48
L9
38
L9
59
49
L10
39
L10
60
61
50
51
L11
K11
40
41
L11
K11
62
52
J11
42
J11
50
2
LQFP-80
Pin Name
P4D
SOT7_1
(SDA7_1)
BIN1_2
TIOB4_0
INT13_0
MAD07_0
P4E
SIN7_1
ZIN1_2
TIOB5_0
INT06_2
MAD08_0
SIN14_0
P70
SOT14_0
(SDA14_0)
TIOA4_2
P71
SCK14_0
(SCL14_0)
TIOB4_2
INT13_2
P72
SIN2_0
TIOA6_0
INT14_2
P73
SOT2_0
(SDA2_0)
TIOB6_0
INT15_2
P74
SCK2_0
(SCL2_0)
MD1
PE0
MD0
X0
PE2
X1
PE3
VSS
VCC
P10
AN00
I/O circuit Pin state
type
type
H*
K
H*
K
E
J
E
K
E
K
E
K
E
J
C
E
G
D
A
A
A
B
-
F
L
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
BGA-96
63
53
J10
43
J10
64
54
J8
44
J8
-
-
K10
J9
-
K10
J9
65
55
H10
45
H10
66
56
H9
46
H9
67
57
H7
47
G10
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
P11
AN01
SIN1_1
FRCK0_2
TIOB8_1
INT02_1
WKUP1
MAD09_0
P12
AN02
SOT1_1
(SDA1_1)
IC00_2
TIOB9_1
MAD10_0
VSS
VSS
P13
AN03
SCK1_1
(SCL1_1)
IC01_2
TIOB10_1
RTCCO_1
SUBOUT_1
MAD11_0
P14
AN04
SIN0_1
IC02_2
TIOB11_1
INT03_1
MAD12_0
P15
AN05
SOT0_1
(SDA0_1)
IC03_2
TIOB12_1
INT14_0
MAD13_0
I/O circuit Pin state
type
type
F
P
F
L
-
F
L
F
M
F
M
23
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
2
BGA-96
68
58
G10
48
G9
69
59
G9
49
F10
70
71
72
60
61
62
H11
F11
G11
50
51
52
H11
F11
G11
73
63
G8
53
F9
74
64
F10
54
E11
-
-
H8
-
-
75
65
F9
55
E10
76
66
E11
56
E9
Pin Name
P16
AN06
SCK0_1
(SCL0_1)
TIOB13_1
INT15_0
MAD14_0
P17
AN07
SIN2_2
INT04_1
MAD15_0
AVCC
AVRH
AVSS
P18
AN08
SOT2_2
(SDA2_2)
TIOA8_1
MAD16_0
P19
AN09
SCK2_2
(SCL2_2)
TIOA9_1
MAD17_0
VSS
P1A
AN10
SIN4_1
IC00_1
TIOA10_1
INT05_1
MAD18_0
P1B
AN11
SOT4_1
(SDA4_1)
IC01_1
TIOA11_1
INT20_2
MAD19_0
I/O circuit Pin state
type
type
F
M
F
M
-
F
L
F
L
-
F
M
F
M
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112
LQFP-80
BGA-96
77
67
E10
-
-
78
68
F8
-
-
79
69
E9
-
-
70
D11
-
-
80
-
-
-
-
-
-
B10
C9
-
-
B10
C9
D11
81
-
-
-
-
82
-
-
-
-
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
P1C
AN12
SCK4_1
(SCL4_1)
IC02_1
TIOA12_1
INT21_2
MAD20_0
P1D
AN13
CTS4_1
IC03_1
TIOA13_1
INT22_2
MAD21_0
P1E
AN14
RTS4_1
DTTI0X_1
TIOA9_2
INT23_2
MAD22_0
P1F
AN15
ADTG_5
FRCK0_1
TIOB9_2
MAD23_0
SCK15_0
(SCL15_0)
VSS
VSS
VSS
P28
ADTG_4
SOT15_0
(SDA15_0)
RTO05_1
TIOB6_2
P27
SIN15_0
RTO04_1
TIOA6_2
INT02_2
I/O circuit Pin state
type
type
F
M
F
M
F
M
F
L
-
E
J
E
K
25
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80 BGA-96
83
-
-
-
-
84
-
-
-
-
85
-
-
-
-
71
D10
57
D10
-
-
-
-
87
72
E8
58
D9
88
73
C11
59
C11
89
74
C10
60
C10
90
91
75
76
A11
A10
-
A11
-
86
2
Pin Name
P26
SCK2_1
(SCL2_1)
RTO03_1
TIOA11_2
P25
SOT2_1
(SDA2_1)
RTO02_1
TIOA14_1
TIOB11_2
P24
SIN2_1
RTO01_1
TIOB14_1
INT01_2
P23
AN16
SCK0_0
(SCL0_0)
TIOA7_1
RTO00_1
P22
AN17
SOT0_0
(SDA0_0)
ZIN1_1
TIOB7_1
P21
AN18
SIN0_0
BIN1_1
TIOB10_2
INT06_1
WKUP2
P20
AN19
CROUT_0
AIN1_1
TIOA10_2
INT05_0
MAD24_0
VSS
VCC
I/O circuit Pin state
type
type
E
J
E
J
E
K
F
L
F
L
F
P
F
M
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
61
92
77
BGA-96
A10
A9
93
78
B9
94
79
B11
-
-
62
B9
63
B11
-
-
95
80
A8
64
A9
96
81
B8
65
B8
97
82
C8
-
-
-
-
D8
-
-
98
83
D9
-
-
66
A8
99
-
84
-
A7
-
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
-
-
-
A7
Pin Name
P00
TRSTX
TIOA14_2
MCSX7_0
SCK8_0
(SCL8_0)
P01
TCK
SWCLK
P02
TDI
TIOB14_2
MCSX6_0
SOT8_0
P03
TMS
SWDIO
P04
TDO
SWO
P05
AN20
TRACED0
SIN8_0
SIN4_2
TIOA5_2
INT00_1
MCSX5_0
VSS
P06
AN21
TRACED1
SOT4_2
(SDA4_2)
TIOB5_2
INT01_1
MCSX4_0
P07
AN22
ADTG_0
MCLKOUT_0
INT23_1
TRACED2
SCK4_2
(SCL4_2)
VSS
I/O circuit Pin state
type
type
E
I
E
I
E
I
E
I
E
I
F
O
-
F
O
F
O
-
27
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
2
BGA-96
100
85
B7
-
-
101
86
C7
-
-
102
87
D7
67
C8
103
88
A6
68
C7
104
89
B6
69
B7
-
-
D4
C3
-
C3
105
90
C6
70
B6
106
91
A5
71
C6
-
-
-
-
A5
Pin Name
P08
AN23
TRACED3
CTS4_2
TIOA0_2
INT16_0
MCSX3_0
P09
TRACECLK
RTS4_2
TIOB0_2
INT17_0
MCSX2_0
P0A
SIN4_0
INT00_2
WKUP5
MCSX1_0
P0B
SOT4_0
(SDA4_0)
TIOB6_1
INT18_0
CEC0_1
MCSX0_0
P0C
SCK4_0
(SCL4_0)
TIOA6_1
INT19_0
MALE_0
VSS
VSS
P0D
RTS4_0
TIOA3_2
INT20_0
MDQM0_0
P0E
CTS4_0
TIOB3_2
INT21_0
MDQM1_0
VSS
I/O circuit Pin state
type
type
F
O
E
N
H*
S
H*
R
H*
K
-
E
K
E
K
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
BGA-96
107
92
B5
72
A6
108
-
-
-
-
109
-
-
-
-
110
-
-
-
-
111
-
-
-
-
112
-
-
-
-
93
D6
73
B5
-
-
-
-
94
C5
74
C5
113
114
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin Name
P0F
NMIX
CROUT_1
RTCCO_0
SUBOUT_0
WKUP0
P68
SCK3_0
(SCL3_0)
TIOB7_2
INT12_2
P67
SOT3_0
(SDA3_0)
TIOA7_2
INT22_0
P66
SIN3_0
TIOA12_2
INT11_2
P65
SCK5_1
(SCL5_1)
TIOB7_0
TIOB12_2
INT23_0
P64
SOT5_1
(SDA5_1)
TIOA7_0
INT10_2
P63
TIOB15_1
INT03_0
MWEX_0
SIN5_1
P62
ADTG_3
SCK5_0
(SCL5_0)
TIOA15_1
INT07_1
MOEX_0
I/O circuit Pin state
type
type
E
H
E
K
E
K
E
K
E
K
E
K
E
K
E
K
29
D a t a S h e e t
Pin No
LQFP-120 LQFP-100 BGA-112 LQFP-80
3
BGA-96
115
95
B4
75
B4
116
96
C4
76
C4
117
97
A4
77
A4
118
98
A3
78
A3
119
99
A2
79
A2
120
100
*: 5V tolerant I/O
A1
80
A1
Pin Name
P61
SOT5_0
(SDA5_0)
TIOB2_2
P60
SIN5_0
IGTRG_1
TIOA2_2
INT15_1
WKUP3
CEC1_0
MRDY_0
VCC
P80
TIOB15_0
INT16_1
P81
TIOA15_0
INT17_1
VSS
I/O circuit Pin state
type
type
E
J
H*
Q
E
K
E
K
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated
port number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
Pin
function
ADC
Pin name
ADTG_0
ADTG_1
ADTG_2
ADTG_3
ADTG_4
ADTG_5
ADTG_6
ADTG_7
ADTG_8
AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07
AN08
AN09
AN10
AN11
AN12
AN13
AN14
AN15
AN16
AN17
AN18
AN19
AN20
AN21
AN22
AN23
Function description
A/D converter external trigger
input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
99
84
A7
66
7
7
D3
7
23
18
F4
13
114
94
C5
74
81
80
70
D11
17
12
E4
12
35
30
J5
62
52
J11
42
63
53
J10
43
64
54
J8
44
65
55
H10
45
66
56
H9
46
67
57
H7
47
68
58
G10
48
69
59
G9
49
73
63
G8
53
74
64
F10
54
75
65
F9
55
76
66
E11
56
77
67
E10
78
68
F8
79
69
E9
80
70
D11
86
71
D10
57
87
72
E8
58
88
73
C11
59
89
74
C10
60
97
82
C8
98
83
D9
99
84
A7
66
100
85
B7
-
BGA96
A8
D3
G3
C5
G2
J11
J10
J8
H10
H9
G10
G9
F10
F9
E11
E10
E9
D10
D9
C11
C10
A8
-
31
D a t a S h e e t
Pin
function
Base Timer
0
Base Timer
1
Base Timer
2
Base Timer
3
Base Timer
4
Base Timer
5
Base Timer
6
Base Timer
7
3
Pin name
TIOA0_0
TIOA0_1
TIOA0_2
TIOB0_0
TIOB0_1
TIOB0_2
TIOA1_0
TIOA1_1
TIOA1_2
TIOB1_0
TIOB1_1
TIOB1_2
TIOA2_0
TIOA2_1
TIOA2_2
TIOB2_0
TIOB2_1
TIOB2_2
TIOA3_0
TIOA3_1
TIOA3_2
TIOB3_0
TIOB3_1
TIOB3_2
TIOA4_0
TIOA4_1
TIOA4_2
TIOB4_0
TIOB4_1
TIOB4_2
TIOA5_0
TIOA5_1
TIOA5_2
TIOB5_0
TIOB5_1
TIOB5_2
TIOA6_0
TIOA6_1
TIOA6_2
TIOB6_0
TIOB6_1
TIOB6_2
TIOA7_0
TIOA7_1
TIOA7_2
TIOB7_0
TIOB7_1
TIOB7_2
Function description
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
Base timer ch.5 TIOB pin
Base timer ch.6 TIOA pin
Base timer ch.6 TIOB pin
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
32
27
J4
24
19
G3
14
100
85
B7
45
40
J6
30
14
9
E1
9
101
86
C7
33
28
L5
25
20
H1
15
5
5
D1
5
46
41
L7
31
15
10
E2
10
6
6
D2
6
34
29
K5
26
21
H2
16
116
96
C4
76
47
42
K7
32
16
11
E3
11
115
95
B4
75
35
30
J5
27
22
G4
17
105
90
C6
70
48
43
H6
33
17
12
E4
12
106
91
A5
71
36
31
H5
21
28
23
H3
18
51
49
44
J7
34
18
13
F1
52
37
32
L6
22
29
24
J2
19
97
82
C8
50
45
K8
35
19
14
F2
98
83
D9
53
104
89
B6
69
82
54
103
88
A6
68
81
112
86
71
D10
57
109
111
87
72
E8
58
108
-
BGA96
H1
K6
E2
H2
D1
J6
E3
D2
H3
C4
L7
G1
B4
J1
B6
K7
G2
C6
L5
J2
J7
K5
J4
K8
B7
C7
D10
D9
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Base Timer
8
Base Timer
9
Base Timer
10
Base Timer
11
Base Timer
12
Base Timer
13
Base Timer
14
Base Timer
15
Pin name
TIOA8_0
TIOA8_1
TIOA8_2
TIOB8_0
TIOB8_1
TIOB8_2
TIOA9_0
TIOA9_1
TIOA9_2
TIOB9_0
TIOB9_1
TIOB9_2
TIOA10_0
TIOA10_1
TIOA10_2
TIOB10_0
TIOB10_1
TIOB10_2
TIOA11_0
TIOA11_1
TIOA11_2
TIOB11_0
TIOB11_1
TIOB11_2
TIOA12_0
TIOA12_1
TIOA12_2
TIOB12_0
TIOB12_1
TIOB12_2
TIOA13_0
TIOA13_1
TIOA13_2
TIOB13_0
TIOB13_1
TIOB13_2
TIOA14_0
TIOA14_1
TIOA14_2
TIOB14_0
TIOB14_1
TIOB14_2
TIOA15_0
TIOA15_1
TIOA15_2
TIOB15_0
TIOB15_1
TIOB15_2
Function description
Base timer ch.8 TIOA pin
Base timer ch.8 TIOB pin
Base timer ch.9 TIOA pin
Base timer ch.9 TIOB pin
Base timer ch.10 TIOA pin
Base timer ch.10 TIOB pin
Base timer ch.11 TIOA pin
Base timer ch.11 TIOB pin
Base timer ch.12 TIOA pin
Base timer ch.12 TIOB pin
Base timer ch.13 TIOA pin
Base timer ch.13 TIOB pin
Base timer ch.14 TIOA pin
Base timer ch.14 TIOB pin
Base timer ch.15 TIOA pin
Base timer ch.15 TIOB pin
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
8
8
D5
8
73
63
G8
53
22
17
G2
2
2
C1
2
63
53
J10
43
23
18
F4
9
74
64
F10
54
79
69
E9
3
3
C2
3
64
54
J8
44
80
70
D11
10
75
65
F9
55
89
74
C10
60
4
4
B3
4
65
55
H10
45
88
73
C11
59
11
76
66
E11
56
83
5
5
D1
5
66
56
H9
46
84
12
77
67
E10
110
6
6
D2
6
67
57
H7
47
111
13
78
68
F8
14
9
E1
9
7
7
D3
7
68
58
G10
48
15
10
E2
10
21
16
G1
84
92
77
A9
61
20
15
F3
85
94
79
B11
63
119
99
A2
79
114
94
C5
74
18
13
F1
118
98
A3
78
113
93
D6
73
19
14
F2
-
BGA96
E1
F9
C1
J10
E11
C2
J8
E10
C10
B3
H10
C11
E9
D1
H9
D2
G10
E2
D3
G9
E3
A10
B11
A2
C5
A3
B5
-
33
D a t a S h e e t
Pin
function
Debugger
Pin name
SWCLK
SWDIO
SWO
TCK
TDI
TDO
TMS
External
Bus
3
TRACECLK
TRACED0
TRACED1
TRACED2
TRACED3
TRSTX
MAD00_0
MAD01_0
MAD02_0
MAD03_0
MAD04_0
MAD05_0
MAD06_0
MAD07_0
MAD08_0
MAD09_0
MAD10_0
MAD11_0
MAD12_0
MAD13_0
MAD14_0
MAD15_0
MAD16_0
MAD17_0
MAD18_0
MAD19_0
MAD20_0
MAD21_0
MAD22_0
MAD23_0
MAD24_0
Function description
Serial wire debug interface clock
input pin
Serial wire debug interface data
input / output pin
Serial wire viewer output pin
J-TAG test clock input pin
J-TAG test data input pin
J-TAG debug data output pin
J-TAG test mode state
input/output pin
Trace CLK output pin of ETM
Trace data output pin of ETM
J-TAG test reset input pin
External bus interface
address bus
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
93
78
B9
62
B9
95
80
A8
64
A9
96
93
94
96
81
78
79
81
B8
B9
B11
B8
65
62
63
65
B8
B9
B11
B8
95
80
A8
64
A9
101
97
98
99
100
92
36
37
44
45
46
47
48
49
50
63
64
65
66
67
68
69
73
74
75
76
77
78
79
80
89
86
82
83
84
85
77
31
32
39
40
41
42
43
44
45
53
54
55
56
57
58
59
63
64
65
66
67
68
69
70
74
C7
C8
D9
A7
B7
A9
H5
L6
K6
J6
L7
K7
H6
J7
K8
J10
J8
H10
H9
H7
G10
G9
G8
F10
F9
E11
E10
F8
E9
D11
C10
61
21
22
29
30
31
32
33
34
35
43
44
45
46
47
48
49
53
54
55
56
60
A10
L5
K5
J5
K6
J6
L7
K7
J7
K8
J10
J8
H10
H9
G10
G9
F10
F9
E11
E10
E9
C10
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
External
Bus
Pin name
MCSX0_0
MCSX1_0
MCSX2_0
MCSX3_0
MCSX4_0
MCSX5_0
MCSX6_0
MCSX7_0
MDQM0_0
MDQM1_0
Function description
External bus interface chip select
output pin
External bus interface byte mask
signal output pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
