0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MB9BF568MPMC1-G-JNE2

MB9BF568MPMC1-G-JNE2

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    LQFP80

  • 描述:

    ICMCU32BIT1MBFLASH80LQFP

  • 数据手册
  • 价格&库存
MB9BF568MPMC1-G-JNE2 数据手册
The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix “CY”. How to Check the Ordering Part Number 1. Go to www.cypress.com/pcn. 2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply. 3. Click the corresponding title from the search results. 4. Download the Affected Parts List file, which has details of all changes For More Information Please contact your local sales office for additional information about Cypress products and solutions. About Cypress Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com. MB9B560R Series 32-bit ARM® Cortex®-M4F FM4 Microcontroller Devices in the MB9B560R Series are highly integrated 32-bit microcontrollers with high performance and competitive cost. ® ® This series is based on the ARM Cortex -M4F Processor with on-chip Flash memory and SRAM. The series has peripheral 2 functions such as Motor Control Timers, ADCs and Communication Interfaces (USB, CAN, UART, CSIO, I C, LIN). Features ® ® 32-bit ARM Cortex -M4F Core [SRAM]  Processor version: r0p1  FPU built-in This is composed of three independent SRAMs (SRAM0, SRAM1, and SRAM2). SRAM0 is connected to I-code bus and D-code bus of Cortex-M4F core. SRAM1 and SRAM2 are connected to System bus of Cortex-M4F core.  Support DSP instruction  SRAM0: Up to 64 Kbytes  Memory Protection Unit (MPU): improves the reliability of an  SRAM1: Up to 32 Kbytes  Up to 160 MHz Frequency Operation embedded system  Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral interrupts and 16 priority levels  24-bit System timer (Sys Tick): System timer for OS task management  SRAM2: Up to 32 Kbytes External Bus Interface  Supports SRAM, NOR, NAND Flash, and SDRAM device  Up to 9 chip selects CS0 to CS8 (CS8 is only for SDRAM)  8-/16-bit Data width  Up to 25-bit Address bit On-chip Memories  Maximum Access size: 256M byte [Flash memory]  Supports Address/Data multiplex These series are based on two independent on-chip Flash memories.  MainFlash memory to 1024 Kbytes  Built-in Flash Accelerator System with 16 Kbytes trace buffer memory  The read access to Flash memory can be achieved without wait-cycle up to operation frequency of 72 MHz. Even at the operation frequency more than 72 MHz, an equivalent access to Flash memory can be obtained by Flash Accelerator System.  Security function for code protection  Supports external RDY function  Supports scramble function  Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to 0xDFFF_FFFF in 4 Mbytes units.  Possible to set two kinds of the scramble key  Note: It is necessary to prepare the dedicated software library to use the scramble function.  Up  WorkFlash memory  32 Kbytes  Read cycle: • 6wait-cycle: the operation frequency more than 120 MHz, and up to 160 MHz • 4wait-cycle: the operation frequency more than 72 MHz, and up to 120 MHz • 2wait-cycle: the operation frequency more than 40 MHz, and up to 72 MHz • 0wait-cycle: the operation frequency up to 40 MHz  Security function is shared with code protection Cypress Semiconductor Corporation Document Number: 002-04864 Rev. *D • USB Interface USB interface is composed of Device and Host. [USB device]  USB2.0 Full-Speed supported  Max 6 Endpoint supported 198 Champion Court  Endpoint 0 is control transfer 1, 2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer  Endpoint 3 to 5 can select Bulk-transfer or Interrupt-transfer  Endpoint 1 to 5 comprise Double Buffer  The size of each endpoint is according to the follows. • Endpoint 0, 2 to 5: 64 bytes • Endpoint 1: 256 bytes  Endpoint • San Jose, CA 95134-1709 • 408-943-2600 Revised September 25, 2017 MB9B560R Series [USB host]  USB2.0 Full/Low-speed supported  Bulk-transfer, interrupt-transfer and Isochronous-transfer support  I2 C  Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported  Fast-mode Plus (Fm+) (Max 1000 kbps, only for ch.3=ch.A and ch.7=ch.B) supported  USB Device connected/dis-connected automatically detect DMA Controller (Eight channels)  IN/OUT token handshake packet automatically DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously.  Max 256-byte packet-length supported  Wake-up function supported CAN Interface (Max two channels)  Compatible with CAN Specification 2.0A/B  Maximum transfer rate: 1 Mbps  8 independently configured and operated channels  Transfer can be started by software or request from the built-in peripherals  Transfer address area: 32-bit (4 Gbytes)  Transfer mode: Block transfer/Burst transfer/Demand transfer  Built-in 32 message buffer  Transfer data type: bytes/half-word/word Multi-function Serial Interface (Max eight channels)  Transfer block count: 1 to 16  64 bytes with FIFO (the FIFO step numbers are variable  Number of transfers: 1 to 65536 depending on the settings of the communication mode or bit length.)  Operation mode is selectable from the followings for each channel.  UART  CSIO  LIN 2 I C  UART  Full-duplex double buffer  Selection with or without parity supported  Built-in dedicated baud rate generator  External clock available as a serial clock  Hardware Flow control : Automatically control the transmission by CTS/RTS (only ch.4)  Various error detect functions available (parity errors, framing errors, and overrun errors)  CSIO  Full-duplex double buffer dedicated baud rate generator  Overrun error detect function available  Serial chip select function (ch.6 and ch.7 only)  Supports high-speed SPI (ch.4 and ch.6 only)  Data length 5 to 16-bit  Built-in  LIN  LIN protocol Rev.2.1 supported double buffer  Master/Slave mode supported  LIN break field generation (can change to 13 to 16-bit length)  LIN break delimiter generation (can change to 1 to 4-bit length)  Various error detect functions available (parity errors, framing errors, and overrun errors)  Full-duplex Document Number: 002-04864 Rev. *D DSTC (Descriptor System data Transfer Controller) (128 channels) The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the Descriptor system and, following the specified contents of the Descriptor which has already been constructed on the memory, can access directly the memory /peripheral device and performs the data transfer operation. It supports the software activation, the hardware activation and the chain activation functions. A/D Converter (Max 24 channels) [12-bit A/D Converter]  Successive Approximation type  Built-in 3 units  Conversion time: 0.5 μs @ 5 V  Priority conversion available (priority at 2levels)  Scanning conversion mode  Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion: 4steps) D/A Converter (Max two channels)  R-2R type  12-bit resolution Page 2 of 170 MB9B560R Series Base Timer (Max eight channels) Real-time clock (RTC) Operation mode is selectable from the followings for each channel. The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 00 to 99.  16-bit PWM timer  16-bit PPG timer  16-/32-bit reload timer  16-/32-bit PWC timer  Interrupt function with specifying date and time (Year/Month/Day/Hour/Minute) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.  Timer interrupt function after set time or each set time. General Purpose I/O Port  Capable of rewriting the time with continuing the time count. This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.  Leap year automatic count is available.  Capable of pull-up control per pin  Capable of reading pin level directly  Built-in the port relocate function  Up to 100 high-speed general-purpose I/O ports @ 120 pin Package  Some pin is 5 V tolerant I/O. See 4. Pin Description and 5. I/O Circuit Type for the corresponding pins. Multi-function Timer (Max two units) The Multi-function timer is composed of the following blocks. Minimum resolution: 6.25 ns  16-bit free-run timer × 3 ch./unit  Input capture × 4 ch./unit  Output compare × 6 ch./unit  A/D activation compare × 6 ch./unit  Waveform generator × 3 ch./unit  16-bit PPG timer × 3 ch./unit The following function can be used to achieve the motor control.  PWM signal output function Quadrature Position/Revolution Counter (QPRC) (Max two channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.  The detection edge of the three external event input pins AIN, BIN, and ZIN is configurable.  16-bit position counter  16-bit revolution counter  Two 16-bit compare registers Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel.  Free-running  Periodic (=Reload)  One-shot Watch Counter The Watch counter is used for wake up from the low-power consumption mode. It is possible to select the main clock, sub clock, built-in high-speed CR clock or built-in low-speed CR clock as the clock source. Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz  DC chopper waveform output function  Dead time function  Input capture function  A/D convertor activate function  DTIF (Motor emergency stop) interrupt function External Interrupt Controller Unit  External interrupt input pin: Max 16 pins  Include one non-maskable interrupt (NMI) Watchdog Timer (two channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog. "Hardware" watchdog timer is clocked by low-speed internal CR oscillator. Therefore, "Hardware" watchdog is active in any power saving mode except STOP. Document Number: 002-04864 Rev. *D Page 3 of 170 MB9B560R Series CRC (Cyclic Redundancy Check) Accelerator Low-power Consumption Mode The CRC accelerator helps a verify data transmission or storage integrity. Six low-power consumption modes are supported. CCITT CRC16 and IEEE-802.3 CRC32 are supported.  CCITT CRC16 Generator Polynomial: 0x1021  IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 SD Card Interface It is possible to use the SD card that conforms to the following standards.  Part 1 Physical Layer Specification version 3.01  Part E1 SDIO Specification version 3.00  Part A2 SD Host Controller Standard Specification version 3.00  1-bit or 4-bit data bus  SLEEP  TIMER  RTC  STOP  Deep standby RTC (selectable from with/without RAM retention)  Deep standby stop (selectable from with/without RAM retention) VBAT The consumption power during the RTC operation can be reduced by supplying the power supply independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be used. Clock and Reset  RTC  Clocks  32 kHz oscillation circuit Five clock sources (2 external oscillators, 2 internal CR oscillator, and Main PLL) that are dynamically selectable.  Main clock: 4 MHz to 48 MHz  Sub Clock: 32.768 kHz  High-speed internal CR Clock: 4 MHz  Low-speed internal CR Clock: 100 kHz  Main PLL Clock  Power-on circuit  Resets  Reset requests from INITX pin on reset  Software reset  Watchdog timers reset  Low voltage detector reset  Clock supervisor reset  Power  Back up register: 32 bytes  Port circuit Debug  Serial Wire JTAG Debug Port (SWJ-DP)  Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities. Unique ID Unique value of the device (41-bit) is set. Power Supply Clock Super Visor (CSV) Three Power Supplies Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.  Wide range voltage:  External OSC clock failure (clock stop) is detected, reset is  Power supply for USB I/O: asserted. VCC USBVCC = 3.0 V to 3.6 V (when USB is used)  External OSC frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) = 2.7 V to 5.5 V = 2.7 V to 5.5 V (when GPIO is used)  Power supply for VBAT: VBAT = 2.7 V to 5.5 V This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage has been set, Low-Voltage Detector generates an interrupt or reset.  LVD1: error reporting via interrupt  LVD2: auto-reset operation Document Number: 002-04864 Rev. *D Page 4 of 170 MB9B560R Series Contents 1. Product Lineup .................................................................................................................................................................. 7 2. Packages ........................................................................................................................................................................... 8 3. Pin Assignment ................................................................................................................................................................. 9 4. Pin Description ................................................................................................................................................................ 15 4.1 List of Pin Numbers ..................................................................................................................................................... 15 4.2 List of Pin Functions .................................................................................................................................................... 28 5. I/O Circuit Type................................................................................................................................................................ 44 6. Handling Precautions ..................................................................................................................................................... 51 6.1 Precautions for Product Design ................................................................................................................................... 51 6.2 Precautions for Package Mounting .............................................................................................................................. 52 6.3 Precautions for Use Environment ................................................................................................................................ 53 7. Handling Devices ............................................................................................................................................................ 54 8. Block Diagram ................................................................................................................................................................. 57 9. Memory Size .................................................................................................................................................................... 58 10. Memory Map .................................................................................................................................................................... 58 11. Pin Status in Each CPU State ........................................................................................................................................ 61 12. Electrical Characteristics ............................................................................................................................................... 69 12.1 Absolute Maximum Ratings ......................................................................................................................................... 69 12.2 Recommended Operating Conditions.......................................................................................................................... 70 12.3 DC Characteristics....................................................................................................................................................... 74 12.3.1 Current Rating .............................................................................................................................................................. 74 12.3.2 Pin Characteristics ....................................................................................................................................................... 81 12.4 AC Characteristics ....................................................................................................................................................... 83 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 83 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 84 12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 84 12.4.4 Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL) ...................................... 85 12.4.5 Operating Conditions of USB PLL (In the Case of Using Main Clock for Input Clock of PLL) ...................................... 85 12.4.6 Operating Conditions of Main PLL (In the Case of Using Built-in High-speed CR Clock for Input Clock of Main PLL) 85 12.4.7 Reset Input Characteristics .......................................................................................................................................... 86 12.4.8 Power-on Reset Timing................................................................................................................................................ 86 12.4.9 GPIO Output Characteristics ........................................................................................................................................ 87 12.4.10 External Bus Timing.................................................................................................................................................. 87 12.4.11 Base Timer Input Timing......................................................................................................................................... 100 12.4.12 CSIO/UART Timing ................................................................................................................................................ 101 12.4.13 External Input Timing .............................................................................................................................................. 