Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
S25FS064S
64 Mbit (8 Mbyte), 1.8 V FS-S Flash
Features
■
Serial Peripheral Interface (SPI) with Multi-I/O
❐ SPI Clock polarity and phase modes 0 and 3
❐ Double Data Rate (DDR) option
❐ Extended Addressing: 24- or 32-bit address options
❐ Serial Command subset and footprint compatible with S25FL1-K, S25FL-P and S25FL-S SPI families
❐ Multi I/O Command subset and footprint compatible with
S25FL1-K S25FL-P and S25FL-S SPI families
■
Read
❐ Commands: Normal, Fast, Dual Output, Dual I/O, Quad Output, Quad I/O, DDR Quad I/O
❐ Modes: Burst Wrap, Continuous (XIP), QPI (QPI)
❐ Serial Flash Discoverable Parameters (SFDP) and Common
Flash Interface (CFI), for configuration information.
■
■
Program
❐ 256 or 512 Bytes Page Programming buffer
❐ Program suspend and resume
❐ Automatic ECC -internal hardware Error Correction Code
generation with single bit error correction
Erase
❐ Hybrid sector option
• Physical set of eight 4KB sectors and one 32KB sector at
the top or bottom of address space with all remaining sectors of 64KB
❐ Uniform sector option
• Uniform 64KB or 256KB blocks for software compatibility
with higher density and future devices
❐ Erase suspend and resume
❐ Erase status evaluation
■
Cycling Endurance
❐ 100,000 Program-Erase Cycles, minimum
■
Data Retention
❐ 20 Year Data Retention, minimum
Cypress Semiconductor Corporation
Document Number: 002-03631 Rev. *G
•
■
Security Features
❐ One Time Program (OTP) array of 1024 bytes
❐ Block Protection:
• Status Register bits to control protection against program
or erase of a contiguous range of sectors.
• Hardware and software control options
❐ Advanced Sector Protection (ASP)
• Individual sector protection controlled by boot code or
password
• Option for password control of read access
■
Technology
®
™
❐ Cypress 65 nm MirrorBit Technology with Eclipse Architecture
■
Single Supply Voltage with CMOS I/O
❐ 1.7 V to 2.0 V
■
Temperature Range
❐ Industrial (40 °C to +85 °C)
❐ Industrial Plus (40 °C to +105 °C)
❐ Extended (40 °C to +125 °C)
❐ Automotive, AEC-Q100 Grade 3 (40 °C to +85 °C)
❐ Automotive, AEC-Q100 Grade 2 (40 °C to +105 °C)
❐ Automotive, AEC-Q100 Grade 1 (40 °C to +125 °C)
■
Packages (all Pb-free)
❐ 8-lead SOIC 208 mil (SOC008)
❐ LGA 5x6 mm (W9A008)
❐ BGA-24 6 8 mm
• 5 5 ball (FAB024) footprint
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised December 13, 2019
S25FS064S
Logic Block Diagram
SRAM
SCK
SI/IO0
SO/IO1
X Decoders
CS#
MirrorBit Array
Y Decoders
I/O
Data Latch
WP#/IO2
Control
Logic
RESET#/IO3
Data Path
RESET#
Performance Summary
Maximum Read Rates
Clock Rate (MHz)
MB/s
Read
Command
50
6.25
Fast Read
133
16.5
Dual Read
133
33
Quad Read
133
66
DDR Quad I/O Read
80
80
Typical Program and Erase Rates
Operation
KB/s
Page Programming (256 Bytes page buffer)
712
Page Programming (512 Bytes page buffer)
1080
4 KBytes Physical Sector Erase (Hybrid Sector Option)
16
64 KBytes Sector Erase
275
256 KBytes Sector Erase
275
Typical Current Consumption, 40°C to +85°C
Operation
Current (mA)
Serial Read 50 MHz
10
Serial Read 133 MHz
22
Quad Read 133 MHz
60
Quad DDR Read 80 MHz
70
Program
60
Erase
60
Standby
0.025
Deep Power Down
0.006
Document Number: 002-03631 Rev. *G
Page 2 of 145
S25FL512S
Contents
1.
1.1
1.2
1.3
Overview .......................................................................
General Description .......................................................
Migration Notes..............................................................
Other Resources............................................................
4
4
4
6
Hardware Interface
Software Interface
9.
9.1
9.2
9.3
9.4
9.5
9.6
Address Space Maps.................................................. 43
Overview....................................................................... 43
Flash Memory Array...................................................... 43
ID-CFI Address Space .................................................. 45
JEDEC JESD216 Serial Flash Discoverable
Parameters (SFDP) Space ........................................... 45
OTP Address Space ..................................................... 46
Registers....................................................................... 47
10.
10.1
10.2
10.3
10.4
10.5
Data Protection ........................................................... 63
Secure Silicon Region (OTP)........................................ 63
Write Enable Command................................................ 63
Block Protection ............................................................ 64
Advanced Sector Protection ......................................... 65
Recommended Protection Process ............................. 70
2.
Serial Peripheral Interface with Multiple
Input / Output (SPI-MIO) .............................................. 7
3.
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
Signal Descriptions ..................................................... 7
Input/Output Summary................................................... 7
Multiple Input / Output (MIO).......................................... 8
Serial Clock (SCK) ......................................................... 8
Chip Select (CS#) .......................................................... 8
Serial Input (SI) / IO0 ..................................................... 8
Serial Output (SO) / IO1................................................. 8
Write Protect (WP#) / IO2 .............................................. 8
IO3_RESET# ................................................................. 9
RESET# ......................................................................... 9
Voltage Supply (VCC).................................................... 9
Supply and Signal Ground (VSS) ................................... 9
Not Connected (NC) ...................................................... 9
Reserved for Future Use (RFU)..................................... 9
Do Not Use (DNU) ....................................................... 10
System Block Diagrams............................................... 10
4.
4.1
4.2
4.3
4.4
4.5
Signal Protocols.........................................................
SPI Clock Modes .........................................................
Command Protocol ......................................................
Interface States............................................................
Configuration Register Effects on the Interface ...........
Data Protection ............................................................
12
12
13
17
21
21
5.
5.1
5.2
5.3
5.4
5.5
5.6
Electrical Specifications............................................
Absolute Maximum Ratings .........................................
Latchup Characteristics ...............................................
Thermal Resistance .....................................................
Operating Ranges........................................................
Power-Up and Power-Down ........................................
DC Characteristics .......................................................
22
22
22
22
22
23
25
13. Software Interface Reference .................................. 121
13.1 OTP Memory Space Address Map ............................. 121
13.2 Device ID and Common Flash Interface
(ID-CFI) Address Map — Standard............................. 121
13.3 Serial Flash Discoverable Parameters
(SFDP) Address Map.................................................. 127
13.4 Initial Delivery State .................................................... 139
6.
6.1
6.2
6.3
6.4
6.5
Timing Specifications................................................
Key to Switching Waveforms .......................................
AC Test Conditions ......................................................
Reset............................................................................
SDR AC Characteristics...............................................
DDR AC Characteristics. .............................................
29
29
29
30
33
36
14.
Ordering Part Number .............................................. 140
15.
Glossary .................................................................... 142
7.
Embedded Algorithm Performance Tables.............. 38
8.
8.1
8.2
Physical Interface ...................................................... 39
Connection Diagrams .................................................. 39
Physical Diagrams ....................................................... 40
Document Number: 002-03631 Rev. *G
11. Commands .................................................................. 71
11.1 Command Set Summary............................................... 72
11.2 Identification Commands .............................................. 78
11.3 Register Access Commands......................................... 81
11.4 Read Memory Array Commands .................................. 92
11.5 Program Flash Array Commands ............................... 100
11.6 Erase Flash Array Commands.................................... 103
11.7 One Time Program Array Commands ........................ 110
11.8 Advanced Sector Protection Commands .................... 110
11.9 Reset Commands ....................................................... 117
11.10DPD Commands......................................................... 118
12. Data Integrity ............................................................. 120
12.1 Erase Endurance ........................................................ 120
12.2 Data Retention ............................................................ 120
16. Document History Page ........................................... 143
Sales, Solutions, and Legal Information .........................145
Worldwide Sales and Design Support ..........................145
Products .......................................................................145
PSoC® Solutions .........................................................145
Cypress Developer Community ....................................145
Technical Support ........................................................145
Page 3 of 145
S25FS064S
1.
Overview
1.1
General Description
The Cypress FS-S Family of devices are Flash non-volatile memory products using:
MirrorBit technology - that stores two data bits in each memory array transistor
Eclipse architecture - that dramatically improves program and erase performance
65 nm process lithography
The FS-S Family connects to a host system via a Serial Peripheral Interface (SPI). Traditional SPI single bit serial input and output
(Single I/O or SIO) is supported as well as optional two bit (Dual I/O or DIO) and four bit wide Quad I/O (QIO) and Quad Peripheral
Interface (QPI) commands. In addition, there are Double Data Rate (DDR) read commands for QIO and QPI that transfer address
and read data on both edges of the clock.
The FS-S Eclipse architecture features a Page Programming Buffer that allows up to 512 bytes to be programmed in one operation,
resulting in faster effective programming and erase than prior generation SPI program or erase algorithms.
Executing code directly from Flash memory is often called Execute-In-Place or XIP. By using FS-S Family devices at the higher
clock rates supported, with Quad or DDR-Quad commands, the instruction read transfer rate can match or exceed traditional parallel
interface, asynchronous, NOR Flash memories, while reducing signal count dramatically.
The FS-S Family products offer high densities coupled with the flexibility and fast performance required by a variety of mobile or
embedded applications. They are an excellent solution for systems with limited space, signal connections, and power. They are ideal
for code shadowing to RAM, executing code directly (XIP), and storing reprogrammable data.
1.2
Migration Notes
1.2.1
Features Comparison
The FS-S Family is command subset and footprint compatible with prior generation FL-S, and FL-P families. However, the power
supply and interface voltages are nominal 1.8V.
Table 1. Cypress SPI Families Comparison
Parameter
FS-S
FS-S
FL-S
FL-P
Technology Node
65nm
65nm
65nm
90nm
Architecture
MirrorBit® Eclipse™
MirrorBit® Eclipse™
MirrorBit® Eclipse™
MirrorBit®
Release Date
In Production
2H2015
In Production
In Production
Density
128Mb, 256Mb 512MB
64Mb
128Mb 256Mb 512Mb
32Mb - 256Mb
Bus Width
x1, x2, x4
x1, x2, x4
x1, x2, x4
x1, x2, x4
Supply Voltage
1.7V - 2.0V
1.7V - 2.0V
2.7V - 3.6V / 1.65V - 3.6V
VIO
2.7V - 3.6V
Normal Read Speed (SDR)
6MB/s (50MHz)
6MB/s (50MHz)
6MB/s (50MHz)
5MB/s (40MHz)
Fast Read Speed (SDR)
16.5MB/s (133MHz)
16.5MB/s (133MHz)
16.5MB/s (133MHz)
13MB/s (104MHz)
Dual Read Speed (SDR)
33MB/s (133MHz)
33MB/s (133MHz)
26MB/s (104MHz)
20MB/s (80MHz)
Quad Read Speed (SDR)
66MB/s (133MHz)
66MB/s (133MHz)
52MB/s (104MHz)
40MB/s (80MHz)
Quad Read Speed (DDR)
80MB/s (80 MHz)
80Mb/s(80Mhz )
66MB/s (66MHz)
-
Program Buffer Size
256B / 512B
256B / 512B
256B / 512B
256B
Erase Sector Size
64KB / 256KB
64KB / 256KB
64KB / 256KB
64KB / 256KB
Parameter Sector Size
4KB (option)
4KB (option)
4KB (option)
4KB
Sector Erase Rate (typ.)
500 KB/s
500 KB/s
500 KB/s
130 KB/s
Page Programming Rate
(typ.)
1.0 MB/s (256B)
1.2 MB/s (512B)
1.0 MB/s (256B)
1.2 MB/s (512B)
1.2 MB/s (256B)
1.5 MB/s (512B)
170 KB/s
OTP
1024B
1024B
1024B
506B
Advanced Sector Protection
Yes
Yes
Yes
No
Auto Boot Mode
No
No
Yes
No
Erase Suspend/Resume
Yes
Yes
Yes
No
Document Number: 002-03631 Rev. *G
Page 4 of 145
S25FS064S
Table 1. Cypress SPI Families Comparison (Continued)
Parameter
FS-S
FS-S
FL-S
FL-P
Program Suspend/Resume
Yes
Yes
Yes
No
Operating Temperature
°C / +105 °C / 40 °C to +85 °C / +105 °C
40 °C to +85 °C / +105 °C 40 °C to +85
+125° C
40 °C to +85 °C/+105 °C
Notes
1. FL-P column indicates FL129P MIO SPI device (for 128Mb density), FL128P does not support MIO, OTP, or 4KB sectors.
2. 64KB sector erase option only for 128Mb/256Mb density FL-P, FL-S and FS-S devices.
3. Refer to individual datasheets for further details.
1.2.2
Known Differences from Prior Generations
1.2.2.1
Error Reporting
FL-K and FL-P memories either do not have error status bits or do not set them if program or erase is attempted on a protected
sector. The FS-S and FL-S families do have error reporting status bits for program and erase operations. These can be set when
there is an internal failure to program or erase, or when there is an attempt to program or erase a protected sector. In these cases
the program or erase operation did not complete as requested by the command. The P_ERR or E_ERR bits and the WIP bit will be
set to and remain 1 in SR1V. The clear status register command must be sent to clear the errors and return the device to standby
state.
1.2.2.2
Secure Silicon Region (OTP)
The FS-S size and format (address map) of the One Time Program area is different from FL-K and FL-P generations. The method
for protecting each portion of the OTP area is different. For additional details see Secure Silicon Region (OTP) on page 63.
1.2.2.3
Configuration Register Freeze Bit
The configuration register-1 Freeze Bit CR1V[0], locks the state of the Block Protection bits (SR1NV[4:2] and SR1V[4:2]),
TBPARM_O bit (CR1NV[2]), and TBPROT_O bit (CR1NV[5]), as in prior generations. In the FS-S and FL-S families the Freeze Bit
also locks the state of the configuration register-1 BPNV_O bit (CR1NV[3]), and the Secure Silicon Region (OTP) area.
1.2.2.4
Sector Erase Commands
The command for erasing a 4KBytes sector is supported only for use on 4KBytes parameter sectors at the top or bottom of the FS-S
device address space.
The command for erasing an 8KByte area (two 4KBytes sectors) is not supported.
The command for erasing a 32KByte area (eight 4KBytes sectors) is not supported.
The sector erase command (SE) for FS-S 64KBytes sectors is supported when the configuration option for uniform 64KBytes sector
is selected or, when the hybrid configuration option for 4KBytes parameter sectors with 64KBytes uniform sectors is used. When the
hybrid option is in use, the 64KBytes erase command may be used to erase the 32KBytes of address space adjacent to the group of
eight 4KBytes sectors. The 64KBytes erase command in this case is erasing the 64KBytes sector that is partially overlaid by the
group of eight 4KBytes sectors without affecting the 4KBytes sectors. This provides erase control over the 32KBytes of address
space without also forcing the erase of the 4KBytes sectors. This is different behavior than implemented in the FL-S family. In the
FL-S family, the 64KBytes sector erase command can be applied to a 64KBytes block of 4KBytes sectors to erase the entire block of
parameter sectors in a single operation. In the FS-S, the parameter sectors do not fill an entire 64KBytes block so only the 4KBytes
parameter sector erase (20h) is used to erase parameter sectors.
The erase command for a 256KBytes sector replaces the 64KBytes erase command when the configuration option for 256 KBytes
uniform logical sectors is used.
1.2.2.5
Deep Power Down
A Deep Power Down (DPD) function is supported in the FS-S family devices.
1.2.2.6
WRR Single Register Write
In some legacy SPI devices, a Write Registers (WRR) command with only one data byte would update Status Register 1 and clear
some bits in Configuration Register 1, including the Quad mode bit. This could result in unintended exit from Quad mode. The FS-S
Family only updates Status Register 1 when a single data byte is provided. The Configuration Register 1 is not modified in this case.
Document Number: 002-03631 Rev. *G
Page 5 of 145
S25FS064S
1.2.2.7
Hold Input Not Supported
In some legacy SPI devices, the IO3 input has an alternate function as a HOLD# input used to pause information transfer without
stopping the serial clock. This function is not supported in the FS-S family.
1.2.2.8
Other Legacy Commands Not Supported
DDR Fast Read
DDR Dual I/O Read
1.2.2.9
New Features
The FS-S family introduces new features to Cypress SPI category memories:
Single 1.8V power supply for core and I/O voltage.
Configurable initial read latency (number of dummy cycles) for faster initial access time or higher clock rate read commands
QPI (QPI, 4-4-4) read mode in which all transfers are 4 bits wide, including instructions
JEDEC JESD216 Rev B standard, Serial Flash Discoverable Parameters (SFDP) that provide device feature and configuration
information.
Evaluate Erase Status command to determine if the last erase operation on a sector completed successfully. This command can
be used to detect incomplete erase due to power loss or other causes. This command can be helpful to Flash File System
software in file system recovery after a power loss.
Advanced Sector Protection (ASP) Permanent Protection. Also, when one of the two ASP protection modes is selected, all OTP
configuration bits in all registers are protected from further programming so that all OTP configuration settings are made
permanent. The OTP address space is not protected by the selection of an ASP protection mode. The Freeze bit (CR1V[0]) may
be used to protect the OTP Address Space.
1.3
Other Resources
1.3.1
Link to Cypress Flash Roadmap
www.cypress.com/Flash-Roadmap
1.3.2
Link to Software
www.cypress.com/software-and-drivers-cypress-flash-memory
1.3.3
Link to Application Notes
www.cypress.com/cypressappnotes
Document Number: 002-03631 Rev. *G
Page 6 of 145
S25FS064S
Hardware Interface
2.