103
88
A6
68
102
87
D7
67
101
86
C7
100
85
B7
98
83
D9
97
82
C8
94
79
B11
63
92
77
A9
61
105
90
C6
70
106
91
A5
71
BGA96
C7
C8
B11
A10
B6
C6
MOEX_0
External bus interface read
enable signal for SRAM
114
94
C5
74
C5
MWEX_0
External bus interface write
enable signal for SRAM
113
93
D6
73
B5
18
-
-
-
-
19
-
-
-
-
21
-
-
-
-
20
-
-
-
-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
104
116
99
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
89
96
84
C1
C2
B3
D1
D2
D3
D5
E1
E2
E3
E4
F1
F2
F3
G1
G2
B6
C4
A7
2
3
4
5
6
7
8
9
10
11
12
69
76
66
C1
C2
B3
D1
D2
D3
E1
E2
E3
G1
G2
B7
C4
A8
MNALE_0
MNCLE_0
MNREX_0
MNWEX_0
MADATA00_0
MADATA01_0
MADATA02_0
MADATA03_0
MADATA04_0
MADATA05_0
MADATA06_0
MADATA07_0
MADATA08_0
MADATA09_0
MADATA10_0
MADATA11_0
MADATA12_0
MADATA13_0
MADATA14_0
MADATA15_0
MALE_0
MRDY_0
MCLKOUT_0
External bus interface ALE
signal to control NAND Flash
memory output pin
External bus interface CLE
signal to control NAND Flash
memory output pin
External bus interface read
enable signal to control NAND
Flash memory
External bus interface write
enable signal to control NAND
Flash memory
External bus interface data bus
Latch enable signal for multiplex
External RDY input signal
External bus clock output pin
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
35
D a t a S h e e t
Pin function Pin name
External
Interrupt
3
INT00_0
INT00_1
INT00_2
INT01_0
INT01_1
INT01_2
INT02_0
INT02_1
INT02_2
INT03_0
INT03_1
INT03_2
INT04_0
INT04_1
INT04_2
INT05_0
INT05_1
INT05_2
INT06_0
INT06_1
INT06_2
INT07_0
INT07_1
INT07_2
INT08_0
INT08_1
INT08_2
INT09_0
INT09_1
INT09_2
INT10_0
INT10_1
INT10_2
INT11_0
INT11_1
INT11_2
INT12_0
INT12_1
INT12_2
INT13_0
INT13_1
INT13_2
INT14_0
INT14_1
INT14_2
Function description
External interrupt request
00 input pin
External interrupt request
01 input pin
External interrupt request
02 input pin
External interrupt request
03 input pin
External interrupt request
04 input pin
External interrupt request
05 input pin
External interrupt request
06 input pin
External interrupt request
07 input pin
External interrupt request
08 input pin
External interrupt request
09 input pin
External interrupt request
10 input pin
External interrupt request
11 input pin
External interrupt request
12 input pin
External interrupt request
13 input pin
External interrupt request
14 input pin
LQFP120
2
97
102
3
98
85
4
63
82
113
66
14
17
69
15
89
75
16
23
88
50
24
114
5
34
19
8
35
20
11
36
21
112
37
22
110
48
32
108
49
33
52
67
44
53
LQFP100
2
82
87
3
83
4
53
93
56
9
12
59
10
74
65
11
18
73
45
19
94
5
29
14
8
30
15
31
16
32
17
43
27
44
28
57
39
-
Pin No
BGA112
C1
C8
D7
C2
D9
B3
J10
D6
H9
E1
E4
G9
E2
C10
F9
E3
F4
C11
K8
G3
C5
D1
K5
F2
D5
J5
F3
H5
G1
L6
G2
H6
J4
J7
L5
H7
K6
-
LQFP80
2
67
3
4
43
73
46
9
12
49
10
60
55
11
13
59
35
14
74
5
8
21
22
33
34
47
29
-
BGA96
C1
C8
C2
B3
J10
B5
H9
E2
G2
F10
E3
C10
E10
G1
G3
C11
K8
H1
C5
D1
E1
L5
K5
K7
J7
G10
J5
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin function Pin name
External
Interrupt
INT15_0
INT15_1
INT15_2
INT16_0
INT16_1
INT16_2
INT17_0
INT17_1
INT17_2
INT18_0
INT18_1
INT18_2
INT19_0
INT19_1
INT19_2
INT20_0
INT20_1
INT20_2
INT21_0
INT21_1
INT21_2
INT22_0
INT22_1
INT22_2
INT23_0
INT23_1
INT23_2
NMIX
Function description
External interrupt request
15 input pin
External interrupt request
16 input pin
External interrupt request
17 input pin
External interrupt request
18 input pin
External interrupt request
19 input pin
External interrupt request
20 input pin
External interrupt request
21 input pin
External interrupt request
22 input pin
External interrupt request
23 input pin
Non-Maskable Interrupt
input pin
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
LQFP120
68
116
54
100
118
12
101
119
13
103
6
26
104
7
28
105
45
76
106
46
77
109
47
78
111
99
79
LQFP100
58
96
85
98
86
99
88
6
21
89
7
23
90
40
66
91
41
67
42
68
84
69
107
92
Pin No
BGA112
G10
C4
B7
A3
C7
A2
A6
D2
H2
B6
D3
H3
C6
J6
E11
A5
L7
E10
K7
F8
A7
E9
B5
LQFP80
48
76
78
79
68
6
16
69
7
18
70
30
56
71
31
32
66
-
BGA96
G9
C4
A3
A2
C7
D2
H3
B7
D3
J2
B6
K6
E9
C6
J6
L7
A8
-
72
A6
37
D a t a S h e e t
Pin
function
GPIO
3
Pin name
P00
P01
P02
P03
P04
P05
P06
P07
P08
P09
P0A
P0B
P0C
P0D
P0E
P0F
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P1A
P1B
P1C
P1D
P1E
P1F
P20
P21
P22
P23
P24
P25
P26
P27
P28
Function description
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
92
77
A9
61
93
78
B9
62
94
79
B11
63
95
80
A8
64
96
81
B8
65
97
82
C8
98
83
D9
99
84
A7
66
100
85
B7
101
86
C7
102
87
D7
67
103
88
A6
68
104
89
B6
69
105
90
C6
70
106
91
A5
71
107
92
B5
72
62
52
J11
42
63
53
J10
43
64
54
J8
44
65
55
H10
45
66
56
H9
46
67
57
H7
47
68
58
G10
48
69
59
G9
49
73
63
G8
53
74
64
F10
54
75
65
F9
55
76
66
E11
56
77
67
E10
78
68
F8
79
69
E9
80
70
D11
89
74
C10
60
88
73
C11
59
87
72
E8
58
86
71
D10
57
85
84
83
82
81
-
BGA96
A10
B9
B11
A9
B8
A8
C8
C7
B7
B6
C6
A6
J11
J10
J8
H10
H9
G10
G9
F10
F9
E11
E10
E9
C10
C11
D9
D10
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
GPIO
Pin name
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P3A
P3B
P3C
P3D
P3E
P3F
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P53
P54
P55
P56
P57
P58
P59
P5A
P5B
P60
P61
P62
P63
P64
P65
P66
P67
P68
Function description
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
14
9
E1
9
15
10
E2
10
16
11
E3
11
17
12
E4
12
18
13
F1
19
14
F2
20
15
F3
21
16
G1
22
17
G2
23
18
F4
13
24
19
G3
14
25
20
H1
15
26
21
H2
16
27
22
G4
17
28
23
H3
18
29
24
J2
19
32
27
J4
33
28
L5
34
29
K5
35
30
J5
36
31
H5
21
37
32
L6
22
41
36
L3
26
42
37
K3
27
44
39
K6
29
45
40
J6
30
46
41
L7
31
47
42
K7
32
48
43
H6
33
49
44
J7
34
50
45
K8
35
2
2
C1
2
3
3
C2
3
4
4
B3
4
5
5
D1
5
6
6
D2
6
7
7
D3
7
8
8
D5
8
9
10
11
12
13
116
96
C4
76
115
95
B4
75
114
94
C5
74
113
93
D6
73
112
111
110
109
108
-
BGA96
E2
E3
G1
G2
G3
H1
H2
H3
J1
J2
J4
L5
K5
L3
K3
J5
K6
J6
L7
K7
J7
K8
C1
C2
B3
D1
D2
D3
E1
C4
B4
C5
B5
39
D a t a S h e e t
Pin
function
GPIO
4
Pin name
P70
P71
P72
P73
P74
P80
P81
PE0
PE2
PE3
Function description
General-purpose I/O port 7
General-purpose I/O port 8
General-purpose I/O port E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
51
52
53
54
55
118
98
A3
78
119
99
A2
79
56
46
K9
36
58
48
L9
38
59
49
L10
39
BGA96
A3
A2
K9
L9
L10
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Multifunction
Serial
0
Pin name
SIN0_0
SIN0_1
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SCK0_0
(SCL0_0)
SCK0_1
(SCL0_1)
Multifunction
Serial
1
SIN1_0
SIN1_1
SOT1_0
(SDA1_0)
SOT1_1
(SDA1_1)
SCK1_0
(SCL1_0)
SCK1_1
(SCL1_1)
Function description
Multi-function serial interface
ch.0 input pin
Multi-function serial interface
ch.0 output pin.
This pin operates as SOT0 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA0 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.0 clock I/O pin.
This pin operates as SCK0 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL0 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.1 input pin
Multi-function serial interface
ch.1 output pin.
This pin operates as SOT1 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA1 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.1 clock I/O pin.
This pin operates as SCK1 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL1 when it is used in an I2C
(operation mode 4).
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
88
73
C11
59
66
56
H9
46
BGA96
C11
H9
87
72
E8
58
D9
67
57
H7
47
G10
86
71
D10
57
D10
68
58
G10
48
G9
8
63
53
J10
43
J10
9
-
-
-
-
64
54
J8
44
J8
10
-
-
-
-
65
55
H10
45
H10
41
D a t a S h e e t
Pin
function
Multifunction
Serial
2
Pin name
SIN2_0
SIN2_1
SIN2_2
SOT2_0
(SDA2_0)
SOT2_1
(SDA2_1)
SOT2_2
(SDA2_2)
SCK2_0
(SCL2_0)
SCK2_1
(SCL2_1)
SCK2_2
(SCL2_2)
Multifunction
Serial
3
SIN3_0
SIN3_1
SIN3_2
SOT3_0
(SDA3_0)
SOT3_1
(SDA3_1)
SOT3_2
(SDA3_2)
SCK3_0
(SCL3_0)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
4
Function description
Multi-function serial interface
ch.2 input pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
53
85
69
59
G9
49
BGA96
F10
Multi-function serial interface
ch.2 output pin.
This pin operates as SOT2 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA2 when it is used in an I2C
(operation mode 4).
54
-
-
-
-
84
-
-
-
-
73
63
G8
53
F9
Multi-function serial interface
ch.2 clock I/O pin.
This pin operates as SCK2 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL2 when it is used in an I2C
(operation mode 4).
55
-
-
-
-
83
-
-
-
-
74
64
F10
54
E11
110
2
44
2
39
C1
K6
2
29
C1
J5
Multi-function serial interface
ch.3 output pin.
This pin operates as SOT3 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA3 when it is used in an I2C
(operation mode 4).
109
-
-
-
-
3
3
C2
3
C2
45
40
J6
30
K6
Multi-function serial interface
ch.3 clock I/O pin.
This pin operates as SCK3 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL3 when it is used in an I2C
(operation mode 4).
108
-
-
-
-
4
4
B3
4
B3
46
41
L7
31
J6
Multi-function serial interface
ch.3 input pin
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Pin name
Multifunction
Serial
4
SIN4_0
SIN4_1
SIN4_2
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SOT4_2
(SDA4_2)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
RTS4_0
RTS4_1
RTS4_2
CTS4_0
CTS4_1
CTS4_2
Function description
Multi-function serial interface
ch.4 input pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
102
87
D7
67
75
65
F9
55
97
82
C8
-
BGA96
C8
E10
-
Multi-function serial interface
ch.4 output pin.
This pin operates as SOT4 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA4 when it is used in an I2C
(operation mode 4).
103
88
A6
68
C7
76
66
E11
56
E9
98
83
D9
-
-
Multi-function serial interface
ch.4 clock I/O pin.
This pin operates as SCK4 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL4 when it is used in an I2C
(operation mode 4).
104
89
B6
69
B7
77
67
E10
-
-
99
84
A7
-
-
105
79
101
106
78
100
90
69
86
91
68
85
C6
E9
C7
A5
F8
B7
70
71
-
B6
C6
-
Multi-function serial interface
ch.4 RTS output pin
Multi-function serial interface
ch.4 CTS input pin
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
43
D a t a S h e e t
Pin
function
Multifunction
Serial
5
Pin name
SIN5_0
SIN5_1
SIN5_2
SOT5_0
(SDA5_0)
SOT5_1
(SDA5_1)
SOT5_2
(SDA5_2)
SCK5_0
(SCL5_0)
SCK5_1
(SCL5_1)
SCK5_2
(SCL5_2)
4
Function description
Multi-function serial interface
ch.5 input pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
116
96
C4
76
113
20
15
F3
-
BGA96
C4
-
Multi-function serial interface
ch.5 output pin.