134 12.4.14 Quadrature Position/Revolution Counter Timing .................................................................................................... 135 2 12.4.15 I C Timing ............................................................................................................................................................... 137 12.4.16 SD Card Interface Timing ....................................................................................................................................... 139 12.4.17 ETM Timing ............................................................................................................................................................ 142 12.4.18 JTAG Timing ........................................................................................................................................................... 143 12.5 12-bit A/D Converter .................................................................................................................................................. 144 12.6 12-bit D/A Converter .................................................................................................................................................. 147 12.7 USB Characteristics .................................................................................................................................................. 148 12.8 Low-Voltage Detection Characteristics ...................................................................................................................... 152 12.8.1 Low-Voltage Detection Reset ..................................................................................................................................... 152 Document Number: 002-04864 Rev. *D Page 5 of 170 MB9B560R Series 12.8.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 152 12.9 MainFlash Memory Write/Erase Characteristics ........................................................................................................ 153 12.10 WorkFlash Memory Write/Erase Characteristics ....................................................................................................... 153 12.11 Standby Recovery Time ............................................................................................................................................ 154 12.11.1 Recovery cause: Interrupt/WKUP ........................................................................................................................... 154 12.11.2 Recovery Cause: Reset .......................................................................................................................................... 156 13. Ordering Information .................................................................................................................................................... 158 14. Package Dimensions .................................................................................................................................................... 159 15. Major Changes .............................................................................................................................................................. 166 Document History ............................................................................................................................................................... 168 Sales, Solutions, and Legal Information ........................................................................................................................... 170 Document Number: 002-04864 Rev. *D Page 6 of 170 MB9B560R Series 1. Product Lineup Memory Size Product name MainFlash memory WorkFlash memory On-chip SRAM SRAM0 SRAM1 SRAM1 MB9BF566M/N/R 512 Kbytes 32 Kbytes 64 Kbytes 32 Kbytes 16 Kbytes 16 Kbytes MB9BF567M/N/R 768 Kbytes 32 Kbytes 96 Kbytes 48 Kbytes 24 Kbytes 24 Kbytes MB9BF568M/N/R 1024 Kbytes 32 Kbytes 128 Kbytes 64 Kbytes 32 Kbytes 32 Kbytes Function MB9BF566M MB9BF567M MB9BF568M Product name Pin count 80 100/112 Cortex-M4F, MPU, NVIC 128ch. 160 MHz 2.7 V to 5.5 V 1ch. 2ch. (Max) 8ch. 128ch. Addr:25-bit (Max), Addr:19-bit (Max), R/W data: 8-/16-bit (Max), R/W data: 8-bit (Max), CS:9 (Max), CS:5 (Max), SRAM, SRAM, NOR Flash, NOR Flash SDRAM CPU Freq. Power supply voltage range USB2.0 (Device/Host) CAN DMAC DSTC External Bus Interface MF Timer Multi-function Serial Interface (UART/CSIO/LIN/I2C) Base Timer (PWC/Reload timer/PWM/PPG) A/D activation compare Input capture Free-run timer Output compare Waveform generator PPG SD Card Interface QPRC Dual Timer Real-Time Clock Watch Counter CRC Accelerator Watchdog Timer External Interrupts I/O Ports MB9BF566N MB9BF567N MB9BF568N MB9BF566R MB9BF567R MB9BF568R 120/144 Addr:25-bit (Max), R/W data: 8-/16-bit (Max), CS:9 (Max), SRAM, NOR Flash, NAND Flash, SDRAM 8ch. (Max) 8ch. (Max) 6ch. 4ch. 3ch. 6ch. 3ch. 3ch. 2 units (Max) 1 unit 2ch. (Max) 1 unit 1 unit 1 unit Yes 1ch. (SW) + 1ch. (HW) 16 pins (Max) + NMI × 1 63 pins (Max) 80 pins (Max) 12-bit A/D Converter 16ch. (3 units) 24ch. (3 units) 12-bit D/A Converter 2 units (Max) CSV (Clock Super Visor) LVD (Low-Voltage Detector) High-speed Built-in CR Low-speed Debug Function Unique ID Yes 2ch. 4 MHz 100 kHz SWJ-DP/ETM Yes 100 pins (Max) Notes: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. − See “12. Electrical Characteristics 12.4. AC Characteristics 12.4.3. Built-in CR Oscillation Characteristics” for accuracy of built-in CR. Document Number: 002-04864 Rev. *D Page 7 of 170 MB9B560R Series 2. Packages Product Name Package LQFP: LQH080 (0.5 mm pitch) LQFP: LQJ080 (0.65 mm pitch) QFP: PQH100 (0.65 mm pitch) LQFP: LQI100 (0.5 mm pitch) LQFP: LQM120 (0.5 mm pitch) BGA: LDC112 (0.5 mm pitch) BGA: LDC144 (0.5 mm pitch) MB9BF566M MB9BF567M MB9BF568M MB9BF566N MB9BF567N MB9BF568N   -    - MB9BF566R MB9BF567R MB9BF568R   : Supported Note: − See 14. Package Dimensions for detailed information on each package. Document Number: 002-04864 Rev. *D Page 8 of 170 MB9B560R Series 3. Pin Assignment LQH080/LQJ080 VSS P81/UDP0 P80/UDM0 USBVCC P60/TIOA2_2/SCK5_0/NMIX/WKUP0/MRDY_0 P61/UHCONX0/TIOB2_2/SOT5_0/RTCCO_0/SUBOUT_0 P62/ADTG_3/TX0_2/SIN5_0/INT04_1/S_WP_0/MOEX_0 P63/CROUT_1/RX0_2/INT03_0/S_CD_0/MWEX_0 P00/TRSTX/MCSX7_0 P01/TCK/SWCLK P02/TDI/MCSX6_0 P03/TMS/SWDIO P04/TDO/SWO P09/AN19/TIOA3_2/SOT1_0/S_DATA2_0/MCSX5_0 P0A/SIN1_0/FRCK1_0/INT12_2/S_DATA3_0/MCSX1_0 P0B/TIOB6_1/SIN6_1/IC10_0/INT00_1/S_DATA0_0/MCSX0_0 P0C/TIOA6_1/SOT6_1/IC11_0/S_DATA1_0/MALE_0 P0D/TIOA5_2/SCK6_1/IC12_0/S_CMD_0/MDQM0_0 P0E/TIOB5_2/SCS6_1/IC13_0/S_CLK_0/MDQM1_0 VCC 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 (TOP VIEW) VCC 1 60 VSS P50/CTS4_0/AIN0_2/RTO10_0/INT00_0/MADATA00_0 2 59 P21/AN17/SIN0_0/INT06_1 P51/RTS4_0/BIN0_2/RTO11_0/INT01_0/MADATA01_0 3 58 P22/CROUT_0/AN16/TIOB7_1/SOT0_0 P52/SCK4_0/ZIN0_2/RTO12_0/MADATA02_0 4 57 P23/AN15/TIOA7_1/SCK0_0/RTO00_1 P53/TIOA1_2/SOT4_0/RTO13_0/MADATA03_0 5 56 P1B/AN11/SCK4_1/IC02_1/MAD18_0 P54/TIOB1_2/SIN4_0/RTO14_0/INT02_0/MADATA04_0 6 55 P1A/AN10/SOT4_1/IC01_1/MAD17_0 P55/ADTG_1/SIN6_0/RTO15_0/INT07_2/MADATA05_0 7 54 P19/AN09/SIN4_1/IC00_1/INT05_1/MAD16_0 P56/SOT6_0/DTTI1X_0/INT08_2/MADATA06_0 8 53 P18/AN08/SCK2_2/MAD15_0 P30/TIOB0_1/RTS4_2/INT15_2/WKUP1/MADATA07_0 9 52 AVRH P31/TIOB1_1/SIN3_1/INT09_2/MADATA08_0 10 51 AVRL P32/TIOB2_1/SOT3_1/INT10_1/MADATA09_0 11 50 AVSS P33/ADTG_6/TIOB3_1/SCK3_1/INT04_0/MADATA10_0 12 49 AVCC P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2 13 48 P17/AN07/SOT2_2/WKUP3/MAD14_0 P3A/TIOA0_1/AIN0_0/RTO00_0 14 47 P16/AN06/SIN2_2/INT14_1/MAD13_0 P3B/TIOA1_1/BIN0_0/RTO01_0 15 46 P15/AN05/SCK0_1/MAD12_0 P3C/TIOA2_1/ZIN0_0/RTO02_0 16 45 P14/AN04/SOT0_1/IC03_2/MAD11_0 P3D/TIOA3_1/RTO03_0/MAD00_0 17 44 P13/AN03/SIN0_1/IC02_2/INT03_1/MAD10_0 P3E/TIOA4_1/RTO04_0/MAD01_0 18 43 P12/AN02/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1/MAD09_0 P3F/TIOA5_1/RTO05_0/MAD02_0 19 42 P11/AN01/TX1_2/SOT1_1/IC00_2/MAD08_0 VSS 20 41 P10/AN00/RX1_2/SIN1_1/FRCK0_2/INT02_1/MAD07_0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P44/TIOA4_0/RTO14_1/DA0 P45/TIOB0_0/RTO15_1/DA1 INITX P46/X0A P47/X1A P48/VREGCTL P49/VWAKEUP VBAT C VSS VCC P4B/TIOB1_0/SCS7_1/MAD03_0 P4C/TIOB2_0/SCK7_1/AIN1_2/MAD04_0 P4D/TIOB3_0/SOT7_1/BIN1_2/INT13_2/MAD05_0 P4E/TIOB4_0/SIN7_1/ZIN1_2/FRCK1_1/INT11_1/WKUP2/MAD06_0 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS LQFP - 80 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 9 of 170 MB9B560R Series LQI100 VSS P81/UDP0 P80/UDM0 USBVCC P60/TIOA2_2/SCK5_0/NMIX/WKUP0/MRDY_0 P61/UHCONX0/TIOB2_2/SOT5_0/RTCCO_0/SUBOUT_0 P62/ADTG_3/TX0_2/SIN5_0/INT04_1/S_WP_0/MOEX_0 P63/CROUT_1/RX0_2/INT03_0/S_CD_0/MWEX_0 VSS P00/TRSTX/MCSX7_0 P01/TCK/SWCLK P02/TDI/MCSX6_0 P03/TMS/SWDIO P04/TDO/SWO P05/AN23/ADTG_0/TRACECLK/SIN7_0/INT01_1/MCSX2_0 P06/AN22/TRACED3/TIOB0_2/SOT7_0/MCSX3_0 P07/AN21/TRACED2/TIOA0_2/SCK7_0/MCLKOUT_0 P08/AN20/TRACED1/TIOB3_2/SCK1_0/MCSX4_0 P09/AN19/TRACED0/TIOA3_2/SOT1_0/S_DATA2_0/MCSX5_0 P0A/SIN1_0/FRCK1_0/INT12_2/S_DATA3_0/MCSX1_0 P0B/TIOB6_1/SIN6_1/IC10_0/INT00_1/S_DATA0_0/MCSX0_0 P0C/TIOA6_1/SOT6_1/IC11_0/S_DATA1_0/MALE_0 P0D/TIOA5_2/SCK6_1/IC12_0/S_CMD_0/MDQM0_0 P0E/TIOB5_2/SCS6_1/IC13_0/S_CLK_0/MDQM1_0 VCC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 (TOP VIEW) VCC 1 75 VSS P50/CTS4_0/AIN0_2/RTO10_0/INT00_0/MADATA00_0 2 74 P20/AN18/AIN1_1/INT05_0/MAD24_0 P51/RTS4_0/BIN0_2/RTO11_0/INT01_0/MADATA01_0 3 73 P21/AN17/SIN0_0/BIN1_1/INT06_1/MAD23_0 P52/SCK4_0/ZIN0_2/RTO12_0/MADATA02_0 4 72 P22/CROUT_0/AN16/TIOB7_1/SOT0_0/ZIN1_1 P53/TIOA1_2/SOT4_0/RTO13_0/MADATA03_0 5 71 P23/AN15/TIOA7_1/SCK0_0/RTO00_1/MAD22_0 P54/TIOB1_2/SIN4_0/RTO14_0/INT02_0/MADATA04_0 6 70 P1E/AN14/ADTG_5/FRCK0_1/MAD21_0 P55/ADTG_1/SIN6_0/RTO15_0/INT07_2/MADATA05_0 7 69 P1D/AN13/RTS4_1/DTTI0X_1/MAD20_0 P56/SOT6_0/DTTI1X_0/INT08_2/MADATA06_0 8 68 P1C/AN12/CTS4_1/IC03_1/MAD19_0 P30/TIOB0_1/RTS4_2/INT15_2/WKUP1/MADATA07_0 9 67 P1B/AN11/SCK4_1/IC02_1/MAD18_0 P31/TIOB1_1/SIN3_1/INT09_2/MADATA08_0 10 66 P1A/AN10/SOT4_1/IC01_1/MAD17_0 P32/TIOB2_1/SOT3_1/INT10_1/MADATA09_0 11 65 P19/AN09/SIN4_1/IC00_1/INT05_1/MAD16_0 P33/ADTG_6/TIOB3_1/SCK3_1/INT04_0/MADATA10_0 12 64 P18/AN08/SCK2_2/MAD15_0 P34/TX0_1/TIOB4_1/FRCK0_0/MADATA11_0 13 63 AVRH P35/RX0_1/TIOB5_1/IC03_0/INT08_1/MADATA12_0 14 62 AVRL LQFP - 100 47 48 49 50 PE3/X1 VSS 46 PE0/MD1 MD0 45 PE2/X0 44 43 P4C/TIOB2_0/SCK7_1/AIN1_2/MAD04_0 P4D/TIOB3_0/SOT7_1/BIN1_2/INT13_2/MAD05_0 42 P4E/TIOB4_0/SIN7_1/ZIN1_2/FRCK1_1/INT11_1/WKUP2/MAD06_0 41 40 VSS VCC 39 P4B/TIOB1_0/SCS7_1/MAD03_0 38 C VCC VBAT P10/AN00/RX1_2/SIN1_1/FRCK0_2/INT02_1/MAD07_0 51 37 52 25 P49/VWAKEUP 24 VSS 36 P11/AN01/TX1_2/SOT1_1/IC00_2/MAD08_0 P3F/TIOA5_1/RTO05_0/MAD02_0 35 53 P47/X1A 23 P48/VREGCTL P12/AN02/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1/MAD09_0 P3E/TIOA4_1/RTO04_0/MAD01_0 34 P13/AN03/SIN0_1/IC02_2/INT03_1/MAD10_0 54 P46/X0A 55 22 33 21 P3D/TIOA3_1/RTO03_0/MAD00_0 32 P14/AN04/SOT0_1/IC03_2/MAD11_0 P3C/TIOA2_1/ZIN0_0/RTO02_0/MCASX_0 INITX 56 P45/TIOB0_0/RTO15_1/DA1 20 31 P15/AN05/SCK0_1/MAD12_0 P3B/TIOA1_1/BIN0_0/RTO01_0/MRASX_0 P44/TIOA4_0/RTO14_1/DA0 P16/AN06/SIN2_2/INT14_1/MAD13_0 57 30 58 19 29 18 P3A/TIOA0_1/AIN0_0/RTO00_0/MSDCKE_0 P42/TIOA2_0/RTO12_1/MSDWEX_0 P17/AN07/SOT2_2/WKUP3/MAD14_0 P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2/MSDCLK_0 P43/ADTG_7/TIOA3_0/RTO13_1/MCSX8_0 59 28 17 27 AVCC P38/SCK5_2/IC00_0/INT06_2/MADATA15_0 26 AVSS 60 VCC 61 16 P41/TIOA1_0/RTO11_1/INT13_1 15 P40/TIOA0_0/RTO10_1/INT12_1 P36/SIN5_2/IC02_0/INT09_1/MADATA13_0 P37/SOT5_2/IC01_0/INT05_2/MADATA14_0 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 10 of 170 MB9B560R Series LQM120 P0D/TIOA5_2/SCK6_1/IC12_0/S_CMD_0/MDQM0_0 P0E/TIOB5_2/SCS6_1/IC13_0/S_CLK_0/MDQM1_0 VCC 93 92 91 P0A/SIN1_0/FRCK1_0/INT12_2/S_DATA3_0/MCSX1_0 P0B/TIOB6_1/SIN6_1/IC10_0/INT00_1/S_DATA0_0/MCSX0_0 P0C/TIOA6_1/SOT6_1/IC11_0/S_DATA1_0/MALE_0 96 95 94 P08/AN20/TRACED1/TIOB3_2/SCK1_0/MCSX4_0 P09/AN19/TRACED0/TIOA3_2/SOT1_0/S_DATA2_0/MCSX5_0 98 99 97 P05/AN23/ADTG_0/TRACECLK/SIN7_0/INT01_1/MCSX2_0 P06/AN22/TRACED3/TIOB0_2/SOT7_0/MCSX3_0 P07/AN21/TRACED2/TIOA0_2/SCK7_0/MCLKOUT_0 101 100 P03/TMS/SWDIO P04/TDO/SWO 103 102 P00/TRSTX/MCSX7_0 P01/TCK/SWCLK P02/TDI/MCSX6_0 106 105 104 P67/TIOA7_2/SOT3_0 P68/TIOB7_2/SCK3_0/INT00_2 VSS 109 108 107 P65/TIOB7_0/SCK5_1 P66/ADTG_8/SIN3_0/INT11_2 111 110 P62/ADTG_3/TX0_2/SIN5_0/INT04_1/S_WP_0/MOEX_0 P63/CROUT_1/RX0_2/SIN5_1/INT03_0/S_CD_0/MWEX_0 P64/TIOA7_0/SOT5_1/INT10_2 114 113 112 USBVCC P60/TIOA2_2/SCK5_0/NMIX/WKUP0/MRDY_0 P61/UHCONX0/TIOB2_2/SOT5_0/RTCCO_0/SUBOUT_0 117 116 115 VSS P81/UDP0 P80/UDM0 120 119 118 (TOP VIEW) VCC 1 90 VSS P50/CTS4_0/AIN0_2/RTO10_0/INT00_0/MADATA00_0 2 89 P20/AN18/AIN1_1/INT05_0/MAD24_0 P51/RTS4_0/BIN0_2/RTO11_0/INT01_0/MADATA01_0 3 88 P21/AN17/SIN0_0/BIN1_1/INT06_1/MAD23_0 P52/SCK4_0/ZIN0_2/RTO12_0/MADATA02_0 4 87 P22/CROUT_0/AN16/TIOB7_1/SOT0_0/ZIN1_1 P53/TIOA1_2/SOT4_0/RTO13_0/MADATA03_0 5 86 P23/AN15/TIOA7_1/SCK0_0/RTO00_1/MAD22_0 P54/TIOB1_2/SIN4_0/RTO14_0/INT02_0/MADATA04_0 6 85 P24/RX1_0/SIN2_1/RTO01_1/INT01_2 P55/ADTG_1/SIN6_0/RTO15_0/INT07_2/MADATA05_0 7 84 P25/TX1_0/TIOA5_0/SOT2_1/RTO02_1 P56/SOT6_0/DTTI1X_0/INT08_2/MADATA06_0 8 83 P26/TIOB5_0/SCK2_1/RTO03_1 P57/SCK6_0/MADATA07_0 9 82 P27/TIOA6_2/RTO04_1/INT02_2 P58/SIN4_2/AIN1_0/INT04_2/MADATA08_0 10 81 P1F/ADTG_4/TIOB6_2/RTO05_1 P59/RX1_1/SOT4_2/BIN1_0/INT07_1/MADATA09_0 11 80 P1E/AN14/ADTG_5/FRCK0_1/MAD21_0 P5A/TX1_1/SCK4_2/ZIN1_0/MADATA10_0 12 79 P1D/AN13/RTS4_1/DTTI0X_1/MAD20_0 P5B/CTS4_2/MADATA11_0 13 78 P1C/AN12/CTS4_1/IC03_1/MAD19_0 P30/TIOB0_1/RTS4_2/INT15_2/WKUP1/MADATA12_0 14 77 P1B/AN11/SCK4_1/IC02_1/MAD18_0 76 P1A/AN10/SOT4_1/IC01_1/MAD17_0 75 P19/AN09/SIN4_1/IC00_1/INT05_1/MAD16_0 P31/TIOB1_1/SIN3_1/INT09_2/MADATA13_0 15 P32/TIOB2_1/SOT3_1/INT10_1/MADATA14_0 16 P33/ADTG_6/TIOB3_1/SCK3_1/INT04_0/MADATA15_0 17 74 P18/AN08/SCK2_2/MAD15_0 P34/TX0_1/TIOB4_1/FRCK0_0/MNALE_0 18 73 AVRH P35/RX0_1/TIOB5_1/IC03_0/INT08_1/MNCLE_0 19 72 AVRL LQFP - 120 58 59 60 VSS MD0 PE2/X0 PE0/MD1 PE3/X1 55 56 57 P74/SCK2_0/DTTI1X_1 53 54 P73/TIOB6_0/SOT2_0/IC10_1/INT03_2 P70/TX0_0/TIOA4_2/AIN0_1/IC13_1 P71/RX0_0/TIOB4_2/BIN0_1/IC12_1/INT15_1 P72/TIOA6_0/SIN2_0/ZIN0_1/IC11_1/INT14_2 50 51 52 P4E/TIOB4_0/SIN7_1/ZIN1_2/FRCK1_1/INT11_1/WKUP2/MAD06_0 48 49 P4C/TIOB2_0/SCK7_1/AIN1_2/MAD04_0 P4D/TIOB3_0/SOT7_1/BIN1_2/INT13_2/MAD05_0 45 46 47 VSS VCC VCC P4B/TIOB1_0/SCS7_1/MAD03_0 61 42 30 43 P10/AN00/RX1_2/SIN1_1/FRCK0_2/INT02_1/MAD07_0 VSS 44 62 C 29 VBAT P11/AN01/TX1_2/SOT1_1/IC00_2/MAD08_0 P3F/TIOA5_1/RTO05_0/MAD02_0 P49/VWAKEUP 63 40 28 41 P12/AN02/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1/MAD09_0 P3E/TIOA4_1/RTO04_0/MAD01_0 P47/X1A 64 P48/VREGCTL 27 37 P13/AN03/SIN0_1/IC02_2/INT03_1/MAD10_0 P3D/TIOA3_1/RTO03_0/MAD00_0 38 P14/AN04/SOT0_1/IC03_2/MAD11_0 65 39 66 26 INITX 25 P3C/TIOA2_1/ZIN0_0/RTO02_0/MCASX_0 P46/X0A P15/AN05/SCK0_1/MAD12_0 P3B/TIOA1_1/BIN0_0/RTO01_0/MRASX_0 P45/TIOB0_0/RTO15_1/DA1 67 34 24 35 P16/AN06/SIN2_2/INT14_1/MAD13_0 P3A/TIOA0_1/AIN0_0/RTO00_0/MSDCKE_0 36 68 P44/TIOA4_0/RTO14_1/DA0 23 P42/TIOA2_0/RTO12_1/MSDWEX_0 P17/AN07/SOT2_2/WKUP3/MAD14_0 P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2/MSDCLK_0 P43/ADTG_7/TIOA3_0/RTO13_1/MCSX8_0 69 31 22 32 AVCC P38/SCK5_2/IC00_0/INT06_2 33 AVSS 70 VCC 71 21 P40/TIOA0_0/RTO10_1/INT12_1 20 P41/TIOA1_0/RTO11_1/INT13_1 P36/SIN5_2/IC02_0/INT09_1/MNWEX_0 P37/SOT5_2/IC01_0/INT05_2/MNREX_0 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 11 of 170 MB9B560R Series PQH100 P50/CTS4_0/AIN0_2/RTO10_0/INT00_0/MADATA00_0 VCC VSS P81/UDP0 P80/UDM0 USBVCC P60/TIOA2_2/SCK5_0/NMIX/WKUP0/MRDY_0 P61/UHCONX0/TIOB2_2/SOT5_0/RTCCO_0/SUBOUT_0 P62/ADTG_3/TX0_2/SIN5_0/INT04_1/S_WP_0/MOEX_0 P63/CROUT_1/RX0_2/INT03_0/S_CD_0/MWEX_0 VSS P00/TRSTX/MCSX7_0 P01/TCK/SWCLK P02/TDI/MCSX6_0 P03/TMS/SWDIO P04/TDO/SWO P05/AN23/ADTG_0/TRACECLK/SIN7_0/INT01_1/MCSX2_0 P06/AN22/TRACED3/TIOB0_2/SOT7_0/MCSX3_0 P07/AN21/TRACED2/TIOA0_2/SCK7_0/MCLKOUT_0 P08/AN20/TRACED1/TIOB3_2/SCK1_0/MCSX4_0 P09/AN19/TRACED0/TIOA3_2/SOT1_0/S_DATA2_0/MCSX5_0 P0A/SIN1_0/FRCK1_0/INT12_2/S_DATA3_0/MCSX1_0 P0B/TIOB6_1/SIN6_1/IC10_0/INT00_1/S_DATA0_0/MCSX0_0 P0C/TIOA6_1/SOT6_1/IC11_0/S_DATA1_0/MALE_0 P0D/TIOA5_2/SCK6_1/IC12_0/S_CMD_0/MDQM0_0 P0E/TIOB5_2/SCS6_1/IC13_0/S_CLK_0/MDQM1_0 VCC VSS P20/AN18/AIN1_1/INT05_0/MAD24_0 P21/AN17/SIN0_0/BIN1_1/INT06_1/MAD23_0 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 (TOP VIEW) P51/RTS4_0/BIN0_2/RTO11_0/INT01_0/MADATA01_0 81 50 P22/CROUT_0/AN16/TIOB7_1/SOT0_0/ZIN1_1 P52/SCK4_0/ZIN0_2/RTO12_0/MADATA02_0 82 49 P23/AN15/TIOA7_1/SCK0_0/RTO00_1/MAD22_0 P53/TIOA1_2/SOT4_0/RTO13_0/MADATA03_0 83 48 P1E/AN14/ADTG_5/FRCK0_1/MAD21_0 P54/TIOB1_2/SIN4_0/RTO14_0/INT02_0/MADATA04_0 84 47 P1D/AN13/RTS4_1/DTTI0X_1/MAD20_0 P55/ADTG_1/SIN6_0/RTO15_0/INT07_2/MADATA05_0 85 46 P1C/AN12/CTS4_1/IC03_1/MAD19_0 P56/SOT6_0/DTTI1X_0/INT08_2/MADATA06_0 86 45 P1B/AN11/SCK4_1/IC02_1/MAD18_0 P30/TIOB0_1/RTS4_2/INT15_2/WKUP1/MADATA07_0 87 44 P1A/AN10/SOT4_1/IC01_1/MAD17_0 P31/TIOB1_1/SIN3_1/INT09_2/MADATA08_0 88 43 P19/AN09/SIN4_1/IC00_1/INT05_1/MAD16_0 P32/TIOB2_1/SOT3_1/INT10_1/MADATA09_0 89 42 P18/AN08/SCK2_2/MAD15_0 P33/ADTG_6/TIOB3_1/SCK3_1/INT04_0/MADATA10_0 90 41 AVRH P34/TX0_1/TIOB4_1/FRCK0_0/MADATA11_0 91 40 AVRL P35/RX0_1/TIOB5_1/IC03_0/INT08_1/MADATA12_0 92 39 AVSS QFP - 100 20 21 22 23 24 25 26 27 28 29 30 P4D/TIOB3_0/SOT7_1/BIN1_2/INT13_2/MAD05_0 P4E/TIOB4_0/SIN7_1/ZIN1_2/FRCK1_1/INT11_1/WKUP2/MAD06_0 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS VCC P10/AN00/RX1_2/SIN1_1/FRCK0_2/INT02_1/MAD07_0 19 VCC