Serial Peripheral Interface with Multiple Input / Output (SPI-MIO)
Many memory devices connect to their host system with separate parallel control, address, and data signals that require a large
number of signal connections and larger package size. The large number of connections increase power consumption due to so
many signals switching and the larger package increases cost.
The FS-S Family reduces the number of signals for connection to the host system by serially transferring all control, address, and
data information over 6 signals. This reduces the cost of the memory package, reduces signal switching power, and either reduces
the host connection count or frees host connectors for use in providing other features.
The FS-S Family uses the industry standard single bit Serial Peripheral Interface (SPI) and also supports optional extension
commands for two bit (Dual) and four bit (Quad) wide serial transfers. This multiple width interface is called SPI Multi-I/O or SPI-MIO.
3.
Signal Descriptions
3.1
Input/Output Summary
Table 2. Signal List
Signal Name
Type
Description
Input
Hardware Reset: Low = device resets and returns to standby state, ready to receive a command. The signal has
an internal pull-up resistor and may be left unconnected in the host system if not used.
SCK
Input
Serial Clock
CS#
Input
Chip Select
RESET#
SI / IO0
I/O
Serial Input for single bit data commands or IO0 for Dual or Quad commands.
SO / IO1
I/O
Serial Output for single bit data commands. IO1 for Dual or Quad commands.
I/O
Write Protect when not in Quad mode (CR1V[1] = 0 and SR1NV[7] = 1).
IO2 when in Quad mode (CR1V[1] = 1).
The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad
commands or write protection. If write protection is enabled by SR1NV[7] = 1 and CR1V[1] = 0, the host system is
required to drive WP# high or low during a WRR or WRAR command.
IO3_RESET#
I/O
IO3 in Quad-I/O mode, when Configuration Register-1 QUAD bit, CR1V[1] =1, and CS# is low.
RESET# when enabled by CR2V[5]=1 and not in Quad-I/O mode, CR1V[1] = 0, or when enabled in quad mode,
CR1V[1] = 1 and CS# is high.
The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad
commands or RESET#.
VCC
Supply
Power Supply.
VSS
Supply
Ground.
NC
Unused
Not Connected. No device internal signal is connected to the package connector nor is there any future plan to
use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed
Circuit Board (PCB). However, any signal connected to an NC must not have voltage levels higher than VCC.
RFU
Reserved
Reserved for Future Use. No device internal signal is currently connected to the package connector but there is
potential future use of the connector for a signal. It is recommended to not use RFU connectors for PCB routing
channels so that the PCB may take advantage of future enhanced features in compatible footprint devices.
Reserved
Do Not Use. A device internal signal may be connected to the package connector. The connection may be used
by Cypress for test or other purposes and is not intended for connection to any host system signal. Any DNU
signal related function will be inactive when the signal is at VIL. The signal has an internal pull-down resistor and
may be left unconnected in the host system or may be tied to VSS. Do not use these connections for PCB signal
routing channels. Do not connect any host system signal to this connection.
WP# / IO2
DNU
Note
4. Inputs with internal pull-ups or pull-downs internally drive less than 2uA. Only during power-up is the current larger at 150uA for 4uS.
Document Number: 002-03631 Rev. *G
Page 7 of 145
S25FS064S
3.2
Multiple Input / Output (MIO)
Traditional SPI single bit wide commands (Single or SIO) send information from the host to the memory only on the Serial Input (SI)
signal. Data may be sent back to the host serially on the Serial Output (SO) signal.
Dual or Quad Input / Output (I/O) commands send instructions to the memory only on the SI/IO0 signal. Address or data is sent from
the host to the memory as bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. Data is returned to the host
similarly as bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3.
QPI mode transfers all instructions, address, and data from the host to the memory as four bit (nibble) groups on IO0, IO1, IO2, and
IO3. Data is returned to the host similarly as four bit (nibble) groups on IO0, IO1, IO2, and IO3.
3.3
Serial Clock (SCK)
This input signal provides the synchronization reference for the SPI interface. Instructions, addresses, or data input are latched on
the rising edge of the SCK signal. Data output changes after the falling edge of SCK, in SDR commands, and after every edge in
DDR commands.
3.4
Chip Select (CS#)
The chip select signal indicates when a command is transferring information to or from the device and the other signals are relevant
for the memory device.
When the CS# signal is at the logic high state, the device is not selected and all input signals except the Reset# and IO3_Reset# are
ignored and all output signals are high impedance. The device will be in the Standby Power mode, unless an internal embedded
operation is in progress. An embedded operation is indicated by the Status Register-1 Write-In-Progress bit (SR1V[1]) set to 1, until
the operation is completed. Some example embedded operations are: Program, Erase, or Write Registers (WRR) operations.
Driving the CS# input to the logic low state enables the device, placing it in the Active Power mode. After Power-up, a falling edge on
CS# is required prior to the start of any command.
3.5
Serial Input (SI) / IO0
This input signal is used to transfer data serially into the device. It receives instructions, addresses, and data to be programmed.
Values are latched on the rising edge of serial SCK clock signal.
SI becomes IO0 - an input and output during Dual and Quad commands for receiving instructions, addresses, and data to be
programmed (values latched on rising edge of serial SCK clock signal) as well as shifting out data (on the falling edge of SCK, in
SDR commands, and on every edge of SCK, in DDR commands).
3.6
Serial Output (SO) / IO1
This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of the serial SCK clock
signal.
SO becomes IO1 - an input and output during Dual and Quad commands for receiving addresses, and data to be programmed
(values latched on rising edge of serial SCK clock signal) as well as shifting out data (on the falling edge of SCK, in SDR commands,
and on every edge of SCK, in DDR commands).
3.7
Write Protect (WP#) / IO2
When WP# is driven Low (VIL), during a WRR or WRAR command and while the Status Register Write Disable (SRWD_NV) bit of
Status Register-1 (SR1NV[7]) is set to a 1, it is not possible to write to Status Register-1 or Configuration Register-1 related
registers. In this situation, a WRR command is ignored, a WRAR command selecting SR1NV, SR1V, CR1NV, or CR1V is ignored,
and no error is set.
This prevents any alteration of the Block Protection settings. As a consequence, all the data bytes in the memory area that are
protected by the Block Protection feature are also hardware protected against data modification if WP# is Low during a WRR or
WRAR command with SRWD_NV set to 1.
The WP# function is not available when the Quad mode is enabled (CR1V[1]=1). The WP# function is replaced by IO2 for input and
output during Quad mode for receiving addresses, and data to be programmed (values are latched on rising edge of the SCK signal)
as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every edge of SCK, in DDR commands).
WP# has an internal pull-up resistance; when unconnected, WP# is at VIH and may be left unconnected in the host system if not
used for Quad mode or protection.
Document Number: 002-03631 Rev. *G
Page 8 of 145
S25FS064S
3.8
IO3_RESET#
IO3 is used for input and output during Quad mode (CR1V[1]=1) for receiving addresses, and data to be programmed (values are
latched on rising edge of the SCK signal) as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every
edge of SCK, in DDR commands).
The IO3_RESET# signal may also be used to initiate the hardware reset function when the reset feature is enabled by writing
Configuration Register-2 non-volatile bit 5 (CR2V[5]=1). The input is only treated as RESET# when the device is not in Quad-I/O
mode, CR1V[1] = 0, or when CS# is high. When Quad I/O mode is in use, CR1V[1]=1, and the device is selected with CS# low, the
IO3_RESET# is used only as IO3 for information transfer. When CS# is high, the IO3_RESET# is not in use for information transfer
and is used as the RESET# input. By conditioning the reset operation on CS# high during Quad mode, the reset function remains
available during Quad mode.
When the system enters a reset condition, the CS# signal must be driven high as part of the reset process and the IO3_RESET#
signal is driven low. When CS# goes high the IO3_RESET# input transitions from being IO3 to being the RESET# input. The reset
condition is then detected when CS# remains high and the IO3_RESET# signal remains low for tRP. If a reset is not intended, the
system is required to actively drive IO3_RESET# to high along with CS# being driven high at the end of a transfer of data to the
memory. Following transfers of data to the host system, the memory will drive IO3 high during tCS. This will ensure that IO3 / Reset
is not left floating or being pulled slowly to high by the internal or an external passive pull-up. Thus, an unintended reset is not
triggered by the IO3_RESET# not being recognized as high before the end of tRP.
The IO3_RESET# signal is unused when the reset feature is disabled (CR2V[5]=0).
The IO3_RESET# signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad mode
or the reset function. The internal pull-up will hold IO3_RESET# high after the host system has actively driven the signal high and
then stops driving the signal.
Note that IO3_RESET# cannot be shared by more than one SPI-MIO memory if any of them are operating in Quad I/O mode as IO3
being driven to or from one selected memory may look like a reset signal to a second non-selected memory sharing the same
IO3_RESET# signal.
3.9
RESET#
The RESET# input provides a hardware method of resetting the device to standby state, ready for receiving a command. When
RESET# is driven to logic low (VIL) for at least a period of tRP, the device starts the hardware reset process.
The RESET# input initiates the reset operation when transitions from VIH to VIL for > tRP, the device will reset register states in the
same manner as power-on reset but, does not go through the full reset process that is performed during POR. The hardware reset
process requires a period of tRPH to complete.RESET# may be asserted low at any time.
RESET# has an internal pull-up resistor and may be left unconnected in the host system if not used. The internal pull-up will hold
Reset high after the host system has actively driven the signal high and then stops driving the signal.
The RESET# input is not available on all packages options. When not available the RESET# input of the device is tied to the inactive
state.
When using the RESET# and not in QIO or QPI mode, do not use the IO3/RESET# pin.
3.10
Voltage Supply (VCC)
VCC is the voltage source for all device internal logic. It is the single voltage used for all device internal functions including read,
program, and erase.
3.11
Supply and Signal Ground (VSS)
VSS is the common voltage drain and ground reference for the device core, input signal receivers, and output drivers.
3.12
Not Connected (NC)
No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The
connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB).
3.13
Reserved for Future Use (RFU)
No device internal signal is currently connected to the package connector but there is potential future use of the connector. It is
recommended to not use RFU connectors for PCB routing channels so that the PCB may take advantage of future enhanced
features in compatible footprint devices.
Document Number: 002-03631 Rev. *G
Page 9 of 145
S25FS064S
3.14
Do Not Use (DNU)
A device internal signal may be connected to the package connector. The connection may be used by Cypress for test or other
purposes and is not intended for connection to any host system signal. Any DNU signal related function will be inactive when the
signal is at VIL. The signal has an internal pull-down resistor and may be left unconnected in the host system or may be tied to VSS.
Do not use these connections for PCB signal routing channels. Do not connect any host system signal to these connections.
3.15
System Block Diagrams
Figure 1. Bus Master and Memory Devices on the SPI Bus - Single Bit Data Path
RESET#
WP#
RESET#
WP#
SI
SO
SCK
SI
SO
SCK
CS2#
CS1#
CS#
CS#
SPI
Bus Master
SPI Flash
SPI Flash
Figure 2. Bus Master and Memory Devices on the SPI Bus - Dual Bit Data Path
RESET#
WP#
RESET#
WP#
IO1
IO0
SCK
IO1
IO0
SCK
CS2#
CS1#
CS#
CS#
SPI
Bus Master
SPI Flash
SPI Flash
Figure 3. Bus Master and Memory Devices on the SPI Bus - Quad Bit Data Path - Separate RESET#
RESET#
IO3
IO2
IO1
IO0
SCK
RESET#
IO3
IO2
IO1
IO0
SCK
CS2#
CS1#
SPI
Bus Master
Document Number: 002-03631 Rev. *G
CS#
CS#
SPI Flash
SPI Flash
Page 10 of 145
S25FS064S
Figure 4. Bus Master and Memory Devices on the SPI Bus - Quad Bit Data Path - I/O3_RESET#
IO3 / RESET#
IO2
IO1
IO0
SCK
CS#
SPI
Bus Master
Document Number: 002-03631 Rev. *G
IO3_RESET#
IO2
IO1
IO0
SCK
CS#
SPI Flash
Page 11 of 145
S25FS064S
4.
Signal Protocols
4.1
SPI Clock Modes
4.1.1
Single Data Rate (SDR)
The FS-S Family can be driven by an embedded microcontroller (bus master) in either of the two following clocking modes.
Mode 0 with Clock Polarity (CPOL) = 0 and, Clock Phase (CPHA) = 0
Mode 3 with CPOL = 1 and, CPHA = 1
For these two modes, input data into the device is always latched in on the rising edge of the SCK signal and the output data is
always available from the falling edge of the SCK clock signal.
The difference between the two modes is the clock polarity when the bus master is in standby mode and not transferring any data.
SCK will stay at logic low state with CPOL = 0, CPHA = 0
SCK will stay at logic high state with CPOL = 1, CPHA = 1
Figure 5. SPI SDR Modes Supported
CPOL=0_CPHA=0_SCLK
CPOL=1_CPHA=1_SCLK
CS#
SI_IO0
MSB
SO_IO1
MSB
Timing diagrams throughout the remainder of the document are generally shown as both mode 0 and 3 by showing SCK as both
high and low at the fall of CS#. In some cases a timing diagram may show only mode 0 with SCK low at the fall of CS#. In such a
case, mode 3 timing simply means clock is high at the fall of CS# so no SCK rising edge set up or hold time to the falling edge of
CS# is needed for mode 3.
SCK cycles are measured (counted) from one falling edge of SCK to the next falling edge of SCK. In mode 0 the beginning of the
first SCK cycle in a command is measured from the falling edge of CS# to the first falling edge of SCK because SCK is already low
at the beginning of a command.
4.1.2
Double Data Rate (DDR)
Mode 0 and Mode 3 are also supported for DDR commands. In DDR commands, the instruction bits are always latched on the rising
edge of clock, the same as in SDR commands. However, the address and input data that follow the instruction are latched on both
the rising and falling edges of SCK. The first address bit is latched on the first rising edge of SCK following the falling edge at the end
of the last instruction bit. The first bit of output data is driven on the falling edge at the end of the last access latency (dummy) cycle.
SCK cycles are measured (counted) in the same way as in SDR commands, from one falling edge of SCK to the next falling edge of
SCK. In mode 0 the beginning of the first SCK cycle in a command is measured from the falling edge of CS# to the first falling edge
of SCK because SCK is already low at the beginning of a command.
Figure 6. SPI DDR Modes Supported
CPOL=0_CPHA=0_SCLK
CPOL=1_CPHA=1_SCLK
CS#
Transfer_Phase
IO0
Instruction
Address
Inst. 0
Mode
Dummy / DLP
A28 A24
A0 M4 M0
DLP.
DLP.
D0 D1
IO1
A29 A25
A1 M5 M1
DLP.
DLP.
D0 D1
IO2
A30 A26
A2 M6 M2
DLP.
DLP.
D0 D1
IO3
A31 A27
A3 M7 M3
DLP.
DLP.
D0 D1
Document Number: 002-03631 Rev. *G
Inst. 7
Page 12 of 145
S25FS064S
4.2
Command Protocol
All communication between the host system and FS-S Family memory devices is in the form of units called commands.
All commands begin with an 8-bit instruction that selects the type of information transfer or device operation to be performed.
Commands may also have an address, instruction modifier, latency period, data transfer to the memory, or data transfer from the
memory. All instruction, address, and data information is transferred sequentially between the host system and memory device.
Command protocols are also classified by a numerical nomenclature using three numbers to reference the transfer width of three
command phases:
instruction
address and instruction modifier (continuous read mode bits)
data
Single bit wide commands start with an instruction and may provide an address or data, all sent only on the SI signal. Data may be
sent back to the host serially on the SO signal. This is referenced as a 1-1-1 command protocol for single bit width instruction, single
bit width address and modifier, single bit data.
Dual Output or Quad Output commands provide an address sent from the host as serial on SI (IO0) then followed by dummy cycles.
Data is returned to the host as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. This is referenced as
1-1-2 for Dual-O and 1-1-4 for Quad-O command protocols.
Dual or Quad Input / Output (I/O) commands provide an address sent from the host as bit pairs on IO0 and IO1 or, four bit (nibble)
groups on IO0, IO1, IO2, and IO3. Data is returned to the host similarly as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0,
IO1, IO2, and IO3. This is referenced as 1-2-2 for Dual I/O and 1-4-4 for Quad I/O command protocols.
The FS-S Family also supports a QPI mode in which all information is transferred in 4-bit width, including the instruction, address,
modifier, and data. This is referenced as a 4-4-4 command protocol.
Commands are structured as follows:
Each command begins with CS# going low and ends with CS# returning high. The memory device is selected by the host driving
the Chip Select (CS#) signal low throughout a command.
The serial clock (SCK) marks the transfer of each bit or group of bits between the host and memory.
Each command begins with an eight bit (byte) instruction. The instruction selects the type of information transfer or device
operation to be performed. The instruction transfers occur on SCK rising edges. However, some read commands are modified by
a prior read command, such that the instruction is implied from the earlier command. This is called Continuous Read Mode. When
the device is in continuous read mode, the instruction bits are not transmitted at the beginning of the command because the
instruction is the same as the read command that initiated the Continuous Read Mode. In Continuous Read mode the command
will begin with the read address. Thus, Continuous Read Mode removes eight instruction bits from each read command in a
series of same type read commands.
The instruction may be stand alone or may be followed by address bits to select a location within one of several address spaces
in the device. The instruction determines the address space used. The address may be either a 24 bit or a 32 bit, byte boundary,
address. The address transfers occur on SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands.
In legacy SPI mode, the width of all transfers following the instruction are determined by the instruction sent. Following transfers
may continue to be single bit serial on only the SI or Serial Output (SO) signals, they may be done in two bit groups per (dual)
transfer on the IO0 and IO1 signals, or they may be done in 4 bit groups per (quad) transfer on the IO0-IO3 signals. Within the
dual or quad groups the least significant bit is on IO0. More significant bits are placed in significance order on each higher
numbered IO signal. Single bits or parallel bit groups are transferred in most to least significant bit order.