This pin operates as SOT5 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA5 when it is used in an I2C
(operation mode 4).
115
95
B4
75
B4
112
-
-
-
-
21
16
G1
-
-
Multi-function serial interface
ch.5 clock I/O pin.
This pin operates as SCK5 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL5 when it is used in an I2C
(operation mode 4).
114
94
C5
74
C5
111
-
-
-
-
22
17
G2
-
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Multifunction
Serial
6
Pin name
SIN6_0
SIN6_1
SOT6_0
(SDA6_0)
SOT6_1
(SDA6_1)
SCK6_0
(SCL6_0)
SCK6_1
(SCL6_1)
Multifunction
Serial
7
SIN7_0
SIN7_1
SOT7_0
(SDA7_0)
SOT7_1
(SDA7_1)
SCK7_0
(SCL7_0)
SCK7_1
(SCL7_1)
Function description
Multi-function serial interface
ch.6 input pin
Multi-function serial interface
ch.6 output pin.
This pin operates as SOT6 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA6 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.6 clock I/O pin.
This pin operates as SCK6 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL6 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.7 input pin
Multi-function serial interface
ch.7 output pin.
This pin operates as SOT7 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA7 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.7 clock I/O pin.
This pin operates as SCK7 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL7 when it is used in an I2C
(operation mode 4).
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
5
5
D1
5
17
12
E4
12
BGA96
D1
G2
6
6
D2
6
D2
16
11
E3
11
G1
7
7
D3
7
D3
15
10
E2
10
E3
11
50
45
K8
35
K8
12
-
-
-
-
49
44
J7
34
J7
13
-
-
-
-
48
43
H6
33
K7
45
D a t a S h e e t
Pin
function
Multifunction
Serial
8
Pin name
SIN8_0
SOT8_0
(SDA8_0)
SCK8_0
(SCL8_0)
Multifunction
Serial
9
SIN9_0
SOT9_0
(SDA9_0)
SCK9_0
(SCL9_0)
Multifunction
Serial
10
SIN10_0
SOT10_0
(SDA10_0)
SCK10_0
(SCL10_0)
4
Function description
Multi-function serial interface
ch.8 input pin
Multi-function serial interface
ch.8 output pin.
This pin operates as SOT8 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA8 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.8 clock I/O pin.
This pin operates as SCK8 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL8 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.9 input pin
Multi-function serial interface
ch.9 output pin.
This pin operates as SOT9 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA9 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.9 clock I/O pin.
This pin operates as SCK9 when
it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL9 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.10 input pin
Multi-function serial interface
ch.10 output pin.
This pin operates as SOT10
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA10 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.10 clock I/O pin.
This pin operates as SCK10
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL10 when it is used in an I2C
(operation mode 4).
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
97
82
C8
-
-
94
79
B11
-
-
92
77
A9
-
-
17
12
E4
-
-
18
13
F1
-
-
19
14
F2
-
-
23
18
F4
13
G3
24
19
G3
14
H1
25
20
H1
15
H2
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Multifunction
Serial
11
Pin name
SIN11_0
SOT11_0
(SDA11_0)
SCK11_0
(SCL11_0)
Multifunction
Serial
12
SIN12_0
SOT12_0
(SDA12_0)
SCK12_0
(SCL12_0)
Multifunction
Serial
13
SIN13_0
SOT13_0
(SDA13_0)
SCK13_0
(SCL13_0)
Function description
Multi-function serial interface
ch.11 input pin
Multi-function serial interface
ch.11 output pin.
This pin operates as SOT11
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA11 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.11 clock I/O pin.
This pin operates as SCK11
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL11 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.12 input pin
Multi-function serial interface
ch.12 output pin.
This pin operates as SOT12
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA12 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.12 clock I/O pin.
This pin operates as SCK12
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL12 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.13 input pin
Multi-function serial interface
ch.13 output pin.
This pin operates as SOT13
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA13 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.13 clock I/O pin.
This pin operates as SCK13
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL13 when it is used in an I2C
(operation mode 4).
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
26
21
H2
16
H3
27
22
G4
17
J1
28
23
H3
18
J2
32
27
J4
-
-
33
28
L5
-
-
34
29
K5
-
-
35
30
J5
-
-
36
31
H5
-
-
37
32
L6
-
-
47
D a t a S h e e t
Pin
function
Multifunction
Serial
14
Pin name
SIN14_0
SOT14_0
(SDA14_0)
SCK14_0
(SCL14_0)
Multifunction
Serial
15
SIN15_0
SOT15_0
(SDA15_0)
SCK15_0
(SCL15_0)
4
Function description
Multi-function serial interface
ch.14 input pin
Multi-function serial interface
ch.14 output pin.
This pin operates as SOT14
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA14 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.14 clock I/O pin.
This pin operates as SCK14
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL14 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.15 input pin
Multi-function serial interface
ch.15 output pin.
This pin operates as SOT15
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SDA15 when it is used in an I2C
(operation mode 4).
Multi-function serial interface
ch.15 clock I/O pin.
This pin operates as SCK15
when it is used in a UART/CSIO
(operation modes 0 to 2) and as
SCL15 when it is used in an I2C
(operation mode 4).
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
50
-
-
-
-
51
-
-
-
-
52
-
-
-
-
82
-
-
-
-
81
-
-
-
-
80
-
-
-
-
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Multifunction
Timer
0
Pin name
DTTI0X_0
Function description
Input signal of waveform
generator to control outputs
RTO00 to RTO05 of
multi-function timer 0.
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
23
18
F4
13
G3
79
69
E9
-
-
18
80
63
22
75
64
21
76
65
20
77
66
19
78
67
13
70
53
17
65
54
16
66
55
15
67
56
14
68
57
F1
D11
J10
G2
F9
J8
G1
E11
H10
F3
E10
H9
F2
F8
H7
43
55
44
56
45
46
47
J10
E10
J8
E9
H10
H9
G10
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG00 when
it is used in PPG0 output mode.
24
19
G3
14
H1
86
71
D10
57
D10
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG00 when
it is used in PPG0 output mode.
25
20
H1
15
H2
85
-
-
-
-
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG02 when
it is used in PPG0 output mode.
26
21
H2
16
H3
84
-
-
-
-
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG02 when
it is used in PPG0 output mode.
27
22
G4
17
J1
83
-
-
-
-
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG04 when
it is used in PPG0 output mode.
28
23
H3
18
J2
82
-
-
-
-
29
24
J2
19
J4
RTO05_1
(PPG04_1)
Waveform generator output pin
of multi-function timer 0.
This pin operates as PPG04 when
it is used in PPG0 output mode.
81
-
-
-
-
IGTRG_0
IGTRG_1
PPG IGMT mode external trigger
input pin
46
116
41
96
L7
C4
31
76
J6
C4
DTTI0X_1
FRCK0_0
FRCK0_1
FRCK0_2
IC00_0
IC00_1
IC00_2
IC01_0
IC01_1
IC01_2
IC02_0
IC02_1
IC02_2
IC03_0
IC03_1
IC03_2
RTO00_0
(PPG00_0)
RTO00_1
(PPG00_1)
RTO01_0
(PPG00_0)
RTO01_1
(PPG00_1)
RTO02_0
(PPG02_0)
RTO02_1
(PPG02_1)
RTO03_0
(PPG02_0)
RTO03_1
(PPG02_1)
RTO04_0
(PPG04_0)
RTO04_1
(PPG04_1)
RTO05_0
(PPG04_0)
16-bit free-run timer ch.0
external clock input pin
16-bit input capture input pin of
multi-function timer 0.
ICxx describes channel number.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
49
D a t a S h e e t
Pin function
Pin name
Quadrature
Position/
Revolution
Counter
0
AIN0_0
AIN0_1
AIN0_2
BIN0_0
BIN0_1
BIN0_2
ZIN0_0
ZIN0_1
ZIN0_2
AIN1_1
AIN1_2
BIN1_1
BIN1_2
ZIN1_1
ZIN1_2
RTCCO_0
RTCCO_1
RTCCO_2
SUBOUT_0
SUBOUT_1
SUBOUT_2
Quadrature
Position/
Revolution
Counter
1
Real-time clock
Low-Power
Consumption
Mode
WKUP0
WKUP1
WKUP2
WKUP3
WKUP4
WKUP5
HDMICEC/
Remote Control
Reception
CEC0_0
CEC0_1
CEC1_0
CEC1_1
5
Function description
QPRC ch.0 AIN input pin
QPRC ch.0 BIN input pin
QPRC ch.0 ZIN input pin
QPRC ch.1 AIN input pin
QPRC ch.1 BIN input pin
QPRC ch.1 ZIN input pin
0.5 seconds pulse output pin
of Real-time clock
Sub clock output pin
Deep standby mode return
signal input pin 0
Deep standby mode return
signal input pin 1
Deep standby mode return
signal input pin 2
Deep standby mode return
signal input pin 3
Deep standby mode return
signal input pin 4
Deep standby mode return
signal input pin 5
HDMI-CEC/Remote Control
Reception ch.0 input/output
pin
HDMI-CEC/Remote Control
Reception ch.1 input/output
pin
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
14
9
E1
9
45
40
J6
30
2
2
C1
2
15
10
E2
10
46
41
L7
31
3
3
C2
3
16
11
E3
11
47
42
K7
32
4
4
B3
4
89
74
C10
60
48
43
H6
33
88
73
C11
59
49
44
J7
34
87
72
E8
58
50
45
K8
35
107
92
B5
72
65
55
H10
45
24
19
G3
14
107
92
B5
72
65
55
H10
45
24
19
G3
14
BGA96
E2
K6
C1
E3
J6
C2
G1
L7
B3
C10
K7
C11
J7
D9
K8
A6
H10
H1
A6
H10
H1
107
92
B5
72
A6
63
53
J10
43
J10
88
73
C11
59
C11
116
96
C4
76
C4
14
9
E1
9
E2
102
87
D7
67
C8
48
43
H6
33
K7
103
88
A6
68
C7
116
96
C4
76
C4
8
8
D5
8
E1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin
function
Pin name
RESET
INITX
Mode
MD0
MD1
POWER
GND
VCC
VCC
VCC
VCC
VCC
VCC
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
Function description
External Reset Input pin.
A reset is valid when
INITX="L".
Mode 0 pin.
During normal operation,
MD0="L" must be input. During
serial programming to Flash
memory, MD0="H" must be
input.
Mode 1 pin.
During serial programming to
Flash memory, MD1="L" must
be input.
Power supply Pin
Power supply Pin
Power supply Pin
Power supply Pin
Power supply Pin
Power supply Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
BGA96
43
38
K4
28
K4
57
47
L8
37
L8
56
46
K9
36
K9
1
31
40
61
91
117
30
39
60
90
120
1
26
35
51
76
97
25
34
50
75
100
B1
J1
K1
K11
A10
A4
B2
L1
K2
J3
H4
L4
L11
K10
J9
H8
B10
C9
A11
D8
D4
C3
A1
1
25
41
77
20
24
40
80
B1
K1
K11
A4
F1
F2
F3
B2
L1
K2
J3
L6
L4
L11
K10
J9
B10
C9
D11
A11
A7
C3
A5
A1
51
D a t a S h e e t
Pin
function
CLOCK
ADC
POWER
Pin name
Function description
X0
X0A
X1
X1A
CROUT_0
CROUT_1
Main clock (oscillation) input pin
Sub clock (oscillation) input pin
Main clock (oscillation) I/O pin
Sub clock (oscillation) I/O pin
Built-in high-speed CR-osc clock
output port
A/D converter analog power
supply pin
A/D converter analog reference
voltage input pin
AVCC
AVRH
ADC
GND
C pin
5
AVSS
C
Pin No
LQFP- LQFP- BGA- LQFP120
100
112
80
58
48
L9
38
41
36
L3
26
59
49
L10
39
42
37
K3
27
89
74
C10
60
107
92
B5
72
BGA96
L9
L3
L10
K3
C10
A6
70
60
H11
50
H11
71
61
F11
51
F11
A/D converter GND pin
72
62
G11
52
G11
Power stabilization capacity pin
38
33
L2
23
L2
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
I/O CIRCUIT TYPE
Type
Circuit
Remarks
A
It is possible to select the main
oscillation / GPIO function
P-ch
P-ch
Digital output
X1
N-ch
Digital output
R
Pull-up resistor control
When the main oscillation is
selected.
Oscillation feedback resistor
: Approximately 1MΩ
With standby mode control
When the GPIO is selected.
CMOS level output.
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 33kΩ
IOH= -4mA, IOL= 4mA
Digital input
Standby mode control
Clock input
Standby mode control
Digital input
Standby mode control
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
CMOS level hysteresis input
Pull-up resistor
: Approximately 33kΩ
B
Pull-up resistor
Digital input
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
53
D a t a S h e e t
Type
Circuit
Remarks
Open drain output
CMOS level hysteresis input
C
Digital input
Digital output
N-ch
D
It is possible to select the sub
oscillation / GPIO function
P-ch
P-ch
When the sub oscillation is
selected.
Oscillation feedback resistor
: Approximately 5MΩ
With standby mode control
Digital output
X1A
N-ch
R
When the GPIO is selected.
CMOS level output.
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor control Pull-up resistor
: Approximately 33kΩ
Digital input
IOH= -4mA, IOL= 4mA
Digital output
Standby mode control
Clock input
Standby mode control
Digital input
Standby mode control
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
5
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Type
Circuit
Remarks
E
P-ch
P-ch
N-ch
Digital output
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 33kΩ
IOH= -4mA, IOL= 4mA
When this pin is used as an
I2C pin, the digital output
P-ch transistor is always off
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
N-ch
R
Digital output
Digital output
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 33kΩ
IOH= -4mA, IOL= 4mA
When this pin is used as an
I2C pin, the digital output
P-ch transistor is always off
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
G
CMOS level hysteresis input
Mode input
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
55
D a t a S h e e t
Type
Circuit
Remarks
H
P-ch
P-ch
N-ch
CMOS level output
CMOS level hysteresis input
5V tolerant
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 33kΩ
IOH= -4mA, IOL= 4mA
Available to control PZR
registers.
When this pin is used as an
I2C pin, the digital output
P-ch transistor is always off
Digital output
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
5
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
HANDLING PRECAUTIONS
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This
page describes precautions that must be observed to minimize the chance of failure and to obtain higher
reliability from your Spansion semiconductor devices.
1.
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
• Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.
• Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these
ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data
sheet. Users considering application outside the listed conditions are advised to contact their sales
representative beforehand.
• Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power
supply and input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to
prevent such overvoltage or over-current conditions at the design stage.
(2) Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can
cause large current flows. Such conditions if present for extended periods of time can damage the
device.
Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation.
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.
• Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may
be formed, causing large current levels in excess of several hundred mA to flow continuously at the power
supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the
following:
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should
include attention to abnormal noise, surge levels, etc.
(2) Be sure that abnormal current flows do not occur during the power-on sequence.
Code: DS00-00004-3E
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
57
D a t a S h e e t
• Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards
in the design of products.
• Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage
or loss from such failures by incorporating safety design measures into your facility and equipment such as
redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
• Precautions Related to Usage of Devices
Spansion semiconductor devices are intended for use in standard applications (computers, office automation
and other office equipment, industrial, communications, and measurement equipment, personal or
household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or
abnormal operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea
floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult
with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
2. Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance
during soldering, you should only mount under Spansion's recommended conditions. For detailed
information about mount conditions, contact your sales representative.
• Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct
soldering on the board, or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the
board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the
soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for
storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment
of socket contacts and IC leads be verified before mounting.
• Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are
more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in
increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion Inc. recommends the solder reflow method, and
has established a ranking of mounting conditions for each product. Users are advised to mount packages in
accordance with Spansion ranking of recommended conditions.
5
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic
soldering, junction strength may be reduced under some conditions of use.
• Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent,
do the following:
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.
Store products in locations where temperature changes are slight.
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at
temperatures between 5°C and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
(3) When necessary, Spansion Inc. packages semiconductor devices in highly moisture-resistant
aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum
laminate bags for storage.
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
• Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion
recommended conditions for baking.
Condition: 125°C/24 h
• Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take
the following precautions:
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus
for ion generation may be needed to remove electricity.
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high
resistance (on the level of 1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to
minimize shock loads is recommended.
(4) Ground all fixtures and instruments, or protect with anti-static measures.
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board
assemblies.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
59
D a t a S h e e t
3.
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described
above.
For reliable performance, do the following:
(1) Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high
humidity levels are anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal
operation. In such cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will
adversely affect the device. If you use devices in such conditions, consider ways to prevent such
exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.
Users should provide shielding as appropriate.
(5) Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible
substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Spansion products in other special environmental conditions should
consult with sales representatives.
Please check the latest handling precautions at the following URL.
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
HANDLING DEVICES
• Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within
the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected
externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent
abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output
current rating.
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass
capacitor between each Power supply pin and GND pin near this device.
• Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is
within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage
stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at
the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended
operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary
fluctuation on switching the power supply.
• Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit
board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as
close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins
are surrounded by ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
• Sub crystal oscillator
This series sub oscillator circuit is low gain to keep the low current consumption.
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator
to stabilize the oscillation.
• Surface mount type
Size : More than 3.2mm × 1.5mm
Load capacitance : Approximately 6pF to 7pF
• Lead type
Load capacitance : Approximately 6pF to 7pF
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
61
D a t a S h e e t
• Using an external clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input
the clock to X0. X1(PE3) can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock
input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.
•
Example of Using an External Clock
Device
X0(X0A)
Can be used as
general-purpose
I/O ports.
Set as
External clock
input
X1(PE3),
X1A (P47)
• Handling when using Multi-function serial pin as I2C pin
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled.
However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external
I2C bus system with power OFF.
• C pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency
characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal
fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the
specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7uF would be recommended for this series.
C
Device
CS
VSS
GND
• Mode pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the
pull-up/down resistor stays low, as well as the distance between the mode pins and VCC pins or VSS pins is
as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for
switching the pin level and rewriting the Flash memory data. It is because of preventing the device
erroneously switching to test mode due to noise.
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
• Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.
Turning on : VCC →AVCC → AVRH
Turning off : AVRH → AVCC → VCC
• Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a
checksum of data at the end. If an error is detected, retransmit the data.
• Differences in features among the products with different memory sizes and between
Flash memory products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and
oscillation characteristics among the products with different memory sizes and between Flash memory
products and MASK products are different because chip layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric
characteristics.
• Pull-Up function of 5V tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
63
D a t a S h e e t
BLOCK DIAGRAM
TRACEDx,
TRACECLK
SWJ-DP
ETM*
TPIU*
ROM
Table
SRAM0
16/24/32 Kbyte
Cortex-M3 Core
@40 MHz(Max)
I
Multi-layer AHB (Max 40 MHz)
TRSTX,TCK,
TDI,TMS
TDO
D
NVIC
Sys
AHB-APB Bridge:
APB0(Max 40 MHz)
Dual-Timer
WatchDog Timer
(Software)
Clock Reset
Generator
INITX
WatchDog Timer
(Hardware)
SRAM1
16/24/32 Kbyte
Flash I/F
Security
On-Chip Flash
256+32 Kbyte/
384+32 Kbyte/
512+32 Kbyte
DMAC
8ch.
CSV
X0
X1
X0A
X1A
Main
Osc
Sub
Osc
Source Clock
PLL
CR
4 MHz
AHB-AHB
Bridge
CLK
CR
100 kHz
CROUT
AVCC,
AVSS,
AVRH
ANxx
MADx
External Bus I/F
12-bit A/D Converter
Unit 0
MADATAx
Unit 1
Power-On
Reset
ADTGx
LVD Ctrl
TIOAx
TIOBx
Base Timer
16-bit 16ch./
32-bit 8ch.
MCSXx,MDQMx,
MOEX,MWEX,
MALE,MRDY,
MNALE,MNCLE,
MNWEX,MNREX,
MCLKOUT
LVD
Regulator
IRQ-Monitor CRC
C
BINx
ZINx
QPRC
2ch.
A/D Activation Compare
2ch.
IC0x
FRCK0
16-bit Input Capture
4ch.
16-bit Free-run Timer
3ch.
16-bit Output Compare
6ch.
DTTI0X
RTO0x
AHB-APB Bridge : APB2 (Max 40 MHz)
AINx
AHB-APB Bridge : APB1 (Max 40 MHz)
Accelerator
Watch Counter
Deep Standby Ctrl
WKUPx
HDMI-CEC/
Remote Reciver Control
CEC0,
CEC1
RTCCO,
SUBOUT
Real-Time Clock
External Interrupt
Controller
24-pin + NMI
INTx
NMIX
MD0,
MD1
MODE-Ctrl
P0x,
P1x,
Waveform Generator
3ch.
GPIO
PIN-Function-Ctrl
.
.
.
PEx
IGTRG
16-bit PPG
3ch.
Multi-function Timer × 1
SCKx
Multi-Function Serial I/F
16ch.
HW flow control(ch.4)
SINx
SOTx
CTS4
RTS4
*: For the MB9AF154MA, MB9AF155MA, and MB9AF156MA, ETM is not available.
MEMORY SIZE
See " Memory size" in "PRODUCT LINEUP" to confirm the memory size.
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
MEMORY MAP
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
0x4006_1000
0x4006_0000
DMAC
Reserved
0x4004_0000
0x4003_F000
Reserved
0x4003_C000
0x4003_B000
0x4003_A000
0x7000_0000
0x6000_0000
0x4003_9000
External Device
Area
0x4003_8000
0x4003_6000
Reserved
0x4400_0000
0x4200_0000
0x4000_0000
32Mbytes
Bit band alias
Peripherals
0x4003_5000
0x2400_0000
0x2200_0000
0x4003_3000
0x4003_2000
0x4003_1000
0x4002_F000
0x4002_E000
32Mbytes
Bit band alias
0x4002_8000
0x4002_7000
Reserved
0x2008_0000
0x2000_0000
0x1FF8_0000
0x0020_8000
0x0020_0000
See "Memory Map (2)"
for the memory size
details.
0x0010_4000
0x0010_0000
0x4002_6000
0x4002_5000
SRAM1
SRAM0
Reserved
Flash(Work area)
Reserved
Security/CR Trim
0x4002_4000
LVD/DS mode
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
A/DC
QPRC
Base Timer
PPG
Reserved
0x4002_1000
0x4002_0000
0x4001_6000
0x4001_5000
Flash(Main area)
0x4001_3000
0x0000_0000
Reserved
HDMI-CEC/
0x4003_4000 Rem ote Control Receiver
0x4003_0000
Reserved
EXT-bus I/F
Reserved
RTC
Watch Counter
CRC
MFS
0x4001_2000
0x4001_1000
0x4001_0000
MFT Unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
0x4000_1000
0x4000_0000
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Flash I/F
65
D a t a S h e e t
Memory Map (2)
MB9AF156MA/NA/RA
0x2008_0000
MB9AF155MA/NA/RA
0x2008_0000
Reserved
MB9AF154MA/NA/RA
0x2008_0000
Reserved
Reserved
0x2000_8000
0x2000_6000
SRAM1
32Kbytes
0x2000_0000
SRAM1
24Kbytes
0x2000_0000
SRAM0
32Kbytes
0x2000_4000
0x2000_0000
SRAM0
24Kbytes
0x1FFF_C000
SRAM1
16Kbytes
SRAM0
16Kbytes
0x1FFF_A000
0x1FFF_8000
0x0020_8000
0x0020_0000
0x0020_8000
Flash(Work area)
32Kbytes
0x0020_0000
Reserved
0x0010_4000
0x0010_2000
0x0010_0000
0x0020_8000
Flash(Work area)
32Kbytes
0x0020_0000
Reserved
0x0010_4000
CR trimming
Security
Reserved
Reserved
Reserved
0x0010_2000
0x0010_0000
Flash(Work area)
32Kbytes
Reserved
0x0010_4000
CR trimming
Security
0x0010_2000
0x0010_0000
CR trimming
Security
Reserved
Reserved
0x0008_0000
Reserved
0x0006_0000
Flash(Main area)
512Kbytes
0x0004_0000
Flash(Main area)
384Kbytes
0x0000_0000
0x0000_0000
Flash(Main area)
256Kbytes
0x0000_0000
For more information about Flash (Main area)/Flash (Work area), see "MB9AB40N/A40N/340N/140N/150R,
MB9B520M/320M/120M Series Flash Programming Manual".
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Peripheral Address Map
Start address
End address
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
Base Timer
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt
0x4003_1000
0x4003_1FFF
Interrupt Source Check Register
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
HDMI-CEC/Remote control Reception
0x4003_5000
0x4003_57FF
Low-Voltage Detector
0x4003_5800
0x4003_5FFF
0x4003_6000
0x4003_7FFF
0x4003_8000
0x4003_8FFF
Multi-function serial
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch Counter
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External bus interface
0x4004_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x41FF_FFFF
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Bus
AHB
APB0
APB1
APB2
AHB
Peripherals
Flash memory I/F register
Reserved
Software Watchdog timer
Reserved
Quadrature Position/Revolution Counter
Deep standby mode Controller
Reserved
DMAC register
Reserved
67
D a t a S h e e t
PIN STATUS IN EACH CPU STATE
The terms used for pin status have the following meanings.
INITX=0
This is the period when the INITX pin is the "L" level.
INITX=1
This is the period when the INITX pin is the "H" level.
SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to "0".
SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to "1".
Input enabled
Indicates that the input function can be used.
Internal input fixed at "0"
This is the status that the input function cannot be used. Internal input is fixed at "L".
Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
Setting disabled
Indicates that the setting is disabled.
Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
Analog input is enabled
Indicates that the analog input is enabled.
Trace output
Indicates that the trace function can be used.
GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
6
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Pin status type
List of Pin Status
Function
group
Power-on
Device Run mode
reset or
INITX
internal or SLEEP
low-voltage
input state
reset state mode state
detection
state
Power
supply
unstable
-
Power
supply
stable
INITX = 0 INITX = 1 INITX = 1
Power supply stable
TIMER mode,
RTC mode, or
STOP mode state
Deep standby RTC
mode or Deep standby
STOP mode state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
Return from
Deep
standby
mode state
Power
supply
stable
INITX = 1
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Main crystal
oscillator input pin/
External main clock
input selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Maintain
previous
state
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
GPIO
selected
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state
GPIO
selected
A
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
External main clock
input selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Input
enabled
Input
enabled
Maintain
previous
state
Input
enabled
Hi-Z /
Internal
input fixed
at "0"
Input
enabled
B
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
Hi-Z /
state/When state/When state/When state/When state/When state/When
Internal
Hi-Z /
Hi-Z /
oscillation oscillation oscillation oscillation oscillation oscillation
Main crystal
input fixed Internal
Internal
stops*1,
stops* 1,
stops* 1,
stops* 1,
stops* 1,
stops* 1,
at "0"/
oscillator output pin
input fixed input fixed
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
at "0"
at "0"
or Input
Internal
Internal
Internal
Internal
Internal
Internal
enable
input fixed input fixed input fixed input fixed input fixed input fixed
at "0"
at "0"
at "0"
at "0"
at "0"
at "0"
C
INITX
input pin
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
D
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Input
enabled
GPIO
selected
Hi-Z /
Input
enabled
GPIO
selected
E
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
69
Pin status type
D a t a S h e e t
Function
group
Power-on
Device Run mode
reset or
INITX
internal or SLEEP
low-voltage
input state
reset state mode state
detection
state
TIMER mode,
RTC mode, or
STOP mode state
Deep standby RTC
mode or Deep standby
STOP mode state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Return from
Deep
standby
mode state
Power
supply
unstable
-
Power
supply
stable
INITX = 0 INITX = 1 INITX = 1
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Sub crystal oscillator
input pin /
External sub clock
input selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
GPIO
selected
External sub clock
input selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state
Power supply stable
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
Power
supply
stable
INITX = 1
-
GPIO
selected
F
Input
enabled
Input
enabled
Maintain
previous
state
Input
enabled
Hi-Z/
Internal
input fixed
at "0"
Input
enabled
G
Hi-Z /
Internal
Hi-Z /
Hi-Z /
Internal
Sub crystal oscillator input fixed Internal
at "0"/
input fixed input fixed
output pin
at "0"
at "0"
or Input
enable
NMIX selected
H
7
Resource other than
above selected
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
state/When state/When state/When state/When state/When
oscillation oscillation oscillation oscillation oscillation
stops*2,
stops*2,
stops*2,
stops*2,
stops*2,
Hi-Z/
Hi-Z /
Hi-Z /
Hi-Z/
Hi-Z/
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed
at "0"
at "0"
at "0"
at "0"
at "0"
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
WKUP
input
enabled
Hi-Z /
WKUP
input
enabled
GPIO
selected
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
Pin status type
D a t a S h e e t
Function
group
Power
supply
unstable
JTAG
selected
I
Power-on
reset or
Device Run mode
INITX
internal or SLEEP
low-voltage
input state
reset state mode state
detection
state
Hi-Z
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Resource selected
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Resource selected
J
GPIO
selected
External interrupt
enabled selected
K
Power
supply
stable
INITX = 0 INITX = 1 INITX = 1
Power supply stable
Resource other than
above selected
Hi-Z
GPIO
selected
Analog input
selected
Hi-Z
L
Resource other than
above selected
GPIO
selected
Analog input
selected
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
TIMER mode,
RTC mode, or
STOP mode state
Deep standby RTC
mode or Deep standby
STOP mode state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
GPIO
selected
Hi-Z /
Internal
input fixed
at "0"
GPIO
Hi-Z /
selected
Internal
Internal
input fixed
input fixed
at "0"
at "0"
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed input fixed
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Setting
disabled
GPIO
selected
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
GPIO
selected
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed input fixed
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
External interrupt
enabled selected
Setting
disabled
Maintain
previous
state
Power
supply
stable
INITX = 1
-
GPIO
Hi-Z /
Hi-Z /
selected
Internal
Internal
Internal
input fixed
input fixed
input fixed
at "0"
at "0"
at "0"
Maintain
previous
state
M
Resource other than
above selected
Maintain
previous
state
Return from
Deep
standby
mode state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
GPIO
Hi-Z /
selected
Internal
Internal
input fixed
input fixed
at "0"
at "0"
GPIO
selected
Hi-Z /
Internal
input fixed
at "0" /
Analog
input
enabled
GPIO
selected
Hi-Z /
Internal
input fixed
at "0" /
Analog
input
enabled
GPIO
selected
71
Pin status type
D a t a S h e e t
Function
group
Power-on
Device Run mode
reset or
INITX
internal or SLEEP
low-voltage
input state
reset state mode state
detection
state
Power
supply
unstable
-
Analog input
selected
Hi-Z
Power
supply
stable
INITX = 0 INITX = 1 INITX = 1
Power supply stable
TIMER mode,
RTC mode, or
STOP mode state
Deep standby RTC
mode or Deep standby
STOP mode state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed input fixed
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Return from
Deep
standby
mode state
Power
supply
stable
INITX = 1
Hi-Z /
Internal
input fixed
at "0" /
Analog
input
enabled
N
Trace
output
Trace selected
Resource other than
above selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
GPIO
selected
Analog input
selected
Hi-Z
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed input fixed
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Setting
disabled
Resource other than
above selected
P
Resource other than
above selected
GPIO
selected
7
Hi-Z
WKUP
enabled
External interrupt
enabled selected
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
GPIO
selected
Analog input
selected
GPIO
selected
Hi-Z /
Internal
input fixed
at "0" /
Analog
input
enabled
Trace
output
Trace selected
O
External interrupt
enabled selected
GPIO
Hi-Z /
selected
Internal
Internal
Hi-Z /
input fixed
Internal input fixed
at "0"
at "0"
input fixed
at "0"
Setting
disabled
GPIO
Hi-Z /
selected
Internal
Internal
input fixed
input fixed
at "0"
at "0"
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed input fixed
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
at "0" /
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Hi-Z /
WKUP
WKUP
input
input
enabled
Maintain
enabled
previous
state
Maintain
Maintain
Setting
Setting
previous
previous
GPIO
disabled
disabled
Hi-Z /
state
state
selected
Internal
Internal
input fixed
Hi-Z /
input fixed
Internal
at "0"
at "0"
input fixed
at "0"
GPIO
selected
Hi-Z /
Internal
input fixed
at "0" /
Analog
input
enabled
GPIO
selected
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
Pin status type
D a t a S h e e t
Function
group
Power
supply
unstable
CEC
enabled
WKUP
enabled
Q
Power-on
reset or
Device Run mode
INITX
internal or SLEEP
low-voltage
input state
reset state mode state
detection
state
Setting
disabled
Setting
disabled
CEC
enabled
External interrupt
enabled selected
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
GPIO
selected
WKUP
enabled
Setting
disabled
Hi-Z /
Input
enabled
Setting
disabled
GPIO
selected
Hi-Z /
Input
enabled
INITX = 1
SPL = 0
SPL = 1
Maintain
Maintain
previous
previous
state
state
INITX = 1
SPL = 0
SPL = 1
Maintain
Maintain
previous
previous
state
state
Hi-Z /
WKUP
WKUP
input
input
enabled
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state
Setting
disabled
Hi-Z /
Input
enabled
GPIO
Hi-Z /
selected
Internal
Internal
Hi-Z /
input fixed
Internal input fixed
at "0"
at
"0"
input fixed
at "0"
Maintain
previous
state
Maintain
previous
state
Hi-Z
Power supply stable
Hi-Z /
Input
enabled
External interrupt
enabled selected
Resource other than
above selected
Power supply stable
Maintain
previous
state
Maintain
previous
state
Resource other than
above selected
Deep standby RTC
mode or Deep standby
STOP mode state
Setting
disabled
Hi-Z
GPIO
selected
S
Setting
disabled
External interrupt
enabled selected
Resource other than
above selected
R
Power
supply
stable
INITX = 0 INITX = 1 INITX = 1
Maintain
Setting
Setting
previous
disabled
disabled
state
Power supply stable
TIMER mode,
RTC mode, or
STOP mode state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
GPIO
Hi-Z /
selected
Internal
Internal
input fixed
input fixed
at "0"
at "0"
WKUP
input
enabled
Return from
Deep
standby
mode state
Power
supply
stable
INITX = 1
Maintain
previous
state
GPIO
selected
Maintain
previous
state
GPIO
selected
Hi-Z /
WKUP
input
enabled
GPIO
Hi-Z /
selected
Internal
Internal
Hi-Z /
input fixed
Internal input fixed
at "0"
at "0"
input fixed
at "0"
GPIO
selected
*1: Oscillation is stopped at Sub timer mode, Low-speed CR timer mode, RTC mode, STOP mode,
Deep standby RTC mode, and Deep standby STOP mode.
*2: Oscillation is stopped at STOP mode and Deep standby STOP mode.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
73
D a t a S h e e t
ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
Parameter
1, 2
Power supply voltage* *
Analog power supply voltage*1, *3
Analog reference voltage*1, *3
Input voltage*1
Symbol
VCC
AVCC
AVRH
VI
Rating
Min
Max
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS + 4.6
VSS + 4.6
VSS + 4.6
VCC + 0.5
(≤ 4.6V)
VSS + 6.5
AVCC + 0.5
(≤ 4.6V)
VCC + 0.5
(≤ 4.6V)
10
4
100
50
- 10
-4
- 100
- 50
300
+ 150
VSS - 0.5
VSS - 0.5
Analog pin input voltage*1
VIA
VSS - 0.5
Output voltage*1
VO
VSS - 0.5
Unit
Remarks
V
V
V
V
V
5V tolerant
V
V
mA
IOL
"L" level maximum output current*4
mA
"L" level average output current*5
IOLAV
"L" level total maximum output current
mA
∑IOL
mA
"L" level total average output current*6
∑IOLAV
4
"H" level maximum output current*
mA
IOH
mA
"H" level average output current*5
IOHAV
"H" level total maximum output current
mA
∑IOH
mA
"H" level total average output current*6
∑IOHAV
Power consumption
mW
PD
Storage temperature
- 55
°C
TSTG
*1 : These parameters are based on the condition that V SS = AVSS = 0.0V.
*2 : VCC must not drop below VSS - 0.5V.
*3 : Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.
*4 : The maximum output current is defined as the value of the peak current flowing through any one of the
corresponding pins.
*5 : The average output current is defined as the average current value flowing through any one of the
corresponding pins for a 100 ms period.
*6 : The total average output current is defined as the average current value flowing through all of
corresponding pins for a 100ms.
Semiconductor devices may be permanently damaged by application of stress (including, without limitation,
voltage, current or temperature) in excess of absolute maximum ratings.
Do not exceed any of these ratings.
7
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
2. Recommended Operating Conditions
(VSS = AVSS = 0.0V)
Parameter
Symbol
Conditions
Power supply voltage
Analog power supply voltage
VCC
AVCC
-
Analog reference voltage
AVRH
-
CS
-
Smoothing capacitor
Value
Min
Max
Unit
1.65*2
1.65
2.7
AVCC
3.6
3.6
AVCC
AVCC
V
V
V
V
1
10
μF
Remarks
AVCC = VCC
AVCC ≥ 2.7V
AVCC < 2.7V
For Regulator
1
*
Operating temperature
Ta
- 40
+ 85
°C
*1 : See " C Pin" in " HANDLING DEVICES" for the connection of the smoothing capacitor.
*2 : In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage
or more, instruction execution and low voltage detection function by built-in High-speed CR(including
Main PLL is used) or built-in Low-speed CR is possible to operate only.
The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device's electrical characteristics are warranted when the device is
operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and
could result in device failure.
No warranty is made with respect to any use, operating conditions or combinations not represented on this
data sheet. If you are considering application under any conditions other than listed herein, please contact
sales representatives beforehand.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
75
D a t a S h e e t
3. DC Characteristics
(1) Current rating
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, Ta = - 40°C to + 85°C)
Pin
Parameter Symbol
name
ICC
Power
supply
current
ICCS
VCC
Value
Unit Remarks
Typ Max
Conditions
CPU : 40 MHz,
Peripheral : 40 MHz
*1, *3
Normal operation CPU : 40 MHz,
(PLL)
Peripheral : the clock
stops
NOP operation
*1, *3
Normal operation CPU/ Peripheral :
(built-in high-speed 4 MHz*2
1
CR)
*
CPU/ Peripheral :
Normal operation
32 kHz
(sub oscillation)
*1, *4
Normal operation CPU/ Peripheral :
(built-in low-speed 100 kHz
1
CR)
*
SLEEP operation Peripheral : 40 MHz
(PLL)
*1, *3
SLEEP operation
Peripheral : 4 MHz*2
(built-in high-speed
1
*
CR)
SLEEP operation Peripheral : 32 kHz
(sub oscillation)
*1, *4
SLEEP operation
Peripheral : 100 kHz
(built-in low-speed
1
*
CR)
ICCH
ICCT
ICCR
STOP mode
TIMER mode
(sub oscillation)
RTC mode
(sub oscillation)
Ta = + 25°C,
When LVD is off
1
*
Ta = + 85°C,
When LVD is off
1
*
Ta = + 25°C,
When LVD is off
*1, *4
Ta = + 85°C,
When LVD is off
*1, *4
Ta = + 25°C,
When LVD is off
*1, *4
Ta = + 85°C,
When LVD is off
*1, *4
17.5
23.7
mA
8
11
mA
1.9
3.1
mA
120
810
μA
140
830
μA
11
15
mA
0.82
1.7
mA
105
800
μA
125
810
μA
11
38
μA
-
370
μA
15
45
μA
-
440
μA
13
40
μA
-
380
μA
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3:When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
7
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Parameter Symbol
Pin
name
Conditions
Deep Standby
STOP mode
ICCHD
Power
supply
current
VCC
ICCRD
Deep Standby
RTC mode
(sub oscillation)
Ta = + 25°C,
When LVD is off,
When RAM is off
*1, *3
Ta = + 25°C,
When LVD is off,
When RAM is on
*1, *3
Ta = + 85°C,
When LVD is off,
When RAM is off
*1, *3
Ta = + 85°C,
When LVD is off,
When RAM is on
*1, *3
Ta = + 25°C,
When LVD is off,
When RAM is off
*1, *3, *5
Ta = + 25°C,
When LVD is off,
When RAM is on
*1, *3, *5
Ta = + 85°C,
When LVD is off,
When RAM is off
*1, *3, *5
Ta = + 85°C,
When LVD is off,
When RAM is on
*1, *3, *5
Value
Unit Remarks
Typ Max
1.4
10
μA
8.6
23
μA
120
μA
190
μA
2.0
12
μA
9.2
25
μA
125
μA
195
μA
-
-
Low-voltage
For
detection
0.13
0.3
μA occurrence
of reset
circuit
(LVD)
At operation
ICCLVD
For
power
0.3
0.13
μA occurrence
supply
of interrupt
current
Flash
Memory
11.2 mA *4
At Write/Erase
9.5
ICCFLASH
Write/Erase
current
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: RAM on/off setting is on-chip SRAM only.
*4: The current at which to write or erase Flash memory, "ICCFLASH" is added to "ICC".
*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
77
D a t a S h e e t
(2) Pin Characteristics
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, Ta = - 40°C to + 85°C)
Parameter Symbol Pin name
Conditions
CMOS
hysteresis
input pin,
MD0, MD1
V CC≥ 2.7 V
V CC × 0.8
VCC < 2.7 V
VCC × 0.7
VCC ≥ 2.7 V
VCC × 0.8
VCC < 2.7 V
VCC × 0.7
"H" level
input
voltage
(hysteresis
input)
"L" level
input
voltage
(hysteresis
input)
5V tolerant
input pin
VILS
CMOS
hysteresis
input pin,
MD0, MD1
5V tolerant
input pin
"H" level
output voltage
VOH
"L" level
output voltage
VOL
4mA type
IIL
-
RPU
Pull-up pin
Input leak
current
Pull-up
resistor value
Input
capacitance
7
VIHS
CIN
4mA type
Other than
VCC,
VSS,
AVCC,
AVSS,
AVRH
Min
Value
Typ
Max
-
VCC + 0.3
V
-
VSS + 5.5
V
V CC ≥ 2.7 V
VCC × 0.2
VSS - 0.3
-
VCC < 2.7 V
V
VCC × 0.3
VCC ≥ 2.7 V
VCC × 0.2
VSS - 0.3
-
VCC < 2.7 V
VCC ≥ 2.7 V,
IOH = - 4mA
V CC < 2.7 V,
IOH = - 2mA
VCC ≥ 2.7 V,
IOL = 4mA
Unit Remarks
V
VCC × 0.3
VCC - 0.5
-
VCC
V
VSS
-
0.4
V
-
-5
-
+5
μA
VCC ≥ 2.7 V
21
33
66
VCC < 2.7 V,
IOL = 2mA
VCC - 0.45
kΩ
VCC < 2.7 V
-
-
134
-
-
5
15
pF
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
4. AC Characteristics
(1) Main Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Input frequency
Input clock cycle
Input clock pulse
width
Input clock rising
time and falling
time
Symbol
Pin
Conditions
name
Value
Min
Max
Unit
VCC ≥ 2.7V
VCC < 2.7V
4
4
48
20
MHz
-
4
48
MHz
-
20.83
250
ns
-
PWH/tCYLH,
PWL/tCYLH
45
55
%
tCF,
tCR
-
-
5
ns
-
-
40
MHz
FCH
tCYLH
X0,
X1
When crystal oscillator
is connected
When using external
clock
When using external
clock
When using external
clock
When using external
clock
Master clock
Base clock
40
MHz
FCC
(HCLK/FCLK)
Internal operating
40
MHz APB0 bus clock*2
clock*1 frequency
FCP0
FCP1
40
MHz APB1 bus clock*2
40
MHz APB2 bus clock*2
FCP2
Base clock
tCYCC
25
ns
(HCLK/FCLK)
Internal operating
tCYCP0
25
ns
APB0 bus clock*2
clock*1 cycle time
tCYCP1
25
ns
APB1 bus clock*2
2
tCYCP2
25
ns
APB2 bus clock*
*1: For more information about each internal operating clock, see "Chapter: Clock" in "FM3 Family
PERIPHERAL MANUAL".
*2: For about each APB bus which each peripheral is connected to, see " BLOCK DIAGRAM" in this data
sheet.
FCM
-
Remarks
X0
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
79
D a t a S h e e t
(2) Sub Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Pin
Symbol
Conditions
name
Value
Typ
Min
Unit
Max
Remarks
When crystal
oscillator is
connected*
Input frequency
FCL
When using
32
100
kHz
X0A,
external clock
X1A
When using
Input clock cycle
10
31.25
μs
tCYLL
external clock
Input clock pulse
PWH/tCYLL,
When using
45
55
%
width
PWL/tCYLL
external clock
*: For more information about crystal oscillator, see "Sub crystal oscillator" in "HANDLING DEVICES".
-
-
32.768
-
kHz
X0A
(3) Built-in CR Oscillation Characteristics
Built-in high-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Clock frequency
Min
Value
Typ
Max
Ta = + 25°C,
VCC ≥ 2.7V
3.94
4
4.06
Ta = - 20°C to + 85°C,
VCC ≥ 2.7V
3.92
4
4.08
Ta = - 40°C to + 85°C,
VCC ≥ 2.7V
3.88
4
4.12
Ta = + 25°C,
VCC < 2.7V
3.9
4
4.1
3.66
4
4.20
2.8
4
5.2
Symbol
FCRH
Conditions
Unit
Remarks
When trimming*1
MHz
Ta = - 40°C to + 85°C
VCC < 2.7V
Ta =
- 40°C to + 85°C
When not trimming
Frequency
30
μs *2
tCRWT
stabilization time
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature
trimming.