P4B/TIOB1_0/SCS7_1/MAD03_0 18 P4C/TIOB2_0/SCK7_1/AIN1_2/MAD04_0 17 16 VBAT C 15 VSS 14 13 P47/X1A P48/VREGCTL 12 P49/VWAKEUP 11 INITX P46/X0A 10 P45/TIOB0_0/RTO15_1/DA1 P11/AN01/TX1_2/SOT1_1/IC00_2/MAD08_0 9 P12/AN02/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1/MAD09_0 31 8 32 P44/TIOA4_0/RTO14_1/DA0 99 P3D/TIOA3_1/RTO03_0/MAD00_0 100 7 P13/AN03/SIN0_1/IC02_2/INT03_1/MAD10_0 P3C/TIOA2_1/ZIN0_0/RTO02_0/MCASX_0 P42/TIOA2_0/RTO12_1/MSDWEX_0 33 P43/ADTG_7/TIOA3_0/RTO13_1/MCSX8_0 98 6 P14/AN04/SOT0_1/IC03_2/MAD11_0 P3B/TIOA1_1/BIN0_0/RTO01_0/MRASX_0 P41/TIOA1_0/RTO11_1/INT13_1 P15/AN05/SCK0_1/MAD12_0 34 5 35 97 4 96 P3A/TIOA0_1/AIN0_0/RTO00_0/MSDCKE_0 VCC P16/AN06/SIN2_2/INT14_1/MAD13_0 P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2/MSDCLK_0 P40/TIOA0_0/RTO10_1/INT12_1 36 3 95 2 P17/AN07/SOT2_2/WKUP3/MAD14_0 P38/SCK5_2/IC00_0/INT06_2/MADATA15_0 1 AVCC 37 VSS 38 94 P3F/TIOA5_1/RTO05_0/MAD02_0 93 P3E/TIOA4_1/RTO04_0/MAD01_0 P36/SIN5_2/IC02_0/INT09_1/MADATA13_0 P37/SOT5_2/IC01_0/INT05_2/MADATA14_0 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 12 of 170 MB9B560R Series LDC112 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 A VSS UDP0 UDM0 USBVCC VSS TCK/ SWCLK VSS AN21 P0A P0B VSS P0E VSS B VCC VSS P60 P61 P62 TRSTX SWDIO AN22 AN19 P0C P0D VSS VCC C P50 P51 P52 AN23 AN20 VSS AN18 AN17 D P53 P54 AN16 AN15 E P55 P56 P30 AN14 AN13 AVRH F P31 P32 P33 AN12 AN11 AVRL G P34 P35 P36 AN10 AN09 AVSS H VSS P37 P38 AN08 AN07 AVCC J P39 P3A P3B AN06 AN05 AN04 K P3C P3D AN03 AN02 L P3E P3F P43 VSS AN01 AN00 M VCC VSS P42 N VSS P40 P41 P63 TMS/ TDI TDO/ SWO index P45 P48 P4B P4C P4E P44 VSS INITX P49 VCC P4D MD1 MD0 VSS VCC VSS X0A X1A VSS VBAT C VSS X0 X1 VSS Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 13 of 170 MB9B560R Series LDC144 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 A VSS UDP0 UDM0 USBVCC VSS P66 VSS VSS AN21 VSS P0C VCC VSS B VCC VSS P60 P61 P63 P67 TCK/ SWCLK TDO/ SWO AN20 P0B VSS VSS P0E C P50 P51 VSS P62 P64 P68 TDI AN23 AN19 P0D VSS AN18 VSS D P52 P53 P54 VSS P65 AN22 P0A VSS AN17 AN16 AN15 E P55 P56 P57 P58 index P24 P25 P26 P27 F P59 P5A P5B P30 P1F AN14 AN13 AN12 G P31 P32 P33 P34 AN11 AN10 AN09 AVRH H P35 P36 P37 P38 AN08 AN07 AN06 AVRL J P39 P3A P3B P3C AN05 AN04 AN03 AVSS K VSS P3D P3E VSS P45 P49 P4C P70 P72 VSS AN02 AN01 AVCC L P3F P41 VSS P44 VSS P48 P4B P4E P71 P74 VSS AN00 VSS M VCC VSS P43 VSS X1A VSS VSS P4D VCC P73 MD0 VSS VCC N VSS P40 P42 INITX X0A VSS VBAT C VSS MD1 X0 X1 VSS TMS/ TRSTX SWDIO Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-04864 Rev. *D Page 14 of 170 MB9B560R Series 4. Pin Description 4.1 List of Pin Numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. I/O Circuit Type Pin No LQFP120 1 LQFP100 1 LQFP80 1 QFP100 BGA112 BGA144 79 B1 B1 Pin Name VCC - Pin State Type - P50 CTS4_0 AIN0_2 2 2 2 80 C1 C1 RTO10_0 (PPG10_0) E K E K E I E I E K INT00_0 MADATA00_0 P51 RTS4_0 BIN0_2 3 3 3 81 C2 C2 RTO11_0 (PPG10_0) INT01_0 MADATA01_0 P52 SCK4_0 (SCL4_0) 4 4 4 82 C3 D1 ZIN0_2 RTO12_0 (PPG12_0) MADATA02_0 P53 TIOA1_2 5 5 5 83 D1 D2 SOT4_0 (SDA4_0) RTO13_0 (PPG12_0) MADATA03_0 P54 TIOB1_2 SIN4_0 6 6 6 84 D2 D3 RTO14_0 (PPG14_0) INT02_0 MADATA04_0 Document Number: 002-04864 Rev. *D Page 15 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type E K E K E I E K E K E I E I E Q P55 ADTG_1 SIN6_0 7 7 7 85 E1 E1 RTO15_0 (PPG14_0) INT07_2 MADATA05_0 P56 8 8 8 86 E2 E2 SOT6_0 (SDA6_0) DTTI1X_0 INT08_2 MADATA06_0 P57 9 - - - - E3 SCK6_0 (SCL6_0) MADATA07_0 P58 SIN4_2 10 - - - - E4 AIN1_0 INT04_2 MADATA08_0 P59 RX1_1 11 - - - - F1 SOT4_2 (SDA4_2) BIN1_0 INT07_1 MADATA09_0 P5A TX1_1 12 - - - - F2 SCK4_2 (SCL4_2) ZIN1_0 MADATA10_0 P5B 13 - - - - F3 CTS4_2 MADATA11_0 P30 TIOB0_1 14 9 9 87 E3 F4 RTS4_2 INT15_2 14 - - Document Number: 002-04864 Rev. *D - - F4 WKUP1 MADATA07_0 MADATA12_0 Page 16 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type I K N K N K E I E K E K E K P31 15 10 10 88 F1 G1 TIOB1_1 SIN3_1 INT09_2 15 - - - - - MADATA08_0 G1 MADATA13_0 P32 TIOB2_1 16 16 11 - 11 - 89 - F2 - G2 G2 SOT3_1 (SDA3_1) INT10_1 MADATA09_0 MADATA14_0 P33 ADTG_6 17 17 18 18 12 12 90 F3 - - - - 13 - 91 G1 - - - - G3 TIOB3_1 SCK3_1 (SCL3_1) G3 G4 G4 INT04_0 MADATA10_0 MADATA15_0 P34 TX0_1 TIOB4_1 FRCK0_0 MADATA11_0 MNALE_0 P35 RX0_1 19 14 - 92 G2 H1 TIOB5_1 IC03_0 19 20 20 21 - - - - 15 - 93 G3 - 16 - - - 94 - H2 H1 H2 H2 H3 INT08_1 MADATA12_0 MNCLE_0 P36 SIN5_2 IC02_0 INT09_1 MADATA13_0 MNWEX_0 P37 SOT5_2 (SDA5_2) IC01_0 21 - - Document Number: 002-04864 Rev. *D - - H3 INT05_2 MADATA14_0 MNREX_0 Page 17 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type E K L I G I G I G I G I G I G I - - P38 22 17 - 95 H3 H4 SCK5_2 (SCL5_2) IC00_0 - - INT06_2 MADATA15_0 P39 ADTG_2 23 18 13 96 J1 J1 DTTI0X_0 RTCCO_2 SUBOUT_2 - MSDCLK_0 P3A TIOA0_1 24 19 14 97 J2 J2 AIN0_0 RTO00_0 (PPG00_0) - MSDCKE_0 P3B TIOA1_1 25 20 15 98 J3 J3 BIN0_0 RTO01_0 (PPG00_0) - MRASX_0 P3C TIOA2_1 26 21 16 99 K1 J4 ZIN0_0 RTO02_0 (PPG02_0) - MCASX_0 P3D TIOA3_1 27 22 17 100 K2 K2 RTO03_0 (PPG02_0) MAD00_0 P3E TIOA4_1 28 23 18 1 L1 K3 RTO04_0 (PPG04_0) MAD01_0 P3F TIOA5_1 29 24 19 2 L2 L1 30 25 20 3 N1 N1 VSS 31 26 - 4 M1 M1 VCC RTO05_0 (PPG04_0) MAD02_0 Document Number: 002-04864 Rev. *D Page 18 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type G K G K G I G I R J R J B C P S Q T O U O U - - E I P40 TIOA0_0 32 27 - 5 N2 N2 RTO10_1 (PPG10_1) INT12_1 P41 TIOA1_0 33 28 - 6 N3 L2 RTO11_1 (PPG10_1) INT13_1 P42 TIOA2_0 34 29 - 7 M3 N3 RTO12_1 (PPG12_1) MSDWEX_0 P43 ADTG_7 35 30 - 8 L3 M3 TIOA3_0 RTO13_1 (PPG12_1) MCSX8_0 P44 TIOA4_0 36 31 21 9 M4 L4 RTO14_1 (PPG14_1) DA0 P45 TIOB0_0 37 32 22 10 L5 K5 38 33 23 11 M6 N4 RTO15_1 (PPG14_1) DA1 INITX P46 39 34 24 12 N5 N5 40 35 25 13 N6 M5 41 36 26 14 L6 L6 42 37 27 15 M7 K6 43 38 28 16 N8 N7 VBAT 44 39 29 17 N9 N8 C 45 40 30 18 N10 N9 VSS 46 41 31 19 M8 M9 VCC X0A P47 X1A P48 VREGCTL P49 VWAKEUP P4B 47 42 32 20 L7 L7 TIOB1_0 SCS7_1 MAD03_0 Document Number: 002-04864 Rev. *D Page 19 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type N I N K I Q E I E K E K E K E I P4C TIOB2_0 48 43 33 21 L8 K7 SCK7_1 (SCL7_1) AIN1_2 MAD04_0 P4D TIOB3_0 49 44 34 22 M9 M8 SOT7_1 (SDA7_1) BIN1_2 INT13_2 MAD05_0 P4E TIOB4_0 SIN7_1 50 45 35 23 L9 L8 ZIN1_2 FRCK1_1 INT11_1 WKUP2 MAD06_0 P70 TX0_0 51 - - - - K8 TIOA4_2 AIN0_1 IC13_1 P71 RX0_0 52 - - - - L9 TIOB4_2 BIN0_1 IC12_1 INT15_1 P72 TIOA6_0 53 - - - - K9 SIN2_0 ZIN0_1 IC11_1 INT14_2 P73 TIOB6_0 54 - - - - M10 SOT2_0 (SDA2_0) IC10_1 INT03_2 P74 55 - - - - L10 SCK2_0 (SCL2_0) DTTI1X_1 Document Number: 002-04864 Rev. *D Page 20 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 BGA144 56 46 36 24 M10 N10 57 47 37 25 M11 M11 Pin Name PE0 MD1 MD0 PE2 58 48 38 26 N11 N11 59 49 39 27 N12 N12 60 50 40 28 N13 N13 VSS 61 51 - 29 M13 M13 VCC X0 PE3 X1 I/O Circuit Type Pin State Type C E J D A A A B - - F M F L F L F M F L F L P10 AN00 RX1_2 62 52 41 30 L13 L12 SIN1_1 FRCK0_2 INT02_1 MAD07_0 P11 AN01 TX1_2 63 53 42 31 L12 K12 SOT1_1 (SDA1_1) IC00_2 MAD08_0 P12 AN02 SCK1_1 (SCL1_1) 64 54 43 32 K13 K11 IC01_2 RTCCO_1 SUBOUT_1 MAD09_0 P13 AN03 65 55 44 33 K12 J12 SIN0_1 IC02_2 INT03_1 MAD10_0 P14 AN04 66 56 45 34 J13 J11 SOT0_1 (SDA0_1) IC03_2 MAD11_0 P15 AN05 67 57 46 35 J12 J10 SCK0_1 (SCL0_1) MAD12_0 Document Number: 002-04864 Rev. *D Page 21 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type F M F P - - F L F M M L M L F L F L P16 AN06 68 58 47 36 J11 H12 SIN2_2 INT14_1 MAD13_0 P17 AN07 69 59 48 37 H12 H11 SOT2_2 (SDA2_2) WKUP3 MAD14_0 70 60 49 38 H13 K13 AVCC 71 61 50 39 G13 J13 AVSS 72 62 51 40 F13 H13 AVRL 73 63 52 41 E13 G13 AVRH P18 AN08 74 64 53 42 H11 H10 SCK2_2 (SCL2_2) MAD15_0 P19 AN09 75 65 54 43 G12 G12 SIN4_1 IC00_1 INT05_1 MAD16_0 P1A AN10 76 66 55 44 G11 G11 SOT4_1 (SDA4_1) IC01_1 MAD17_0 P1B AN11 77 67 56 45 F12 G10 SCK4_1 (SCL4_1) IC02_1 MAD18_0 P1C AN12 78 68 - 46 F11 F13 CTS4_1 IC03_1 MAD19_0 P1D AN13 79 69 - 47 E12 F12 RTS4_1 DTTI0X_1 MAD20_0 Document Number: 002-04864 Rev. *D Page 22 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type F L E I E K E I E I E K F L P1E AN14 80 70 - 48 E11 F11 ADTG_5 FRCK0_1 MAD21_0 P1F ADTG_4 81 - - - - F10 TIOB6_2 RTO05_1 (PPG04_1) P27 TIOA6_2 82 - - - - E13 RTO04_1 (PPG04_1) INT02_2 P26 TIOB5_0 83 - - - - E12 SCK2_1 (SCL2_1) RTO03_1 (PPG02_1) P25 TX1_0 TIOA5_0 84 - - - - E11 SOT2_1 (SDA2_1) RTO02_1 (PPG02_1) P24 RX1_0 85 - - - - E10 SIN2_1 RTO01_1 (PPG00_1) INT01_2 P23 AN15 TIOA7_1 86 71 57 49 D13 D13 SCK0_0 (SCL0_0) RTO00_1 (PPG00_1) - Document Number: 002-04864 Rev. *D MAD22_0 Page 23 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type F L F M F M - - L I L I L I L K P22 CROUT_0 87 72 58 AN16 50 D12 D12 TIOB7_1 SOT0_0 (SDA0_0) - ZIN1_1 P21 59 88 73 - AN17 51 C13 D11 SIN0_0 BIN1_1 59 INT06_1 - MAD23_0 P20 AN18 89 74 - 52 C12 C12 AIN1_1 INT05_0 MAD24_0 90 75 60 53 A13 A13 VSS 91 76 61 54 B13 A12 VCC P0E TIOB5_2 92 77 62 55 A12 B13 SCS6_1 IC13_0 S_CLK_0 MDQM1_0 P0D TIOA5_2 93 78 63 56 B11 C10 SCK6_1 (SCL6_1) IC12_0 S_CMD_0 MDQM0_0 P0C TIOA6_1 94 79 64 57 B10 A11 SOT6_1 (SDA6_1) IC11_0 S_DATA1_0 MALE_0 P0B TIOB6_1 SIN6_1 95 80 65 58 A10 B10 IC10_0 INT00_1 S_DATA0_0 MCSX0_0 Document Number: 002-04864 Rev. *D Page 24 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type L K M N F N F N F N F O E G E G P0A SIN1_0 96 81 66 59 A9 D9 FRCK1_0 INT12_2 S_DATA3_0 MCSX1_0 P09 67 AN19 97 82 TRACED0 60 B9 C9 TIOA3_2 SOT1_0 (SDA1_0) 67 S_DATA2_0 MCSX5_0 P08 AN20 TRACED1 98 83 - 61 C9 B9 TIOB3_2 SCK1_0 (SCL1_0) MCSX4_0 P07 AN21 TRACED2 99 84 - 62 A8 A9 TIOA0_2 SCK7_0 (SCL7_0) MCLKOUT_0 P06 AN22 TRACED3 100 85 - 63 B8 D8 TIOB0_2 SOT7_0 (SDA7_0) MCSX3_0 P05 AN23 ADTG_0 101 86 - 64 C8 C8 TRACECLK SIN7_0 INT01_1 MCSX2_0 P04 102 87 68 65 C7 B8 TDO SWO P03 103 88 69 66 B7 D7 TMS SWDIO Document Number: 002-04864 Rev. *D Page 25 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 BGA144 89 70 67 C6 C7 Pin Name I/O Circuit Type Pin State Type E H E G E H - - E K E I E K E I E K E K I K P02 104 TDI MCSX6_0 P01 105 90 71 68 A6 B7 TCK SWCLK P00 106 91 72 69 B6 D6 TRSTX MCSX7_0 107 92 - 70 A5 A7 VSS P68 TIOB7_2 108 - - - - C6 SCK3_0 (SCL3_0) INT00_2 P67 109 - - - - B6 TIOA7_2 SOT3_0 (SDA3_0) P66 110 - - - - A6 ADTG_8 SIN3_0 INT11_2 P65 111 - - - - D5 TIOB7_0 SCK5_1 (SCL5_1) P64 TIOA7_0 112 - - - - C5 SOT5_1 (SDA5_1) INT10_2 P63 93 73 71 C5 - - - - CROUT_1 RX0_2 113 B5 SIN5_1 INT03_0 93 73 71 C5 S_CD_0 MWEX_0 P62 ADTG_3 TX0_2 114 94 74 72 B5 C4 SIN5_0 INT04_1 S_WP_0 MOEX_0 Document Number: 002-04864 Rev. *D Page 26 of 170 MB9B560R Series Pin No LQFP120 LQFP100 LQFP80 QFP100 BGA112 Pin Name BGA144 I/O Circuit Type Pin State Type E I I F - - H R H R - - P61 UHCONX0 TIOB2_2 115 95 75 73 B4 B4 SOT5_0 (SDA5_0) RTCCO_0 SUBOUT_0 P60 TIOA2_2 116 96 76 74 B3 B3 SCK5_0 (SCL5_0) NMIX WKUP0 MRDY_0 117 97 77 75 A4 A4 118 98 78 76 A3 A3 119 99 79 77 A2 A2 120 100 80 78 A1 A1 - - - - A7 A5 - - - - B2 A8 - - - - B12 A10 - - - - C11 B2 - - - - H1 B11 - - - - N4 B12 - - - - M5 C3 - - - - N7 C11 - - - - L11 C13 - - - - A11 D4 - - - - M12 D10 - - - - M2 K1 - - - - - K4 - - - - - K10 - - - - - L3 - - - - - L5 - - - - - L11 - - - - - L13 - - - - - M2 - - - - - M4 - - - - - M6 - - - - - M7 - - - - - M12 - - - - - N6 Document Number: 002-04864 Rev. *D USBVCC P80 UDM0 P81 UDP0 VSS VSS Page 27 of 170 MB9B560R Series 4.2 List of Pin Functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No Pin Function ADC Base Timer 0 Pin Name ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 ADTG_8 AN00 AN01 AN02 AN03 AN04 AN05 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 Function Description A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Document Number: 002-04864 Rev. *D LQFP 120 101 7 23 114 81 80 17 35 110 62 63 64 65 66 67 68 69 74 75 76 77 78 79 80 86 87 88 89 97 98 99 100 101 32 24 99 37 14 100 LQFP 100 LQFP 80 86 7 18 94 70 12 30 52 53 54 55 56 57 58 59 64 65 66 67 68 69 70 71 72 73 74 82 83 84 85 86 27 19 84 32 9 85 7 13 74 12 41 42 43 44 45 46 47 48 53 54 55 56 57 58 59 67 14 22 9 - QFP 100 64 85 96 72 48 90 8 30 31 32 33 34 35 36 37 42 43 44 45 46 47 48 49 50 51 52 60 61 62 63 64 5 97 62 10 87 63 BGA 112 C8 E1 J1 B5 E11 F3 L3 L13 L12 K13 K12 J13 J12 J11 H12 H11 G12 G11 F12 F11 E12 E11 D13 D12 C13 C12 B9 C9 A8 B8 C8 N2 J2 A8 L5 E3 B8 BGA 144 C8 E1 J1 C4 F10 F11 G3 M3 A6 L12 K12 K11 J12 J11 J10 H12 H11 H10 G12 G11 G10 F13 F12 F11 D13 D12 D11 C12 C9 B9 A9 D8 C8 N2 J2 A9 K5 F4 D8 Page 28 of 170 MB9B560R Series Pin Function Base Timer 1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 Base Timer 7 CAN 0 CAN 1 Pin Name TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_0 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOA4_2 TIOB4_0 TIOB4_1 TIOB4_2 TIOA5_0 TIOA5_1 TIOA5_2 TIOB5_0 TIOB5_1 TIOB5_2 TIOA6_0 TIOA6_1 TIOA6_2 TIOB6_0 TIOB6_1 TIOB6_2 TIOA7_0 TIOA7_1 TIOA7_2 TIOB7_0 TIOB7_1 TIOB7_2 TX0_0 TX0_1 TX0_2 RX0_0 RX0_1 RX0_2 TX1_0 TX1_1 TX1_2 RX1_0 RX1_1 RX1_2 Function Description Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin Base timer ch.6 TIOB pin Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin CAN interface ch.0 TX output pin CAN interface ch.0 RX output pin CAN interface ch.1 TX output pin CAN interface ch.1 RX output pin Document Number: 002-04864 Rev. *D LQFP 120 33 25 5 47 15 6 34 26 116 48 16 115 35 27 97 49 17 98 36 28 51 50 18 52 84 29 93 83 19 92 53 94 82 54 95 81 112 86 109 111 87 108 51 18 114 52 19 113 84 12 63 85 11 62 LQFP 100 28 20 5 42 10 6 29 21 96 43 11 95 30 22 82 44 12 83 31 23 45 13 24 78 14 77 79 80 71 72 13 94 14 93 53 52 Pin No LQFP QFP 80 100 BGA 112 15 5 32 10 6 16 76 33 11 75 17 67 34 12 21 18 35 19 63 62 64 65 57 58 74 73 42 41 N3 J3 D1 L7 F1 D2 M3 K1 B3 L8 F2 B4 L3 K2 B9 M9 F3 C9 M4 L1 L9 G1 L2 B11 G2 A12 B10 A10 D13 D12 G1 B5 G2 C5 L12 L13 6 98 83 20 88 84 7 99 74 21 89 73 8 100 60 22 90 61 9 1 23 91 2 56 92 55 57 58 49 50 91 72 92 71 31 30 BGA 144 L2 J3 D2 L7 G1 D3 N3 J4 B3 K7 G2 B4 M3 K2 C9 M8 G3 B9 L4 K3 K8 L8 G4 L9 E11 L1 C10 E12 H1 B13 K9 A11 E13 M10 B10 F10 C5 D13 B6 D5 D12 C6 K8 G4 C4 L9 H1 B5 E11 F2 K12 E10 F1 L12 Page 29 of 170 MB9B560R Series Pin Function Pin Name SWCLK SWDIO Debugger External Bus SWO TCK TDI TDO TMS TRACECLK TRACED0 TRACED1 TRACED2 TRACED3 TRSTX MAD00_0 MAD01_0 MAD02_0 MAD03_0 MAD04_0 MAD05_0 MAD06_0 MAD07_0 MAD08_0 MAD09_0 MAD10_0 MAD11_0 MAD12_0 MAD13_0 MAD14_0 MAD15_0 MAD16_0 MAD17_0 MAD18_0 MAD19_0 MAD20_0 MAD21_0 MAD22_0 MAD23_0 MAD24_0 Function Description Serial wire debug interface clock input pin Serial wire debug interface data input / output pin Serial wire viewer output pin JTAG test clock input pin JTAG test data input pin JTAG debug data output pin JTAG test mode state input/output pin Trace CLK output pin of ETM Trace data output pin of ETM JTAG test reset input pin External bus interface address bus Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 105 90 71 68 A6 B7 103 88 69 66 B7 D7 102 105 104 102 103 101 97 98 99 100 106 27 28 29 47 48 49 50 62 63 64 65 66 67 68 69 74 75 76 77 78 79 80 86 88 89 87 90 89 87 88 86 82 83 84 85 91 22 23 24 42 43 44 45 52 53 54 55 56 57 58 59 64 65 66 67 68 69 70 71 73 74 68 71 70 68 69 72 17 18 19 32 33 34 35 41 42 43 44 45 46 47 48 53 54 55 56 - 65 68 67 65 66 64 60 61 62 63 69 100 1 2 20 21 22 23 30 31 32 33 34 35 36 37 42 43 44 45 46 47 48 49 51 52 C7 A6 C6 C7 B7 C8 B9 C9 A8 B8 B6 K2 L1 L2 L7 L8 M9 L9 L13 L12 K13 K12 J13 J12 J11 H12 H11 G12 G11 F12 F11 E12 E11 D13 C13 C12 B8 B7 C7 B8 D7 C8 C9 B9 A9 D8 D6 K2 K3 L1 L7 K7 M8 L8 L12 K12 K11 J12 J11 J10 H12 H11 H10 G12 G11 G10 F13 F12 F11 D13 D11 C12 Page 30 of 170 MB9B560R Series Pin Function External Bus Pin Name MCSX0_0 MCSX1_0 MCSX2_0 MCSX3_0 MCSX4_0 MCSX5_0 MCSX6_0 MCSX7_0 MCSX8_0 MADATA00_0 MADATA01_0 MADATA02_0 MADATA03_0 MADATA04_0 MADATA05_0 MADATA06_0 MADATA07_0 MADATA08_0 MADATA09_0 MADATA10_0 MADATA11_0 MADATA12_0 MADATA13_0 MADATA14_0 MADATA15_0 MDQM0_0 MDQM1_0 MALE_0 MRDY_0 MCLKOUT_0 MNALE_0 MNCLE_0 MNREX_0 MNWEX_0 MOEX_0 MWEX_0 Function Description External bus interface chip select output pin External bus interface data bus (Address / data multiplex bus) External bus interface byte mask signal output pin External bus interface Address Latch enable output signal for multiplex External bus interface external RDY input signal External bus interface external clock output pin External bus interface ALE signal to control NAND Flash output pin External bus interface CLE signal to control NAND Flash output pin External bus interface read enable signal to control NAND Flash External bus interface write enable signal to control NAND Flash External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 95 96 101 100 98 97 104 106 35 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 93 92 80 81 86 85 83 82 89 91 30 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 78 77 65 66 67 70 72 2 3 4 5 6 7 8 9 10 11 12 63 62 58 59 64 63 61 60 67 69 8 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 56 55 A10 A9 C8 B8 C9 B9 C6 B6 L3 C1 C2 C3 D1 D2 E1 E2 E3 F1 F2 F3 G1 G2 G3 H2 H3 B11 A12 B10 D9 C8 D8 B9 C9 C7 D6 M3 C1 C2 D1 D2 D3 E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 C10 B13 94 79 64 57 B10 A11 116 96 76 74 B3 B3 99 84 - 62 A8 A9 18 - - - - G4 19 - - - - H1 21 - - - - H3 20 - - - - H2 114 94 74 72 B5 C4 113 93 73 71 C5 B5 Page 31 of 170 MB9B560R Series Pin Function Pin Name MSDCLK_0 MSDCKE_0 External Bus MRASX_0 MCASX_0 MSDWEX_0 External Interrupt INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 INT01_2 INT02_0 INT02_1 INT02_2 INT03_0 INT03_1 INT03_2 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_1 INT06_2 INT07_1 INT07_2 INT08_1 INT08_2 INT09_1 INT09_2 INT10_1 INT10_2 INT11_1 INT11_2 