In QPI mode, the width of all transfers is a 4-bit wide (quad) transfer on the IO0-IO3 signals.
Dual and Quad I/O read instructions send an instruction modifier called Continuous Read mode bits, following the address, to
indicate whether the next command will be of the same type with an implied, rather than an explicit, instruction. These mode bits
initiate or end the continuous read mode. In continuous read mode, the next command thus does not provide an instruction byte,
only a new address and mode bits. This reduces the time needed to send each command when the same command type is
repeated in a sequence of commands. The mode bit transfers occur on SCK rising edge, in SDR commands, or on every SCK
edge, in DDR commands.
The address or mode bits may be followed by write data to be stored in the memory device or by a read latency period before
read data is returned to the host.
Document Number: 002-03631 Rev. *G
Page 13 of 145
S25FS064S
Write data bit transfers occur on SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands.
SCK continues to toggle during any read access latency period. The latency may be zero to several SCK cycles (also referred to
as dummy cycles). At the end of the read latency cycles, the first read data bits are driven from the outputs on SCK falling edge at
the end of the last read latency cycle. The first read data bits are considered transferred to the host on the following SCK rising
edge. Each following transfer occurs on the next SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands.
If the command returns read data to the host, the device continues sending data transfers until the host takes the CS# signal high.
The CS# signal can be driven high after any transfer in the read data sequence. This will terminate the command.
At the end of a command that does not return data, the host drives the CS# input high. The CS# signal must go high after the
eighth bit, of a stand alone instruction or, of the last write data byte that is transferred. That is, the CS# signal must be driven high
when the number of bits after the CS# signal was driven low is an exact multiple of eight bits. If the CS# signal does not go high
exactly at the eight bit boundary of the instruction or write data, the command is rejected and not executed.
All instruction, address, and mode bits are shifted into the device with the Most Significant Bits (MSB) first. The data bits are
shifted in and out of the device MSB first. All data is transferred in byte units with the lowest address byte sent first. Following
bytes of data are sent in lowest to highest byte address order i.e. the byte address increments.
All attempts to read the flash memory array during a program, erase, or a write cycle (embedded operations) are ignored. The
embedded operation will continue to execute without any affect. A very limited set of commands are accepted during an
embedded operation. These are discussed in the individual command descriptions.
Depending on the command, the time for execution varies. A command to read status information from an executing command is
available to determine when the command completes execution and whether the command was successful.
4.2.1
Command Sequence Examples
Figure 7. Stand Alone Instruction Command
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Figure 8. Single Bit Wide Input Command
CS#
SCLK
SO_IO1-IO3
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO
Phase
Instruction
Input Data
Figure 9. Single Bit Wide Output Command without latency
CS#
SCLK
SI
7
6
5
4
3
SO
Phase
Document Number: 002-03631 Rev. *G
2
1
0
7
Instruction
6
5
4
3
Data 1
2
1
0
7
6
5
4
3
2
1
0
Data 2
Page 14 of 145
S25FS064S
Figure 10. Single Bit Wide I/O Command with latency
CS#
SCLK
SI
7
6
5
4
3
2
1
0 31
1
0
SO
7
Phase
Instruction
Address
6
5
4
Dummy Cycles
3
2
1
0
Data 1
Figure 11. Dual Output Read Command
CS#
SCK
IO0
7
6
5
4
3
2
1
0
31
1
0
IO1
Phase
Instruction
Address
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
Dummy Cycles
Data 1
Data 2
Figure 12. Quad Output Read Command
CS#
SCK
IO0
4
0
4
0
4
0
4
0
4
0
4
IO1
7
6
5
4
3
2
1
0
31
1
0
5
1
5
1
5
1
5
1
5
1
5
IO2
6
2
6
2
6
2
6
2
6
2
6
3
7
3
7
3
7
3
7
3
7
IO3
7
Phase
Instruction
Address
Dummy
D1
D2
D3
D4
D5
Figure 13. Dual I/O Command
CS#
SCK
IO0
7
6
5
4
3
2
1
0
IO1
Phase
30
2
0
6
4
2
0
6
4
2
0
6
4
2
0
31
3
1
7
5
3
1
7
5
3
1
7
5
3
1
Instruction
Address
Mode
Dum
Data 1
Data 2
Figure 14. Quad I/O Command
CS#
SCLK
IO0
28
4
0
4
0
4
0
4
0
4
0
4
0
IO1
29
5
1
5
1
5
1
5
1
5
1
5
1
IO2
30
6
2
6
2
6
2
6
2
6
2
6
2
IO3
31
7
3
7
3
7
3
7
3
7
3
7
Phase
7
6
5
4
3
Instruction
2
1
0
Address
Mode
Dummy
D1
D2
D3
3
D4
Note
5. The gray bits are optional, the host does not have to drive bits during that cycle.
Document Number: 002-03631 Rev. *G
Page 15 of 145
S25FS064S
Figure 15. Quad I/O Read Command in QPI Mode
CS#
SCLK
IO0
4
0
28
4
0
4
0
4
0
4
0
4
0
4
0
IO1
5
1
29
5
1
5
1
5
1
5
1
5
1
5
1
IO2
6
2
30
6
2
6
2
6
2
6
2
6
2
6
2
IO3
7
3
31
7
3
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Mode
Dummy
D1
D2
D3
D4
Note
6. The gray bits are optional, the host does not have to drive bits during that cycle.
Figure 16. DDR Quad I/O Read Command
CS#
SCLK
IO0
7
6
5
0 2824201612 8 4 0 4 0
7 6 5 4 3 2 1 0 4 0 4 0
IO1
2925211713 9 5 1 5 1
7 6 5 4 3 2 1 0 5 1 5 1
IO2
302622181410 6 2 6 2
7 6 5 4 3 2 1 0 6 2 6 2
IO3
312723191511 7 3 7 3
7 6 5 4 3 2 1 0 7 3 7 3
Phase
4
3
2
1
Instruction
Address
Mode
Dummy
DLP
D1 D2
Note
7. The gray bits are optional, the host does not have to drive bits during that cycle.
Figure 17. DDR Quad I/O Read Command QPI Mode
CS#
SCLK
IO0
4
0
28 24 20 16 12
8
4
0
4
0
7
6
5
4
3
2
1
0
4
0
4
0
IO1
5
1
29 25 21 17 13
9
5
1
5
1
7
6
5
4
3
2
1
0
5
1
5
1
IO2
6
2
30 26 22 18 14 10
6
2
6
2
7
6
5
4
3
2
1
0
6
2
6
2
IO3
7
3
31 27 23 19 15 11
7
3
7
3
7
6
5
4
3
2
1
0
7
3
7
Phase
Instruct.
Address
Mode
Dummy
DLP
D1
3
D2
Note
8. The gray bits are optional, the host does not have to drive bits during that cycle.
Additional sequence diagrams, specific to each command, are provided in Commands on page 71.
Document Number: 002-03631 Rev. *G
Page 16 of 145
S25FS064S
4.3
Interface States
This section describes the input and output signal levels as related to the SPI interface behavior.
Table 3. Interface States Summary
Interface State
VCC
SCK
CS#
RESET#
IO3_RESET#
WP# /
IO2
SO /
IO1
SI / IO0
Power-Off
tRP, following
tCS, the device will reset register states in the same manner as power-on reset but, does not go through the full reset process that is
performed during POR.
The hardware reset process requires a period of tRPH to complete. If the POR process did not complete correctly for any reason
during power-up (tPU), RESET# going low will initiate the full POR process instead of the hardware reset process and will require tPU
to complete the POR process.
The software reset command (RSTEN 66h followed by RST 99h) is independent of the state of RESET # and IO3_RESET#. If
RESET# and IO3_RESET# is high or unconnected, and the software reset instructions are issued, the device will perform software
reset.
Additional IO3 RESET# notes:
If both RESET# and IO3_RESET# input options are available use only one reset option in your system. IO3_RESET# input reset
operation can be disable by setting CR2NV[7] = 0 (See Table 32 on page 54) setting the IO3_RESET to only operate as IO3. The
RESET# input can be disable by not connecting or tying the RESET# input to VIH.
RESET# or IO3_RESET# must be high for tRS following tPU or tRPH, before going low again to initiate a hardware reset.
When IO3_RESET# is driven low for at least a minimum period of time (tRP), following tCS, the device terminates any operation in
progress, makes all outputs high impedance, and ignores all read/write commands for the duration of tRPH. The device resets the
interface to standby state.
If Quad or QPI mode and the IO3_RESET# feature are enabled, the host system should not drive IO3 low during tCS, to avoid
driver contention on IO3. Immediately following commands that transfer data to the host in Quad or QPI mode, e.g. Quad I/O
Read, the memory drives IO3_RESET# high during tCS, to avoid an unintended Reset operation. Immediately following
commands that transfer data to the memory in Quad mode, e.g. Page Program, the host system should drive IO3_RESET# high
during tCS, to avoid an unintended Reset operation.
If Quad mode is not enabled, and if CS# is low at the time IO3_RESET# is asserted low, CS# must return high during tRPH before
it can be asserted low again after tRH.
Table 13. Hardware Reset Parameters
Parameter
Description
Limit
Time
Unit
tRS
Reset Setup - Prior Reset end and RESET# high before
RESET# low
Min
50
ns
tRPH
Reset Pulse Hold - RESET# low to CS# low
Min
35
µs
tRP
RESET# Pulse Width
Min
200
ns
tRH
Reset Hold - RESET# high before CS# low
Min
50
ns
Notes
21.RESET# and IO3_RESET# Low is ignored during Power-up (tPU). If Reset# is asserted during the end of tPU, the device will remain in the reset state and tRH will
determine when CS# may go Low.
22.If Quad mode is enabled, IO3_RESET# Low is ignored during tCS.
23.Sum of tRP and tRH must be equal to or greater than tRPH.
Document Number: 002-03631 Rev. *G
Page 31 of 145
S25FS064S
Figure 28. Hardware Reset using RESET# Input
tRP
RESET#
Any prior reset
tRH
tRH
tRPH
tRS
tRPH
CS#
Figure 29. Hardware Reset when Quad or QPI Mode is not enabled and IO3_RESET# is Enabled
tRP
IO3_RESET#
Any prior reset
tRH
tRH
tRPH
tRS
tRPH
CS#
Figure 30. Hardware Reset when Quad or QPI Mode and IO3_RESET# are Enabled
tDIS
IO3_RESET#
tRP
Reset Pulse
tRH
tCS
CS#
tRPH
Prior access using IO3 for data
Document Number: 002-03631 Rev. *G
Page 32 of 145
S25FS064S
6.4
SDR AC Characteristics
Table 14. SDR AC Characteristics
Symbol
Min
Max
Unit
FSCK, R
SCK Clock Frequency for READ and 4READ instructions
DC
50
MHz
FSCK, C
SCK Clock Frequency for the following dual and quad commands: DOR,
4DOR, DIOR, 4DIOR, QOR, 4QOR, QIOR, 4QIOR
DC
133
MHz
PSCK
Parameter
SCK Clock Period
1/ FSCK
tWH, tCH
Clock High Time
50% PSCK -5%
50% PSCK +5%
ns
tWL, tCL
Clock Low Time
50% PSCK -5%
50% PSCK +5%
ns
tCRT, tCLCH
Clock Rise Time (slew rate)
0.1
V/ns
tCFT, tCHCL
Clock Fall Time (slew rate)
0.1
V/ns
10
20 (28)
50
ns
tCS
CS# High Time (Read Instructions)
CS# High Time (Read Instructions when Reset feature and Quad mode are
both enabled)
CS# High Time (Program/Erase Instructions)
tCSS
CS# Active Setup Time (relative to SCK)
2
ns
tCSH
CS# Active Hold Time (relative to SCK)
3
ns
tSU
Data in Setup Time
2
ns
tHD
Data in Hold Time
3
tV
Clock Low to Output Valid
tHO
Output Hold Time
tDIS
Output Disable Time (27)
Output Disable Time (when Reset feature and Quad mode are both enabled)
ns
8 (25)
6 (26)
6.5 (26)(29)
1
ns
ns
8
20 (28)
ns
tWPS
WP# Setup Time (24)
20
ns
tWPH
WP# Hold Time (24)
100
ns
tDPD
CS# High to Power-down Mode
3
µs
tRES
CS# High to Standby Mode without Electronic Signature
Read
30
µs
Notes
24.Only applicable as a constraint for WRR or WRAR instruction when SRWD is set to a 1.
25.Full VCC range and CL = 30 pF.
26.Full VCC range and CL = 15 pF.
27.Output HI-Z is defined as the point where data is no longer driven.
28.tCS and tDIS require additional time when the Reset feature and Quad mode are enabled (CR2V[5]=1 and CR1V[1]=1).
29.SOIC package.
Document Number: 002-03631 Rev. *G
Page 33 of 145
S25FS064S
6.4.1
Clock Timing
Figure 31. Clock Timing
PSCK
tCL
tCH
VIH min
VCC / 2
VIL max
tCFT
tCRT
6.4.2
Input / Output Timing
Figure 32. SPI Single Bit Input Timing
tCS
CS#
tCSH
tCSS
tCSH
tCSS
SCK
tSU
tHD
SI
MSB IN
LSB IN
SO
Figure 33. SPI Single Bit Output Timing
tCS
CS#
SCK
SI
tV
SO
Document Number: 002-03631 Rev. *G
tHO
MSB OUT
tDIS
LSB OUT
Page 34 of 145
S25FS064S
Figure 34. SDR MIO Timing
tCS
CS#
tCSS
tCSH
tCSS
SCLK
tSU
tHD
IO
MSB IN
tV
LSB IN
tHO
tV
MSB OUT .
tDIS
LSB OUT
Figure 35. WP# Input Timing
CS#
tWPS
tWPH
WP#
SCLK
SI
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO
Phase
WRR or WRAR Instruction
Document Number: 002-03631 Rev. *G
Input Data
Page 35 of 145
S25FS064S
6.5
DDR AC Characteristics.
Table 15. DDR AC Characteristics
Symbol
FSCK, R
Parameter
SCK Clock Frequency for DDR READ instruction
Min
Max
Unit
DC
80
MHz
PSCK, R
SCK Clock Period for DDR READ instruction
1/ FSCK
ns
tWH, tCH
Clock High Time
45% PSCK
ns
tWL, tCL
Clock Low Time
45% PSCK
ns
tCS
CS# High Time (Read Instructions)
CS# High Time (Read Instructions when Reset feature is
enabled)
10
20
ns
tCSS
CS# Active Setup Time (relative to SCK)
2
ns
tCSH
CS# Active Hold Time (relative to SCK)
3
ns
tSU
IO in Setup Time
1.5
ns
tHD
IO in Hold Time
1.5
ns
Clock Low to Output Valid
1.5
tHO
Output Hold Time
1.5
tDIS
Output Disable Time
Output Disable Time (when Reset feature is enabled)
tV
tIO_skew
6.0 (30)
6.5 (30)(32)
ns
ns
First IO to last IO data valid time (31)
8
20
ns
600
700(32)
ps
tDPD
CS# High to Power-down Mode
3
µs
tRES
CS# High to Standby Mode without Electronic Signature Read
30
µs
Notes
30.CL = 15 pF.
31.Not Tested.
32.SOIC package.
6.5.1
0DDR
Input Timing
Figure 36. SPI DDR Input Timing
tCS
CS#
tCSH
tCSS
tCSH
tCSS
SCK
tHD
tSU
tHD
tSU
IO's
Inst. MSB
Document Number: 002-03631 Rev. *G
MSB IN
LSB IN
Page 36 of 145
S25FS064S
6.5.2
DDR Output Timing
Figure 37. SPI DDR Output Timing
tCS
CS#
SCK
tHO
IO's
6.5.3
tV
tV
tDIS
MSB
LSB
DDR Data Valid Timing Using DLP
Figure 38. SPI DDR Data Valid Window
pSCK
tCL
t CH
SCK
t IO_SKEW
tV
t OTT
IO Slow
Slow D1
Slow
.
D2
Slow D2
tV
IO Fast
Fast D1
Fast D2
tV_min
t HO
t DV
IO_valid
D1
D2
The minimum data valid window (tDV) and tV minimum can be calculated as follows:
tDV = Minimum half clock cycle time (tCLH) (33)- tOTT(35) - tIO_SKEW(34)
tV _min = tHO + tIO_SKEW + tOTT
Example:
80 MHz clock frequency = 12.5 ns clock period, DDR operations and duty cycle of 45% or higher
tCLH = 0.45 x PSCK = 0.45 x 12.5 ns = 5.625 ns
Bus impedance of 45 ohm and capacitance of 22 pf, with timing reference of 0.75VCC, the rise time from 0 to 1 or fall time 1 to 0 is
1.4(38) x RC time constant (Tau)(37) = 1.4 x 0.99 ns = 1.39 ns
tOTT = rise time + fall time = 1.39 ns + 1.39 ns = 2.78 ns.
Data Valid Window
tDV = tCLH - tIO_SKEW - tOTT = 5.625 ns - 400 ps - 2.78 ns = 2.45 ns
tV Minimum
tV _min = tHO + tIO_SKEW + tOTT = 1.0 ns + 400 ps + 2.78 ns = 4.38 ns
Notes
33. tCLH is the shorter duration of tCL or tCH.
34. tIO_SKEW is the maximum difference (delta) between the minimum and maximum tV (output valid) across all IO signals.
35. tOTT is the maximum Output Transition Time from one valid data value to the next valid data value on each IO. tOTT is dependent on system level considerations
including:
a. Memory device output impedance (drive strength).
b. System level parasitics on the IOs (primarily bus capacitance).
c. Host memory controller input VIH and VIL levels at which 0 to 1 and 1 to 0 transitions are recognized.
d. tOTT is not a specification tested by Cypress, it is system dependent and must be derived by the system designer based on the above considerations.