*2: This is the time to stabilize the frequency of high-speed CR clock after setting trimming value.
This period is able to use high-speed CR clock as source clock.
Built-in low-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Clock frequency
8
Symbol
Conditions
FCRL
-
Min
Value
Typ
Max
50
100
150
Unit
Remarks
kHz
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Value
Min
Typ
Max
Unit
Remarks
PLL oscillation stabilization wait time*1
100
μs
tLOCK
(LOCK UP time)
PLL input clock frequency
FPLLI
4
16
MHz
PLL multiplication rate
5
37
multiplier
PLL macro oscillation clock frequency
FPLLO
75
150
MHz
Main PLL clock frequency*2
40
MHz
FCLKPLL
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter: Clock" in "FM3 Family
PERIPHERAL MANUAL".
(4-2) Operating Conditions of Main PLL (In the case of using the built-in high-speed CR for input
clock of main PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Min
Value
Typ
Max
Unit
Remarks
PLL oscillation stabilization wait time*1
100
μs
tLOCK
(LOCK UP time)
PLL input clock frequency
FPLLI
3.8
4
4.2
MHz
PLL multiplication rate
19
35
multiplier
PLL macro oscillation clock frequency
FPLLO
72
150
MHz
Main PLL clock frequency*2
40
MHz
FCLKPLL
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter: Clock" in "FM3 Family
PERIPHERAL MANUAL".
Note: Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency
has been trimmed.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
81
D a t a S h e e t
(5) Reset Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Reset input time
Symbol
tINITX
Value
Pin
Conditions
name
Min
Max
INITX
500
-
-
Unit Remarks
ns
(6) Power-on Reset Timing
(VCC= 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Power supply rising time
Tr
Power supply shut down time
Pin
name
VCC
Toff
Tr
Value
Unit
Min
Max
0
-
ms
1
-
ms
Remarks
Toff
1.65V
VCC
0.2V
8
0.2V
0.2V
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
(7) External Bus Timing
External bus clock output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Conditions
Value
Min
Max
Unit
VCC ≥ 2.7 V
40
MHz
VCC < 2.7 V
20
MHz
*: The external bus clock (MCLKOUT) is a divided clock of HCLK.
For more information about setting of clock divider, see "Chapter: External Bus Interface" in "FM3 Family
PERIPHERAL MANUAL".
Output frequency
tCYCLE
MCLKOUT*
0.8 × Vcc
0.8 × Vcc
MCLK
tCYCLE
External bus signal input/output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Signal input characteristics
Signal output characteristics
Symbol
Conditions
VIH
VIL
VOH
-
VOL
Input signal
VIH
VIL
VIH
VIL
Output signal
VOH
VOL
VOH
VOL
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Value
Unit
0.8 × VCC
V
0.2 × VCC
V
0.8 × VCC
V
0.2 × VCC
V
Remarks
83
D a t a S h e e t
Separate Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Conditions
Value
Min
VCC ≥ 2.7V
MOEX
MOEX
tOEW
MCLK×n-3
Min pulse width
VCC < 2.7V
-9
VCC ≥ 2.7V
MCSX ↓ → Address
MCSX[7:0],
tCSL – AV
output delay time
MAD[24:0]
-12
VCC < 2.7V
VCC ≥ 2.7V
MOEX ↑ →
MOEX,
tOEH - AX
0
Address hold time
MAD[24:0]
VCC < 2.7V
MCLK×m-9
VCC ≥ 2.7V
MCSX ↓ →
tCSL - OEL
MOEX ↓ delay time
MOEX,
VCC < 2.7V MCLK×m-12
MCSX[7:0]
VCC ≥ 2.7V
MOEX ↑ →
tOEH - CSH
0
MCSX ↑ time
VCC < 2.7V
MCLK×m-9
VCC ≥ 2.7V
MCSX ↓ →
MCSX,
tCSL - RDQML
MDQM ↓ delay time
MDQM[1:0]
VCC < 2.7V MCLK×m-12
20
VCC ≥ 2.7V
Data set up →
MOEX,
tDS - OE
MOEX ↑ time
MADATA[15:0]
38
VCC < 2.7V
VCC ≥ 2.7V
MOEX ↑ →
MOEX,
tDH - OE
0
Data hold time
MADATA[15:0]
VCC < 2.7V
VCC ≥ 2.7V
MWEX
MWEX
tWEW
MCLK×n-3
Min pulse width
VCC < 2.7V
VCC ≥ 2.7V
MWEX ↑ → Address
MWEX,
tWEH - AX
0
output delay time
MAD[24:0]
VCC < 2.7V
MCLK×n-9
VCC ≥ 2.7V
MCSX ↓ →
tCSL - WEL
MWEX ↓ delay time
MCLK×n-12
MWEX,
VCC < 2.7V
MCSX[7:0]
VCC ≥ 2.7V
MWEX ↑ →
tWEH - CSH
0
MCSX ↑ delay time
VCC < 2.7V
MCLK×n-9
MCSX ↓→
MCSX,
VCC ≥ 2.7V
tCSL-WDQML
MDQM ↓ delay time
MDQM[1:0]
MCLK×n-12
VCC < 2.7V
MCLK-9
VCC ≥ 2.7V
MCSX ↓→
MCSX,
tCSL-DV
Data output time
MADATA[15:0]
MCLK-12
VCC < 2.7V
VCC ≥ 2.7V
MWEX ↑ →
MWEX,
tWEH - DX
0
Data hold time
MADATA[15:0]
VCC < 2.7V
Note: When the external load capacitance CL = 30pF (m = 0 to 15, n = 1 to 16).
8
Max
+9
+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
-
Unit
ns
ns
ns
ns
ns
ns
ns
-
ns
-
ns
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK+9
MCLK+12
MCLK×m+9
MCLK×m+12
ns
ns
ns
ns
ns
ns
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
MCLK
MCSX[7:0]
MAD[24:0]
MOEX
MDQM[1:0]
MW EX
MADATA[15:0]
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
85
D a t a S h e e t
Separate Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Address delay time
Symbol
Pin name
Conditions
tAV
MCLK,
MAD[24:0]
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
V CC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
V CC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
V CC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
tCSL
MCLK,
MCSX[7:0]
MCSX delay time
tCSH
tREL
MCLK,
MOEX
MOEX delay time
tREH
Data set up →
MCLK ↑ time
MCLK ↑ →
Data hold time
MCLK,
MADATA[15:0]
MCLK,
MADATA[15:0]
tDS
tDH
tWEL
MCLK,
MWEX
MWEX delay time
tWEH
MDQM[1:0]
delay time
tDQML
t DQMH
MCLK,
MDQM[1:0]
MCLK ↑ →
MCLK,
tODS
Data output time
MADATA[15:0]
MCLK ↑ →
MCLK,
tOD
Data hold time
MADATA[15:0]
Note: When the external load capacitance CL = 30pF.
Value
Min
1
1
1
1
1
Max
9
12
9
12
9
12
9
12
9
12
Unit
ns
ns
ns
ns
ns
19
37
-
ns
0
-
ns
1
1
1
1
MCLK+1
1
9
12
9
12
9
12
9
12
MCLK+18
MCLK+24
18
24
ns
ns
ns
ns
ns
ns
tCYCLE
MCLK
tCSL
tCSH
MCSX[7:0]
tAV
MAD[24:0]
tAV
Address
Address
tREL
tREH
tDQML
tDQMH
MOEX
tDQML
tDQMH
tWEL
tWEH
MDQM[1:0]
MWEX
tDS
tDH
tOD
MADATA[15:0]
RD
WD
Invalid
tODS
8
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Multiplexed Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Conditions
Value
Min
VCC ≥ 2.7V
Multiplexed
0
tALE-CHMADV
address delay time
MALE,
VCC < 2.7V
MADATA[15:0]
VCC ≥ 2.7V
MCLK×n+0
Multiplexed
tCHMADH
address hold time
VCC < 2.7V
MCLK×n+0
Note: When the external load capacitance CL = 30pF (m = 0 to 15, n = 1 to 16).
Max
+10
+20
MCLK×n+10
MCLK×n+20
Unit
ns
ns
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
87
D a t a S h e e t
Multiplexed Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
tCHAL
MALE delay time
tCHAH
Pin name
Conditions
MCLK,
ALE
VCC ≥ 2.7V
VCC < 2.7V
V CC ≥ 2.7V
VCC < 2.7V
MCLK ↑ →
Multiplexed
tCHMADV
Address delay time
MCLK,
MADATA[15:0]
MCLK ↑ →
Multiplexed
tCHMADX
Data output time
Note: When the external load capacitance CL = 30pF.
VCC ≥ 2.7V
Value
Min
Max
9
12
9
12
ns
ns
ns
ns
1
tOD
ns
1
tOD
ns
1
1
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
Unit Remarks
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MW EX
MADATA[15:0]
8
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
NAND Flash Memory Mode
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Conditions
Value
Min
MNREX
VCC ≥ 2.7V
MNREX
tNREW
MCLK×n-3
Min pulse width
VCC < 2.7V
20
VCC ≥ 2.7V
Data setup →
MNREX,
tDS – NRE
MNREX↑time
MADATA[15:0] VCC < 2.7V
38
VCC ≥ 2.7V
MNREX↑→
MNREX,
tDH – NRE
0
Data hold time
MADATA[15:0] VCC < 2.7V
MNALE↑→
MNALE,
VCC ≥ 2.7V MCLK×m-9
tALEH - NWEL
MNWEX delay time
MNWEX
VCC < 2.7V MCLK×m-12
VCC ≥ 2.7V MCLK×m-9
MNALE↓→
MNALE,
tALEL - NWEL
MNWEX delay time
MNWEX
VCC < 2.7V MCLK×m-12
VCC ≥ 2.7V MCLK×m-9
MNCLE↑→
MNCLE,
tCLEH - NWEL
MNWEX delay time
MNWEX
VCC < 2.7V MCLK×m-12
MNWEX↑→
MNCLE,
VCC ≥ 2.7V
tNWEH - CLEL
0
MNCLE delay time
MNWEX
VCC < 2.7V
VCC ≥ 2.7V
MNWEX
MNWEX
tNWEW
MCLK×n-3
Min pulse width
VCC < 2.7V
-9
VCC ≥ 2.7V
MNWEX↓→
MNWEX,
tNWEL – DV
Data output time
MADATA[15:0] VCC < 2.7V
-12
MNWEX↑→
MNWEX,
VCC ≥ 2.7V
tNWEH – DX
0
Data hold time
MADATA[15:0] VCC < 2.7V
Note: When the external load capacitance CL = 30pF (m=0 to 15, n=1 to 16).
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Max
Unit
-
ns
-
ns
-
ns
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
+9
+12
MCLK×m+9
MCLK×m+12
ns
ns
ns
ns
ns
ns
ns
89
D a t a S h e e t
NAND Flash Memory Read
MCLK
MNREX
MADATA[15:0]
Read
NAND Flash Memory Address Write
MCLK
MNALE
MNCLE
MNW EX
MADATA[15:0]
9
Write
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
NAND Flash Memory Command Write
MCLK
MNALE
MNCLE
MNW EX
MADATA[15:0]
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Write
91
D a t a S h e e t
External Ready Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
MCLK ↑
MRDY input
setup time
Symbol
tRDYI
Pin name Conditions
MCLK,
MRDY
Value
Min
VCC ≥ 2.7V
19
VCC < 2.7V
37
Max
-
Unit
Remarks
ns
When RDY is input
···
MCLK
Over 2cycles
Original
MOEX
MWEX
tRDYI
MRDY
When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
tRDYI
0.5×VCC
MRDY
9
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
(8) Base Timer Input Timing
Timer input timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
tTIWH,
tTIWL
TIOAn/TIOBn
(when using as
ECK, TIN)
-
Min
Value
Max
-
2tCYCP
Unit Remarks
ns
tTIWL
tTIWH
ECK
TIN
VIHS
VIHS
VILS
VILS
Trigger input timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
tTRGH,
tTRGL
TIOAn/TIOBn
(when using as
TGIN)
-
tTRGH
TGIN
VIHS
Min
Value
Max
2tCYCP
-
Unit Remarks
ns
tTRGL
VIHS
VILS
VILS
Note: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see "BLOCK DIAGRAM" in this
data sheet.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
93
D a t a S h e e t
(9) CSIO Timing
Synchronous serial (SPI = 0, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Pin
Symbol
Conditions
name
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock "L" pulse width
tSLSH
SCKx
Serial clock "H" pulse width
tSHSL
SCKx
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
SCKx
SCKx,
SOTx Internal shift
clock
SCKx,
operation
SINx
SCKx,
SINx
SCKx,
External shift
SOTx
clock
SCKx,
operation
SINx
SCKx,
SINx
SCKx
SCKx
VCC < 2.7V
Min
Max
VCC ≥ 2.7V
Min
Max
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
-
ns
-
ns
2tCYCP 10
tCYCP +
10
-
2tCYCP 10
tCYCP +
10
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes: The above characteristics apply to CLK synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "BLOCK
DIAGRAM" in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 30pF.
9
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
tSHIXI
VIH
VIL
VIH
VIL
SIN
MS bit = 0
tSLSH
SCK
VIH
tF
SOT
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
95
D a t a S h e e t
Synchronous serial (SPI = 0, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Pin
Symbol
Conditions
name
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
SCKx
SCKx,
SOTx Internal shift
clock
SCKx,
operation
SINx
SCKx,
SINx
Serial clock "L" pulse width
tSLSH
SCKx
Serial clock "H" pulse width
tSHSL
SCKx
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓ → SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
SCKx,
External shift
SOTx
clock
SCKx,
operation
SINx
SCKx,
SINx
SCKx
SCKx
VCC < 2.7V
Min
Max
VCC ≥ 2.7V
Min
Max
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
-
ns
-
ns
2tCYCP 10
tCYCP +
10
-
2tCYCP 10
tCYCP +
10
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes: The above characteristics apply to CLK synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "BLOCK
DIAGRAM" in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 30pF.
9
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
tSCYC
SCK
VOH
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
SOT
VIH
VIL
tR
tSHOVE
tSLSH
VIH
VIL
VIL
tF
VOH
VOL
SIN
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
97
D a t a S h e e t
Synchronous serial (SPI = 1, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Pin
Symbol
Conditions
name
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
t IVSLI
SCK ↓→ SIN hold time
t SLIXI
SOT → SCK ↓ delay time
tSOVLI
Serial clock "L" pulse width
tSLSH
SCKx
Serial clock "H" pulse width
tSHSL
SCKx
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓→ SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
SCKx
SCKx,
SOTx
SCKx, Internal shift
SINx
clock
operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
External shift
SOTx
clock
SCKx,
operation
SINx
SCKx,
SINx
SCKx
SCKx
VCC < 2.7V
Min
Max
VCC ≥ 2.7V
Min
Max
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
-
ns
-
ns
-
ns
2tCYCP 30
2tCYCP 10
tCYCP +
10
-
2tCYCP 30
2tCYCP 10
tCYCP +
10
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes: The above characteristics apply to CLK synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "BLOCK
DIAGRAM" in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 30pF.