INT12_1 INT12_2 INT13_1 INT13_2 INT14_1 INT14_2 INT15_1 INT15_2 Function Description SDRAM interface SDRAM clock output pin SDRAM interface SDRAM clock enable pin SDRAM interface SDRAM row address strobe pin SDRAM interface SDRAM column address strobe pin SDRAM interface SDRAM write enable pin External interrupt request 00 input pin External interrupt request 01 input pin External interrupt request 02 input pin External interrupt request 03 input pin External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin External interrupt request 15 input pin Document Number: 002-04864 Rev. *D LQFP 100 Pin No LQFP QFP 80 100 23 18 - 96 J1 J1 24 19 - 97 J2 J2 25 20 - 98 J3 J3 26 21 - 99 K1 J4 34 29 - 7 M3 N3 2 95 108 3 101 85 6 62 82 113 65 54 17 114 10 89 75 21 88 22 11 7 19 8 20 15 16 112 50 110 32 96 33 49 68 53 52 14 2 80 3 86 6 52 93 55 12 94 74 65 16 73 17 7 14 8 15 10 11 45 27 81 28 44 58 9 2 65 3 6 41 73 44 12 74 54 59 7 8 10 11 35 66 34 47 9 80 58 81 64 84 30 71 33 90 72 52 43 94 51 95 85 92 86 93 88 89 23 5 59 6 22 36 87 C1 A10 C2 C8 D2 L13 C5 K12 F3 B5 C12 G12 H2 C13 H3 E1 G2 E2 G3 F1 F2 L9 N2 A9 N3 M9 J11 E3 C1 B10 C6 C2 C8 E10 D3 L12 E13 B5 J12 M10 G3 C4 E4 C12 G12 H3 D11 H4 F1 E1 H1 E2 H2 G1 G2 C5 L8 A6 N2 D9 L2 M8 H12 K9 L9 F4 LQFP 120 BGA 112 BGA 144 Page 32 of 170 MB9B560R Series Pin Function Pin Name External Interrupt NMIX GPIO P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P1F P20 P21 P22 P23 P24 P25 P26 P27 Function Description Non-Maskable Interrupt input pin General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 Document Number: 002-04864 Rev. *D LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 116 96 76 74 B3 B3 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 62 63 64 65 66 67 68 69 74 75 76 77 78 79 80 81 89 88 87 86 85 84 83 82 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 52 53 54 55 56 57 58 59 64 65 66 67 68 69 70 74 73 72 71 - 72 71 70 69 68 67 66 65 64 63 62 41 42 43 44 45 46 47 48 53 54 55 56 59 58 57 - 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 30 31 32 33 34 35 36 37 42 43 44 45 46 47 48 52 51 50 49 - B6 A6 C6 B7 C7 C8 B8 A8 C9 B9 A9 A10 B10 B11 A12 L13 L12 K13 K12 J13 J12 J11 H12 H11 G12 G11 F12 F11 E12 E11 C12 C13 D12 D13 - D6 B7 C7 D7 B8 C8 D8 A9 B9 C9 D9 B10 A11 C10 B13 L12 K12 K11 J12 J11 J10 H12 H11 H10 G12 G11 G10 F13 F12 F11 F10 C12 D11 D12 D13 E10 E11 E12 E13 LQFP 120 Page 33 of 170 MB9B560R Series Pin Function GPIO Pin Name P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B Function Description General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 Document Number: 002-04864 Rev. *D LQFP 120 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 32 33 34 35 36 37 39 40 41 42 47 48 49 50 2 3 4 5 6 7 8 9 10 11 12 13 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31 32 34 35 36 37 42 43 44 45 2 3 4 5 6 7 8 - 9 10 11 12 13 14 15 16 17 18 19 21 22 24 25 26 27 32 33 34 35 2 3 4 5 6 7 8 - E3 F1 F2 F3 G1 G2 G3 H2 H3 J1 J2 J3 K1 K2 L1 L2 N2 N3 M3 L3 M4 L5 N5 N6 L6 M7 L7 L8 M9 L9 C1 C2 C3 D1 D2 E1 E2 - F4 G1 G2 G3 G4 H1 H2 H3 H4 J1 J2 J3 J4 K2 K3 L1 N2 L2 N3 M3 L4 K5 N5 M5 L6 K6 L7 K7 M8 L8 C1 C2 D1 D2 D3 E1 E2 E3 E4 F1 F2 F3 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 5 6 7 8 9 10 12 13 14 15 20 21 22 23 80 81 82 83 84 85 86 - Page 34 of 170 MB9B560R Series Pin Function GPIO Pin Name P60 P61 P62 P63 P64 P65 P66 P67 P68 P70 P71 P72 P73 P74 P80 P81 PE0 PE2 PE3 SIN0_0 SIN0_1 SOT0_0 (SDA0_0) Multifunction Serial 0 SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) SIN1_0 SIN1_1 SOT1_0 (SDA1_0) Multifunction Serial 1 SOT1_1 (SDA1_1) SCK1_0 (SCL1_0) SCK1_1 (SCL1_1) Function Description General-purpose I/O port 6 General-purpose I/O port 7 General-purpose I/O port 8 General-purpose I/O port E Multi-function serial interface ch.0 input pin Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SCL0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a CSIO (operation modes 4) and as SCL1 when it is used in an I2C (operation mode 4). Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 116 115 114 113 112 111 110 109 108 51 52 53 54 55 118 119 56 58 59 88 65 96 95 94 93 98 99 46 48 49 73 55 76 75 74 73 78 79 36 38 39 59 44 74 73 72 71 76 77 24 26 27 51 33 B3 B4 B5 C5 A3 A2 M10 N11 N12 C13 K12 B3 B4 C4 B5 C5 D5 A6 B6 C6 K8 L9 K9 M10 L10 A3 A2 N10 N11 N12 D11 J12 87 72 58 50 D12 D12 66 56 45 34 J13 J11 86 71 57 49 D13 D13 67 57 46 35 J12 J10 96 62 81 52 66 41 59 30 A9 L13 D9 L12 97 82 67 60 B9 C9 63 53 42 31 L12 K12 98 83 - 61 C9 B9 64 54 43 32 K13 K11 Page 35 of 170 MB9B560R Series Pin Function Multifunction Serial 2 SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) SIN3_0 SIN3_1 SOT3_0 (SDA3_0) Multifunction Serial 3 LQFP 100 Pin No LQFP QFP 80 100 53 85 68 58 47 36 J11 K9 E10 H12 Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). 54 - - - - M10 84 - - - - E11 69 59 48 37 H12 H11 Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a CSIO (operation modes 2) and as SCL2 when it is used in an I2C (operation mode 4). 55 - - - - L10 83 - - - - E12 74 64 53 42 H11 H10 110 15 10 10 88 F1 A6 G1 Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). 109 - - - - B6 16 11 11 89 F2 G2 Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a CSIO (operation modes 2) and as SCL3 when it is used in an I2C (operation mode 4). 108 - - - - C6 17 12 12 90 F3 G3 Pin Name SOT3_1 (SDA3_1) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) Function Description Multi-function serial interface ch.2 input pin Multi-function serial interface ch.3 input pin Document Number: 002-04864 Rev. *D LQFP 120 BGA 112 BGA 144 Page 36 of 170 MB9B560R Series Pin Function Multifunction Serial 4 Multifunction Serial 5 Pin Name SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) CTS4_0 CTS4_1 CTS4_2 RTS4_0 RTS4_1 RTS4_2 SIN5_0 SIN5_1 SIN5_2 SOT5_0 (SDA5_0) SOT5_1 (SDA5_1) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_1 (SCL5_1) SCK5_2 (SCL5_2) LQFP 100 Pin No LQFP QFP 80 100 BGA 112 6 75 10 6 65 - 6 54 - 84 43 - D2 G12 - D3 G12 E4 5 5 5 83 D1 D2 76 66 55 44 G11 G11 11 - - - - F1 4 4 4 82 C3 D1 77 67 56 45 F12 G10 12 - - - - F2 2 78 13 3 79 14 114 113 20 2 68 3 69 9 94 15 2 3 9 74 - 80 46 81 47 87 72 93 C1 F11 C2 E12 E3 B5 G3 C1 F13 F3 C2 F12 F4 C4 B5 H2 115 95 75 73 B4 B4 112 - - - - C5 21 16 - 94 H2 H3 116 96 76 74 B3 B3 111 - - - - D5 22 17 - 95 H3 H4 Function Description Multi-function serial interface ch.4 input pin Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a CSIO (operation modes 2) and as SCL4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 CTS input pin Multi-function serial interface ch.4 RTS output pin Multi-function serial interface ch.5 input pin Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO (operation modes 2) and as SCL5 when it is used in an I2C (operation mode 4). Document Number: 002-04864 Rev. *D LQFP 120 BGA 144 Page 37 of 170 MB9B560R Series Pin Function SIN6_0 SIN6_1 SOT6_0 (SDA6_0) Multifunction Serial 6 SOT6_1 (SDA6_1) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) LQFP 100 Pin No LQFP QFP 80 100 BGA 112 7 95 7 80 7 65 85 58 E1 A10 E1 B10 Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). 8 8 8 86 E2 E2 94 79 64 57 B10 A11 Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a CSIO (operation modes 2) and as SCL6 when it is used in an I2C (operation mode 4). 9 - - - - E3 93 78 63 56 B11 C10 Function Description Multi-function serial interface ch.6 input pin BGA 144 SCS6_1 Multi-function serial interface ch.6 serial chip select pin 92 77 62 55 A12 B13 SIN7_0 SIN7_1 Multi-function serial interface ch.7 input pin 101 50 86 45 35 64 23 C8 L9 C8 L8 Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). 100 85 - 63 B8 D8 49 44 34 22 M9 M8 Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a CSIO (operation modes 2) and as SCL7 when it is used in an I2C (operation mode 4). 99 84 - 62 A8 A9 48 43 33 21 L8 K7 47 42 32 20 L7 L7 SOT7_0 (SDA7_0) Multifunction Serial 7 LQFP 120 Pin Name SOT7_1 (SDA7_1) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCS7_1 Multi-function serial interface ch.7 serial chip select pin Document Number: 002-04864 Rev. *D Page 38 of 170 MB9B560R Series Pin Function Pin Name DTTI0X_0 DTTI0X_1 Multifunction Timer 0 FRCK0_0 FRCK0_1 FRCK0_2 IC00_0 IC00_1 IC00_2 IC01_0 IC01_1 IC01_2 IC02_0 IC02_1 IC02_2 IC03_0 IC03_1 IC03_2 RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) Function Description Input signal controlling wave form generator outputs RTO00 to RTO05 of Multi-function timer 0. 16-bit free-run timer ch.0 external clock input pin 16-bit input capture ch.0 input pin of Multi-function timer 0. ICxx describes channel number. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 23 18 13 96 J1 J1 79 69 - 47 E12 F12 18 80 62 22 75 63 21 76 64 20 77 65 19 78 66 13 70 52 17 65 53 16 66 54 15 67 55 14 68 56 41 54 42 55 43 56 44 45 91 48 30 95 43 31 94 44 32 93 45 33 92 46 34 G1 E11 L13 H3 G12 L12 H2 G11 K13 G3 F12 K12 G2 F11 J13 G4 F11 L12 H4 G12 K12 H3 G11 K11 H2 G10 J12 H1 F13 J11 24 19 14 97 J2 J2 86 71 57 49 D13 D13 25 20 15 98 J3 J3 85 - - - - E10 26 21 16 99 K1 J4 84 - - - - E11 27 22 17 100 K2 K2 83 - - - - E12 28 23 18 1 L1 K3 82 - - - - E13 29 24 19 2 L2 L1 81 - - - - F10 BGA 144 Page 39 of 170 MB9B560R Series Pin Function DTTI1X_0 DTTI1X_1 Multifunction Timer 1 LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 Input signal controlling wave form generator outputs RTO10 to RTO15 of Multi-function timer 1. 8 8 8 86 E2 E2 55 - - - - L10 16-bit free-run timer ch.1 external clock input pin 96 50 95 54 94 53 93 52 92 51 81 45 80 79 78 77 - 66 35 65 64 63 62 - 59 23 58 57 56 55 - A9 L9 A10 B10 B11 A12 - D9 L8 B10 M10 A11 K9 C10 L9 B13 K8 2 2 2 80 C1 C1 32 27 - 5 N2 N2 3 3 3 81 C2 C2 33 28 - 6 N3 L2 4 4 4 82 C3 D1 34 29 - 7 M3 N3 5 5 5 83 D1 D2 35 30 - 8 L3 M3 6 6 6 84 D2 D3 36 31 21 9 M4 L4 7 7 7 85 E1 E1 37 32 22 10 L5 K5 Pin Name FRCK1_0 FRCK1_1 IC10_0 IC10_1 IC11_0 IC11_1 IC12_0 IC12_1 IC13_0 IC13_1 RTO10_0 (PPG10_0) RTO10_1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) RTO14_1 (PPG14_1) RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) Function Description 16-bit input capture ch.1 input pin of Multi-function timer 1. ICxx describes channel number. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. Document Number: 002-04864 Rev. *D BGA 144 Page 40 of 170 MB9B560R Series Pin Function Quadrature Position/ Revolution Counter 0 Quadrature Position/ Revolution Counter 1 Real-time clock USB Low-Power Consumption Mode DAC VBAT Pin Name AIN0_0 AIN0_1 AIN0_2 BIN0_0 BIN0_1 BIN0_2 ZIN0_0 ZIN0_1 ZIN0_2 AIN1_0 AIN1_1 AIN1_2 BIN1_0 BIN1_1 BIN1_2 ZIN1_0 ZIN1_1 ZIN1_2 RTCCO_0 RTCCO_1 RTCCO_2 SUBOUT_0 SUBOUT_1 SUBOUT_2 UDM0 UDP0 UHCONX0 WKUP0 WKUP1 WKUP2 WKUP3 DA0 DA1 VREGCTL VWAKEUP S_CLK_0 S_CMD_0 SD I/F S_DATA1_0 S_DATA0_0 S_DATA3_0 S_DATA2_0 S_CD_0 S_WP_0 Function Description QPRC ch.0 AIN input pin QPRC ch.0 BIN input pin QPRC ch.0 ZIN input pin QPRC ch.1 AIN input pin QPRC ch.1 BIN input pin QPRC ch.1 ZIN input pin 0.5 seconds pulse output pin of Real-time clock Sub clock output pin USB device/host D – pin USB device/host D + pin USB external pull-up control pin Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 D/A converter ch.0 analog output pin D/A converter ch.1 analog output pin On-board regulator control pin The return signal input pin from a hibernation state SD memory card interface SD memory card clock output pin SD memory card interface SD memory card command output SD memory card interface SD memory card data bus SD memory card interface SD memory card detection pin SD memory card interface SD memory card write protection Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 BGA 112 BGA 144 24 51 2 25 52 3 26 53 4 10 89 48 11 88 49 12 87 50 115 64 23 115 64 23 118 119 115 116 14 50 69 36 37 41 19 2 20 3 21 4 74 43 73 44 72 45 95 54 18 95 54 18 98 99 95 96 9 45 59 31 32 36 14 2 15 3 16 4 33 34 35 75 43 13 75 43 13 78 79 75 76 9 35 48 21 22 26 97 80 98 81 99 82 52 21 51 22 50 23 73 32 96 73 32 96 76 77 73 74 87 23 37 9 10 14 J2 C1 J3 C2 K1 C3 C12 L8 C13 M9 D12 L9 B4 K13 J1 B4 K13 J1 A3 A2 B4 B3 E3 L9 H12 M4 L5 L6 J2 K8 C1 J3 L9 C2 J4 K9 D1 E4 C12 K7 F1 D11 M8 F2 D12 L8 B4 K11 J1 B4 K11 J1 A3 A2 B4 B3 F4 L8 H11 L4 K5 L6 42 37 27 15 M7 K6 92 77 62 55 A12 B13 93 78 63 56 B11 C10 94 95 96 97 79 80 81 82 64 65 66 67 57 58 59 60 B10 A10 A9 B9 A11 B10 D9 C9 113 93 73 71 C5 B5 114 94 74 72 B5 C4 Page 41 of 170 MB9B560R Series Pin Function Reset Pin Name INITX MD1 Mode MD0 Power GND Function Description External Reset Input pin. A reset is valid when INITX="L". Mode 1 pin. During serial programming to Flash memory, MD1="L" must be input. Mode 0 pin. During normal operation, MD0="L" must be input. During serial programming to Flash memory, MD0="H" must be input. VCC Power supply Pin USBVCC 3.3 V Power supply port for USB I/O VSS GND Pin Document Number: 002-04864 Rev. *D LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 38 33 23 11 M6 N4 56 46 36 24 M10 N10 57 47 37 25 M11 M11 1 31 46 61 91 117 107 30 45 60 90 120 - 1 26 41 51 76 97 92 25 40 50 75 100 - 1 31 61 77 20 30 40 60 80 - 79 4 19 29 54 75 70 3 18 28 53 78 - B1 M1 M8 M13 B13 A4 A5 N1 N10 N13 A13 A1 A7 B2 B12 C11 H1 N4 M5 N7 L11 A11 M12 M2 - B1 M1 M9 M13 A12 A4 A7 N1 N9 N13 A13 A1 A5 A8 A10 B2 B11 B12 C3 C11 C13 D4 D10 K1 K4 K10 L3 L5 L11 L13 M2 M4 M6 M7 M12 N6 BGA 112 BGA 144 Page 42 of 170 MB9B560R Series Pin Function Clock Pin Name X0 X1 X0A X1A CROUT_0 CROUT_1 AVCC ADC Power AVRL AVRH VBAT Power ADC GND C pin VBAT AVSS C Function Description Main clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) input pin Sub clock (oscillation) I/O pin Built-in high-speed CR-osc clock output port A/D converter and D/A converter analog power supply pin A/D converter analog reference voltage input pin A/D converter analog reference voltage input pin VBAT power supply pin. Backup power supply (battery etc.) and system power supply. A/D converter and D/A converter GND pin Power supply stabilization capacity pin LQFP 120 LQFP 100 Pin No LQFP QFP 80 100 58 59 39 40 87 113 48 49 34 35 72 93 38 39 24 25 58 73 26 27 12 13 50 71 N11 N12 N5 N6 D12 C5 N11 N12 N5 M5 D12 B5 70 60 49 38 H13 K13 72 62 51 40 F13 H13 73 63 52 41 E13 G13 43 38 28 16 N8 N7 71 61 50 39 G13 J13 44 39 29 17 N9 N8 BGA 112 BGA 144 Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 002-04864 Rev. *D Page 43 of 170 MB9B560R Series 5. I/O Circuit Type Type Circuit Remarks Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R It is possible to select the main oscillation / GPIO function Pull-up resistor control Digital input Standby mode control Clock input When the main oscillation is selected. • Oscillation feedback resistor : Approximately 1 MΩ • With Standby mode control Feedback A When the GPIO is selected. resistor Standby mode control Digital input Standby mode control Pull-up • • • • • CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA resistor R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control B • CMOS level hysteresis input • Pull-up resistor : Approximately 50 kΩ Pull-up resistor Digital input Document Number: 002-04864 Rev. *D Page 44 of 170 MB9B560R Series Type Circuit Remarks Digital input C Digital output N-ch P-ch P-ch Digital output E N-ch • Open drain output • CMOS level hysteresis input Digital output R • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA Pull-up resistor control Digital input Standby mode control P-ch P-ch N-ch Digital output Digital output F Pull-up resistor control R Digital input • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA Standby mode control Analog input Input control Document Number: 002-04864 Rev. *D Page 45 of 170 MB9B560R Series Type Circuit P-ch P-ch Remarks Digital output G N-ch Digital output R • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -12 mA, IOL = 12 mA Pull-up resistor control Digital input Standby mode control GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output UDP/Pxx It is possible to select the USB I/O / GPIO function. USB Full-speed/Low-speed control UDP input When the USB I/O is selected. • Full-speed, Low-speed control H Differential UDM/Pxx Differential input USB/GPIO select UDM input UDM output When the GPIO is selected. • • • • CMOS level output CMOS level hysteresis input With standby mode control IOH = -20.5 mA, IOL = 18.5 mA USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 002-04864 Rev. *D Page 46 of 170 MB9B560R Series Type Circuit P-ch P-ch Remarks Digital output I N-ch Digital output R • • • • • CMOS level output CMOS level hysteresis input 5 V tolerant With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA • Available to control of PZR registers. Pull-up resistor control Digital input Standby mode control J Mode input P-ch L P-ch N-ch R CMOS level hysteresis input Digital output Digital output • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -8 mA, IOL = 8 mA Pull-up resistor control Digital input Standby mode control Document Number: 002-04864 Rev. *D Page 47 of 170 MB9B560R Series Type Circuit P-ch P-ch N-ch Remarks Digital output Digital output M Pull-up resistor control Digital input R • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -8 mA, IOL = 8 mA Standby mode control Analog input Input control Pull-up resistor control P-ch P-ch N N-ch R N-ch Digital output Digital output Fast mode control Digital input Standby mode control Document Number: 002-04864 Rev. *D ・ CMOS level output ・ CMOS level hysteresis input ・ 5V tolerant ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA (GPIO) ・ IOL = 20mA (Fast mode Plus) ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the FM4 Family Peripheral Manual Main Part (002-04856). ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Page 48 of 170 MB9B560R Series Type Circuit Remarks Pull-up resistor control P-ch P-ch Digital output O N-ch Digital output R Digital input P-ch P-ch X0A N-ch P Pull-up resistor control Digital output Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ 5 V tolerant ・ Pull-up resistor control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the FM4 Family Peripheral Manual Main Part (002-04856). ・ For I/O setting, refer to VBAT Domain in the FM4 Family Peripheral Manual Main Part (002-04856). • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA • For I/O setting, refer to VBAT Domain in the Peripheral Manual R Digital input Standby mode control OSC Document Number: 002-04864 Rev. *D Page 49 of 170 MB9B560R Series Type Circuit Pull-up resistor control Digital output P-ch P-ch X1A Remarks It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. Digital output N-ch Q R Digital input Standby mode control OSC RX • Oscillation feedback resistor : Approximately 10 MΩ • With Standby mode control • • • • • • When the GPIO is selected. CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA • For I/O setting, refer to VBAT Domain in the Peripheral Manual Standby mode control Clock input P-ch P-ch N-ch Pull-up resistor control Digital output Digital output R R Digital input • • • • • • CMOS level output CMOS level hysteresis input Analog output With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -12 mA, IOL = 12 mA (4.5 V to 5.5 V) • IOH = -8 mA, IOL = 8 mA (2.7 V to 4.5 V) Standby mode control Analog output Document Number: 002-04864 Rev. *D Page 50 of 170 MB9B560R Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Document Number: 002-04864 Rev. *D Page 51 of 170 MB9B560R Series Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and have established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Document Number: 002-04864 Rev. *D Page 52 of 170 MB9B560R Series Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, yo1u must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies. 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-04864 Rev. *D Page 53 of 170 MB9B560R Series 7. Handling Devices Power Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this device. Power Supply Pins A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/μs at a momentary fluctuation such as switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub Crystal Oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. • Surface mount type Size: Load capacitance: • Lead type Load capacitance: More than 3.2 mm × 1.5 mm Approximately 6 pF to 7 pF Approximately 6 pF to 7 pF Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1 (PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Set as External clock input Can be used as general-purpose I/O ports. Document Number: 002-04864 Rev. *D X1(PE3), X1A (P47) Page 54 of 170 MB9B560R Series 2 Handling when Using Multi-function Serial Pin as I C Pin 2 If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled. 2 2 However, I C pins need to keep the electrical characteristic like other pins and not to connect to the external I C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on Power-on Turn power on/off in the following order or at the same time. The device operates normally after all power on. VBAT only Power-on is possible when VBAT and VCC turns Power-on and Hibernation control is setting and then VCC turns Power-off. About Hibernation control, see Chapter 7-2: VBAT Domain(A) in FM4 Family Peripheral Manual Main Part(002-04856). If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS. Turning on: Turning off: VBAT → VCC → USBVCC VCC → AVCC → AVRH AVRH → AVCC → VCC USBVCC → VCC → VBAT Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Features among the Products with Different Memory Sizes and between Flash Products and MASK Products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Document Number: 002-04864 Rev. *D Page 55 of 170 MB9B560R Series Pull-Up Function of 5 V Tolerant I/O Please do not input the signal more than VCC voltage at the time of pull-up function use of 5V tolerant I/O. Adjoining Wiring on Circuit Board If wiring of the crystal oscillation circuit X1A adjoins and also runs in parallel with the wiring of P48/VREGCTL, there is a possibility that the oscillation erroneously counts because X1A has noise with the change of P48/VREGCTL. Keep as much distance as possible between both wirings and insert the ground pattern between them in order to avoid this possibility. Device P46/ X0A P47/ X1A P48/ P49/ VREGCTL VWAKEUP Not allowed to run both wirings in parallel Ground Insert the ground pattern Handling when Using Debug Pins When debug pins (TDO/TMS/TDI/TCK/TRSTX or SWO/SWDIO/SWCLK) are set to GPIO or other peripheral functions, only set them as output, do not set them as input. Document Number: 002-04864 Rev. *D Page 56 of 170 MB9B560R Series 8. Block Diagram MB9BF566M/N/R, F567M/N/R, F568M/N/R TRSTX,TCK, TDI,TMS TDO TRACEDx, TRACECLK SWJ-DP ETM* TPIU* ROM Table SRAM0 32/48/64 Kbytes SRAM1 16/24/32 Kbytes Cortex-M4 Core I @160 MHz(Max) D MPU NVIC Multi-layer AHB (Max 160 MHz) FPU Sys AHB-APB Bridge: APB0(Max 80 MHz) Dual-Timer Watchdog Timer (Software) Clock Reset Generator INITX Watchdog Timer (Hardware) CSV SRAM2 16/24/32 Kbytes MainFlash I/F MainFlash 1 Mbytes/ 768 Kbytes/ 512 Kbytes Trace Buffer (16 Kbytes) Security WorkFlash 32 Kbytes WorkFlash I/F USB2.0 (Host/ Func) PHY USBVCC UDP0,UDM0 UHCONX0 DMAC 8ch. CLK DSTC SD-CARD I/F CAN X0A X1A Main Osc PLL VBAT Domain Sub Osc AHB-AHB Bridge Source Clock X0 X1 CR 100 kHz CR 4 MHz CAN GPIO PIN-Function-Ctrl CROUT S_CLK,S_CMD S_DATAx S_CD,S_WP TX0, RX0 TX1, RX1 P0x, P1x, . . . PEx MADx AVCC, AVSS, AVRH ANxx ADTGx External Bus I/F Unit 1 CAN Prescaler QPRC 2ch. A/D Activation Compare 6ch. IC0x FRCK0 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI0X RTO0x Waveform Generator 3ch. 16-bit PPG 3ch. Multi-function Timer × 2 AHB-APB Bridge : APB2 (Max 80 MHz) AINx BINx ZINx Base Timer 16-bit 16ch./ 32-bit 8ch. AHB-APB Bridge : APB1 (Max 160 MHz) TIOBx MCSXx,MDQMx, MOEX,MWEX, MALE,MRDY, MNALE,MNCLE, MNWEX,MNREX, MCLKOUT,MSDWEX, MSDCLK,MSDCKE, MRASX,MCASX Unit 2 USB Clock Ctrl TIOAx MADATAx 12-bit A/D Converter Unit 0 PLL Power-On Reset LVD Ctrl LVD IRQ-Monitor Regulator C CRC Accelerator Watch Counter Deep Standby Ctrl WKUPx Peripheral Clock Gating Low-speed CR Prescaler VBAT Domain Real-Time Clock Port Ctrl. VWAKEUP VREGCTL RTCCO, SUBOUT External Interrupt Controller 16pin + NMI INTx NMIX MODE-Ctrl MD0, MD1 Multi-function Serial I/F 8ch. HW flow control(ch.4) SCKx SINx SOTx CTS4 RTS4 12-bit D/A Converter 2units DAx *: For the MB9BF566M, MB9BF567M and MB9BF568M, ETM is not available. Document Number: 002-04864 Rev. *D Page 57 of 170 MB9B560R Series 9. Memory Size See Memory size in 1. Product Lineup to confirm the memory size. 10. Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0x4007_0000 0x4006_F000 0x4006_E000 0x4006_4000 0xFFFF_FFFF 0x4006_3000 Reserved 0xE010_0000 0xE000_0000 0x4006_2000 0x4006_1000 Cortex-M4 Private Peripherals 0x4006_0000 0x4005_0000 0x4004_0000 0x4003_F000 External Device Area 0x4003_C800 0x4003_C100 GPIO SD-Card I/F Reserved CAN ch.1 CAN ch.0 DSTC DMAC Reserved USB ch.0 EXT-bus I/F Reserved Peripheral Clock Gating 0x4003_C000 Low Speed CR Prescaler 0x6000_0000 0x4003_7000 RTC/Port Ctrl Watch Counter CRC MFS CAN prescaler 0x4003_6000 USB Clock ctrl 0x4003_5000 0x4003_4000 LVD/DS mode 0x4003_B000 0x4003_A000 Reserved 0x4400_0000 0x4200_0000 0x4003_8000 32 Mbytes Bit band alias Peripherals 0x4000_0000 Reserved 0x2400_0000 0x2200_0000 0x200C_0000 0x2004_8000 0x2004_0000 0x2003_8000 See "lMemory Map (2)" for the memory size details. 0x2000_0000 0x1FFF_0000 0x0050_0000 0x0040_0000 Reserved 0x4003_1000 Int-Req.Read EXTI Reserved CR Trim 0x4002_E000 Reserved 0x4002_8000 0x4002_F000 0x4002_7000 Reserved SRAM2 SRAM1 Reserved SRAM0 Reserved Security/CR Trim MainFlash 0x0000_0000 D/AC 0x4003_2000 32 Mbytes Bit band alias WorkFlash I/F WorkFlash 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_2000 0x4002_1000 0x4002_0000 0x4001_6000 0x4001_5000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 Document Number: 002-04864 Rev. *D Reserved 0x4003_3000 0x4003_0000 0x2010_0000 0x200E_0000 0x4003_9000 Reserved A/DC QPRC Base Timer PPG Reserved MFT Unit1 MFT Unit0 Reserved Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved MainFlash I/F Page 58 of 170 MB9B560R Series Memory Map (2) MB9BF568M/N/R 0x2008_0000 MB9BF567M/N/R 0x2008_0000 Reserved 0x200C_8000 0x200C_0000 0x2008_0000 Reserved 0x200C_8000 WorkFlash 32 Kbytes MB9BF566M/N/R 0x200C_0000 Reserved Reserved 0x200C_8000 WorkFlash 32 Kbytes 0x200C_0000 Reserved 0x2004_8000 WorkFlash 32 Kbytes Reserved 0x2004_6000 SRAM2 32 Kbytes 0x2004_0000 0x2004_0000 SRAM1 32 Kbytes 0x2003_A000 SRAM2 24 Kbytes SRAM1 24 Kbytes 0x2004_4000 0x2004_0000 0x2003_C000 SRAM2 16 Kbytes SRAM1 16 Kbytes 0x2003_8000 0x2000_0000 0x2000_0000 SRAM0 64 Kbytes Reserved Reserved Reserved 0x1FFF_4000 0x2000_0000 SRAM0 48 Kbytes 0x1FFF_8000 SRAM0 32 Kbytes 0x1FFF_0000 0x0050_0000 0x0040_2000 0x0040_0000 0x0050_0000 CR trimming Security Reserved Reserved Reserved 0x0040_2000 0x0040_0000 0x0050_0000 CR trimming Security 0x0040_2000 0x0040_0000 CR trimming Security Reserved Reserved 0x0010_0000 Reserved 0x000C_0000 MainFlash 1 Mbytes 0x0000_0000 Document Number: 002-04864 Rev. *D 0x0008_0000 MainFlash 768 Kbytes 0x0000_0000 MainFlash 512 Kbytes 0x0000_0000 Page 59 of 170 MB9B560R Series Peripheral Address Map Start address 0x4000_0000 0x4000_1000 0x4001_0000 0x4001_1000 0x4001_2000 0x4001_3000 0x4001_5000 0x4001_6000 0x4002_0000 0x4002_1000 0x4002_2000 0x4002_4000 0x4002_5000 0x4002_6000 0x4002_7000 0x4002_8000 0x4002_E000 0x4002_F000 0x4003_0000 0x4003_1000 0x4003_2000 0x4003_3000 0x4003_4000 0x4003_5000 0x4003_5800 0x4003_6000 0x4003_7000 0x4003_8000 0x4003_9000 0x4003_A000 0x4003_B000 0x4003_C000 0x4003_C100 0x4003_C800 0x4003_F000 0x4004_0000 0x4005_0000 0x4006_0000 0x4006_1000 0x4006_2000 0x4006_3000 0x4006_4000 0x4006_E000 0x4006_F000 0x4006_7000 0x200E_0000 End address 0x4000_0FFF 0x4000_FFFF 0x4001_0FFF 0x4001_1FFF 0x4001_2FFF 0x4001_4FFF 0x4001_5FFF 0x4001_FFFF 0x4002_0FFF 0x4002_1FFF 0x4003_FFFF 0x4002_4FFF 0x4002_5FFF 0x4002_6FFF 0x4002_7FFF 0x4002_DFFF 0x4002_EFFF 0x4002_FFFF 0x4003_0FFF 0x4003_1FFF 0x4003_4FFF 0x4003_3FFF 0x4003_4FFF 0x4003_57FF 0x4003_5FFF 0x4003_6FFF 0x4003_7FFF 0x4003_8FFF 0x4003_9FFF 0x4003_AFFF 0x4003_BFFF 0x4003_C0FF 0x4003_C7FF 0x4003_EFFF 0x4003_FFFF 0x4004_FFFF 0x4005_FFFF 0x4006_0FFF 0x4006_1FFF 0x4006_2FFF 0x4006_3FFF 0x4006_DFFF 0x4006_EFFF 0x4006_FFFF 0x41FF_FFFF 0x200E_FFFF Document Number: 002-04864 Rev. *D Bus AHB APB0 APB1 APB2 AHB Peripherals MainFlash I/F register Reserved Clock/Reset Control Hardware Watchdog timer Software Watchdog timer Reserved Dual-Timer Reserved Multi-function timer unit0 Multi-function timer unit1 Reserved PPG Base Timer Quadrature Position/Revolution Counter A/D Converter Reserved Internal CR trimming Reserved External Interrupt Controller Interrupt Request Batch-Read Function Reserved D/A Converter Reserved Low Voltage Detector Deep standby mode Controller USB clock generator CAN prescaler Multi-function serial Interface CRC Watch Counter RTC/Port Ctrl Low-speed CR Prescaler Peripheral Clock Gating Reserved External Memory interface USB ch.0 Reserved DMAC register DSTC register CAN ch.0 CAN ch.1 Reserved SD-Card I/F GPIO Reserved WorkFlash I/F register Page 60 of 170 MB9B560R Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings.  INITX=0 This is the period when the INITX pin is the L level.  INITX=1 This is the period when the INITX pin is the H level.  SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.  SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.  Input enabled Indicates that the input function can be used.  Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L.  Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  Setting disabled Indicates that the setting is disabled.  Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.  Analog input is enabled Indicates that the analog input is enabled.  Trace output Indicates that the trace function can be used.  GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port.  Setting prohibition Prohibition of a setting by specification limitation. Document Number: 002-04864 Rev. *D Page 61 of 170 MB9B560R Series Pin status Type List of Pin Status A B Function Group Power-on Reset or Low-voltage Detection State Power Supply Unstable ‐ ‐ INITX Input State Device Internal Reset State Power Supply Stable INITX=0 ‐ INITX=1 ‐ Run Mode or Sleep Mode State Power Supply Stable INITX=1 ‐ Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Input enabled Input enabled Input enabled Input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Setting disabled Setting disabled Setting disabled Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state Maintain previous state GPIO selected Setting disabled Setting disabled Setting disabled External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Hi-Z / Internal input fixed at "0"/ or Input enable Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Main crystal oscillator output pin Power Supply Stable INITX=1 - Maintain previous state Maintain previous state Maintain previous state INITX=1 SPL=0 SPL=1 Return from Deep Standby Mode State Maintain previous state GPIO selected Maintain previous state Maintain previous state / When oscillation stops*1, Hi-Z / Internal input fixed at 0 C INITX input pin Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Document Number: 002-04864 Rev. *D Page 62 of 170 Pin status Type MB9B560R Series E F Function Group Power-on Reset or Low-voltage Detection State INITX Input State Device Internal Reset State Power Supply Unstable ‐ ‐ INITX=0 ‐ INITX=1 ‐ Mode input pin Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled NMIX selected Setting disabled Setting disabled Setting disabled Resource other than above selected Hi-Z GPIO selected JTAG selected Hi-Z Power Supply Stable Hi-Z / Input enabled Hi-Z / Input enabled Pull-up / Input enabled Pull-up / Input enabled G H GPIO selected Setting disabled Setting disabled Setting disabled JTAG selected Hi-Z Pull-up / Input enabled Pull-up / Input enabled Resource other than above selected GPIO selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Resource selected I GPIO selected Document Number: 002-04864 Rev. *D Run Mode or SLEEP Mode State TIMER Mode, RTC Mode, or STOP Mode State Deep Standby RTC Mode or Deep Standby STOP Mode State Power Supply Stable Power Supply Stable Power Supply Stable INITX=1 ‐ SPL=0 Input enabled Maintain previous state Input enabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state INITX=1 SPL=1 Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Input enabled Hi-Z / Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 INITX=1 SPL=0 SPL=1 Input enabled GPIO selected WKUP input enabled Input enabled Hi-Z / Input enabled Hi-Z / WKUP input enabled Return from Deep Standby Mode State Power Supply Stable INITX=1 - Input enabled GPIO selected GPIO selected Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 GPIO selected Internal input fixed at 0 Page 63 of 170 Pin status Type MB9B560R Series Function Group Analog output selected J K Resource other than above selected GPIO selected External interrupt enabled selected Resource other than above selected GPIO selected Analog input selected Power-on Reset or Low-voltage Detection State Power Supply Unstable ‐ ‐ INITX=0 ‐ INITX=1 ‐ Setting disabled Setting disabled Setting disabled Power Supply Stable Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled Run Mode or Sleep Mode State Power Supply Stable INITX=1 ‐ Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable SPL=0 INITX=1 SPL=1 *2 Maintain previous state Maintain previous state *3 Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at 0/ Analog input enabled Hi-Z / Internal input fixed at 0/ Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 L Resource other than above selected GPIO selected INITX Input State Device Internal Reset State Document Number: 002-04864 Rev. *D INITX=1 SPL=0 SPL=1 Return from Deep Standby Mode State Power Supply Stable INITX=1 - GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Page 64 of 170 Pin status Type MB9B560R Series Function Group Analog input selected M External interrupt enabled selected Resource other than above selected GPIO selected Analog input selected N Trace selected Resource other than above selected GPIO selected Power-on Reset or Low-voltage Detection State Power Supply Unstable ‐ ‐ Hi-Z INITX Input State Device Internal Reset State Run Mode or Sleep Mode State INITX=0 ‐ INITX=1 ‐ Power Supply Stable INITX=1 ‐ Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Power Supply Stable Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Hi-Z Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled Trace output Setting disabled Setting disabled Document Number: 002-04864 Rev. *D Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Return from Deep Standby Mode State Power Supply Stable INITX=1 - Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Page 65 of 170 Pin status Type MB9B560R Series Function Group Analog input selected O Power-on Reset or Low-voltage Detection State Power Supply Unstable ‐ ‐ Hi-Z INITX Input State