36. tDV is the data valid window.
37. Tau = R (Output Impedance) x C (Load capacitance).
38. Multiplier of Tau time for voltage to rise to 75% of VCC.
Document Number: 002-03631 Rev. *G
Page 37 of 145
S25FS064S
7.
Embedded Algorithm Performance Tables
Table 16. Program and Erase Performance
Symbol
Typ (39)
Max
Unit
tW
Non-volatile Register Write Time
240
750
ms
tPP
Page Programming (512 Bytes)
Page Programming (256Bytes)
475
360
2000
2000
µs
Sector Erase Time (64KB or 4KB physical sectors)
240
725
ms
Sector Erase Time (256KB logical sectors = 4x64K physical sectors)
930
2900
ms
Bulk Erase Time (S25FS064S)
30
94
sec
Evaluate Erase Status Time (64 KB or 4KB physical sectors)
20
25
Evaluate Erase Status Time (256 KB physical or logical sectors)
80
100
tSE
tBE
tEES
Parameter
Min
µs
Notes
39.Typical program and erase times assume the following conditions: 25 °C, VCC = 1.8 V; random data pattern.
40.The programming time for any OTP programming command is the same as tPP. This includes OTPP 42h, PNVDLR 43h, ASPP 2Fh, and PASSP E8h.
41.The programming time for the PPBP E3h command is the same as tPP.. The erase time for PPBE E4h command is the same as tSE.
Table 17. Program or Erase Suspend AC Parameters
Parameter
Typical
Suspend Latency (tSL)
Resume to next Program Suspend
(tRS)
100
Document Number: 002-03631 Rev. *G
Max
Unit
50
µs
The time from Suspend command until the WIP bit is 0
Comments
µs
The time needed to issue the next Suspend command but ≥ typical periods are
needed for Program or Erase to progress to completion.
Page 38 of 145
S25FS064S
8.
Physical Interface
8.1
Connection Diagrams
8.1.1
8 Connector Packages
Figure 39. 8-Pin Plastic Small Outline Package (SOIC8)
CS#
1
S O / I O 1
2
8
VCC
7
I O 3 / R E S E T #
S O IC
W P # / I O 2
3
6
SCK
VSS
4
5
S I / I O 0
Figure 40. 8-Pad LGA 5x6 (W9A008), Top View
CS#
1
8
VCC
S O / IO 1
2
7
IO 3 / R E S E T #
W P # / IO 2
3
6
SCK
VSS
4
5
S I / IO 0
LG A
Note
42.The RESET# input has an internal pull-up and may be left unconnected in the system if quad mode and hardware reset are not in use.
8.1.2
BGA Ball Footprint
Figure 41. 24-Ball BGA, 5x5 Ball Footprint (FAB024), Top View
1
2
3
4
5
NC
NC
RESET#
NC
DNU
SCK
VSS
VCC
NC
DNU
CS#
RFU
W P # / IO 2
NC
DNU
S O / IO 1
S I/ IO 0
IO 3 /R E S E T #
NC
NC
NC
NC
RFU
NC
A
B
C
D
E
Note
43.The RESET# input has an internal pull-up and may be left unconnected in the system if quad mode and hardware reset are not in use.
8.1.3
Special Handling Instructions for FBGA Packages
Flash memory devices in BGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data
integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.
Document Number: 002-03631 Rev. *G
Page 39 of 145
S25FS064S
8.2
Physical Diagrams
8.2.1
SOIC 8-Lead, 208 mil Body Width (SOC008)
NOTES:
DIMENSIONS
SYMBOL
NOM.
MAX.
A
MIN.
1.75
-
2.16
A1
0.05
-
0.25
A2
1.70
-
1.90
b
0.36
-
0.48
b1
0.33
-
0.46
c
0.19
-
0.24
c1
0.15
-
0.20
D
5.28 BSC
E
8.00 BSC
E1
5.28 BSC
e
1.27 BSC
L
-
0.51
L1
1.36 REF
L2
0.25 BSC
0.76
8
N
0
0°
-
8°
01
5°
-
15°
02
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.
3. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER
END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE.
D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H.
4. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS
D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD
FLASH, BUT INCLUSIVE OF ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF
THE PLASTIC BODY.
5. DATUMS A AND B TO BE DETERMINED AT DATUM H.
6. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED
PACKAGE LENGTH.
7. THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO
0.25 mm FROM THE LEAD TIP.
8. DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT
MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE
LOWER RADIUS OF THE LEAD FOOT.
9. THIS CHAMFER FEATURE IS OPTIONAL. IF IT IS NOT PRESENT, THEN A PIN 1
IDENTIFIER MUST BE LOCATED WITHIN THE INDEX AREA INDICATED.
10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED FROM THE
SEATING PLANE.
0-8° REF
002-15548 **
Document Number: 002-03631 Rev. *G
Page 40 of 145
S25FS064S
8.2.2
LGA 8-contact 5 x 6 mm (W9A008)
D
8
A
6
7
(datum A)
B
5
1
3
2
4
NXL
E
PIN 1 INDEX
AREA 5
0.10 C
2X
2X
1
0.10 C
3
2
4
8
TOP VIEW
6
7
5
NXb
e
0.10 M C A B
0.05 M C
(ND-1) X e
SEE DETAIL A
3
4
(datum A)
BOTTOM VIEW
L
C
0.10 C
0.08 C
L1
e/2
e
SEATING PLANE
SIDE VIEW
TERMINAL TIP
3
DETAIL A
DIMENSIONS
SYMBOL
A
NOM.
MIN.
e
1.27 BSC
N
8
ND
4
NOTES:
MAX.
LAND WIDTH IN A PLANE PARALLEL TO DATUM C.
L
0.45
0.50
0.55
b
0.35
0.40
0.45
D
5.00 BSC
E
6.00 BSC
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. N IS THE TOTAL NUMBER OF LANDS.
3. DIMENSION "b" IS MEASURED AT THE MAXIMUM
A
0.70
0.75
0.80
L1
0.00
-
0.15
4. ND REFERS TO THE NUMBER OF LANDS ON D SIDE.
5. PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE
INDICATED ZONE.
002-10839 *B
Document Number: 002-03631 Rev. *G
Page 41 of 145
S25FS064S
8.2.3
Ball Grid Array 24-ball 6 x 8 mm (FAB024)
NOTES:
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
A
-
-
1.20
A1
0.20
-
-
1.
DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
2.
ALL DIMENSIONS ARE IN MILLIMETERS.
3.
BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
D
8.00 BSC
E
6.00 BSC
4.
e REPRESENTS THE SOLDER BALL GRID PITCH.
D1
4.00 BSC
5.
SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
E1
4.00 BSC
MD
5
ME
5
N
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
6
24
b
0.35
0.40
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE
PARALLEL TO DATUM C.
0.45
7
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE
eE
1.00 BSC
eD
1.00 BSC
POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
SD
0.00 BSC
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
SE
0.00 BSC
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND
"SE" = eE/2.
8.
"+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
9.
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK,
METALLIZED MARK INDENTATION OR OTHER MEANS.
002-15534 **
Document Number: 002-03631 Rev. *G
Page 42 of 145
S25FS064S
Software Interface
This section discusses the features and behaviors most relevant to host system software that interacts with FS-S Family memory
devices.
9.
Address Space Maps
9.1
Overview
9.1.1
Extended Address
The FS-S Family supports 32 bit (4 Byte) addresses to enable higher density devices than allowed by previous generation (legacy)
SPI devices that supported only 24 bit (3 Byte) addresses. A 24 bit, byte resolution, address can access only 16 MBytes (128 Mbits)
maximum density. A 32 bit, byte resolution, address allows direct addressing of up to a 4 GBytes (32 Gbits) address space and
allows for software compatibility for device from 4 MBytes (32 Mbits) to 4 GBytes (32 Gbits).
Legacy commands continue to support 24 bit addresses for backward software compatibility. Extended 32 bit addresses are
enabled in two ways:
Extended address mode — a volatile configuration register bit that changes all legacy commands to expect 32 bits of address
supplied from the host system.
4 Byte address commands — that perform both legacy and new functions, which always expect 32 bit address.
The default condition for extended address mode, after power-up or reset, is controlled by a non-volatile configuration bit. The
default extended address mode may be set for 24 or 32 bit addresses. This enables legacy software compatible access to the first
128 Mbits of a device or for the device to start directly in 32 bit address mode.
The 64Mb density member of the FS-S Family supports the extended address features in the same way but in essence ignores bits
31 to 23 or 22 of any address because the main Flash array only needs 23 or 22 bits of address. This enables simple migration from
the 64Mb density to higher density devices without changing the address handling aspects of software.
9.1.2
Multiple Address Spaces
Many commands operate on the main Flash memory array. Some commands operate on address spaces separate from the main
Flash array. Each separate address space uses the full 24 or 32 bit address but may only define a small portion of the available
address space.
9.2
Flash Memory Array
The main Flash array is divided into erase units called physical sectors.
The FS-S family physical sectors may be configured as a hybrid combination of eight 4KB parameter sectors at the top or bottom of
the address space with all but one of the remaining sectors being uniform size. Because the group of eight 4KB parameter sectors is
in total smaller than a uniform sector, the group of 4KB physical sectors respectively overlay (replace) the top or bottom 32KB of the
highest or lowest address uniform sector.
The parameter sector erase commands (20h or 21h) must be used to erase the 4KB sectors individually. The sector (uniform block)
erase commands (D8h or DCh) must be used to erase any of the remaining sectors, including the portion of highest or lowest
address sector that is not overlaid by the parameter sectors. The uniform block erase command has no effect on parameter sectors.
Configuration register 1 non-volatile bit 2 (CR1NV[2]) equal to 0 overlays the parameter sectors at the bottom of the lowest address
uniform sector. CR1NV[2] = 1 overlays the parameter sectors at the top of the highest address uniform sector. See Section 9.6
Registers on page 47 for more information.
There is also a configuration option to remove the 4KB parameter sectors from the address map so that all sectors are uniform size.
Configuration register 3 volatile bit 3 (CR3V[3]) equal to 0 selects the hybrid sector architecture with 4KB parameter sectors.
CR3V[3]=1 selects the uniform sector architecture without parameter sectors. Uniform physical sectors are:
Document Number: 002-03631 Rev. *G
Page 43 of 145
S25FS064S
64KB or 256KB
The devices also may be configured to use the sector (uniform block) erase commands to erase 256KB logical blocks rather than
individual 64KB physical sectors. This configuration option (CR3V[1]=1) allows lower density devices to emulate the same sector
erase behavior as higher density members of the family that use 256KB physical sectors. This can simplify software migration to the
higher density members of the family.
Table 18. S25FS064S Sector and Memory Address Map, Bottom 4 KBytes Sectors
Sector Range
Address Range
(Byte Address)
SA00
00000000h-00000FFFh
:
:
Sector Size (KByte)
Sector Count
4
8
SA07
00007000h-00007FFFh
32
1
SA08
00008000h-0000FFFFh
SA09
00010000h-0001FFFFh
64
127
:
:
SA135
007F0000h-007FFFFFh
Notes
Sector Starting Address
—
Sector Ending Address
Table 19. S25FS064S Sector and Memory Address Map, Top 4 KBytes Sectors
Sector Size (KByte)
64
Sector Count
127
32
1
4
8
Sector Range
Address Range
(Byte Address)
SA00
0000000h-000FFFFh
:
:
SA126
007E0000h-007EFFFFh
SA127
007F0000h - 007F7FFFh
SA128
007F8000h - 007F8FFFh
:
:
SA135
007FF000h-007FFFFFh
Notes
Sector Starting Address
—
Sector Ending Address
Table 20. S25FS064S Sector and Memory Address Map, Uniform 64 KBytes Blocks
Sector Size (KByte)
64
Sector Count
128
Sector Range
Address Range
(Byte Address)
SA00
0000000h-0000FFFFh,
:
:
SA127
007F0000h-07FFFFFh
Notes
Sector Starting Address
—
Sector Ending Address
Table 21. S25FS064S Sector Address Map, Bottom 4 KB Sectors, 256 KB Logical Uniform Sectors
Sector Range
Address Range (Byte
Address)
SA00
00000000h-00000FFFh
:
:
Sector Size (KByte)
Sector Count
4
8
SA07
00007000h-00007FFFh
224
1
SA08
00008000h-0003FFFFh
SA09
00040000h-0007FFFFh
256
31
:
:
SA39
007C0000h-007FFFFFh
Document Number: 002-03631 Rev. *G
Notes
Sector Starting Address
—
Sector Ending Address
Page 44 of 145
S25FS064S
Table 22. S25FS064S Sector Address Map, Top 4 KB Sectors, 256 KB Logical Uniform Sectors
Sector Range
Address Range (Byte
Address)
SA00
00000000h-0003FFFFh
:
:
Sector Size (KByte)
Sector Count
256
31
SA30
00780000h-007BFFFFh
224
1
SA31
007C0000h-007F7FFFh
SA32
007F8000h-007F8FFFh
4
8
:
:
SA39
007FF000h-007FFFFFh
Notes
Sector Starting Address —
Sector Ending Address
Table 23. S25FS064S Sector and Memory Address Map, Uniform 256 KBytes Blocks
Sector Size (KByte)
Sector Count
256
32
Sector Range
Address Range
(Byte Address)
SA00
00000000h-0003FFFFh
:
:
SA31
007C0000h-007FFFFFh
Notes
Sector Starting Address
—
Sector Ending Address
Note: These are condensed tables that use a couple of sectors as references. There are address ranges that are not explicitly listed.
All 4KB sectors have the pattern XXXX000h-XXXXFFFh. All 64KB sectors have the pattern XXX0000h-XXXFFFFh. All 256 KB
sectors have the pattern XX00000h-XX3FFFFh, XX40000h-XX7FFFFh, XX80000h-XXCFFFFh, or XXD0000h-XXFFFFFh.
9.3
ID-CFI Address Space
The RDID command (9Fh) reads information from a separate Flash memory address space for device identification (ID) and
Common Flash Interface (CFI) information. See Device ID and Common Flash Interface (ID-CFI) Address Map — Standard
on page 121 for the tables defining the contents of the ID-CFI address space. The ID-CFI address space is programmed by Cypress
and read-only for the host system.
9.3.1
Cypress Programmed Unique ID
A 64-bit unique number is located in 8 bytes of the Unique Device ID address space. This Unique ID may be used as a software
readable serial number that is unique for each device.
9.4
JEDEC JESD216 Serial Flash Discoverable Parameters (SFDP) Space
The RSFDP command (5Ah) reads information from a separate Flash memory address space for device identification, feature, and
configuration information, in accord with the JEDEC JESD216 Rev B standard for Serial Flash Discoverable Parameters. The ID-CFI
address space is incorporated as one of the SFDP parameters. See Software Interface Reference on page 121 for the tables
defining the contents of the SFDP address space. The SFDP address space is programmed by Cypress and read-only for the host
system.
Document Number: 002-03631 Rev. *G
Page 45 of 145
S25FS064S
9.5
OTP Address Space
Each FS-S Family memory device has a 1024 byte One Time Program (OTP) address space that is separate from the main Flash
array. The OTP area is divided into 32, individually lockable, 32 byte aligned and length regions.
In the 32 byte region starting at address zero:
The 16 lowest address bytes are programmed by Cypress with a 128 bit random number. Only Cypress is able to program zeros
in these bytes. Programming ones in these byte locations is ignored and does not affect the value programmed by Cypress.
Attempting to program any zero in these byte locations will fail and set P_ERR.
The next 4 higher address bytes (OTP Lock Bytes) are used to provide one bit per OTP region to permanently protect each region
from programming. The bytes are erased when shipped from Cypress. After an OTP region is programmed, it can be locked to
prevent further programming, by programming the related protection bit in the OTP Lock Bytes.
The next higher 12 bytes of the lowest address region are Reserved for Future Use (RFU). The bits in these RFU bytes may be
programmed by the host system but it must be understood that a future device may use those bits for protection of a larger OTP
space. The bytes are erased when shipped from Cypress.
The remaining regions are erased when shipped from Cypress, and are available for programming of additional permanent data.
Refer to Figure 42 on page 46 for a pictorial representation of the OTP memory space.
The OTP memory space is intended for increased system security. OTP values, such as the random number programmed by
Cypress, can be used to “mate” a flash component with the system CPU/ASIC to prevent device substitution.
The configuration register FREEZE (CR1V[0]) bit protects the entire OTP memory space from programming when set to “1”. This
allows trusted boot code to control programming of OTP regions then set the FREEZE bit to prevent further OTP memory space
programming during the remainder of normal power-on system operation.
Figure 42. OTP Address Space
32 Byte OTP Region 31
32 Byte OTP Region 30
32 Byte OTP Region 29
When programmed to 0,
each lock bit protects its
related 32 byte OTP region
from any further program-
..
.
32 Byte OTP Region 3
32 Byte OTP Region 2
32 Byte OTP Region 1
32 Byte OTP Region 0
Region 0 Expanded View
...
Reserved
Byte 1Fh
Document Number: 002-03631 Rev. *G
16 Byte Random Number
Lock Bits 31 to 0
Byte 10h
Byte 0h
Page 46 of 145
S25FS064S
Table 25. OTP Address Map
Region
Byte Address Range (Hex)
Contents
000
Least Significant Byte of Cypress
Programmed Random Number
...
...
00F
Most Significant Byte of Cypress
Programmed Random Number
010 to 013
Region Locking Bits
Byte 10 [bit 0] locks region 0 from
programming when = 0
...
Byte 13 [bit 7] locks region 31from
programming when = 0
All Bytes = FF
Region 0
9.6
Initial Delivery State (Hex)
Cypress Programmed Random
Number
014 to 01F
Reserved for Future Use (RFU)
All Bytes = FF
Region 1
020 to 03F
Available for User Programming
All Bytes = FF
Region 2
040 to 05F
Available for User Programming
All Bytes = FF
...