9
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
t SHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
SCK
VIH
tR
VIH
tSHOVE
VOH
VOL
VOH
VOL
tIVSLE
SIN
VIH
VIL
tF
*
SOT
VIL
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
99
D a t a S h e e t
Synchronous serial (SPI = 1, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Pin
Symbol
Conditions
name
VCC < 2.7V
Min
Max
VCC ≥ 2.7V
Min
Max
Unit
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK ↓ → SOT delay time
tSLOVI
SCKx,
SOTx
- 30
+ 30
- 20
+ 20
ns
SIN → SCK ↑ setup time
tIVSHI
50
-
30
-
ns
SCK ↑ → SIN hold time
tSHIXI
0
-
0
-
ns
SOT → SCK ↑ delay time
tSOVHI
SCKx, Internal shift
clock
SINx
operation
SCKx,
SINx
SCKx,
SOTx
-
ns
Serial clock "L" pulse width
tSLSH
SCKx
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
-
ns
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
SCKx,
External shift
SOTx
clock
SCKx,
operation
SINx
SCKx,
SINx
SCKx
SCKx
2tCYCP 30
2tCYCP 10
tCYCP +
10
-
2tCYCP 30
2tCYCP 10
tCYCP +
10
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes: The above characteristics apply to CLK synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "BLOCK
DIAGRAM" in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 30pF.
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
tSCYC
VOH
SCK
VOH
VOL
tSOVHI
tSLOVI
VOH
VOL
SOT
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VIH
VIL
MS bit = 0
SCK
tSLSH
tSHSL
tR
VIH
VIL
VIH
tF
tSHIXE
t IVSHE
VIH
VIL
VIH
VIL
SIN
VIH
t SLOVE
VOH
VOL
VOH
VOL
SOT
VIL
VIL
MS bit = 1
External clock (EXT = 1) : asynchronous only
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Value
Symbol Conditions
Serial clock "L" pulse width
Serial clock "H" pulse width
SCK falling time
SCK rising time
tSLSH
tSHSL
tF
tR
CL = 30pF
tR
SCK
VIL
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
t
V
IH
Min
Max
tCYCP + 10
tCYCP + 10
-
5
5
Unit Remarks
ns
ns
ns
ns
t
SHSL
SLSH
V
IH
VIL
VIL
V
IH
101
D a t a S h e e t
(10) External Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Conditions
Value
Unit
Min
Max
ADTG
FRCKx
-
2tCYCP*1
-
ns
2tCYCP + 100*1
-
ns
-
ns
ICxx
Input pulse width
tINH,
tINL
DTIxX
INT00 to INT15,
NMIX
-
2
500*
Remarks
A/D converter
trigger input
Free-run timer
input clock
Input capture
Waveform
generator
External interrupt,
NMI
Deep standby
wake up
*1 : tCYCP indicates the APB bus clock cycle time except stop when in STOP mode, in TIMER mode.
About the APB bus number which the Multi-function Timer is connected to, see "BLOCK DIAGRAM" in
this data sheet.
*2 : When in STOP mode, in TIMER mode.
*3 : When in Deep standby RTC mode, in Deep standby STOP mode.
WKUPx
1
-
600*3
-
ns
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
(11) Quadrature Position/Revolution Counter timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Value
Min
Max
AIN pin "H" width
tAHL
AIN pin "L" width
tALL
BIN pin "H" width
tBHL
BIN pin "L" width
tBLL
BIN rising time from
PC_Mode2 or
tAUBU
AIN pin "H" level
PC_Mode3
AIN falling time from
PC_Mode2 or
tBUAD
BIN pin "H" level
PC_Mode3
BIN falling time from
PC_Mode2 or
tADBD
AIN pin "L" level
PC_Mode3
AIN rising time from
PC_Mode2 or
tBDAU
BIN pin "L" level
PC_Mode3
AIN rising time from
PC_Mode2 or
tBUAU
BIN pin "H" level
PC_Mode3
2tCYCP*
BIN falling time from
PC_Mode2 or
tAUBD
AIN pin "H" level
PC_Mode3
AIN falling time from
PC_Mode2 or
tBDAD
BIN pin "L" level
PC_Mode3
BIN rising time from
PC_Mode2 or
tADBU
AIN pin "L" level
PC_Mode3
ZIN pin "H" width
tZHL
QCR:CGSC="0"
ZIN pin "L" width
tZLL
QCR:CGSC="0"
AIN/BIN rising and falling
time from determined ZIN
QCR:CGSC="1"
tZABE
level
Determined ZIN level from
AIN/BIN rising and falling
QCR:CGSC="1"
tABEZ
time
*: tCYCP indicates the APB bus clock cycle time except stop when in STOP mode, in TIMER mode.
About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see
"BLOCK DIAGRAM" in this data sheet.
Unit
ns
AIN
BIN
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
103
D a t a S h e e t
BIN
AIN
ZIN
ZIN
AIN/BIN
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
2
(12) I C Timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Conditions
Standard-mode Fast-mode
Unit Remarks
Min
Max
Min Max
Parameter
Symbol
SCL clock frequency
(Repeated) START condition
hold time
SDA ↓ → SCL ↓
SCL clock "L" width
SCL clock "H" width
(Repeated) START condition
setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
"STOP condition" and
"START condition"
FSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
tSUSTA
tHDDAT
CL = 30pF,
R = (Vp/IOL)*1
2
2
ns
t CYCP*4
tCYCP*4
*1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal.
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies
the requirement of "tSUDAT ≥ 250 ns".
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number that I2C is connected to, see "BLOCK DIAGRAM" in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
Noise filter
tSP
-
SDA
SCL
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
105
D a t a S h e e t
(13) ETM Timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Data hold
TRACECLK
frequency
Symbol
Pin name
tETMH
TRACECLK,
TRACED[3:0]
1/ tTRACE
TRACECLK
TRACECLK
clock cycle
tTRACE
Conditions
Value
Unit
Min Max
VCC ≥ 2.7V
2
11
VCC < 2.7V
2
15
VCC ≥ 2.7V
-
40
MHz
VCC < 2.7V
-
20
MHz
VCC ≥ 2.7V
25
-
ns
VCC < 2.7V
50
-
ns
Remarks
ns
Note: When the external load capacitance CL = 30pF.
HCLK
TRACECLK
TRACED[3:0]
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
(14) JTAG Timing
(VCC = 1.65V to 3.6V, VSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Symbol Pin name
Conditions
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
VCC < 2.7V
VCC ≥ 2.7V
TMS, TDI setup
time
tJTAGS
TMS, TDI hold time
tJTAGH
TCK,
TMS, TDI
TCK,
TMS, TDI
TDO delay time
tJTAGD
TCK,
TDO
VCC < 2.7V
Note: When the external load capacitance CL = 30pF.
Value
Min
Max
Unit
15
-
ns
15
-
ns
-
25
-
45
Remarks
ns
TCK
TMS/TDI
TDO
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
107
D a t a S h e e t
5. 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, Ta = - 40°C to + 85°C)
Parameter
Resolution
Integral Nonlinearity
Differential
Nonlinearity
Zero transition voltage
Full-scale transition
voltage
Conversion time
Pin
Symbol
name
Min
Value
Typ
Max
Unit
-
-
- 4.5
-
12
+ 4.5
bit
LSB
-
-
- 2.5
-
+ 2.5
LSB
VZT
ANxx
- 15
-
+ 15
mV
VFST
ANxx
AVRH - 15
-
AVRH + 15
mV
2.0*
0.6
1.2
3.0
100
200
500
-
-
μs
10
us
-
1000
ns
-
-
1.0
μs
-
0.27
0.42
mA
-
0.03
10
μA
-
0.72
1.29
mA
-
0.02
2.6
μA
pF
LSB
μA
-
-
Sampling time*2
Ts
-
Compare clock
cycle*3
Tcck
-
State transition time to
operation permission
Tstt
-
Power supply current
(analog + digital)
-
AVCC
-
AVRH
1
Reference power
supply current
(between AVRH to
AVSS)
Analog input capacity
CAIN
-
-
-
Analog input resistor
RAIN
-
-
-
Interchannel disparity
Analog port input
current
Analog input voltage
-
-
-
-
9.4
2.2
5.5
10.5
4
-
ANxx
-
-
5
-
ANxx
kΩ
Remarks
AVCC ≥ 2.7V
AVCC ≥ 2.7V
1.8V< AVCC < 2.7V
1.65V< AVCC < 1.8V
AVCC ≥ 2.7V
1.8V< AVCC < 2.7V
1.65V< AVCC < 1.8V
A/D 1unit operation
When A/D stop
(All unit)
A/D 1unit operation
AVRH=3.6V
When A/D stop
(All unit)
AVCC ≥ 2.7V
1.8V< AVCC < 2.7V
1.65V< AVCC < 1.8V
AVSS
AVRH
V
2.7
AVCC ≥ 2.7V
Reference voltage
AVRH
AVCC
V
AVCC
AVCC < 2.7V
*1: The conversion time is the value of sampling time (Ts) + compare time (Tc).
The condition of the minimum conversion time is when the value of sampling time: 600ns, the value of
compare time: 1400ns (AVCC ≥ 2.7V).
Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).
For setting of the sampling time and compare clock cycle, see "Chapter: A/D Converter" in "FM3 Family
PERIPHERAL MANUAL Analog Macro Part".
The A/D Converter register are reflected in the operation according to the APB bus clock timing.
The sampling clock and compare clock is generated from the Base clock (HCLK).
About the APB bus number which the A/D Converter is connected to, see "BLOCK DIAGRAM" in this
data sheet.
*2: A necessary sampling time changes by external impedance.
Ensure that it sets the sampling time to satisfy (Equation 1).
*3: The compare time (Tc) is the value of (Equation 2).
1
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Rext
ANxx
Analog input pin
Analog
signal source
RAIN
Comparator
CAIN
(Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9
Ts : Sampling time[ns]
RAIN : input resistor of A/D[kΩ] = 2.2kΩ at 2.7V < AVCC < 3.6V
input resistor of A/D[kΩ] = 5.5kΩ at 1.8V < AVCC < 2.7V
input resistor of A/D[kΩ] = 10.5kΩ at 1.65V < AVCC < 1.8V
CAIN : input capacity of A/D[pF] = 9.4pF at 1.65V < AVCC < 3.6V
Rext : Output impedance of external circuit[kΩ]
(Equation 2) Tc = Tcck × 14
Tc : Compare time
Tcck : Compare clock cycle
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
109
D a t a S h e e t
Definition of 12-bit A/D Converter Terms
Resolution
Integral Nonlinearity
Differential Nonlinearity
: Analog variation that is recognized by an A/D converter.
: Deviation of the line between the zero-transition point (0b000000000000
←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→ 0b111111111111) from the actual conversion
characteristics.
: Deviation from the ideal value of the input voltage that is required to
change the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Actual conversion
characteristics
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVSS
Actual conversion characteristics
AVRH
AVSS
AVRH
Analog input
Integral Nonlinearity of digital output N =
Analog input
VNT -{1LSB×(N-1)+VZT}
1LSB
Differential Nonlinearity of digital output N =
1LSB =
N
VZT
VFST
VNT
110
V(N+1)T -VNT
1LSB
[LSB]
- 1 [LSB]
VFST -VZT
4094
: A/D converter digital output value.
: Voltage at which the digital output changes from 0x000 to 0x001.
: Voltage at which the digital output changes from 0xFFE to 0xFFF.
: Voltage at which the digital output changes from 0x(N − 1) to 0xN.
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
6. Low-Voltage Detection Characteristics
(1) Low-Voltage Detection Reset
(Ta = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Min
Value
Typ
Max
Unit
Remarks
Detected voltage
VDL
1.38
1.50
1.60
V When voltage drops
SVHR*1 = 00000
Released voltage
VDH
1.43
1.55
1.65
V When voltage rises
Detected voltage
VDL
1.43
1.55
1.65
V When voltage drops
1
SVHR* = 00001
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.47
1.60
1.73
V When voltage drops
SVHR*1 = 00010
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.52
1.65
1.78
V When voltage drops
SVHR*1 = 00011
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.56
1.70
1.84
V When voltage drops
SVHR*1 = 00100
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.61
1.75
1.89
V When voltage drops
SVHR*1 = 00101
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.66
1.80
1.94
V When voltage drops
SVHR*1 = 00110
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.70
1.85
2.00
V When voltage drops
SVHR*1 = 00111
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.75
1.90
2.05
V When voltage drops
1
SVHR* = 01000
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.79
1.95
2.11
V When voltage drops
SVHR*1 = 01001
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.84
2.00
2.16
V When voltage drops
SVHR*1 = 01010
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
1.89
2.05
2.21
V When voltage drops
SVHR*1 = 01011
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.30
2.50
2.70
V When voltage drops
1
SVHR* = 01100
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.39
2.60
2.81
V When voltage drops
SVHR*1 = 01101
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.48
2.70
2.92
V When voltage drops
SVHR*1 = 01110
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.58
2.80
3.02
V When voltage drops
SVHR*1 = 01111
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.67
2.90
3.13
V When voltage drops
1
SVHR* = 10000
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.76
3.00
3.24
V When voltage drops
SVHR*1 = 10001
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.85
3.10
3.35
V When voltage drops
SVHR*1 = 10010
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
Detected voltage
VDL
2.94
3.20
3.46
V When voltage drops
SVHR*1 = 10011
Released voltage
VDH
Same as SVHR = 00000 value V When voltage rises
LVD stabilization
5200 ×
μs
TLVDW
wait time
tCYCP*2
LVD detection
200
μs
TLVDDL
delay time
*1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to "00000" by
Low-Voltage Detection Reset.
*2: tCYCP indicates the APB2 bus clock cycle time.
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
111
D a t a S h e e t
(2) Interrupt of Low-Voltage Detection
(Ta = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Detected voltage
VDL
SVHI = 00100
Released voltage
VDH
Detected voltage
VDL
SVHI = 00101
Released voltage
VDH
Detected voltage
VDL
SVHI = 00110
Released voltage
VDH
Detected voltage
VDL
SVHI = 00111
Released voltage
VDH
Detected voltage
VDL
SVHI = 01000
Released voltage
VDH
Detected voltage
VDL
SVHI = 01001
Released voltage
VDH
Detected voltage
VDL
SVHI = 01010
Released voltage
VDH
Detected voltage
VDL
SVHI = 01011
Released voltage
VDH
Detected voltage
VDL
SVHI = 01100
Released voltage
VDH
Detected voltage
VDL
SVHI = 01101
Released voltage
VDH
Detected voltage
VDL
SVHI = 01110
Released voltage
VDH
Detected voltage
VDL
SVHI = 01111
Released voltage
VDH
Detected voltage
VDL
SVHI = 10000
Released voltage
VDH
Detected voltage
VDL
SVHI = 10001
Released voltage
VDH
Detected voltage
VDL
SVHI = 10010
Released voltage
VDH
Detected voltage
VDL
SVHI = 10011
Released voltage
VDH
LVD stabilization
TLVDW
wait time
LVD detection delay
TLVDDL
time
*: tCYCP indicates the APB2 bus clock cycle time.