Device Internal Reset State Run Mode or Sleep Mode State INITX=0 ‐ INITX=1 ‐ Power Supply Stable INITX=1 ‐ Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Power Supply Stable Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable SPL=0 Hi-Z / Internal input fixed at 0 / Analog input enabled INITX=1 SPL=1 Trace selected Trace output External interrupt enabled selected Maintain previous state Resource other than above selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Analog input selected P Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z Hi-Z / Internal input fixed at 0/ Analog input enabled Hi-Z / Internal input fixed at 0/ Analog input enabled WKUP enabled Resource other than above selected Setting disabled Setting disabled GPIO selected Document Number: 002-04864 Rev. *D Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 INITX=1 SPL=0 SPL=1 Return from Deep Standby Mode State Power Supply Stable INITX=1 - Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Maintain previous state WKUP input enabled Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / WKUP input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Page 66 of 170 Pin status Type MB9B560R Series Function Group Power-on Reset or Low-voltage Detection State INITX Input State Device Internal Reset State Run Mode or Sleep Mode State Power Supply Unstable ‐ INITX=0 INITX=1 Power Supply Stable INITX=1 ‐ ‐ ‐ ‐ Power Supply Stable Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 WKUP enabled External interrupt enabled Q selected Resource other than above selected GPIO selected GPIO selected Setting disabled Setting disabled Maintain previous state Setting disabled Maintain previous state Hi-Z Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled SPL=1 WKUP input enabled Hi-Z / WKUP input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 - GPIO selected Hi-Z / Internal input fixed at 0 Hi-Z / Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Setting disabled Hi-Z at transmission/ Input enabled / Internal input fixed at 0 at receptio n Hi-Z at transmission/ Input enabled/ Internal input fixed at 0 at reception Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z / Input enabled Maintain previous state Setting disabled Maintain previous state INITX=1 SPL=0 Hi-Z / Input enabled R USB I/O pin SPL=1 Return from Deep Standby Mode State Power Supply Stable INITX=1 *1: Oscillation is stopped at Sub timer mode, sub CR timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. *2: Maintain previous state at timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode. *3: Maintain previous state at timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode. Document Number: 002-04864 Rev. *D Page 67 of 170 MB9B560R Series VBAT Pin Status Type List of VBAT Domain Pin Status S T Power-on Reset*1 INITX Input State Function Group Power Supply Unstable ‐ ‐ Device Internal Reset State Run Mode or Sleep Mode State INITX=0 ‐ INITX=1 ‐ Power Supply Stable INITX=1 ‐ Power Supply Stable Timer Mode, RTC Mode, or Stop Mode State Deep Standby RTC Mode or Deep Standby Stop Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Return from Deep Standby Mode State VBAT RTC Mode State Return from VBAT RTC Mode State Power Supply Stable INITX=1 - Power Supply Stable - Power Supply Stable - GPIO selected Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Setting prohibiti on - Sub crystal oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state Maintain previous state GPIO selected Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Setting prohibiti on - External sub clock input selected Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state/ When oscillation stops, Hi-Z*2 Maintain previous state/ When oscillation stops, Hi-Z*2 Maintain previous state/ When oscillation stops, Hi-Z*2 Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Sub crystal oscillator output pin Hi-Z / Internal input fixed at 0/ or Input enable Maintain previous state Maintain previous state Maintain previous state Maintain previous state/ When oscillation stops, Hi-Z*2 Hi-Z Maintain previous state Maintain previous state Maintain previous state Maintain previous state Resource selected U GPIO selected *1: When VBAT and VCC power on. *2: When the SOSCNTL bit in the WTOSCCNT register is 0, the sub crystal oscillator output pin is maintained in the previous state. When the SOSCNTL bit in the WTOSCCNT register is 1, oscillation is stopped at Stop mode and Deep Standby Stop mode Document Number: 002-04864 Rev. *D Page 68 of 170 MB9B560R Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter 1, Rating Symbol 2 Power supply voltage * * 1, Power supply voltage (for USB) * * 3 1, 4 Power supply voltage (VBAT) * * 1, 5 Analog power supply voltage * * 1, 5 Analog reference voltage * * Min VCC VSS - 0.5 VSS + 6.5 V USBVCC VSS - 0.5 VSS + 6.5 V VBAT VSS - 0.5 VSS + 6.5 V AVCC VSS - 0.5 VSS + 6.5 V AVRH VSS - 0.5 VSS + 6.5 V VSS - 0.5 1 Input voltage * VI VSS - 0.5 VSS - 0.5 1 Analog pin input voltage * 1 Output voltage * "L" level maximum output current * 6 VIA VSS - 0.5 VO VSS - 0.5 IOL - "L" level average output current * IOLAV - "L" level total maximum output current 8 "L" level total maximum output current * ∑IOL ∑IOLAV - IOH - "H" level average output current * IOHAV - "H" level total maximum output current 8 "H" level total average output current * Storage temperature ∑IOH ∑IOHAV TSTG - 55 7 "H" level maximum output current * 6 7 Unit Max VCC + 0.5 (≤ 6.5V) USBVCC + 0.5 (≤ 6.5V) VSS + 6.5 AVCC + 0.5 (≤ 6.5V) VCC + 0.5 (≤ 6.5V) 10 20 20 22.4 4 8 12 20 100 50 - 10 20 - 20 -4 8 - 12 - 100 - 50 + 150 Remarks V Except for USB pin V USB pin V 5 V tolerant V V mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA °C 4 mA type 8 mA type 12 mA type I2C Fm+ 4 mA type 8 mA type 12 mA type I2C Fm+ 4 mA type 8 mA type 12 mA type 4 mA type 8 mA type 12 mA type *1: These parameters are based on the condition that VSS = AVSS = 0.0 V. *2: VCC must not drop below VSS - 0.5 V. *3: USBVCC must not drop below VSS - 0.5 V. *4: VBAT must not drop below VSS - 0.5 V. *5: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on. *6: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. *7: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100ms period. *8: The total average output current is defined as the average current value flowing through all of corresponding pins for a period of 100 ms. WARNING: − Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. Document Number: 002-04864 Rev. *D Page 69 of 170 MB9B560R Series 12.2 Recommended Operating Conditions Parameter Power supply voltage Power supply voltage (for USB) Power supply voltage (VBAT) Analog power supply voltage Analog reference voltage Junction temperature Operating temperature Ambient temperature Symbol VCC USBVCC VBAT AVCC AVRH Tj Ta Value Conditions - Min 5 Max 2.7* 5.5 3.0 3.6 (≤ VCC) 2.7 5.5 (≤ VCC) 2.7 2.7 *4 - 40 - 40 5.5 5.5 AVCC + 125 *3 - - Unit Remarks V *1 V *2 V V V °C °C AVCC=VCC *1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0). *2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80). *3: The maximum temperature of the ambient temperature (Ta) can guarantee a range that does not exceed the junction temperature (Tj). The calculation formula of the ambient temperature (Ta) is shown below. Ta(Max) = Tj(Max) - Pd(Max) × θja Pd: Power dissipation (W) θja: Package thermal resistance (°C/W) Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH)) IOL: L level output current IOH: H level output current VOL: L level output voltage VOH: H level output voltage *4: The minimum value of Analog reference voltage depends on the value of compare clock cycle (Tcck). See "12.5. 12-bit A/D Converter" for the details. *5: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only. Document Number: 002-04864 Rev. *D Page 70 of 170 MB9B560R Series Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices. Table for Package Thermal Resistance and Maximum Permissible Power Package LQH080 (0.5 mm pitch) LQJ080 (0.65 mm pitch) LQI100 (0.5 mm pitch) PQH100 (0.65 mm pitch) LQM120 (0.5 mm pitch) LDC112 (0.5 mm pitch) LDC144 (0.5 mm pitch) Printed Circuit Board Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Maximum Permissible Power (mW) Ta=+85 °C Ta=+105 °C Thermal Resistance θja (°C/W) 60 39 58 38 57 38 48 34 62 43 60 40 55 40 667 1026 690 1053 702 1053 833 1177 645 930 667 1000 727 1000 333 513 335 526 351 526 417 588 323 465 333 500 364 500 WARNING: − The recommended operating conditions are required to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions. Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand. Document Number: 002-04864 Rev. *D Page 71 of 170 MB9B560R Series Calculation Method of Power Dissipation (Pd) The power dissipation is shown in the following formula. Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH)) IOL: "L" level output current IOH: "H" level output current VOL: "L" level output voltage VOH: "H" level output voltage ICC is a current consumed in device. It can be analyzed as follows. ICC = ICC(INT) + ΣICC(IO) ICC(INT): Current consumed in internal logic and memory, etc. through regulator ΣICC(IO): Sum of current (I/O switching current) consumed in output pin For ICC (INT), it can be anticipated by "(1) Current Rating" in "3. DC Characteristics" (This rating value does not include ICC (IO) for a value at pin fixed). For Icc (IO), it depends on system used by customers. The calculation formula is shown below. ICC(IO) = (CINT + CEXT) × VCC × fsw CINT: Pin internal load capacitance CEXT: External load capacitance of output pin fSW: Pin switching frequency Parameter Pin internal load capacitance Symbol CINT Conditions Capacitance Value 4 mA type 1.93 pF 8 mA type 3.45 pF 12 mA type 3.42 pF Calculate ICC (Max) as follows when the power dissipation can be evaluated. 1. Measure current value ICC (Typ) at normal temperature (+25°C). 2. Add maximum leak current value ICC (leak_max) at operating on a value in (1). ICC(Max) = ICC(Typ) + ICC(leak_max) Parameter Maximum leak current at operating Document Number: 002-04864 Rev. *D Symbol ICC(leak_max) Conditions Tj = +125 °C Tj = +105 °C Tj = +85 °C Current Value 45.5 mA 26.8 mA 16.2 mA Page 72 of 170 MB9B560R Series Current Explanation Diagram Pd = VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH)) ICC = ICC(INT)+ΣICC(IO) VCC A ICC Chip ICC(INT) ΣICC(IO) A Regulator VOL V A ・・・ V IOL Flash VOH ・・・ Logic IOH RAM ICC(IO) CEXT ・・・ Document Number: 002-04864 Rev. *D Page 73 of 170 MB9B560R Series 12.3 DC Characteristics 12.3.1 Current Rating Table 12-1. Typical and maximum current consumption in Normal operation(PLL), code running from Flash memory (Flash accelerator mode and trace buffer function enabled) Parameter Power supply current Symbol ICC Pin Name VCC Frequency*4 Conditions Normal operation (PLL) *5, *6 1 160 MHz Typ* 54 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4 MHz 160 MHz 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4 MHz 49 41 35 28 22 16 8.9 5.1 3.8 34 31 26 22 18 14 10 6.2 3.8 3.1 Value 2 Max* 103 98 90 84 77 71 64 58 54 53 83 80 75 71 67 63 59 55 53 52 Unit Remarks mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF Table 12-2. Typical and maximum current consumption in Normal operation(PLL), code with data accessing running from Flash memory (Flash accelerator mode and trace buffer function disabled) Parameter Power supply current Symbol ICC Pin Name VCC Conditions Normal operation (PLL) Document Number: 002-04864 Rev. *D *8 Frequency*7 Value 1 Typ* 2 Max* 160 MHz 74 126 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4 MHz 160 MHz 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4MHz 68 59 52 44 36 27 17 8.3 5.4 51 47 42 37 33 28 21 13 6.9 4.6 120 112 104 97 89 79 67 58 55 103 100 94 90 85 80 73 64 56 54 Unit Remarks mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF Page 74 of 170 MB9B560R Series *1: Ta=+25 °C, VCC=3.3 V *2: Tj=+125 °C, VCC=5.5 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1) *6: Data access is nothing to MainFlash memory *7: Frequency is a value of HCLK. PCLK0=PCLK2=HCLK/2, PCLK1=HCLK *8: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0) Table 12-3. Typical and maximum current consumption in Normal operation(PLL), code with data accessing running from Flash memory (flash 0 wait-cycle mode and read access 0 wait) Parameter Power supply current Symbol ICC Pin Name VCC Conditions Normal operation (PLL) *5 Frequency*4 (MHz) 72 MHz Typ* 46 Max* 98 60 MHz 40 92 48 MHz 33 85 36 MHz 27 78 24 MHz 19 70 12 MHz 8 MHz 4 MHz 72 MHz 60 MHz 48 MHz 36 MHz 24 MHz 11 8.5 5.5 33 29 25 20 15 61 58 55 85 81 76 71 65 12 MHz 9.2 59 8 MHz 4 MHz 6.9 4.6 56 54 Value 1 2 Unit Remarks mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF *1: Ta=+25 °C, VCC=3.3 V *2: Tj=+125 °C, VCC=5.5 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK *5: When 0 wait-cycle mode (FRWTR.RWT = 00, FSYNDN.SD = 00) Document Number: 002-04864 Rev. *D Page 75 of 170 MB9B560R Series Table 12-4. Typical and maximum current consumption in Normal operation(other than PLL), code with data accessing running from Flash memory (flash 0 wait-cycle mode and read access 0 wait Parameter Symbol Pin Name Frequency*4 Conditions Value 2 Max* Unit 1 Typ* Remarks 3 Normal operation (built-in high-speed CR) Power supply current ICC VCC Normal operation (sub oscillation) Normal operation (built-in low-speed CR) *5 *5 *5 3.3 51 mA 2.8 51 mA 4 MHz * When all peripheral clocks are ON *3 When all peripheral clocks are OFF 0.64 48 mA *3 When all peripheral clocks are ON 0.56 48 mA *3 When all peripheral clocks are OFF 0.64 48 mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF 32 kHz 100 kHz 0.58 48 *1: Ta=+25 °C, VCC=3.3 V *2: Tj=+125 °C, VCC=5.5 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When 0 wait-cycle mode (FRWTR.RWT = 00, FSYNDN.SD = 000) Table 12-5. Typical and maximum current consumption in Sleep operation(PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Power supply current Symbol ICCS Pin Name VCC Conditions SLEEP operation (PLL) Document Number: 002-04864 Rev. *D Frequency*4 Value 1 2 160 MHz Typ* 35 Max* 84 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4 MHz 160 MHz 144 MHz 120 MHz 100 MHz 80 MHz 60 MHz 40 MHz 20 MHz 8 MHz 4 MHz 32 27 23 19 15 11 6.5 4.1 3.3 16 14 12 11 9.0 7.4 5.6 3.9 2.9 2.6 81 76 72 68 64 60 55 53 52 65 63 61 60 58 56 54 53 52 51 Unit Remarks mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF Page 76 of 170 MB9B560R Series Table 12-6. Typical and maximum current consumption in Sleep operation(PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK Parameter Power supply current Pin Name Symbol ICCS VCC Frequency*5 Conditions SLEEP operation (PLL) Value 1 2 72 MHz Typ* 22 Max* 71 60 MHz 19 68 48 MHz 16 64 36 MHz 12 61 24 MHz 9.0 58 12 MHz 8 MHz 4 MHz 72 MHz 60 MHz 48 MHz 36 MHz 24 MHz 5.8 4.6 3.6 9.5 8.3 7.1 5.8 4.6 55 54 52 58 57 56 55 53 12 MHz 3.5 52 8 MHz 4 MHz 3.0 2.7 52 51 Unit Remarks mA *3 When all peripheral clocks are ON mA *3 When all peripheral clocks are OFF *1: Ta=+25 °C, VCC=3.3 V *2: Tj=+125 °C, VCC=5.5 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK Table 12-7. Typical and maximum current consumption in Sleep operation(other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Conditions SLEEP operation (built-in high-speed CR) Power supply current ICCS VCC SLEEP operation (sub oscillation) SLEEP operation (built-in low-speed CR) Frequency*4 Value 1 Typ* 1.5 2 Max* 49 Unit mA 4 MHz 1.0 49 mA 0.59 48 mA 0.51 48 mA 32 kHz Remarks *3 When all peripheral clocks are ON *3 When all peripheral clocks are OFF *3 When all peripheral clocks are ON *3 When all peripheral clocks are OFF 0.61 48 mA *3 When all peripheral clocks are ON 0.53 48 mA *3 When all peripheral clocks are OFF 100 kHz *1: Ta=+25 °C, VCC=3.3 V *2: Tj=+125 °C, VCC=5.5 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 Document Number: 002-04864 Rev. *D Page 77 of 170 MB9B560R Series Table 12-8. Typical and maximum current consumption in STOP mode, TIMER mode and RTC mode Parameter Symbol Pin Name ICCH Conditions STOP mode TIMER mode (built-in high-speed CR) Power supply current ICCT VCC TIMER mode (sub oscillation) TIMER mode (built-in low-speed CR) ICCR RTC mode (sub oscillation) Frequency - 4 MHz 32 kHz 100 kHz 32 kHz Value 2 Max* 1 Typ* Unit Remarks *3, *4 Ta=+25°C 0.33 1.8 mA - 15 mA - 22 mA 0.70 2.2 mA - 16 mA - 22 mA 0.33 1.8 mA *3, *4 Ta=+25°C - 15 mA *3, *4 Ta=+85°C - 22 mA 0.34 1.8 mA - 15 mA - 22 mA 0.33 1.8 mA - 15 mA - 22 mA *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *1: VCC=3.3 V *2: VCC=5.5 V *3: When all ports are fixed. *4: When LVD is OFF Document Number: 002-04864 Rev. *D Page 78 of 170 MB9B560R Series Table 12-9. Typical and maximum current consumption in Deep Standby STOP mode, Deep Standby RTC mode and VBAT Parameter Pin Name Symbol Conditions Frequency 1 Typ* Value 2 Max* Unit Remarks 3 Deep standby STOP mode (When RAM is OFF) ICCHD 29 140 µA - 644 µA - 1011 µA 48 273 µA - 2676 µA - 4162 µA 29 140 µA - 644 µA - 1011 µA 48 273 µA - 2676 µA - 4162 µA 0.015 0.29 µA - 5.77 µA - 10.6 µA 1.53 22.6 µA - 35.2 µA - 41.8 µA Deep standby STOP mode (When RAM is ON) VCC Power supply current Deep standby RTC mode (When RAM is OFF) ICCRD 32 kHz Deep standby RTC mode (When RAM is ON) RTC stop*6 ICCVBAT VBAT RTC operation*6 4 *,* Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *3, *4, *5 Ta=+25°C *3, *4, *5 Ta=+85°C *3, *4, *5 Ta=+105°C *3, *4 Ta=+25°C *3, *4 Ta=+85°C *3, *4 Ta=+105°C *1: VCC=3.3 V *2: VCC=5.5 V *3: When all ports are fixed. *4: When LVD is OFF *5: When sub oscillation is OFF *6: In the case of setting RTC after VCC power on Document Number: 002-04864 Rev. *D Page 79 of 170 MB9B560R Series Table 12-10. Typical and maximum current consumption in Low-voltage detection circuit, Main flash memory write/erase Value Parameter Symbol Low-voltage detection circuit (LVD) power supply current ICCLVD Main flash memory write/erase current ICCFLASH Work flash memory write/erase current ICCWFLASH Pin Name VCC Conditions Min Typ Max Unit At operation - 4 7 μA At Write/Erase - 13.4 15.9 mA At Write/Erase - 11.5 13.6 mA Remarks For occurrence of interrupt Peripheral current dissipation Clock System HCLK PCLK1 PCLK2 Peripheral Unit 40 Frequency (MHz) 80 160 GPIO All ports 0.22 0.43 0.85 DMAC - 0.74 1.48 2.88 DSTC - 0.32 0.61 1.17 External bus I/F - 0.14 0.27 0.55 SD card I/F - 0.93 1.81 3.63 CAN 1ch. 0.02 0.06 0.11 USB 1ch. 0.34 0.67 1.33 Base timer 4ch. 0.16 0.34 0.66 1 unit/4ch. 0.55 1.09 2.17 1 unit 0.04 0.09 0.17 A/DC 1 unit 0.20 0.39 0.78 Multi-function serial 1ch. 0.31 0.62 - Multi-functional timer/PPG Quadrature position/Revolution counter Document Number: 002-04864 Rev. *D Unit Remarks mA mA mA Page 80 of 170 MB9B560R Series 12.3.2 Pin Characteristics (VCC = USBVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V) Parameter Symbol Pin Name Value Conditions Min "H" level input voltage (hysteresis input) "L" level input voltage (hysteresis input) VIHS VILS CMOS hysteresis input pin, MD0, MD1 5V tolerant input pin Input pin doubled as I2C Fm+ CMOS hysteresis input pin, MD0, MD1 5V tolerant input pin Input pin doubled as I2C Fm+ 4mA type 8mA type "H" level output voltage VOH 12mA type The pin doubled as USB I/O The pin doubled as I2C Fm+ Document Number: 002-04864 Rev. *D Unit Typ - VCC×0.8 - VCC + 0.3 V - VCC×0.8 - VSS + 5.5 V - VCC×0.7 - VSS + 5.5 V - VSS - 0.3 - VCC×0.2 V - VSS - 0.3 - VCC×0.2 V - VSS - VCC×0.3 V VCC - 0.5 - VCC V VCC - 0.5 - VCC V VCC - 0.5 - VCC V USBVCC - 0.4 - USBVCC V VCC - 0.5 - VCC V VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5 V, IOH = - 2 mA VCC ≥ 4.5 V, IOH = - 8 mA VCC < 4.5 V, IOH = - 4 mA VCC ≥ 4.5 V, IOH = - 12 mA VCC < 4.5 V, IOH = - 8 mA USBVCC ≥ 4.5 V, IOH = - 20.5 mA USBVCC < 4.5 V, IOH = - 13.0 mA VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5 V, IOH = - 3 mA Remarks Max At GPIO Page 81 of 170 MB9B560R Series Value Parameter Symbol Pin Name Conditions Min Typ Unit Max Remarks VCC ≥ 4.5 V, IOL = 4 mA 4 mA type VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VCC < 4.5 V, IOL = 2 mA VCC ≥ 4.5 V, IOH = 8 mA 8 mA type VCC < 4.5 V, IOH = 4 mA VCC ≥ 4.5 V, IOL = 12 mA 12 mA type "L" level output voltage VCC < 4.5 V, IOL = 8 mA VOL The pin doubled as USB I/O USBVCC ≥ 4.5 V, IOL = 18.5 mA USBVCC < 4.5 V, IOL = 10.5 mA VCC ≥ 4.5 V, IOH = 4 mA The pin doubled as I2C Fm+ At GPIO VCC < 4.5 V, IOH = 3 mA VCC ≤ 5.5 V, IOH = 20 mA Input leak current IIL - Pull-up resistor value RPU Pull-up pin CIN Other than VCC, USBVCC, VBAT, VSS, AVCC, AVSS, AVRH Input capacitance Document Number: 002-04864 Rev. *D At I2C Fm+ - -5 - +5 VCC ≥ 4.5 V 25 50 100 VCC < 4.5 V 30 80 200 - - 5 15 μA kΩ pF Page 82 of 170 MB9B560R Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Input frequency Pin Name fCH Input clock cycle tCYLH Input clock pulse width Input clock rising time and falling time Internal operating 1 clock* frequency Internal operating 1 clock* cycle time X0, X1 tCF, tCR Value Conditions Min Unit Max VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V PWH/tCYLH, PWL/tCYLH 4 4 4 4 20.83 50 48 20 48 20 250 250 45 - Remarks MHz When crystal oscillator is connected MHz When using external clock ns When using external clock 55 % When using external clock - 5 ns When using external clock fCC - - - 160 MHz Base clock (HCLK/FCLK) fCP0 fCP1 - - - 80 160 MHz MHz APB0 bus clock* 2 APB1 bus clock* fCP2 - - - 80 MHz APB2 bus clock* tCYCC - - 6.25 - ns Base clock (HCLK/FCLK) tCYCP0 tCYCP1 - - 12.5 6.25 - ns ns APB0 bus clock* 2 APB1 bus clock* tCYCP2 - - 12.5 - ns APB2 bus clock* 2 2 2 2 *1: For more information about each internal operating clock, see CHAPTER 2-1: Clock in FM4 Family Peripheral Manual Main part (002-04856). *2: For about each APB bus which each peripheral is connected to, see 8. Block Diagram in this data sheet. X0 Document Number: 002-04864 Rev. *D Page 83 of 170 MB9B560R Series 12.4.2 Sub Clock Input Characteristics (VBAT = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Input frequency 1/ tCYLL Input clock cycle tCYLL Input clock pulse width - Pin Name X0A, X1A Value Conditions Min Typ Unit Max Remarks - - 32.768 - kHz - 32 - 100 kHz When crystal oscillator is connected When using external clock - 10 - 31.25 μs When using external clock PWH/tCYLL, PWL/tCYLL 45 - 55 % When using external clock 0.8 × VBAT VBAT VBAT VBAT VBAT X0A 12.4.3 Built-in CR Oscillation Characteristics Built-in High-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol TJ = -20°C to +105°C Clock frequency Value Conditions Min 3.92 Typ 4 Max Unit Remarks 4.08 When trimming*1 fCRH TJ = - 40°C to +125°C 3.88 4 4.12 Clock frequency fCRH TJ = - 40°C to +125°C 3 4 5 Frequency stabilization time tCRWT - - - 30 MHz When not trimming *2 μs *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming. *2: This is the time to stabilize the frequency of high-speed CR clock after setting trimming value. This period is able to use high-speed CR clock as source clock. Built-in Low-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Clock frequency Symbol fCRL Condition - Document Number: 002-04864 Rev. *D Value Min 50 Typ 100 Max 150 Unit Remarks kHz Page 84 of 170 MB9B560R Series 12.4.4 Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency*2 Value Symbol Min Typ Unit Max tLOCK 200 - - μs fPLLI fPLLO fCLKPLL 4 13 200 - - 16 80 320 160 MHz multiplier MHz MHz Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see CHPATER 2-1: Clock in FM4 Family Peripheral Manual Main part (002-04856). 12.4.5 Operating Conditions of USB PLL (In the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Value Parameter Symbol Min Typ Unit Max PLL oscillation stabilization wait time*1 (LOCK UP time) tLOCK 100 - - μs PLL input clock frequency fPLLI 4 - 16 MHz PLL multiplication rate - 13 - 80 multiplier PLL macro oscillation clock frequency fPLLO 200 - 320 MHz fCLKSPLL - - 48 MHz USB clock frequency* 2 Remarks After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about USB clock, see CHAPTER 2-2: USB Clock Generation in FM4 Family Peripheral Manual Communication Macro part (002-04856). 12.4.6 Operating Conditions of Main PLL (In the Case of Using Built-in High-speed CR Clock for Input Clock of Main PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency*2 Symbol Value Min Typ Unit Max tLOCK 200 - - μs fPLLI fPLLO fCLKPLL 3.8 50 190 - 4 - 4.2 75 320 160 MHz multiplier MHz MHz Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see CHAPTER 2-1: Clock in FM4 Family Peripheral Manual Main part (002-04856). Note: − Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency and temperature has been trimmed. Document Number: 002-04864 Rev. *D Page 85 of 170 MB9B560R Series 12.4.7 Reset Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Reset input time tINITX Pin Name Value Condition INITX - Min Unit Max 500 - Remarks ns 12.4.8 Power-on Reset Timing (VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Power supply shut down time Time until releasing Power-on reset Value Conditions VCC Unit Min Typ Max - 50 - - VCC: 0.2V to 2.70V 1.3 - 1000 - 0.33 - 0.60 tOFF dV/dt Power ramp rate Pin Name tPRT ms Remarks *1 mV/µs *2 ms *1: VCC must be held below 0.2V for a minimum period of tOFF. Improper initialization may occur if this condition is not met. *2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>50ms). Note: − If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 7. 2.7V VCC VDH 0.2V dV/dt 0.2V tPRT Internal RST CPU Operation RST Active 0.2V tOFF release start Glossary  VDH: detection voltage of Low Voltage detection reset. See “12.8. Low-Voltage Detection Characteristics”. Document Number: 002-04864 Rev. *D Page 86 of 170 MB9B560R Series 12.4.9 GPIO Output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency Symbol tPCYCLE Pin Name Pxx* Value Conditions Min Unit Max VCC ≥ 4.5 V - 50 MHz VCC < 4.5 V - 32 MHz *: GPIO is a target. Pxx tPCYCLE 12.4.10 External Bus Timing External Bus Clock Output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency Symbol tCYCLE Pin Name 1 MCLKOUT* Value Conditions Min Unit Max 2 MHz 3 MHz VCC ≥ 4.5 V - 50* VCC < 4.5 V - 32* *1: The external bus clock (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see CHAPTER 14: External Bus Interface in FM4 Family Peripheral Manual Main part (002-04856). *2: Generate MCLKOUT at setting more than 4 division when the AHB bus clock exceeds 100 MHz. *3: Generate MCLKOUT at setting more than 4 division when the AHB bus clock exceeds 64 MHz. 0.8 × Vcc 0.8 × Vcc MCLK tCYCLE Document Number: 002-04864 Rev. *D Page 87 of 170 MB9B560R Series External Bus Signal Input/output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions VIH Value Unit 0.8 × VCC V 0.2 × VCC V VOH 0.8 × VCC V VOL 0.2 × VCC V Remarks Signal input characteristics VIL Signal output characteristics Signal input VIH VIL VIH VIL Signal output VOH VOL VOH VOL Document Number: 002-04864 Rev. *D Page 88 of 170 MB9B560R Series Separate Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter MOEX Mininum pulse width MCSX↓→Address output delay time MOEX↑→Address hold time MCSX↓→ MOEX↓ delay time MOEX↑→ MCSX↑ time MCSX↓→MDQM↓ delay time Data set up→MOEX↑ time MOEX↑→ Data hold time MWEX Mininum pulse width MWEX↑→Address output delay time Symbol tOEW tCSL – AV tOEH - AX tCSL - OEL tOEH - CSH tCSL - RDQML tDS - OE tDH - OE MOEX MCSX[7:0], MAD[24:0] MOEX, MAD[24:0] MOEX, MCSX[7:0] MCSX, MDQM[1:0] MOEX, MADATA[15:0] MOEX, MADATA[15:0] tWEW MWEX tWEH - AX MWEX, MAD[24:0] MCSX↓→MWEX↓ delay time tCSL - WEL MWEX↑→MCSX↑ delay time tWEH - CSH MCSX↓→MDQM↓ delay time tCSL-WDQML MWEX↓→ Data output time MWEX↑→ Data hold time Pin Name tCSL-DX tWEH - DX MWEX, MCSX[7:0] MCSX, MDQM[1:0] MCSX, MADATA[15:0] MWEX, MADATA[15:0] Value Conditions VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V VCC ≥ 4.5V VCC < 4.5V Min Max Unit MCLK×n-3 - -9 -12 MCLK×m-9 MCLK×m-12 20 38 +9 +12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 - 0 - ns MCLK×n-3 - ns 0 MCLK×m-9 MCLK×m-12 0 0 MCLK×n-9 MCLK×n-12 0 MCLK×n-9 MCLK×n-12 MCLK-9 MCLK-12 0 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK+9 MCLK+12 MCLK×m+9 MCLK×m+12 ns ns ns ns ns ns ns ns ns ns ns ns ns Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) Document Number: 002-04864 Rev. *D Page 89 of 170 MB9B560R Series tCYCLE MCLK tOEH-CSH MCSX[7:0] tCSL-AV MAD[24:0] MOEX tWEH-CSH tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL tOEW tCSL-WDQML tCSL-RDQML tCSL-WEL MDQM[1:0] tWEW MWEX MADATA[15:0] tDS-OE tDH-OE RD tWEH-DX WD Invalid tCSL-DX Document Number: 002-04864 Rev. *D Page 90 of 170 MB9B560R Series Separate Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Address delay time Symbol tAV tCSL MCSX delay time Pin Name MCLK, MAD[24:0] tCSH tREL MOEX delay time VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V MCLK, MCSX[7:0] VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V MCLK, MOEX tREH Value Conditions VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V Min 1 1 1 1 1 Data set up →MCLK↑ time tDS MCLK, MADATA[15:0] VCC ≥ 4.5 V 19 VCC < 4.5 V 37 MCLK↑→ Data hold time tDH MCLK, MADATA[15:0] VCC ≥ 4.5 V tWEL MWEX delay time VCC ≥ 4.5 V MCLK, MWEX tWEH MDQM[1:0] delay time tDQML VCC < 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V MCLK, MDQM[1:0] tDQMH VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V MCLK↑→ Data output time tODS MCLK, MADATA[15:0] VCC ≥ 4.5 V MCLK↑→ Data hold time tOD MCLK, MADATA[15:0] VCC ≥ 4.5 V VCC < 4.5 V VCC < 4.5 V 0 1 1 1 1 MCLK+1 1 Unit Max 9 12 9 12 9 12 9 12 9 12 ns ns ns ns ns - ns - ns 9 12 9 12 9 12 9 12 MCLK+18 MCLK+24 18 24 ns ns ns ns ns ns Note: − When the external load capacitance CL = 30 pF Document Number: 002-04864 Rev. *D Page 91 of 170 MB9B560R Series tCYCLE MCLK tCSL tCSH MCSX[7:0] tAV tAV Address MAD[24:0] Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[1:0] MWEX tDS tDH RD tOD WD Invalid MADATA[15:0] tODS Document Number: 002-04864 Rev. *D Page 92 of 170 MB9B560R Series Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Multiplexed address delay time tALE-CHMADV Pin Name VCC ≥ 4.5 V MALE, MADATA[15:0] Multiplexed address hold time tCHMADH Value Conditions VCC < 4.5 V Min 0 Unit Max 10 20 VCC ≥ 4.5 V MCLK×n+0 MCLK×n+10 VCC < 4.5 V MCLK×n+0 MCLK×n+20 ns ns Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-04864 Rev. *D Page 93 of 170 MB9B560R Series Multiplexed Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol tCHAL MALE delay time tCHAH MCLK↑→ Multiplexed address delay time Pin Name MCLK, ALE Conditions VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V Min Max Unit 9 12 9 12 ns ns ns ns 1 tOD ns 1 tOD ns 1 1 Remarks VCC ≥ 4.5 V tCHMADV MCLK, MADATA[15:0] MCLK↑→ Multiplexed data output time Value VCC < 4.5 V VCC ≥ 4.5 V tCHMADX VCC < 4.5 V Note: − When the external load capacitance CL = 30 pF MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-04864 Rev. *D Page 94 of 170 MB9B560R Series NAND Flash Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter MNREX Min pulse width Data set up →MNREX↑ time MNREX↑→ Data hold time MNALE↑→ MNWEX delay time MNALE↓→ MNWEX delay time MNCLE↑→ MNWEX delay time MNWEX↑→ MNCLE delay time MNWEX Min pulse width MNWEX↓→ Data output time MNWEX↑→ Data hold time Symbol tNREW tDS – NRE tDH – NRE tALEH - NWEL tALEL - NWEL tCLEH - NWEL tNWEH - CLEL tNWEW tNWEL – DV tNWEH – DX Pin Name MNREX MNREX, MADATA[15:0] MNREX, MADATA[15:0] MNALE, MNWEX MNALE, MNWEX MNCLE, MNWEX MNCLE, MNWEX MNWEX MNWEX, MADATA[15:0] MNWEX, MADATA[15:0] Value Conditions VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V Min Max Unit MCLK×n-3 - ns 20 38 - ns 0 - ns MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 0 MCLK×n-3 - -9 -12 +9 +12 MCLK×m+9 MCLK×m+12 0 ns ns ns ns ns ns ns Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) NAND Flash Read MCLK MNREX MADATA[15:0] Read Document Number: 002-04864 Rev. *D Page 95 of 170 MB9B560R Series NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Write Document Number: 002-04864 Rev. *D Page 96 of 170 MB9B560R Series External Ready Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol MCLK↑ MRDY input setup time tRDYI Pin Name MCLK, MRDY Value Conditions Min VCC ≥ 4.5 V 19 VCC < 4.5 V 37 Max - Unit Remarks ns  When RDY is input ··· MCLK Over 2cycle Original MOEX MWEX tRDYI MRDY  When RDY is released MCLK ··· ··· 2 cycle Extended MOEX MWEX tRDYI 0.5×VCC MRDY Document Number: 002-04864 Rev. *D Page 97 of 170 MB9B560R Series SDRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Value Pin Name Min Unit Max Output frequency tCYCSD MSDCLK - 32 MHz Address delay time tAOSD MSDCLK, MAD[15:0] 2 12 ns MSDCLK↑→Data output delay time tDOSD MSDCLK, MADATA[31:0] 2 12 ns MSDCLK↑→Data output Hi-Z time tDOZSD MSDCLK, MADATA[31:0] 2 20 ns MDQM[1:0] delay time tWROSD MSDCLK, MDQM[1:0] 1 12 ns MCSX delay time tMCSSD MSDCLK, MCSX8 2 12 ns MRASX delay time tRASSD MSDCLK, MRASX 2 12 ns MCASX delay time tCASSD MSDCLK, MCASX 2 12 ns MSDWEX delay time tMWESD MSDCLK, MSDWEX 2 12 ns MSDCKE delay time tCKESD MSDCLK, MSDCKE 2 12 ns Data set up time tDSSD MSDCLK, MADATA[31:0] 23 - ns Data hold time tDHSD MSDCLK, MADATA[31:0] 0 - ns Note: − When the external load capacitance CL = 30 pF Document Number: 002-04864 Rev. *D Page 98 of 170 MB9B560R Series SDRAM Access tCYCSD MSDCLK tAOSD MAD[24:0] MDQM[1:0] MCSX MRASX MCASX MSDWEX MSDCKE Address tWROSD tMCSSD tRASSD tCASSD tMWESD tCKESD tDSSD MADATA[15:0] tDOSD MADATA[15:0] Document Number: 002-04864 Rev. *D tDHSD RD tDOZSD WD Page 99 of 170 MB9B560R Series 12.4.11 Base Timer Input Timing Timer Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol tTIWH, tTIWL Input pulse width Pin Name Conditions TIOAn/TIOBn (when using as ECK, TIN) - Value Min 2tCYCP tTIWH Unit Max - Remarks ns tTIWL ECK VIHS VIHS VILS TIN VILS Trigger Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol tTRGH, tTRGL Input pulse width Pin Name Conditions TIOAn/TIOBn (when using as TGIN) - 2tCYCP tTRGH TGIN VIHS Value Min Unit Max - Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see 8. Block Diagram in this data sheet. Document Number: 002-04864 Rev. *D Page 100 of 170 MB9B560R Series 12.4.12 CSIO/UART Timing Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate Serial clock cycle time tSCYC - SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Internal shift clock operation External shift clock operation VCC ≥ 4.5 V Min Max VCC < 4.5 V Min Max Conditions - 8 - 8 Unit 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 101 of 170 MB9B560R Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH VIH SCK tF VIL tSHSL VIL SIN VIH tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 102 of 170 MB9B560R Series Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate Serial clock cycle time tSCYC - SCK↑→SOT delay time tSHOVI SIN→SCK↓ setup time tIVSLI SCK↓→SIN hold time tSLIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK↑→SOT delay time tSHOVE SIN→SCK↓ setup time tIVSLE SCK↓→SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name Conditions SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Internal shift clock operation