...
Available for User Programming
All Bytes = FF
Region 31
3E0 to 3FF
Available for User Programming
All Bytes = FF
Registers
Registers are small groups of memory cells used to configure how the FS-S Family memory device operates or to report the status
of device operations. The registers are accessed by specific commands. The commands (and hexadecimal instruction codes) used
for each register are noted in each register description.
In legacy SPI memory devices the individual register bits could be a mixture of volatile, non-volatile, or One Time Programmable
(OTP) bits within the same register. In some configuration options the type of a register bit could change e.g. from non-volatile to
volatile.
The FS-S Family uses separate non-volatile or volatile memory cell groups (areas) to implement the different register bit types.
However, the legacy registers and commands continue to appear and behave as they always have for legacy software compatibility.
There is a non-volatile and a volatile version of each legacy register when that legacy register has volatile bits or when the command
to read the legacy register has zero read latency. When such a register is read the volatile version of the register is delivered. During
Power-On Reset (POR), hardware reset, or software reset, the non-volatile version of a register is copied to the volatile version to
provide the default state of the volatile register. When non-volatile register bits are written the non-volatile version of the register is
erased and programmed with the new bit values and the volatile version of the register is updated with the new contents of the nonvolatile version. When OTP bits are programmed the non-volatile version of the register is programmed and the appropriate bits are
updated in the volatile version of the register. When volatile register bits are written, only the volatile version of the register has the
appropriate bits updated.
The type for each bit is noted in each register description. The default state shown for each bit refers to the state after power-on
reset, hardware reset, or software reset if the bit is volatile. If the bit is non-volatile or OTP, the default state is the value of the bit
when the device is shipped from Cypress. Non-volatile bits have the same cycling (erase and program) endurance as the main Flash
array.
Document Number: 002-03631 Rev. *G
Page 47 of 145
S25FS064S
Table 26. Register Descriptions
Register
Type
Status Register-1
Status Register-2
Configuration Register-1
Configuration Register-2
Configuration Register-3
Bits
Abbreviation
Non-volatile
7:0
SR1NV[7:0]
Volatile
7:0
SR1V[7:0]
Volatile
7:0
SR2V[7:0]
Non-volatile/OTP
7:0
CR1NV[7:0]
Volatile
7:0
CR1V[7:0]
Non-volatile/OTP
7:0
CR2NV[7:0]
Volatile
7:0
CR2V[7:0]
Non-volatile/OTP
7:0
CR3NV[7:0]
Volatile
7:0
CR3V[7:0]
Non-volatile/OTP
7:0
CR4NV[7:0]
Volatile
7:0
CR4V[7:0]
Volatile
Read Only
7:0
ECCSRV[7:0]
ASP Register
OTP
15:0
ASPR[15:0]
Password Register
OTP
63:0
PASS[63:0]
PPB Lock Register
Volatile
Read Only
7:0
PPBL[7:0]
PPB Access Register
Non-volatile
7:0
PPBAR[7:0]
DYB Access Register
Volatile
7:0
DYBAR[7:0]
OTP
7:0
NVDLR[7:0]
Volatile
7:0
VDLR[7:0]
Configuration Register-4
ECC Status Register
SPI DDR Data Learning Registers
9.6.1
Status Registers 1
9.6.1.1
Status Register 1 Non-Volatile (SR1NV)
Related Commands: Write Registers (WRR 01h), Read Any Register (RDAR 65h), Write Any Register (WRAR 71h)
Table 27. Status Register-1 Non-Volatile (SR1NV)
Bits Field Name
Function
Type
Default
State
Description
7
SRWD_NV
Status Register
Write Disable
Default
Non-Volatile
0
1 = Locks state of SRWD, BP, and configuration register-1 bits when WP# is low
by not executing WRR or WRAR commands that would affect SR1NV, SR1V,
CR1NV, or CR1V.
0 = No protection, even when WP# is low
6
P_ERR_D
Programming
Error Default
Non-Volatile
Read Only
0
Provides the default state for the Programming Error Status. Not user
programmable.
5
E_ERR_D
Erase Error
Default
Non-Volatile
Read Only
0
Provides the default state for the Erase Error Status. Not user programmable.
4
BP_NV2
3
BP_NV1
Block Protection
Non-Volatile
Non-Volatile
000b
2
BP_NV0
1
WEL_D
WEL Default
Non-Volatile
Read Only
0
Provides the default state for the WEL Status. Not user programmable.
0
WIP_D
WIP Default
Non-Volatile
Read Only
0
Provides the default state for the WIP Status. Not user programmable.
Document Number: 002-03631 Rev. *G
Protects the selected range of sectors (Block) from Program or Erase when the
BP bits are configured as non-volatile (CR1NV[3]=0). Programmed to 111b when
BP bits are configured to volatile (CR1NV[3]=1).- after which these bits are no
longer user programmable.
Page 48 of 145
S25FS064S
Status Register Write Non-volatile (SRWD_NV) SR1NV[7]: Places the device in the Hardware Protected mode when this bit is set
to 1 and the WP# input is driven low. In this mode, the Write Registers (WRR) and Write Any Register (WRAR) commands (that
select status register-1 or configuration register-1) are ignored and not accepted for execution, effectively locking the state of the
Status Register-1 and Configuration Register-1 (SR1NV, SR1V, CR1NV, or CR1V) bits, by making the registers read-only. If WP# is
high, Status Register-1 and Configuration Register-1 may be changed by the WRR or WRAR commands. If SRWD_NV is 0, WP#
has no effect and Status Register-1 and Configuration Register-1 may be changed by the WRR or WRAR commands. WP# has no
effect on the writing of any other registers. The SRWD_NV bit has the same non-volatile endurance as the main Flash array. The
SRWD (SR1V[7]) bit serves only as a copy of the SRWD_NV bit to provide zero read latency.
Program Error Default (P_ERR_D) SR1NV[6]: Provides the default state for the Programming Error Status in SR1V[6]. This bit is
not user programmable.
Erase Error (E_ERR) SR1V[5]: Provides the default state for the Erase Error Status in SR1V[5]. This bit is not user programmable.
Block Protection (BP_NV2, BP_NV1, BP_NV0) SR1NV[4:2]: These bits define the main Flash array area to be software-protected
against program and erase commands. The BP bits are selected as either volatile or non-volatile, depending on the state of the BP
non-volatile bit (BPNV_O) in the configuration register CR1NV[3]. When CR1NV[3]=0 the non-volatile version of the BP bits
(SR1NV[4:2]) are used to control Block Protection and the WRR command writes SR1NV[4:2] and updates SR1V[4:2] to the same
value. When CR1NV[3]=1 the volatile version of the BP bits (SR1V[4:2]) are used to control Block Protection and the WRR
command writes SR1V[4:2] and does not affect SR1NV[4:2]. When one or more of the BP bits is set to 1, the relevant memory area
is protected against program and erase. The Bulk Erase (BE) command can be executed only when the BP bits are cleared to 0’s.
See Block Protection on page 64 for a description of how the BP bit values select the memory array area protected. The non-volatile
version of the BP bits have the same non-volatile endurance as the main Flash array.
Write Enable Latch Default (WEL_D) SR1NV[1]: Provides the default state for the WEL Status in SR1V[1]. This bit is programmed
by Cypress and is not user programmable.
Write In Progress Default (WIP_D) SR1NV[0]: Provides the default state for the WIP Status in SR1V[0]. This bit is programmed by
Cypress and is not user programmable.
9.6.1.2
Status Register 1 Volatile (SR1V)
Related Commands: Read Status Register (RDSR1 05h), Write Registers (WRR 01h), Write Enable (WREN 06h), Write Disable
(WRDI 04h), Clear Status Register (CLSR 30h or 82h), Read Any Register (RDAR 65h), Write Any Register (WRAR 71h). This is the
register displayed by the RDSR1 command.
Table 28. Status Register-1 Volatile (SR1V)
Bits
Field
Name
Function
Type
7
SRWD
Status
Register
Write Disable
Volatile
Read Only
Volatile copy of SR1NV[7].
6
P_ERR
Programming
Error
Occurred
Volatile
Read Only
1 = Error occurred
0 = No Error
5
E_ERR
Erase Error
Occurred
Volatile
Read Only
1= Error occurred
0 = No Error
4
BP2
3
BP1
Volatile
2
BP0
Block
Protection
Volatile
Default State
SR1NV
Description
Protects selected range of sectors (Block) from Program or Erase when the
BP bits are configured as volatile (CR1NV[3]=1). Volatile copy of
SR1NV[4:2] when BP bits are configured as non-volatile. User writable
when BP bits are configured as volatile.
1
WEL
Write Enable
Latch
Volatile
1 = Device accepts Write Registers (WRR and WRAR), program, or erase
commands
0 = Device ignores Write Registers (WRR and WRAR), program, or erase
commands
This bit is not affected by WRR or WRAR, only WREN and WRDI
commands affect this bit.
0
WIP
Write in
Progress
Volatile
Read Only
1= Device Busy, an embedded operation is in progress such as program or
erase
0 = Ready Device is in standby mode and can accept commands
This bit is not affected by WRR or WRAR, it only provides WIP status.
Status Register Write (SRWD) SR1V[7]: SRWD is a volatile copy of SR1NV[7]. This bit tracks any changes to the non-volatile
version of this bit.
Document Number: 002-03631 Rev. *G
Page 49 of 145
S25FS064S
Program Error (P_ERR) SR1V[6]: The Program Error Bit is used as a program operation success or failure indication. When the
Program Error bit is set to a “1” it indicates that there was an error in the last program operation. This bit will also be set when the
user attempts to program within a protected main memory sector, or program within a locked OTP region. When the Program Error
bit is set to a “1” this bit can be cleared to zero with the Clear Status Register (CLSR) command. This is a read-only bit and is not
affected by the WRR or WRAR commands.
Erase Error (E_ERR) SR1V[5]: The Erase Error Bit is used as an Erase operation success or failure indication. When the Erase
Error bit is set to a “1” it indicates that there was an error in the last erase operation. This bit will also be set when the user attempts
to erase an individual protected main memory sector. The Bulk Erase command will not set E_ERR if a protected sector is found
during the command execution. When the Erase Error bit is set to a “1” this bit can be cleared to zero with the Clear Status Register
(CLSR) command. This is a read-only bit and is not affected by the WRR or WRAR commands.
Block Protection (BP2, BP1, BP0) SR1V[4:2]: These bits define the main Flash array area to be software-protected against
program and erase commands. The BP bits are selected as either volatile or non-volatile, depending on the state of the BP
non-volatile bit (BPNV_O) in the configuration register CR1NV[3]. When CR1NV[3]=0 the non-volatile version of the BP bits
(SR1NV[4:2]) are used to control Block Protection and the WRR command writes SR1NV[4:2] and updates SR1V[4:2] to the same
value. When CR1NV[3]=1 the volatile version of the BP bits (SR1V[4:2]) are used to control Block Protection and the WRR
command writes SR1V[4:2] and does not affect SR1NV[4:2]. When one or more of the BP bits is set to 1, the relevant memory area
is protected against program and erase. The Bulk Erase (BE) command can be executed only when the BP bits are cleared to 0’s.
See Block Protection on page 64 for a description of how the BP bit values select the memory array area protected.
Write Enable Latch (WEL) SR1V[1]: The WEL bit must be set to 1 to enable program, write, or erase operations as a means to
provide protection against inadvertent changes to memory or register values. The Write Enable (WREN) command execution sets
the Write Enable Latch to a “1” to allow any program, erase, or write commands to execute afterwards. The Write Disable (WRDI)
command can be used to set the Write Enable Latch to a “0” to prevent all program, erase, and write commands from execution. The
WEL bit is cleared to 0 at the end of any successful program, write, or erase operation. Following a failed operation the WEL bit may
remain set and should be cleared with a WRDI command following a CLSR command. After a power down / power up sequence,
hardware reset, or software reset, the Write Enable Latch is set to a “0” The WRR or WRAR command does not affect this bit.
Write In Progress (WIP) SR1V[0]: Indicates whether the device is performing a program, write, erase operation, or any other
operation, during which a new operation command will be ignored. When the bit is set to a “1” the device is busy performing an
operation. While WIP is “1”, only Read Status (RDSR1 or RDSR2), Read Any Register (RDAR), Erase Suspend (ERSP), Program
Suspend (PGSP), Clear Status Register (CLSR), and Software Reset (RESET) commands are accepted. ERSP and PGSP will only
be accepted if memory array erase or program operations are in progress. The status register E_ERR and P_ERR bits are updated
while WIP =1. When P_ERR or E_ERR bits are set to one, the WIP bit will remain set to one indicating the device remains busy and
unable to receive new operation commands. A Clear Status Register (CLSR) command must be received to return the device to
standby mode. When the WIP bit is cleared to 0 no operation is in progress. This is a read-only bit.
9.6.2
Status Register 2 Volatile (SR2V)
Related Commands: Read Status Register 2 (RDSR2 07h), Read Any Register (RDAR 65h). Status Register 2 does not have user
programmable non-volatile bits, all defined bits are volatile read only status. The default state of these bits are set by hardware.
Table 29. Status Register-2 Volatile (SR2V)
Bits
Field Name
Function
7
RFU
Reserved
0
Reserved for Future Use
6
RFU
Reserved
0
Reserved for Future Use
5
RFU
Reserved
0
Reserved for Future Use
4
RFU
Reserved
0
Reserved for Future Use
3
RFU
Reserved
0
Reserved for Future Use
2
ESTAT
Erase Status
Volatile
Read Only
0
1 = Sector Erase Status command result =
Erase Completed
0 = Sector Erase Status command result =
Erase Not Completed
1
ES
Erase Suspend
Volatile
Read Only
0
1 = In erase suspend mode.
0 = Not in erase suspend mode.
0
PS
Program
Suspend
Volatile
Read Only
0
1 = In program suspend mode.
0 = Not in program suspend mode.
Document Number: 002-03631 Rev. *G
Type
Default State
Description
Page 50 of 145
S25FS064S
Erase Status (ESTAT) SR2V[2]: The Erase Status bit indicates whether the sector, selected by an immediately preceding Erase
status command, completed the last erase command on that sector. The Erase Status command must be issued immediately before
reading SR2V to get valid erase status. Reading SR2V during a program or erase suspend does not provide valid erase status. The
erase status bit can be used by system software to detect any sector that failed its last erase operation. This can be used to detect
erase operations failed due to loss of power during the erase operation.
Erase Suspend (ES) SR2V[1]: The Erase Suspend bit is used to determine when the device is in Erase Suspend mode. This is a
status bit that cannot be written by the user. When Erase Suspend bit is set to “1”, the device is in erase suspend mode. When Erase
Suspend bit is cleared to “0”, the device is not in erase suspend mode. Refer to Erase or Program Suspend (EPS 85h, 75h, B0h)
on page 106 for details about the Erase Suspend/Resume commands.
Program Suspend (PS) SR2V[0]: The Program Suspend bit is used to determine when the device is in Program Suspend mode.
This is a status bit that cannot be written by the user. When Program Suspend bit is set to “1”, the device is in program suspend
mode. When the Program Suspend bit is cleared to “0”, the device is not in program suspend mode. Refer to Erase or Program
Suspend (EPS 85h, 75h, B0h) on page 106 for details.
9.6.3
Configuration Register 1
Configuration register 1 controls certain interface and data protection functions. The register bits can be changed using the WRR
command with sixteen input cycles or with the WRAR command.
9.6.3.1
Configuration Register 1 Non-volatile (CR1NV)
Related Commands: Write Registers (WRR 01h), Read Any Register (RDAR 65h), Write Any Register (WRAR 71h).
Table 30. Configuration Register 1 Non-volatile (CR1NV)
Bits
Field Name
Function
Type
Reserved for Future
Use
Non-volatile
Default
State
Description
7
RFU
6
RFU
5
TBPROT_O
Configures Start of
Block Protection
OTP
0
1 = BP starts at bottom (Low address)
0 = BP starts at top (High address)
4
RFU
Reserved for Future
Use
RFU
0
Reserved
3
BPNV_O
Configures BP2-0 in
Status Register
OTP
0
1 = Volatile
0 = Non-Volatile
2
TBPARM_O
Configures Parameter
Sectors location
OTP
0
1 = 4 KB physical sectors at top, (high address)
0 = 4 KB physical sectors at bottom (Low address)
RFU in uniform sector configuration.
1
QUAD_NV
Quad Non-Volatile
Non-Volatile
0
Provides the default state for the QUAD bit.
FREEZE Default
Non-Volatile
Read Only
0
Provides the default state for the Freeze bit. Not user
programmable.
0
FREEZE_D
0
0
Reserved
Top or Bottom Protection (TBPROT_O) CR1NV[5]: This bit defines the operation of the Block Protection bits BP2, BP1, and BP0
in the Status Register. As described in the status register section, the BP2-0 bits allow the user to optionally protect a portion of the
array, ranging from 1/64, ¼, ½, etc., up to the entire array. When TBPROT_O is set to a “0” the Block Protection is defined to start
from the top (maximum address) of the array. When TBPROT_O is set to a “1” the Block Protection is defined to start from the
bottom (zero address) of the array. The TBPROT_O bit is OTP and set to a “0” when shipped from Cypress. If TBPROT_O is
programmed to 1, writing the bit with a zero does not change the value or set the Program Error bit (P_ERR in SR1V[6]).
The desired state of TBPROT_O must be selected during the initial configuration of the device during system manufacture; before
the first program or erase operation on the main Flash array. TBPROT_O must not be programmed after programming or erasing is
done in the main Flash array.
Document Number: 002-03631 Rev. *G
Page 51 of 145
S25FS064S
Block Protection Non-Volatile (BPNV_O) CR1NV[3]: The BPNV_O bit defines whether the BP_NV 2-0 bits or the BP 2-0 bits in
the Status Register are selected to control the Block Protection feature. The BPNV_O bit is OTP and cleared to a “0” with the BP_NV
bits cleared to “000” when shipped from Cypress. When BPNV_O is set to a “0” the BP_NV 2-0 bits in the Status Register are
selected to control the block protection and are written by the WRR command. The time required to write the BP_NV bits is tW.