112
Min
Value
Typ
1.56
1.61
1.61
1.66
1.66
1.70
1.70
1.75
1.75
1.79
1.79
1.84
1.84
1.89
1.89
1.93
2.30
2.39
2.39
2.48
2.48
2.58
2.58
2.67
2.67
2.76
2.76
2.85
2.85
2.94
2.94
3.04
1.70
1.75
1.75
1.80
1.80
1.85
1.85
1.90
1.90
1.95
1.95
2.00
2.00
2.05
2.05
2.10
2.50
2.60
2.60
2.70
2.70
2.80
2.80
2.90
2.90
3.00
3.00
3.10
3.10
3.20
3.20
3.30
-
-
-
-
Max
1.84
1.89
1.89
1.94
1.94
2.00
2.00
2.05
2.05
2.11
2.11
2.16
2.16
2.21
2.21
2.27
2.70
2.81
2.81
2.92
2.92
3.02
3.02
3.13
3.13
3.24
3.24
3.35
3.35
3.46
3.46
3.56
5200 ×
tCYCP*
200
Unit
Remarks
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
μs
μs
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
7. Flash Memory Write/Erase Characteristics
(1) Write / Erase time
(VCC = 1.65V to 3.6V, Ta = - 40°C to + 85°C)
Parameter
Min
Large Sector
Sector erase
time
Value
Typ
Max
1.1
2.7
Small Sector
Unit
s
0.3
0.9
Half word (16-bit)
write time
-
30
528
μs
Chip erase time
-
11.2
30.5
s
Remarks
Includes write time prior to internal
erase
Not including system-level overhead
time
Includes write time prior to internal
erase
(2) Write cycles and data hold time
Erase/write cycles (cycle)
Data hold time (year)
1,000
20*
Remarks
10,000
10*
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature
acceleration test result into average temperature value at + 85°C) .
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
113
D a t a S h e e t
ORDERING INFORMATION
Part number
MB9AF154MAPMC
MB9AF155MAPMC
Package
Plastic LQFP 80-pin
(0.5mm pitch), (FPT-80P-M37)
MB9AF156MAPMC
MB9AF154MAPMC1
MB9AF155MAPMC1
Plastic LQFP 80-pin
(0.65mm pitch), (FPT-80P-M40)
MB9AF156MAPMC1
MB9AF154MABGL
MB9AF155MABGL
Plastic PFBGA 96-pin
(0.5mm pitch), (BGA-96P-M07)
MB9AF156MABGL
MB9AF154NAPMC
MB9AF155NAPMC
Plastic LQFP 100-pin
(0.5mm pitch), (FPT-100P-M23)
MB9AF156NAPMC
MB9AF154NAPQC
MB9AF155NAPQC
MB9AF156NAPQC
MB9AF154NABGL
MB9AF155NABGL
Plastic QFP 100-pin
(0.65mm pitch), (FPT-100P-M36)
Plastic PFBGA 112-pin
(0.8mm pitch), (BGA-112P-M04)
MB9AF156NABGL
MB9AF154RAPMC
MB9AF155RAPMC
Plastic LQFP 120-pin
(0.5mm pitch), (FPT-120P-M37)
MB9AF156RAPMC
114
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
PACKAGE DIMENSIONS
120-pin plastic LQFP
(FPT-120P-M37)
120-pin plastic LQFP
(FPT-120P-M37)
Lead pitch
0.50 mm
Package width ×
package length
16.0 mm × 16.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm Max
Weight
0.88 g
Code
(Reference)
P-LFQFP120-16 × 16-0.50
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
18.00±0.20(.709±.008)SQ
* 16.00 ± 0.10(.630 ± .004) SQ
90
61
91
Details of "A" part
60
+0.20
+.008
1.50 –0.10 .059 –.004
(Mounting height)
0.25(.010)
0.08(.003)
0˚~8˚
INDEX
0.60 ± 0.15
(.024 ± .006)
"A"
120
LEAD No.
1
30
0.50(.020)
C
0.10 ± 0.05
(.004 ± .002)
(Stand off)
31
+0.05
0.145 –0.03
+.002
)
( .006–.001
0.22 ± 0.05
(.009 ± .002)
0.08(.003)
2010 FUJITSU SEMICONDUCTOR LIMITED F120037Sc(1)-1-1
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values
115
D a t a S h e e t
100-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
14.00 mm × 14.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.65 g
(FPT-100P-M23)
100-pin plastic LQFP
(FPT-100P-M23)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
16.00±0.20(.630±.008)SQ
*14.00±0.10(.551±.004)SQ
75
51
76
50
0.08(.003)
Details of "A" part
1.50 +0.20
- 0.10
(.059+.008
-.004 )
(Mounting height)
INDEX
100
26
"A"
1
C
0.60±0.15
(.024±.006)
25
0.50(.020)
0.22±0.05
(.009±.002)
0.08(.003)
0°~8°
0.50±0.20
(.020±.008)
M
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
0.145±0.055
(.006±.002)
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F100034S-c-3-4
Dimensions in mm (inches).
Note:The values in parentheses are reference values.
Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
116
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
100-pin plastic QFP
Lead pitch
0.65 mm
Package width ×
package length
14.00 mm × 20.00 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
3.35 mm MAX
Code
(Reference)
P-QFP100-14 × 20-0.65
(FPT-100P-M36)
100-pin plastic QFP
(FPT-100P-M36)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
23.90±0.40(.941±.016)
* 20.00±0.20(.787±.008)
80
51
81
50
0.10(.004)
17.90± 0.40
(.705±.016)
*14.00±0.20
(.551±.008)
INDEX
Details of "A" part
100
1
30
0.65(.026)
0.32 ± 0.05
(.013±.002)
0.13(.005)
"A"
C
0.25(.010)
+0.35
3.00 –0.20
+.014
.118 –.008
(Mounting height)
0~8°
31
2011 FUJITSU SEMICONDUCTOR LIMITED HMbF100-36Sc-1-1
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
M
0.17 ± 0.06
(.007 ±. 002)
0.80 ± 0.20
(.031 ±. 008)
0.88 ± 0.15
(.035 ±. 006)
0.25 ± 0.20
(.010 ±. 008)
(Stand off)
Dimensions in mm (inches).
Note: The valuesin parentheses are reference values.
117
D a t a S h e e t
80-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
12.00 mm × 12.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.47 g
(FPT-80P-M37)
80-pin plastic LQFP
(FPT-80P-M37)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
14.00± 0.20(.551 ± .008)SQ
0.145 ± 0.055
(.006 ± .002)
*12.00± 0.10(.472 ± .004)SQ
60
41
Details of "A" part
61
40
+0.20
1.50 –0.10
(Mounting height)
+.008
.059 –.004
0.25(.010)
0~8°
0.08(.003)
INDEX
80
0.50 ± 0.20
(.020 ± .008)
0.60 ± 0.15
(.024 ± .006)
0.10 ± 0.05
(.004 ± .002)
(Stand off)
21
"A"
1
20
0.50(.020)
0.22 ± 0.05
0.08(.003)
M
(.009 ± .002)
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F80037S-c-1-2
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
118
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
80-pin plastic LQFP
Lead pitch
0.65 mm
Package width ×
package length
14.00 mm × 14.00 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.60 mm Max.
Code
(Reference)
P-LQFP80-14 × 14-0.65
(FPT-80P-M40)
80-pin plastic LQFP
(FPT-80P-M40)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
16.00±0.20(.630±.008)SQ
*14.00±0.10(.551±.004)SQ
60
0.145±0.055
(.006±.002)
41
Details of "A" part
61
40
1.50±0.10
(.059±.004)
0.25(.010)
0.10(.004)
0˚~7˚
INDEX
0.50±0.20
(.020±.008)
80
21
0.10±0.05
(.004±.002)
0.60±0.15
(.024±.006)
1
20
0.65(.026)
C
0.32±0.06
(.013±.002)
0.13(.005) M
2012 FUJITSU SEMICONDUCTOR LIMITED HMbF80-40Sc-1-1
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
119
D a t a S h e e t
112-ball plastic PFBGA
Ball pitch
0.80 mm
Package width ×
package length
10.00 × 10.00 mm
Lead shape
Soldering ball
Sealing method
Plastic mold
Ball size
Ф 0.45 mm
Mounting height
1.45 mm Max.
Weight
0.22 g
(BGA-112P-M04)
112-ball plastic PFBGA
(BGA-112P-M04)
10.00±0.10(.394±.004)
0.20(.008) S B
0.80(.031)
REF
B
11
0.80(.031)
REF
10
9
8
A
7
10.00±0.10
(.394±.004)
6
5
4
3
2
1
L K J H G F
(INDEX AREA)
0.35±0.10
(.014±.004)
(Stand off)
0.20(.008) S A
1.25±0.20
(.049±.008)
(Seated height)
ED C B A
INDEX
112-Ф0.45±010
(112-Ф0.18±.004)
Ф0.08(.003)
M
S A B
S
0.10(.004) S
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED B112004S-c-2-3
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
120
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
96-pin plastic FBGA
Lead pitch
0.5 mm
Package width ×
package length
6.00 mm × 6.00 mm
Lead shape
Ball
Sealing method
Plastic mold
Mounting height
1.30 mm MAX
Weight
0.08 g
(BGA-96P-M07)
96-pin plastic FBGA
(BGA-96P-M07)
6.00±0.10(.236±.004)
5.00(.197)
REF
B
0.20(.008) S B
0.50
(.020)
TYP
11
10
9
8
A
7
5.00(.197)
REF
6.00±0.10
(.236±.004)
6
5
0.50(.020)
TYP
4
3
2
1
L K
J
H G F
E D C B A
(INDEX AREA)
INDEX
0.20(.008) S A
96-ø0.30±0.10
(96-ø.012±.004)
ø0.05(.002)
M
S A B
S
0.08(.003) S
1.15±0.15
(Seated height)
(.045±.006)
0.25±0.10
(Stand off)
(.010±.004)
C
2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-c-1-1
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
121
D a t a S h e e t
MAJOR CHANGES
Page
Section
Revision 0.1
Revision 1.0
2
8
62
Change Results
-
Initial release
Preliminary → Data Sheet
Corrected the description of "Flash memory".
FEATURES
On-chip Memories
PRODUCT LINEUP
Function
HANDLING DEVICES
Corrected the value of channel number of the "Base Timer".
BLOCK DIAGRAM
65
71, 72
MEMORY MAP
Memory Map (1)
Memory Map (2)
PIN STATUS IN EACH CPU STATE
• List of Pin Status
77, 78
ELECTRICAL CHARACTERISTICS
3. DC Characteristics
(1) Current Rating
66
67
81
85, 86
87
4. AC Characteristics
(2) Sub Clock Input Characteristics
(3) Built-in CR Oscillation Characteristics
• Built-in high-speed CR
(7) External Bus Timing
• Separate Bus Access Asynchronous SRAM
Mode
• Separate Bus Access Synchronous
Mode
SRAM
(9) CSIO Timming
95, 97,
99, 101
106
(12) I2C Timing
5. 12-bit A/D Converter
109
111
112
Definition of 12-bit A/D Converter Terms
6. Low-Voltage Detection Characteristics
(1) Low-Voltage Detection Reset
(2) Interrupt of Low-Voltage Detection
113
Revision 1.1
Revision 2.0
-
-
-
-
2
2
4
8
122
FEATURES
•External Bus Interface
•Multi-function Serial Interface
•Multi-function Timer
PRODUCT LINEUP
•Function
• Added the description of "Crystal oscillator circuit".
• Added the description of "Sub crystal oscillator".
Corrected the figure.
• TIOA: input → input/output
• TIOB: output → input
Corrected the value of address of "SRAM0".
Added the footnote.
• Corrected the Return from Deep standby mode state of
"Pin status type H".
• Corrected the functon group of "Pin status type I".
• Revised the value of "TBD".
• Revised the typical value of "Power supply voltage
(ICCH, ICCT, ICCR)".
• Added the "Flash Memory Write/Erase current (ICCFLASH)".
• Added the footnote.
• Added the description of Note of "Input frequency (FCL)".
• Added the footnote.
• Reviced the condition.
• Corrected the value.
• Added the item of "Frequency stabilization time".
• Added the footnote.
• Corrected the value.
• Deleted the "MWEX ↓ → Data output time".
• Added the "MCSX ↓ → Data output time".
• Corrected the figure.
• Corrected the "MCLK↑ → Data output time".
• Added the "MCLK↑ → Data hold time".
• Corrected the figure.
Corrected the description of section title.
UART Timming → CSIO Timming
Corrected the description of "Note".
UART is connected → Multi-function Serial is connected
Added the footnote.
• Revised the parameter.
• Revised the symbol.
• Corrected the value.
• Revised the parameter.
• Revised the symbol.
• Corrected "Conditions" and "Value" in the table.
• Added the Item.
• Added the footnote.
Added the Item.
Company name and layout design change
Corrected the Series name.
MB9A150R Series → MB9A150RA Series
Corrected the Product name as follows.
MB9AF156MA, MB9AF155MA, MB9AF154MA
MB9AF156NA, MB9AF155NA, MB9AF154NA
MB9AF156RA, MB9AF155RA, MB9AF154RA
Added the Item.
• Maximum area size : Up to 256 Mbytes
Corrected the description of "I2C"
Corrected the channel count of "A/D activation compare"
Added the footnote
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
Page
Section
Change Results
9
PACKAGES
Delete the following packages.
•FPT-100P-M36
•FPT-80P-M40
-
PIN ASSIGNMENT
FPT-100P-M36
Delete the Item
FPT-80P-M37
Corrected the description of section title.
FPT-80P-M37/M40 →FPT-80P-M37
12
15 – 30
31 - 52
65
75
76, 77
101
101
LIST OF PIN FUNCTION
•List of numbers
•List of pin functions
MEMORY MAP
•Memory Map (1)
ELECTRICAL CHARACTERISTICS
2.Recommended Operating Conditions
3.DC Characteristics
(1)Current rating
(9)CSIO Timing
•Synchronous serial (SPI=1, SCINV=1)
(9) CSIO Timing
• External clock(EXT=1):asyntironous only
102
(10)External Input Timing
105
(12)I2C Timing
108
5.12-bit A/D Converter
•Electrical Characteristics for
the A/D Converter
114
ORDERING INFORMATON
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
Delete column of terminal number "QFP-100"
Delete column of terminal number "QFP-100"
Corrected the address "External Device Area"
Add the footnote
•Corrected the Condition
•Delete the minmun value
•Corrected the remarks
•Add the footnote
Corrected the figure of "MS bit=1"
Corrected the figure
Add the terminal as follows
•FRCKx
•ICxx
•DTTIxX
Corrected the description as follows.
•Typical mode → Standard-mode
•High-speed mode → Fast-mode
•Corrected the terminal name
AN00 to AN23 → ANxx
•Corrected the minmum value of "Sampling time"
•Corrected the max and min value of "State transition time to
oprerationpermission"
•Corrected the footnote
Corrected the "Part number"
123
D a t a S h e e t
124
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014
D a t a S h e e t
April 4, 2014, MB9AF156RA_DS706-00047-2v0-E
125
D a t a S h e e t
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use,
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use
where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not
be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the
products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire
protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in
this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and
Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the
prior authorization by the respective government entity will be required for export of those products.
Trademarks and Notice
The contents of this document are subject to change without notice. This document may contain information on a Spansion
product under development by Spansion. Spansion reserves the right to change or discontinue work on any product
without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its
accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights,
or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out
of the use of the information in this document.
Copyright © 2012-2014 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit®
EclipseTM, ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the
United States and other countries. Other names used are for informational purposes only and may be trademarks of their
respective owners.
126
MB9AF156RA_DS706-00047-2v0-E, April 4, 2014