External shift clock operation VCC ≥ 4.5 V Min Max VCC < 4.5 V Min Max - 8 - 8 Unit 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 103 of 170 MB9B560R Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL tSLSH VIH SCK VIH VIL tR VIL tF tSHOVE SOT SIN VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 104 of 170 MB9B560R Series Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate Serial clock cycle time tSCYC - SCK↑→SOT delay time tSHOVI SIN→SCK↓ setup time tIVSLI SCK↓→SIN hold time tSLIXI SOT→SCK↓ delay time tSOVLI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK↑→SOT delay time tSHOVE SIN→SCK↓ setup time tIVSLE SCK↓→SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name SCKx Conditions - SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Internal shift clock operation External shift clock operation VCC ≥ 4.5 V Min Max VCC < 4.5 V Min Max - 8 - 8 Unit 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 105 of 170 MB9B560R Series tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH VIH VIL tSHSL VIH VIL SCK tF * tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SOT SIN tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register Document Number: 002-04864 Rev. *D Page 106 of 170 MB9B560R Series Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate Serial clock cycle time tSCYC - SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI SOT→SCK↑ delay time tSOVHI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Internal shift clock operation External shift clock operation VCC ≥ 4.5 V Min Max VCC < 4.5 V Min Max Conditions - 8 - 8 Unit 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 107 of 170 MB9B560R Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 108 of 170 MB9B560R Series When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↓→SCK↓setup time SCK↑→SCS↑ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↓→SCK↓setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time tCSDE SCS↓→SUT delay time tDSE SCS↑→SUT delay time tDEE Min (*1)-50 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 (* )+0 3 Max (*1)+0 2 (* )+50 3 Min (*1)-50 2 (* )+0 3 Max Unit (*1)+0 ns (*2)+50 ns 3 (* )-50 +5tCYCP (* )+50 +5tCYCP (* )-50 +5tCYCP (* )+50 +5tCYCP ns 3tCYCP+30 - 3tCYCP+30 - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 109 of 170 MB9B560R Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 110 of 170 MB9B560R Series When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↓→SCK↑setup time SCK↓→SCS↑ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↓→SCK↑setup time tCSSE SCK↓→SCS↑ hold time tCSHE SCS deselect time tCSDE SCS↓→SOT delay time tDSE SCS↑→SOT delay time tDEE Min (*1)-50 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 Max (*1)+0 2 Min (*1)-50 2 Max (*1)+0 2 Unit ns (* )+0 (* )+50 (* )+0 (* )+50 ns (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns 3tCYCP+30 - 3tCYCP+30 - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 111 of 170 MB9B560R Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 112 of 170 MB9B560R Series When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↑→SCK↓setup time SCK↑→SCS↓ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↑→SCK↓setup time tCSSE SCK↑→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE Min (*1)-50 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 Max (*1)+0 2 Min (*1)-50 2 Max (*1)+0 2 Unit ns (* )+0 (* )+50 (* )+0 (* )+50 ns (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns 3tCYCP+30 - 3tCYCP+30 - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 113 of 170 MB9B560R Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 114 of 170 MB9B560R Series When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↑→SCK↑setup time SCK↓→SCS↓ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↑→SCK↑setup time tCSSE SCK↓→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE Min (*1)-50 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 Max (*1)+0 2 Min (*1)-50 2 Max (*1)+0 2 Unit ns (* )+0 (* )+50 (* )+0 (* )+50 ns (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns 3tCYCP+30 - 3tCYCP+30 - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 115 of 170 MB9B560R Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 116 of 170 MB9B560R Series High-speed Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name VCC ≥ 4.5V VCC < 4.5V Conditions Min Max Min Max Unit Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK↓→SOT delay time tSLOVI SCKx, SOTx -10 +10 -10 +10 ns SIN→SCK↑ setup time tIVSHI SCKx, SINx - 12.5 - ns SCK↑→SIN hold time tSHIXI SCKx, SINx 5 - 5 - ns Serial clock "L" pulse width tSLSH SCKx 2tCYCP – 5 - 2tCYCP – 5 - ns Serial clock "H" pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 5 - 5 - ns SCK↑→SIN hold time tSHIXE 5 - 5 - ns SCK falling time tF SCKx - 5 - 5 ns SCK rising time tR SCKx - 5 - 5 ns Internal shift clock operation 14 12.5* External shift clock operation SCKx, SINx Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. No chip select: Chip select: − SIN4_1, SOT4_1, SCK4_1 SIN6_1, SOT6_1, SCK6_1, SCS6_1 When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 002-04864 Rev. *D Page 117 of 170 MB9B560R Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH SCK VIH tF VIL tSHSL VIL SIN VIH tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 118 of 170 MB9B560R Series High-speed Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Serial clock cycle time tSCYC SCKx SCK↑→SOT delay time tSHOVI SCKx, SOTx Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions Min Max Min Max Unit 4tCYCP - 4tCYCP - ns -10 +10 -10 +10 ns - 12.5 - ns 14 SIN→SCK↓ setup time tIVSLI SCKx, SINx SCK↓→SIN hold time tSLIXI SCKx, SINx 5 - 5 - ns Serial clock "L" pulse width tSLSH SCKx 2tCYCP – 5 - 2tCYCP – 5 - ns Serial clock "H" pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 15 - 15 ns 5 - 5 - ns 12.5* External shift clock operation SIN→SCK↓ setup time tIVSLE SCKx, SINx SCK↓→SIN hold time tSLIXE SCKx, SINx 5 - 5 - ns SCK falling time tF SCKx - 5 - 5 ns SCK rising time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. No chip select: Chip select: − SIN4_1, SOT4_1, SCK4_1 SIN6_1, SOT6_1, SCK6_1, SCS6_1 When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 002-04864 Rev. *D Page 119 of 170 MB9B560R Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK tSLSH VIH VIH VIL tR VIL tF tSHOVE SOT SIN VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 120 of 170 MB9B560R Series High-speed Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions VCC < 4.5 V VCC ≥ 4.5 V Min Min Max Max Unit Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK↑→SOT delay time tSHOVI SCKx, SOTx -10 +10 -10 +10 ns SIN→SCK↓ setup time tIVSLI SCKx, SINx - 12.5 - ns SCK↓→SIN hold time tSLIXI SCKx, SINx 5 - 5 - ns SOT→SCK↓ delay time tSOVLI SCKx, SOTx 2tCYCP – 10 - 2tCYCP – 10 - ns Serial clock "L" pulse width tSLSH SCKx 2tCYCP – 5 - 2tCYCP – 5 - ns Serial clock "H" pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 15 - 15 ns 5 - 5 - ns Internal shift clock operation 14 12.5* External shift clock operation SIN→SCK↓ setup time tIVSLE SCKx, SINx SCK↓→SIN hold time tSLIXE SCKx, SINx 5 - 5 - ns SCK falling time tF SCKx - 5 - 5 ns SCK rising time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. No chip select: Chip select: − SIN4_1, SOT4_1, SCK4_1 SIN6_1, SOT6_1, SCK6_1, SCS6_1 When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 002-04864 Rev. *D Page 121 of 170 MB9B560R Series tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH VIH SCK VIH VIL tF * SOT VIL tSHSL tR VIH tSHOVE VOH VOL SIN VOH VOL tIVSLE tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register Document Number: 002-04864 Rev. *D Page 122 of 170 MB9B560R Series High-speed Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Conditions VCC < 4.5 V VCC ≥ 4.5 V Min Min Symbol Pin Name Internal shift clock operation tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK↓→SOT delay time tSLOVI SCKx, SOTx -10 +10 -10 +10 ns SIN→SCK↑ setup time tIVSHI SCKx, SINx - 12.5 - ns SCK↑→SIN hold time tSHIXI SCKx, SINx 5 - 5 - ns SOT→SCK↑ delay time tSOVHI SCKx, SOTx 2tCYCP – 10 - 2tCYCP – 10 - ns Serial clock "L" pulse width tSLSH SCKx 2tCYCP – 5 - 2tCYCP – 5 - ns Serial clock "H" pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 5 - 5 - ns SCK↑→SIN hold time tSHIXE SCKx, SINx 5 - 5 - ns SCK falling time tF SCKx - 5 - 5 ns SCK rising time tR SCKx - 5 - 5 ns Internal shift clock operation External shift clock operation Max Max Unit 14 12.5* Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. No chip select: Chip select: − SIN4_1, SOT4_1, SCK4_1 SIN6_1, SOT6_1, SCK6_1, SCS6_1 When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 002-04864 Rev. *D Page 123 of 170 MB9B560R Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 Document Number: 002-04864 Rev. *D Page 124 of 170 MB9B560R Series When Using High-speed Synchronous Serial Chip Select (SCINV = 0, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↓→SCK↓setup time SCK↑→SCS↑ hold time Symbol tCSHI Min (*1)-20 tCSSI Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 (* )+0 3 Max (*1)+0 2 (* )+20 3 Min (*1)-20 2 (* )+0 3 Max Unit (*1)+0 ns (*2)+20 ns 3 SCS deselect time tCSDI (* )-20 +5tCYCP (* )+20 +5tCYCP (* )-20 +5tCYCP (* )+20 +5tCYCP ns SCS↓→SCK↓setup time tCSSE 3tCYCP+15 - 3tCYCP+15 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns External shift clock operation SCS deselect time tCSDE 3tCYCP+15 - 3tCYCP+15 - ns SCS↓→SOT delay time tDSE - 25 - 25 ns SCS↑→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual. When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 125 of 170 MB9B560R Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 126 of 170 MB9B560R Series When Using High-speed Synchronous Serial Chip Select (SCINV = 1, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↓→SCK↑setup time SCK↓→SCS↑ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↓→SCK↑setup time tCSSE SCK↓→SCS↑ hold time tCSHE SCS deselect time tCSDE SCS↓→SOT delay time tDSE SCS↑→SOT delay time tDEE Min (*1)-20 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 (* )+0 3 Max (*1)+0 2 (* )+20 3 Min (*1)-20 2 (* )+0 3 Max Unit (*1)+0 ns (*2)+20 ns 3 (* )-20 +5tCYCP (* )+20 +5tCYCP (* )-20 +5tCYCP (* )+20 +5tCYCP ns 3tCYCP+15 - 3tCYCP+15 - ns 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns - 25 - 25 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 127 of 170 MB9B560R Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 128 of 170 MB9B560R Series When Using High-speed Synchronous Serial Chip Select (SCINV = 0, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↑→SCK↓setup time SCK↑→SCS↓ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↑→SCK↓setup time tCSSE SCK↑→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE Min (*1)-20 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 Max (*1)+0 2 Min (*1)-20 2 Max (*1)+0 2 Unit ns (* )+0 (* )+20 (* )+0 (* )+20 ns (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns 3tCYCP+15 - 3tCYCP+15 - ns 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns - 25 - 25 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 129 of 170 MB9B560R Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 130 of 170 MB9B560R Series When Using High-speed Synchronous Serial Chip Select (SCINV = 1, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCS↑→SCK↑setup time SCK↓→SCS↓ hold time Symbol tCSSI tCSHI SCS deselect time tCSDI SCS↑→SCK↑setup time tCSSE SCK↓→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE Min (*1)-20 Internal shift clock operation External shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Conditions 2 Max (*1)+0 2 Min (*1)-20 2 Max (*1)+0 2 Unit ns (* )+0 (* )+20 (* )+0 (* )+20 ns (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns 3tCYCP+15 - 3tCYCP+15 - ns 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns - 25 - 25 ns 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet. − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 002-04864 Rev. *D Page 131 of 170 MB9B560R Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 002-04864 Rev. *D Page 132 of 170 MB9B560R Series External Clock (EXT = 1): when in Asynchronous Mode Only (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Serial clock "L" pulse width Serial clock "H" pulse width SCK falling time SCK rising time tSLSH tSHSL tF tR Condition SCK Document Number: 002-04864 Rev. *D VIL Min tCYCP + 10 tCYCP + 10 - CL = 30 pF tR Value 5 5 tSHSL VIH Unit Max ns ns ns ns tF tSLSH VIH VIL Remarks VIL VIH Page 133 of 170 MB9B560R Series 12.4.13 External Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions Value Min Max Unit ADTG Input pulse width tINH, tINL FRCKx ICxx DTTIxX INT00 to INT31, NMIX WKUPx Remarks A/D converter trigger input 1 - 2tCYCP* - 2tCYCP* 1 2tCYCP + 100 * 2 500 * 3 500 * - 1 - ns - ns ns ns ns Free-run timer input clock Input capture Waveform generator External interrupt, NMI Deep standby wake up *1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode. About the APB bus number which the A/D converter, multi-function timer, external interrupt are connected to, see 8. Block Diagram in this data sheet. *2: When in Stop mode, in timer mode. *3: When in deep standby RTC mode, in Deep Standby Stop mode. Document Number: 002-04864 Rev. *D Page 134 of 170 MB9B560R Series 12.4.14 Quadrature Position/Revolution Counter Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol AIN pin H width AIN pin L width BIN pin H width BIN pin L width BIN rising time from AIN pin H level AIN falling time from BIN pin H level BIN falling time from AIN pin L level AIN rising time from BIN pin L level AIN rising time from BIN pin H level BIN falling time from AIN pin H level AIN falling time from BIN pin L level BIN rising time from AIN pin L level ZIN pin H width ZIN pin L width AIN/BIN rising and falling time from determined ZIN level Determined ZIN level from AIN/BIN rising and falling time Value Conditions Min tAHL tALL tBHL tBLL - tAUBU PC_Mode2 or PC_Mode3 tBUAD PC_Mode2 or PC_Mode3 tADBD PC_Mode2 or PC_Mode3 tBDAU PC_Mode2 or PC_Mode3 tBUAU PC_Mode2 or PC_Mode3 tAUBD PC_Mode2 or PC_Mode3 tBDAD PC_Mode2 or PC_Mode3 tADBU PC_Mode2 or PC_Mode3 tZHL tZLL QCR:CGSC = 0 QCR:CGSC = 0 tZABE QCR:CGSC = 1 tABEZ QCR:CGSC = 1 2tCYCP* Max - Unit ns *: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode. About the APB bus number which Quadrature Position/Revolution Counter is connected to, see 8. Block Diagram in this data sheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL Document Number: 002-04864 Rev. *D tBLL Page 135 of 170 MB9B560R Series tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN Document Number: 002-04864 Rev. *D Page 136 of 170 MB9B560R Series 2 12.4.15 I C Timing Standard-mode, Fast-mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ SCL clock "L" width SCL clock "H" width (Repeated) START condition setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between "STOP condition" and "START condition" Noise filter Symbo l Standard-mode Min Max Conditions Fast-mode Min Max Unit FSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45* 0 0.9* μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs 4 - 2tCYCP* 4 - ns 4 - 4tCYCP* 4 - ns 4 - 6tCYCP* 4 - ns 4 - 8tCYCP* 4 - ns - 10tCYCP* - ns - 12tCYCP* - ns 4 - 14tCYCP* 4 - ns 4 - 16tCYCP* 4 - ns tSUSTA tHDDAT tSP CL = 30 pF, 1 R = (Vp/IOL)* 2 MHz ≤ tCYCP LDC144 Changed the mode name of I2C as follows (Page 2, 137-138) Typical mode -> Standard-mode, High-speed mode -> Fast-mode Modified from “Analog port input current” to “Analog port input leak current” in “12.5 12-bit A/D Converter” (Page 144) Modified according to the Datasheet Errata as below Modified the “sampling time” and “State transition time to operation permission” spec values in “12.5 12-bit A/D Converter” (Page 144) Deleted descriptions about Voice function(Page 4) Removed "MB9BF568F" in the document(Page 7,8) Document Number: 002-04864 Rev. *D Page 168 of 170 MB9B560R Series Deleted MPN below from “13. Ordering Information” (Page 158) MB9BF568FBGL-000GE1 MB9BF566RBGL-GE1, MB9BF567RBGL-GE1, MB9BF568RBGL-GE1 Added MPNs below to “13. Ordering Information” (Page 158) MB9BF566RBGL-GK7E1, MB9BF567RBGL-GK7E1, MB9BF568RBGL-GK7E1 Change the name from “USB Function” to “USB Device” (Page 1, 7, 41) Updated IO circuit (type A, N, O) (Page 44) Modified the expression of the “Reference power supply current” “12.5 12-bit A/D Converter” (Page 144) Modified the expression of the “Built-in CR” and add Note in the “1. Product Lineup”(Page 7) Modified typo(SCLKx_0 -> SCKx_0)(Page 101, 103, 105, 107) Updated Package Dimensions: *C 5727772 HARA 05/05/2017 spec 002-11500 – Changed revision from ** to *A. Updated to new template. *D 5873294 HUAL Document Number: 002-04864 Rev. *D 09/25/2017 Fix minor issues listed in CDT 270742: x 1.new note format had been updated from *x to * 2.change “FM4 Family Peripheral Manual Main Part (002-04857)” to “FM4 Family Peripheral Manual Main Part (002-04856)”. 3.change “(MN709-00001)” to “(002-04856)”. Page 169 of 170 MB9B560R Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. ® Products ® PSoC Solutions ® ARM Cortex Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Touch Sensing USB Controllers Wireless/RF PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. © Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this informati on and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-04864 Rev. *D September 25, 2017 Page 170 of 170
MB9BF568MPMC1-G-JNE2 价格&库存

很抱歉,暂时无法提供与“MB9BF568MPMC1-G-JNE2”相匹配的价格&库存,您可以联系我们找货

免费人工找货