When BPNV is set to a “1” the BP2-0 bits in the Status Register are selected to control the block protection and the BP_NV 2-0 bits
will be programmed to binary “111”. This will cause the BP 2-0 bits to be set to binary 111 after POR, hardware reset, or command
reset. When BPNV is set to a 1, the WRR command writes only the volatile version of the BP bits (SR1V[4:2]). The non-volatile
version of the BP bits (SR1NV[4:2]) are no longer affected by the WRR command. This allows the BP bits to be written an unlimited
number of times because they are volatile and the time to write the volatile BP bits is the much faster tCS volatile register write time.
If BPNV_O is programmed to 1, writing the bit with a zero does not change the value or set the Program Error bit (P_ERR in
SR1V[6]).
TBPARM_O CR1NV[2]: TBPARM_O defines the logical location of the parameter block. The parameter block consists of eight 4 KB
parameter sectors, which replace a 32 KB portion of the highest or lowest address sector. When TBPARM_O is set to a “1” the
parameter block is in the top of the memory array address space. When TBPARM_O is set to a “0” the parameter block is at the
Bottom of the array. TBPARM_O is OTP and set to a “0” when it ships from Cypress. If TBPARM_O is programmed to 1, writing the
bit with a zero does not change the value or set the Program Error bit (P_ERR in SR1V[6]).
The desired state of TBPARM_O must be selected during the initial configuration of the device during system manufacture; before
the first program or erase operation on the main Flash array. TBPARM_O must not be programmed after programming or erasing is
done in the main Flash array.
TBPROT_O can be set or cleared independent of the TBPARM_O bit. Therefore, the user can elect to store parameter information
from the bottom of the array and protect boot code starting at the top of the array, or vice versa. Or, the user can elect to store and
protect the parameter information starting from the top or bottom together.
When the memory array is configured as uniform sectors, the TBPARM_O bit is Reserved for Future Use (RFU) and has no effect
because all sectors are uniform size.
Quad Data Width Non-volatile (QUAD_NV) CR1NV[1]: Provides the default state for the QUAD bit in CR1V[1]. The WRR or
WRAR command affects this bit. Non-volatile selection of QPI mode, by programming CR2NV[6] =1, will also program QUAD_NV
=1 to change the non-volatile default to Quad data width mode. While QPI mode is selected by CR2V[6]=1, the Quad_NV bit cannot
be cleared to 0.
Freeze Protection Default (FREEZE) CR1NV[0]: Provides the default state for the FREEZE bit in CR1V[0]. This bit is not user
programmable.
Document Number: 002-03631 Rev. *G
Page 52 of 145
S25FS064S
9.6.3.2
Configuration Register 1 Volatile (CR1V)
Related Commands: Read Configuration Register (RDCR 35h), Write Registers (WRR 01h), Read Any Register (RDAR 65h), Write
Any Register (WRAR 71h). This is the register displayed by the RDCR command.
Table 31. Configuration Register 1 Volatile (CR1V)
Bits
Field Name
7
RFU
Function
Type
6
RFU
5
Default State
Description
Reserved for Future Use
Volatile
TBPROT
Volatile copy of
TBPROT_O
Volatile
Read Only
4
RFU
RFU
RFU
3
BPNV
Volatile copy of BPNV_O
Volatile
Read Only
2
TBPARM
Volatile copy of
TBPARM_O
Volatile
Read Only
1
QUAD
Quad I/O mode
Volatile
1 = Quad
0 = Dual or Serial
0
FREEZE
Lock-down Block
Protection until next power
cycle
Volatile
Lock current state of Block Protection control bits, and OTP regions
1 = Block Protection and OTP locked
0 = Block Protection and OTP un-locked
Reserved
Not user writable
See CR1NV[5] TBPROT_O
Reserved for Future Use
CR1NV
Not user writable
See CR1NV[3] BPNV_O
Not user writable
See CR1NV[2] TBPARM_O
TBPROT, BPNV, and TBPARM CR1V[5, 3, 2]: These bits are volatile copies of the related non-volatile bits of CR1NV. These bits
track any changes to the related non-volatile version of these bits.
Quad Data Width (QUAD) CR1V[1]: When set to 1, this bit switches the data width of the device to 4 bit - Quad mode. That is, WP#
becomes IO2 and IO3_RESET# becomes an active I/O signal when CS# is low or the RESET# input when CS# is high. The WP#
input is not monitored for its normal function and is internally set to high (inactive). The commands for Serial, and Dual I/O Read still
function normally but, there is no need to drive the WP# input for those commands when switching between commands using
different data path widths. Similarly, there is no requirement to drive the IO3_RESET# during those commands (while CS# is low).
The QUAD bit must be set to one when using the Quad I/O Read, DDR Quad I/O Read, QPI mode (CR2V[6] = 1), and Read Quad
ID commands. While QPI mode is selected by CR2V[6]=1, the Quad bit cannot be cleared to 0. The WRR command writes the nonvolatile version of the Quad bit (CR1NV[1]), which also causes an update to the volatile version CR1V[1]. The WRR command can
not write the volatile version CR1V[1] without first affecting the non-volatile version CR1NV[1]. The WRAR command must be used
when it is desired to write the volatile Quad bit CR1V[1] without affecting the non-volatile version CR1NV[1].
Freeze Protection (FREEZE) CR1V[0]: The Freeze Bit, when set to 1, locks the current state of the Block Protection control bits
and OTP area:
BPNV_2-0 bits in the non-volatile Status Register 1 (SR1NV[4:2])
BP 2-0 bits in the volatile Status Register 1 (SR1V[4:2])
TBPROT_O, TBPARM_O, and BPNV_O bits in the non-volatile Configuration Register (CR1NV[53, 2])
TBPROT, TBPARM, and BPNV bits in the volatile Configuration Register (CR1V[5, 3, 2]) are indirectly protected in that they are
shadows of the related CR1NV OTP bits and are read only
The entire OTP memory space
Any attempt to change the above listed bits while FREEZE = 1 is prevented:
The WRR command does not affect the listed bits and no error status is set.
The WRAR command does not affect the listed bits and no error status is set.
The OTPP command, with an address within the OTP area, fails and the P-ERR status is set.
As long as the FREEZE bit remains cleared to logic 0 the Block Protection control bits and FREEZE are writable, and the OTP
address space is programmable.
Once the FREEZE bit has been written to a logic 1 it can only be cleared to a logic 0 by a power-off to power-on cycle or a hardware
reset. Software reset will not affect the state of the FREEZE bit.
The CR1V[0] FREEZE bit is volatile and the default state of FREEZE after power-on comes from FREEZE_D in CR1NV[0]. The
FREEZE bit can be set in parallel with updating other values in CR1V by a single WRR or WRAR command.
The FREEZE bit does not prevent the WRR or WRAR commands from changing the SRWD_NV (SR1NV[7]), Quad_NV
(CR1NV[1]), or QUAD (CR1V[1]) bits.
Document Number: 002-03631 Rev. *G
Page 53 of 145
S25FS064S
9.6.4
Configuration Register 2
Configuration register 2 controls certain interface functions. The register bits can be read and changed using the Read Any Register
and Write Any Register commands. The non-volatile version of the register provides the ability to set the POR, hardware reset, or
software reset state of the controls. These configuration bits are OTP and may only have their default state changed to the opposite
value one time during system configuration. The volatile version of the register controls the feature behavior during normal
operation.
9.6.4.1
Configuration Register 2 Non-volatile (CR2NV)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h).
Table 32. Configuration Register 2 Non-volatile (CR2NV)
Bits
Field Name
Function
Type
Default State
7
AL_NV
Address Length
0
1 = 4 byte address
0 = 3 byte address
6
QA_NV
QPI
0
1 = Enabled -- QPI (4-4-4) protocol in use
0 = Disabled -- Legacy SPI protocols in use, instruction is always serial on SI
5
IO3R_NV
IO3 Reset
0
1 = Enabled -- IO3 is used as RESET# input when CS# is high or Quad Mode
is disabled CR1V[1]=1
0 = Disabled -- IO3 has no alternate function, hardware reset is disabled.
4
RFU
Reserved
0
Reserved For Future Use
OTP
3
1
2
0
1
RL_NV
Read Latency
0
0
Description
0 to 15 latency (dummy) cycles following read address or continuous mode
bits.
Note that bit 3 has a default value of 1 and may be programmed one time to 0
but cannot be returned to 1.
0
Address Length Non-volatile CR2NV[7]: This bit controls the POR, hardware reset, or software reset state of the expected
address length for all commands that require address and are not fixed 3 byte only or 4 Byte (32 bit) only address. Most commands
that need an address are legacy SPI commands that traditionally used 3 byte (24 bit) address. For device densities greater than
128 Mbit a 4 Byte address is required to access the entire memory array. The address length configuration bit is used to change
most 3 Byte address commands to expect 4 Byte address. See Table 51 on page 74 for command address length. The use of
4 Byte address length also applies to the 128 Mbit member of the FS-S Family so that the same 4 Byte address hardware and
software interface may be used for all family members to simplify migration between densities. The 128 Mbit member of the FS-S
Family simply ignores the content of the fourth, high order, address byte. This non-volatile Address Length configuration bit enables
the device to start immediately (boot) in 4 Byte address mode rather than the legacy 3 Byte address mode.
QPI Non-volatile CR2NV[6]: This bit controls the POR, hardware reset, or software reset state of the expected instruction width for
all commands. Legacy SPI commands always send the instruction one bit wide (serial I/O) on the SI (IO0) signal. The FS-S Family
also supports the QPI mode in which all transfers between the host system and memory are 4 bits wide on IO0 to IO3, including all
instructions. This non-volatile QPI configuration bit enables the device to start immediately (boot) in QPI mode rather than the legacy
serial instruction mode. When this bit is programmed to QPI mode, the QUAD_NV bit is also programmed to Quad mode
(CR1NV[1]=1). The recommended procedure for moving to QPI mode is to first use the WRAR command to set CR2V[6]=1, QPI
mode. The volatile register write for QPI mode has a short and well defined time (tCS) to switch the device interface into QPI mode.
Following commands can then be immediately sent in QPI protocol. The WRAR command can be used to program CR2NV[6]=1,
followed by polling of SR1V[0] to know when the programming operation is completed. Similarly, to exit QPI mode, the WRAR
command is used to clear CR2V[6]=0. CR2NV[6] cannot be erased to 0 because it is OTP.
IO3 Reset Non-volatile CR2NV[5]: This bit controls the POR, hardware reset, or software reset state of the IO3 signal behavior.
Most legacy SPI devices do not have a hardware reset input signal due to the limited signal count and connections available in
traditional SPI device packages. The FS-S Family provides the option to use the IO3 signal as a hardware reset input when the IO3
signal is not in use for transferring information between the host system and the memory. This non-volatile IO3 Reset configuration
bit enables the device to start immediately (boot) with IO3 enabled for use as a RESET# signal.
Document Number: 002-03631 Rev. *G
Page 54 of 145
S25FS064S
Read Latency Non-volatile CR2NV[3:0]: This bit controls the POR, hardware reset, or software reset state of the read latency
(dummy cycle) delay in all variable latency read commands. The following read commands have a variable latency period between
the end of address or mode and the beginning of read data returning to the host:
Fast Read
Dual Output Read
Quad Output Read
Dual I/O Read
Quad I/O Read
DDR Quad I/O Read
OTPR
ECCRD
RDAR
This non-volatile read latency configuration bit sets the number of read latency (dummy cycles) in use so the device can start
immediately (boot) with an appropriate read latency for the host system.
Table 33. Latency Code (Cycles) Versus Frequency
Read Command Maximum Frequency (MHz)
Fast Read (1-1-1)Dual
Output (1-1-2)
Quad Output (1-1-4)
OTPR (1-1-1)
ECCRD (1-1-1)
RDAR (1-1-1)
RDAR (4-4-4)
Dual I/O (1-2-2)
Quad I/O (1-4-4)
QPI (4-4-4)
ECCRD (4-4-4)
DDR Quad I/O (1-4-4)
DDR QPI (4-4-4)
Mode Cycles = 0
Mode Cycles = 4
Mode Cycles = 2
Mode Cycles = 0
Mode Cycles = 1
0
50
80
40
16
N/A
1
66
92
53
26
22
2
80
104
66
40
34
3
92
116
80
53
45
4
104
129
92
66
57
5
116
133
104
80
68
6
129
133
116
92
80
7
133
133
129
104
80
8
133
133
133
116
80
9
133
133
133
129
80
10
133
133
133
133
80
11
133
133
133
133
80
12
133
133
133
133
80
13
133
133
133
133
80
14
133
133
133
133
80
15
133
133
133
133
80
Latency
Code
Notes
44.SCK frequency > 133 MHz SDR, or 80MHz DDR is not supported by this family of devices.
45.The Dual I/O, Quad I/O, and QPI, DDR Quad I/O, and DDR QPI, command protocols include Continuous Read Mode bits following the address. The clock cycles for
these bits are not counted as part of the latency cycles shown in the table. Example: the legacy Quad I/O command has 2 Continuous Read Mode cycles following the
address. Therefore, the legacy Quad I/O command without additional read latency is supported only up to the frequency shown in the table for a read latency of 0
cycles. By increasing the variable read latency the frequency of the Quad I/O command can be increased to allow operation up to the maximum supported 133 MHz
frequency.
46.Other read commands have fixed latency, e.g. Read always has zero read latency, RSFDP always has eight cycles of latency and RUID always has 32 cycles of
latency, RUID always four dummy bytes or 16 dummy bytes in QPI (32 clock cycles).
Document Number: 002-03631 Rev. *G
Page 55 of 145
S25FS064S
9.6.4.2
Configuration Register 2 Volatile (CR2V)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h), 4BAM.
Table 34. Configuration Register 2 Volatile (CR2V)
Type
Default
State
Bits
Field Name
Function
Description
7
AL
Address Length
6
QA
QPI
1 = Enabled -- QPI (4-4-4) protocol in use
0 = Disabled -- Legacy SPI protocols in use, instruction
is always serial on SI
5
IO3R_S
IO3 Reset
1 = Enabled -- IO3 is used as RESET# input when CS#
is high or Quad Mode is disabled CR1V[1]=1
0 = Disabled -- IO3 has no alternate function, hardware
reset is disabled.
4
RFU
Reserved
RL
Read Latency
1 = 4 byte address
0 = 3 byte address
Volatile
CR2NV
Reserved for Future Use
3
2
1
0 to 15 latency (dummy) cycles following read address
or continuous mode bits
0
Address Length CR2V[7]: This bit controls the expected address length for all commands that require address and are not fixed 3
byte only or 4 Byte (32 bit) only address. See Table 51 on page 74 for command address length. This volatile Address Length
configuration bit enables the address length to be changed during normal operation. The four byte address mode (4BAM) command
directly sets this bit into 4 byte address mode.
QPI CR2V[6]: This bit controls the expected instruction width for all commands. This volatile QPI configuration bit enables the
device to enter and exit QPI mode during normal operation. When this bit is set to QPI mode, the QUAD bit is also set to Quad mode
(CR1V[1]=1). When this bit is cleared to legacy SPI mode, the QUAD bit is not affected.
IO3 Reset CR2V[5]: This bit controls the IO3_RESET# signal behavior. This volatile IO3 Reset configuration bit enables the use of
IO3 as a RESET# input during normal operation.
Read Latency CR2V[3:0]: This bit controls the read latency (dummy cycle) delay in variable latency read commands These volatile
configuration bits enable the user to adjust the read latency during normal operation to optimize the latency for different commands
or, at different operating frequencies, as needed.
9.6.5
Configuration Register 3
Configuration register 3 controls certain command behaviors. The register bits can be read and changed using the Read Any
Register and Write Any Register commands. The non-volatile register provides the POR, hardware reset, or software reset state of
the controls. These configuration bits are OTP and may be programmed to their opposite state one time during system configuration
if needed. The volatile version of configuration register 3 allows the configuration to be changed during system operation or testing.
Document Number: 002-03631 Rev. *G
Page 56 of 145
S25FS064S
9.6.5.1
Configuration Register 3 Non-volatile (CR3NV)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h).
Table 35. Configuration Register 3 Non-volatile (CR3NV)
Bits
Field Name
Function
7
RFU
Reserved
Type
Default State
0
Reserved for Future Use
6
RFU
Reserved
0
Reserved for Future Use
5
BC_NV
Blank Check
0
1 = Blank Check during erase enabled
0 = Blank Check disabled
4
02h_NV
Page Buffer Wrap
0
1 = Wrap at 512 Bytes
0 = Wrap at 256 Bytes
3
20h_NV
4KB Erase
0
1 = 4KB Erase disabled (Uniform Sector Architecture)
0 = 4KB Erase enabled (Hybrid Sector Architecture)
2
30h_NV
Clear Status /
Resume Select
0
1 = 30h is Erase or Program Resume command
0 = 30h is clear status command
1
D8h_NV
Block Erase Size
0
1 = 256KB Erase
0 = 64KB Erase
0
F0h_NV
Legacy Software
Reset Enable
0
1 = F0h Software Reset is enabled
0 = F0h Software Reset is disabled (ignored)
OTP
Description
Blank Check Non-volatile CR3NV[5]: This bit controls the POR, hardware reset, or software reset state of the blank check during
erase feature.
02h Non-volatile CR3NV[4]: This bit controls the POR, hardware reset, or software reset state of the page programming buffer
address wrap point.
20h Non-volatile CR3NV[3]: This bit controls the POR, hardware reset, or software reset state of the availability of 4 KB parameter
sectors in the main Flash array address map.
30h Non-volatile CR3NV[2]: This bit controls the POR, hardware reset, or software reset state of the 30h instruction code is used.
D8h Non-volatile CR3NV[1]: This bit controls the POR, hardware reset, or software reset state of the configuration for the size of
the area erased by the D8h or DCh instructions in the FS-S Family.
F0h Non-volatile CR3NV[0]: This bit controls the POR, hardware reset, or software reset state of the availability of the Cypress
legacy FL-S family software reset instruction.
9.6.5.2
Configuration Register 3 Volatile (CR3V)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h).
Table 36. Configuration Register 3 Volatile (CR3V)
Bits
Field Name
Function
Type
Default
State
Description
7
RFU
Reserved
Reserved for Future Use
6
RFU
Reserved
Reserved for Future Use
5
BC_V
Blank Check
4
02h_V
Page Buffer Wrap
3
20h_V
4KB Erase
30h_V
Clear Status / Resume
Select
1
D8h_V
Block Erase Size
0
F0h_V
Legacy Software Reset
Enable
2
Document Number: 002-03631 Rev. *G
1 = Blank Check during erase enabled
0 = Blank Check disabled
Volatile
1 = Wrap at 512 Bytes
0 = Wrap at 256 Bytes
Volatile,
Read Only
CR3NV
1 = 4KB Erase disabled (Uniform Sector Architecture)
0 = 4KB Erase enabled (Hybrid Sector Architecture)
1 = 30h is Erase or Program Resume command
0 = 30h is clear status command
Volatile
1 = 256KB Erase
0 = 64KB Erase
1 = F0h Software Reset is enabled
0 = F0h Software Reset is disabled (ignored)
Page 57 of 145
S25FS064S
Blank Check Volatile CR3V[5]: This bit controls the blank check during erase feature. When this feature is enabled an erase
command first evaluates the erase status of the sector. If the sector is found to have not completed its last erase successfully, the
sector is unconditionally erased. If the last erase was successful, the sector is read to determine if the sector is still erased (blank).
The erase operation is started immediately after finding any programmed zero. If the sector is already blank (no programmed zero
bit found) the remainder of the erase operation is skipped. This can dramatically reduce erase time when sectors being erased do
not need the erase operation. When enabled the blank check feature is used within the parameter erase, sector erase, and bulk
erase commands. When blank check is disabled an erase command unconditionally starts the erase operation.
02h Volatile CR3V[4]: This bit controls the page programming buffer address wrap point. Legacy SPI devices generally have used
a 256 Byte page programming buffer and defined that if data is loaded into the buffer beyond the 255 Byte location, the address at
which additional bytes are loaded would be wrapped to address zero of the buffer. The FS-S Family provides a 512 Byte page
programming buffer that can increase programming performance. For legacy software compatibility, this configuration bit provides
the option to continue the wrapping behavior at the 256 Byte boundary or to enable full use of the available 512 Byte buffer by not
wrapping the load address at the 256 Byte boundary.
20h Volatile CR3V[3]: This bit controls the availability of 4 KB parameter sectors in the main Flash array address map. The
parameter sectors can overlay the highest or lowest 32 KB address range of the device or they can be removed from the address
map so that all sectors are uniform size. This bit shall not be written to a value different than the value of CR3NV[3]. The value of
CR3V[3] may only be changed by writing CR3NV[3].
30h Volatile CR3V[2]: This bit controls how the 30h instruction code is used. The instruction may be used as a clear status
command or as an alternate program / erase resume command. This allows software compatibility with either Cypress legacy SPI
devices or alternate vendor devices.
D8h Volatile CR3V[1]: This bit controls the area erased by the D8h or DCh instructions in the FS-S Family. The instruction can be
used to erase 64 KB physical sectors or 256 KB size and aligned blocks. The option to erase 256 KB blocks in the lower density
family members allows for consistent software behavior across all densities that can ease migration between different densities.
F0h Volatile CR3V[0]: This bit controls the availability of the Cypress legacy FL-S family software reset instruction. The FS-S
Family supports the industry common 66h + 99h instruction sequence for software reset. This configuration bit allows the option to
continue use of the legacy F0h single command for software reset.
9.6.6
Configuration Register 4
Configuration register 4 controls the main Flash array read commands burst wrap behavior. The burst wrap configuration does not
affect commands reading from areas other than the main Flash array e.g. read commands for registers or OTP array. The nonvolatile version of the register provides the ability to set the start up (boot) state of the controls as the contents are copied to the
volatile version of the register during the POR, hardware reset, or software reset. The volatile version of the register controls the
feature behavior during normal operation. The register bits can be read and changed using the Read Any Register and Write Any
Register commands. The volatile version of the register can also be written by the Set Burst Length (C0h) command.
9.6.6.1
Configuration Register 4 Non-volatile (CR4NV)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h).
Table 37. Configuration Register 4 Non-volatile (CR4NV)
Bits
Field Name
Function
OI_O
Output Impedance
Type
7
6
Description
0
0
5
See Table 38. Output Impedance Control on page 59
0
4
WE_O
Wrap Enable
3
RFU
Reserved
2
RFU
Reserved
WL_O
Wrap Length
1
0
Default
State
Document Number: 002-03631 Rev. *G
OTP
1
0= Wrap Enabled
1= Wrap Disabled
0
Reserved for Future Use
0
Reserved for Future Use
0
00 = 8-byte wrap
01= 16 byte wrap
10= 32 byte wrap
11= 64 byte wrap
0
Page 58 of 145
S25FS064S
Output Impedance Non-volatile CR4NV[7:5]: These bits control the POR, hardware reset, or software reset state of the IO signal
output impedance (drive strength). Multiple drive strength are available to help match the output impedance with the system printed
circuit board environment to minimize overshoot and ringing. These non-volatile output impedance configuration bits enable the
device to start immediately (boot) with the appropriate drive strength.
Table 38. Output Impedance Control
CR4NV[7:5]
Impedance Selection
Typical Impedance to VSS
(Ohms)
Typical Impedance to VCC
(Ohms)
Notes
Factory Default
000
47
45
001
124
105
010
71
64
011
47
45
100
34
35
101
26
28
110
22
24
111
18
21
Wrap Enable Non-volatile CR4NV[4]: This bit controls the POR, hardware reset, or software reset state of the wrap enable. The
commands affected by Wrap Enable are: Quad I/O Read, DDR Quad I/O Read, Quad Output Read and QPI Read. This
configuration bit enables the device to start immediately (boot) in wrapped burst read mode rather than the legacy sequential read
mode.
Wrap Length Non-volatile CR4NV[1:0]: These bits controls the POR, hardware reset, or software reset state of the wrapped read
length and alignment. These non-volatile configuration bits enable the device to start immediately (boot) in wrapped burst read mode
rather than the legacy sequential read mode.
9.6.6.2
Configuration Register 4 Volatile (CR4V)
Related Commands: Read Any Register (RDAR 65h), Write Any Register (WRAR 71h), Set Burst Length (SBL C0h).
Table 39. Configuration Register 4 Volatile (CR4V)
Bits
Field Name
Function
OI
Output Impedance
4
WE
Wrap Enable
3
RFU
Reserved
2
RFU
Reserved
WL
Wrap Length
Type
Default
State
Description
7
6
See Table 38. Output Impedance Control on page 59
5
1
0
Volatile
CR4NV
0= Wrap Enabled
1= Wrap Disabled
Reserved for Future Use
Reserved for Future Use
00 = 8-byte wrap
01= 16 byte wrap
10= 32 byte wrap
11= 64 byte wrap
Output Impedance CR2V[7:5]: These bits control the IO signal output impedance (drive strength). This volatile output impedance
configuration bit enables the user to adjust the drive strength during normal operation.
Wrap Enable CR4V[4]: This bit controls the burst wrap feature. This volatile configuration bit enables the device to enter and exit
burst wrapped read mode during normal operation.
Wrap Length CR4V[1:0]: These bits controls the wrapped read length and alignment during normal operation. These volatile
configuration bits enable the user to adjust the burst wrapped read length during normal operation.
Document Number: 002-03631 Rev. *G
Page 59 of 145
S25FS064S
9.6.7
ECC Status Register (ECCSR)
Related Commands: ECC Read (ECCRD 18h or 19h). ECCSR does not have user programmable non-volatile bits. All defined bits
are volatile read only status. The default state of these bits are set by hardware. See Automatic ECC on page 100.
The status of ECC in each ECC unit is provided by the 8-bit ECC Status Register (ECCSR). The ECC Register Read command is
written followed by an ECC unit address. The contents of the status register then indicates, for the selected ECC unit, whether there
is an error in the ECC unit eight bit error correction code, the ECC unit of 16 Bytes of data, or that ECC is disabled for that ECC unit.
Table 40. ECC Status Register (ECCSR)
Bits
Field Name
Function
7 to 3
RFU
Reserved
2
EECC
Error in ECC
1
EECCD
0
ECCDI
Type
Default State
Description
0
Reserved for Future Use
Volatile, Read only
0
1 = Single Bit Error found in the ECC unit eight bit error
correction code
0 = No error.
Error in ECC unit
data
Volatile, Read only
0
1 = Single Bit Error corrected in ECC unit data.
0 = No error.
ECC Disabled
Volatile, Read only
0
1 = ECC is disabled in the selected ECC unit. 0 = ECC
is enabled in the selected ECC unit.
ECCSR[2] = 1 indicates an error was corrected in the ECC. ECCSR[1] = 1 indicates an error was corrected in the ECC unit data.
ECCSR[0] = 1 indicates the ECC is disabled. The default state of “0” for all these bits indicates no failures and ECC is enabled.
ECCSR[7:3] are reserved. These have undefined high or low values that can change from one ECC status read to another. These
bits should be treated as “don’t care” and ignored by any software reading status.
9.6.8
ASP Register (ASPR)
Related Commands: ASP Read (ASPRD 2Bh) and ASP Program (ASPP 2Fh), Read Any Register (RDAR 65h), Write Any Register
(WRAR 71h).
The ASP register is a 16 bit OTP memory location used to permanently configure the behavior of Advanced Sector Protection (ASP)
features. ASPR does not have user programmable volatile bits, all defined bits are OTP.
The default state of the ASPR bits are programmed by Cypress.
Table 41. ASP Register (ASPR)
Bits
Field Name
Function
Type
Default
State
15 to 9
RFU
Reserved
OTP
1
Reserved for Future Use
8
RFU
Reserved
OTP
1
Reserved for Future Use
7
RFU
Reserved
OTP
1
Reserved for Future Use
6
RFU
Reserved
OTP
1
Reserved for Future Use
5
RFU
Reserved
OTP
1
Reserved for Future Use
4
Reserved
RFU
1
Reserved for Future Use
3
Reserved
RFU
1
Reserved for Future Use
Description
2
PWDMLB
Password
Protection Mode
Lock Bit
OTP
1
0 = Password Protection Mode permanently enabled.
1 = Password Protection Mode not permanently enabled.
1
PSTMLB
Persistent
Protection Mode
Lock Bit
OTP
1
0 = Persistent Protection Mode permanently enabled.
1 = Persistent Protection Mode not permanently enabled.
Reserved
RFU
1
Reserved for Future Use
0
Document Number: 002-03631 Rev. *G
Page 60 of 145
S25FS064S
Password Protection Mode Lock Bit (PWDMLB) ASPR[2]: When programmed to 0, the Password Protection Mode is
permanently selected.
Persistent Protection Mode Lock Bit (PSTMLB) ASPR[1]: When programmed to 0, the Persistent Protection Mode is
permanently selected.
PWDMLB (ASPR[2]) and PSTMLB (ASPR[1]) are mutually exclusive, only one may be programmed to zero.
ASPR bits may only be programmed while ASPR[2:1] = 11b. Attempting to program ASPR bits when ASPR[2:1] is not = 11b will
result in a programming error with P_ERR (SR1V[6]) set to 1. After the ASP protection mode is selected by programming ASPR[2:1]
= 10b or 01b, the state of all ASPR bits are locked and permanently protected from further programming. Attempting to program
ASPR[2:1] = 00b will result in a programming error with P_ERR (SR1V[6]) set to 1.
Similarly, OTP configuration bits listed in the ASP Register description (see ASP Register on page 67), may only be programmed
while ASPR[2:1] = 11b. The OTP configuration must be selected before selecting the ASP protection mode. The OTP configuration
bits are permanently protected from further change when the ASP protection mode is selected. Attempting to program these OTP
configuration bits when ASPR[2:1] is not = 11b will result in a programming error with P_ERR (SR1V[6]) set to 1.
The ASP protection mode should be selected during system configuration to ensure that a malicious program does not select an
undesired protection mode at a later time. By locking all the protection configuration via the ASP mode selection, later alteration of
the protection methods by malicious programs is prevented.
9.6.9
Password Register (PASS)
Related Commands: Password Read (PASSRD E7h) and Password Program (PASSP E8h), Read Any Register (RDAR 65h), Write
Any Register (WRAR 71h). The PASS register is a 64 bit OTP memory location used to permanently define a password for the
Advanced Sector Protection (ASP) feature. PASS does not have user programmable volatile bits, all defined bits are OTP. A volatile
copy of PASS is used to satisfy read latency requirements but the volatile register is not user writable or further described.
Table 42. Password Register (PASS)
Bits
Field
Name
Function
Type
Default State
63 to 0
PWD
Hidden
Password
OTP
FFFFFFFFFFFFFFFFh
9.6.10
Description
Non-volatile OTP storage of 64 bit password. The password is no longer
readable after the password protection mode is selected by programming
ASP register bit 2 to zero.
PPB Lock Register (PPBL)
Related Commands: PPB Lock Read (PLBRD A7h, PLBWR A6h), Read Any Register (RDAR 65h).
PPBL does not have separate user programmable non-volatile bits, all defined bits are volatile read only status. The default state of
the RFU bits is set by hardware. The default state of the PPBLOCK bit is defined by the ASP protection mode bits in ASPR[2:1].
There is no non-volatile version of the PPBL register.
The PPBLOCK bit is used to protect the PPB bits. When PPBL[0] = 0, the PPB bits can not be programmed.
Table 43. PPB Lock Register (PPBL)
Bits
Field Name
Function
Type
7 to 1
RFU
Reserved
Volatile
00h
Volatile
Read Only
ASPR[2:1] = 1xb = Persistent
Protection Mode = 1
ASPR[2:1] = 01b = Password
Protection Mode = 0
0
PPBLOCK
Protect PPB Array
Document Number: 002-03631 Rev. *G
Default State
Description
Reserved for Future Use
0 = PPB array protected
1 = PPB array may be programmed or erased.
Page 61 of 145
S25FS064S
9.6.11
PPB Access Register (PPBAR)
Related Commands: PPB Read (PPBRD FCh or 4PPBRD E2h), PPB Program (PPBP FDh or 4PPBP E3h), PPB Erase (PPBE
E4h).
PPBAR does not have user writable volatile bits, all PPB array bits are non-volatile. The default state of the PPB array is erased to
FFh by Cypress. There is no volatile version of the PPBAR register.
Table 44. PPB Access Register (PPBAR)
Bits
Field
Name
Function
Type
Default
State
7 to 0
PPB
Read or
Program per
sector PPB
Nonvolatile
FFh
9.6.12
Description
00h = PPB for the sector addressed by the PPBRD or PPBP command is
programmed to 0, protecting that sector from program or erase operations.
FFh = PPB for the sector addressed by the PPBRD command is 1, not protecting
that sector from program or erase operations.
DYB Access Register (DYBAR)
Related Commands: DYB Read (DYBRD FAh or 4DYBRD E0h) and DYB Write (DYBWR FBh or 4DYBWR E1h).
DYBAR does not have user programmable non-volatile bits, all bits are a representation of the volatile bits in the DYB array. The
default state of the DYB array bits is set by hardware. There is no non-volatile version of the DYBAR register.
Table 45. DYB Access Register (DYBAR)
Bits
7 to 0
9.6.13
Field Name
DYB
Function
Read or Write
per sector DYB
Type
Default State
Description
00h = DYB for the sector addressed by the DYBRD or DYBWR
command is cleared to “0”, protecting that sector from program or erase
operations.
FFh = DYB for the sector addressed by the DYBRD or DYBWR
command is set to “1”, not protecting that sector from program or erase
operations.
Volatile
SPI DDR Data Learning Registers
Related Commands: Program NVDLR (PNVDLR 43h), Write VDLR (WVDLR 4Ah), Data Learning Pattern Read (DLPRD 41h), Read
Any Register (RDAR 65h), Write Any Register (WRAR 71h).
The Data Learning Pattern (DLP) resides in an 8-bit Non-Volatile Data Learning Register (NVDLR) as well as an 8-bit Volatile Data
Learning Register (VDLR). When shipped from Cypress, the NVDLR value is 00h. Once programmed, the NVDLR cannot be
reprogrammed or erased; a copy of the data pattern in the NVDLR will also be written to the VDLR. The VDLR can be written to at
any time, but on power cycles the data pattern will revert back to what is in the NVDLR. During the learning phase described in the
SPI DDR modes, the DLP will come from the VDLR. Each IO will output the same DLP value for every clock edge. For example, if
the DLP is 34h (or binary 00110100) then during the first clock edge all IO’s will output 0; subsequently, the 2nd clock edge all I/O’s
will output 0, the 3rd will output 1, etc.
When the VDLR value is 00h, no preamble data pattern is presented during the dummy phase in the DDR commands.
Table 46. Non-Volatile Data Learning Register (NVDLR)
Bits
7 to 0
Field Name
NVDLP
Function
Non-Volatile
Data Learning
Pattern
Type
Default State
OTP
00h
Description
OTP value that may be transferred to the host during DDR read
command latency (dummy) cycles to provide a training pattern to help
the host more accurately center the data capture point in the received
data bits.
Table 47. Volatile Data Learning Register (VDLR)
Bits
7 to 0
Field Name
VDLP
Function
Volatile Data
Learning Pattern
Document Number: 002-03631 Rev. *G
Type
Volatile
Default State
Description
Takes the value
Volatile copy of the NVDLP used to enable and deliver the Data Learning
of NVDLR
Pattern (DLP) to the outputs. The VDLP may be changed by the host
during POR or during system operation.
Reset
Page 62 of 145
S25FS064S
10. Data Protection
10.1
Secure Silicon Region (OTP)
The device has a 1024 byte One Time Program (OTP) address space that is separate from the main Flash array. The OTP area is
divided into 32, individually lockable, 32 byte aligned and length regions.
The OTP memory space is intended for increased system security. OTP values can “mate” a flash component with the system CPU/
ASIC to prevent device substitution. See OTP Address Space on page 46, OTP Program (OTPP 42h) on page 110, and OTP Read
(OTPR 4Bh) on page 110.
10.1.1
Reading OTP Memory Space
The OTP Read command uses the same protocol as Fast Read. OTP Read operations outside the valid 1KB OTP address range
will yield indeterminate data.
10.1.2
Programming OTP Memory Space
The protocol of the OTP programming command is the same as Page Program. The OTP Program command can be issued multiple
times to any given OTP address, but this address space can never be erased.
Automatic ECC is programmed on the first programming operation to each 16 byte region. Programming within a 16 byte region
more than once disables the ECC. It is recommended to program each 16 byte portion of each 32 byte region once so that ECC
remains enabled to provide the best data integrity.
The valid address range for OTP Program is depicted in Figure 42 on page 46. OTP Program operations outside the valid OTP
address range will be ignored, without P_ERR in SR1V set to “1”. OTP Program operations within the valid OTP address range,
while FREEZE = 1, will fail with P_ERR in SR1V set to “1”. The OTP address space is not protected by the selection of an ASP
protection mode. The Freeze bit (CR1V[0]) may be used to protect the OTP Address Space.
10.1.3
Cypress Programmed Random Number
Cypress standard practice is to program the low order 16 bytes of the OTP memory space (locations 0x0 to 0xF) with a 128-bit
random number using the Linear Congruential Random Number Method. The seed value for the algorithm is a random number
concatenated with the day and time of tester insertion.
10.1.4
Lock Bytes
The LSB of each Lock byte protects the lowest address region related to the byte, the MSB protects the highest address region
related to the byte. The next higher address byte similarly protects the next higher 8 regions. The LSB bit of the lowest address Lock
Byte protects the higher address 16 bytes of the lowest address region. In other words, the LSB of location 0x10 protects all the Lock
Bytes and RFU bytes in the lowest address region from further programming. See OTP Address Space on page 46.
10.2
Write Enable Command
The Write Enable (WREN) command must be written prior to any command that modifies non-volatile data. The WREN command
sets the Write Enable Latch (WEL) bit. The WEL bit is cleared to 0 (disables writes) during power-up, hardware reset, or after the
device completes the following commands:
Reset
Page Program (PP or 4PP)
Parameter 4KB Erase (P4E or 4P4E)
Sector Erase (SE or 4SE)
Bulk Erase (BE)
Write Disable (WRDI)
Write Registers (WRR)
Write Any Register (WRAR)
OTP Byte Programming (OTPP)
Advanced Sector Protection Register Program (ASPP)
Persistent Protection Bit Program (PPBP)
Persistent Protection Bit Erase (PPBE)
Password Program (PASSP)
Program Non-Volatile Data Learning Register (PNVDLR)
Document Number: 002-03631 Rev. *G
Page 63 of 145
S25FS064S
10.3
Block Protection
The Block Protect bits (Status Register bits BP2, BP1, BP0) in combination with the Configuration Register TBPROT_O bit can be
used to protect an address range of the main Flash array from program and erase operations. The size of the range is determined by
the value of the BP bits and the upper or lower starting point of the range is selected by the TBPROT_O bit of the configuration
register (CR1NV[5]).
Table 48. S25FS064S Upper Array Start of Protection (TBPROT_O = 0)
Status Register Content
BP2
BP1
BP0
Protected Fraction of
Memory Array
Protected Memory
(KBytes)
0
0
0
None
0
0
0
1
Upper 64th
128
0
1
0
Upper 32nd
256
0
1
1
Upper 16th
512
1
0
0
Upper 8th
1024
1
0
1
Upper 4th
2048
1
1
0
Upper Half
4096
1
1
1
All Sectors
8192
Protected Fraction of
Memory Array
Protected Memory
(KBytes)
Table 49. S25FS064S Lower Array Start of Protection (TBPROT_O = 1)
Status Register Content
BP2
BP1
BP0
0
0
0
None
0
0
0
1
Lower 64th
128
0
1
0
Lower 32nd
256
0
1
1
Lower 16th
512
1
0
0
Lower 8th
1024
1
0
1
Lower 4th
2048
1
1
0
Lower Half
4096
1
1
1
All Sectors
8192
When Block Protection is enabled (i.e., any BP2-0 are set to “1”), Advanced Sector Protection (ASP) can still be used to protect
sectors not protected by the Block Protection scheme. In the case that both ASP and Block Protection are used on the same sector
the logical OR of ASP and Block Protection related to the sector is used.
10.3.1
Freeze bit
Bit 0 of Configuration Register 1 (CR1V[0]) is the FREEZE bit. The Freeze Bit, when set to 1, locks the current state of the Block
Protection control bits and OTP area until the next power off-on cycle. Additional details in Configuration Register 1 Volatile (CR1V)
on page 53.
10.3.2
Write Protect Signal
The Write Protect (WP#) input in combination with the Status Register Write Disable (SRWD) bit (SR1NV[7]) provide hardware input
signal controlled protection. When WP# is Low and SRWD is set to “1” Status Register-1 (SR1NV and SR1V) and Configuration
register-1 (CR1NV and CR1V) are protected from alteration. This prevents disabling or changing the protection defined by the Block
Protect bits. See Status Registers 1 on page 48.
Document Number: 002-03631 Rev. *G
Page 64 of 145
S25FS064S
10.4
Advanced Sector Protection
Advanced Sector Protection (ASP) is the name used for a set of independent hardware and software methods used to disable or
enable programming or erase operations, individually, in any or all sectors.
Every main Flash array sector has a non-volatile Persistent Protection Bit (PPB) and a volatile Dynamic Protection Bit (DYB)
associated with it. When either bit is “0”, the sector is protected from program and erase operations. The PPB bits are protected from
program and erase when the volatile PPB Lock bit is “0”. There are two methods for managing the state of the PPB Lock bit:
Password Protection and Persistent Protection. An overview of these methods is shown in Figure 44 on page 66.
Block Protection and ASP protection settings for each sector are logically ORed to define the protection for each sector i.e. if either
mechanism is protecting a sector the sector cannot be programmed or erased. Refer to Block Protection on page 64 for full details of
the BP2-0 bits.
Figure 43. Sector Protection Control
Dynamic
Protection
Bits Array
(DYB)
Sector 1
Logical OR
Sector 1
Sector 1
...
...
Block
Protection
Logic
Sector N
Document Number: 002-03631 Rev. *G
...
Logical OR
Sector 0
...
Sector 0
Sector 0
Sector N
Flash
Memory
Array
Logical OR
Persistent
Protection
Bits Array
(PPB)
Sector N
Page 65 of 145
S25FS064S
Figure 44. Advanced Sector Protection Overview
Power On / Reset
ASPR[2]=0
ASPR[1]=0
No
No
Yes
Yes
Password Protection
Persistent Protection
ASPR Bits Locked
ASPR Bits Locked
PPBLOCK = 0
PPB Bits Locked
PPBLOCK = 1
PPB Bits Erasable
and Programmable
No
Password Unlock
Yes
PPBLOCK = 1
PPB Bits Erasable
and Programmable
Default
Persistent Protection
ASPR Bits Are
Programmable
No
PPB Lock Bit Write
Yes
PPBLOCK = 0
PPB Bits Locked
No
PPB Lock Bit Write
Yes
Password Protection Mode protects
the PPB after power up. A password
unlock command will enable changes
to PPB.
A PPB Lock Bit write command turns
protection back on.
Persistent Protection Mode does
not protect the PPB after power
up. The PPB bits may be
changed. A PPB Lock Bit write
command protects the PPB bits
until the next power off or reset.
Default Mode allows ASPR to be
programmed to permanently select
the Protection mode.
The default mode otherwise acts the
same as the Persistent Protection
Mode.
After one of the protection modes is
selected, ASPR is no longer programmable, making the selected
protection mode permanent.
Document Number: 002-03631 Rev. *G
Page 66 of 145
S25FS064S
The Persistent Protection method sets the PPB Lock bit to “1” during POR, or Hardware Reset so that the PPB bits are unprotected
by a device reset. There is a command to clear the PPB Lock bit to “0” to protect the PPB. There is no command in the Persistent
Protection method to set the PPB Lock bit to “1”, therefore the PPB Lock bit will remain at “0” until the next power-off or hardware
reset. The Persistent Protection method allows boot code the option of changing sector protection by programming or erasing the
PPB, then protecting the PPB from further change for the remainder of normal system operation by clearing the PPB Lock bit to “0”.
This is sometimes called Boot-code controlled sector protection.
The Password method clears the PPB Lock bit to “0” during POR, or Hardware Reset to protect the PPB. A 64 bit password may be
permanently programmed and hidden for the password method. A command can be used to provide a password for comparison with
the hidden password. If the password matches, the PPB Lock bit is set to “1” to unprotect the PPB. A command can be used to clear
the PPB Lock bit to “0”. This method requires use of a password to control PPB protection.
The selection of the PPB Lock bit management method is made by programming OTP bits in the ASP Register so as to permanently
select the method used.
10.4.1
ASP Register
The ASP register is used to permanently configure the behavior of Advanced Sector Protection (ASP) features. See Table 41
on page 60.
As shipped from the factory, all devices default ASP to the Persistent Protection mode, with all sectors unprotected, when power is
applied. The device programmer or host system must then choose which sector protection method to use. Programming either of
the, one-time programmable, Protection Mode Lock Bits, locks the part permanently in the selected mode:
ASPR[2:1] = “11” = No ASP mode selected, Persistent Protection Mode is the default.
ASPR[2:1] = “10” = Persistent Protection Mode permanently selected.
ASPR[2:1] = “01” = Password Protection Mode permanently selected.
ASPR[2:1] = “00” is an Illegal condition, attempting to program more than one bit to zero results in a programming failure.
ASP register programming rules:
If the password mode is chosen, the password must be programmed prior to setting the Protection Mode Lock Bits.
Once the Protection Mode is selected, the following OTP configuration Register bits are permanently protected from programming
and no further changes to the OTP register bits is allowed:
– CR1NV
– CR2NV
– CR3NV
– CR4NV
– ASPR
– PASS
– NVDLR
– If an attempt to change any of the registers above, after the ASP mode is selected, the operation will fail and P_ERR
(SR1V[6]) will be set to 1.
The programming time of the ASP Register is the same as the typical page programming time. The system can determine the status
of the ASP register programming operation by reading the WIP bit in the Status Register. See Status Registers 1 on page 48 for
information on WIP. See Sector Protection States Summary on page 68.
Document Number: 002-03631 Rev. *G
Page 67 of 145
S25FS064S
10.4.2
Persistent Protection Bits
The Persistent Protection Bits (PPB) are located in a separate nonvolatile Flash array. One of the PPB bits is related to each sector.
When a PPB is “0”, its related sector is protected from program and erase operations. The PPB are programmed individually but
must be erased as a group, similar to the way individual words may be programmed in the main array but an entire sector must be
erased at the same time. The PPB have the same program and erase endurance as the main Flash memory array. Preprogramming
and verification prior to erasure are handled by the device.
Programming a PPB bit requires the typical page programming time. Erasing all the PPBs requires typical sector erase time. During
PPB bit programming and PPB bit erasing, status is available by reading the Status register. Reading of a PPB bit requires the initial
access time of the device.
Notes:
1. Each PPB is individually programmed to “0” and all are erased to “1” in parallel.
2. If the PPB Lock bit is “0”, the PPB Program or PPB Erase command does not execute and fails without programming or
erasing the PPB.
3. The state of the PPB for a given sector can be verified by using the PPB Read command.
10.4.3
Dynamic Protection Bits
Dynamic Protection Bits are volatile and unique for each sector and can be individually modified. DYB only control the protection for
sectors that have their PPB set to “1”. By issuing the DYB Write command, a DYB is cleared to “0” or set to “1”, thus placing each
sector in the protected or unprotected state respectively. This feature allows software to easily protect sectors against inadvertent
changes, yet does not prevent the easy removal of protection when changes are needed. The DYBs can be set or cleared as often
as needed as they are volatile bits.
10.4.4
PPB Lock Bit (PPBL[0])
The PPB Lock Bit is a volatile bit for protecting all PPB bits. When cleared to “0”, it locks all PPBs, when set to “1”, it allows the PPBs
to be changed. See PPB Lock Register (PPBL) on page 61 for more information.
The PLBWR command is used to clear the PPB Lock bit to “0”. The PPB Lock Bit must be cleared to “0” only after all the PPBs are
configured to the desired settings.
In Persistent Protection mode, the PPB Lock is set to “1” during POR or a hardware reset. When cleared to “0”, no software
command sequence can set the PPB Lock bit to “1”, only another hardware reset or power-up can set the PPB Lock bit.
In the Password Protection mode, the PPB Lock bit is cleared to “0” during POR or a hardware reset. The PPB Lock bit can only be
set to “1” by the Password Unlock command.
10.4.5
Sector Protection States Summary
Each sector can be in one of the following protection states:
Unlocked — The sector is unprotected and protection can be changed by a simple command. The protection state defaults to
unprotected when the device is shipped from Cypress.
Dynamically Locked — A sector is protected and protection can be changed by a simple command. The protection state is not
saved across a power cycle or reset.
Persistently Locked — A sector is protected and protection can only be changed if the PPB Lock Bit is set to “1”. The protection
state is non-volatile and saved across a power cycle or reset. Changing the protection state requires programming and or erase of
the PPB bits
Document Number: 002-03631 Rev. *G
Page 68 of 145
S25FS064S
Table 50. Sector Protection States
Protection Bit Values
Sector State
PPB Lock
PPB
DYB
1
1
1
Unprotected – PPB and DYB are changeable
1
1
0
Protected – PPB and DYB are changeable
1
0
1
Protected – PPB and DYB are changeable
1
0
0
Protected – PPB and DYB are changeable
0
1
1
Unprotected – PPB not changeable, DYB is changeable
0
1
0
Protected – PPB not changeable, DYB is changeable
0
0
1
Protected – PPB not changeable, DYB is changeable
0
0
0
Protected – PPB not changeable, DYB is changeable
10.4.6
Persistent Protection Mode
The Persistent Protection method sets the PPB Lock bit to “1” during POR or Hardware Reset so that the PPB bits are unprotected
by a device hardware reset. Software reset does not affect the PPB Lock bit. The PLBWR command can clear the PPB Lock bit to
“0” to protect the PPB. There is no command to set the PPB Lock bit therefore the PPB Lock bit will remain at “0” until the next
power-off or hardware reset.
10.4.7
Password Protection Mode
Password Protection Mode allows an even higher level of security than the Persistent Sector Protection Mode, by requiring a 64-bit
password for unlocking the PPB Lock bit. In addition to this password requirement, after power up and hardware reset, the PPB Lock
bit is cleared to “0” to ensure protection at power-up. Successful execution of the Password Unlock command by entering the entire
password sets the PPB Lock bit to 1, allowing for sector PPB modifications.
Password Protection Notes:
Once the Password is programmed and verified, the Password Mode (ASPR[2] = 0) must be set in order to prevent reading the
password.
The Password Program Command is only capable of programming “0”s. Programming a “1” after a cell is programmed as a “0”
results in the cell left as a “0” with no programming error set.
The password is all “1”s when shipped from Cypress. It is located in its own memory space and is accessible through the use of
the Password Program, Password Read, RDAR, and WRAR commands. These commands will not provide access after the
Password lock mode is selected.
All 64-bit password combinations are valid as a password.
The Password Mode, once programmed, prevents reading the 64-bit password and further password programming. All further
program and read commands to the password region are disabled and these commands are ignored or return undefined data.
There is no means to verify what the password is after the Password Mode Lock Bit is selected. Password verification is only
allowed before selecting the Password Protection mode.
The Protection Mode Lock Bits are not erasable.
The exact password must be entered in order for the unlocking function to occur. If the password unlock command provided
password does not match the hidden internal password, the unlock operation fails in the same manner as a programming
operation on a protected sector. The P_ERR bit is set to one, the WIP Bit remains set, and the PPB Lock bit remains cleared to 0.
The Password Unlock command cannot be accepted any faster than once every 100 µs ± 20 µs. This makes it take an
unreasonably long time (58 million years) for a hacker to run through all the 64-bit combinations in an attempt to correctly match a
password. The Read Status Register 1 command may be used to read the WIP bit to determine when the device has completed
the password unlock command or is ready to accept a new password command. When a valid password is provided the password
unlock command does not insert the 100 µs delay before returning the WIP bit to zero.
If the password is lost after selecting the Password Mode, there is no way to set the PPB Lock bit.
ECC status may only be read from sectors that are readable. In read protection mode the addresses are forced to the boot sector
address. ECC status is shown in that sector while read protection mode is active.
Document Number: 002-03631 Rev. *G
Page 69 of 145
S25FS064S
10.5
Recommended Protection Process
During system manufacture, the Flash device configuration should be defined by:
1. Programming the OTP configuration bits in CR1NV[5, 3:2], CR2NV, CR3NV, and CR4NV as desired.
2. Program the Secure Silicon Region (OTP area) as desired.
3. Program the PPB bits as desired via the PPBP command.
4. Program the Non-Volatile Data Learning Pattern (NVDLR) if it will be used in DDR read commands.
5. Program the Password register (PASS) if password protection will be used.
6. Program the ASP Register as desired, including the selection of the persistent or password ASP protection mode in
ASPR[2:1]. It is very important to explicitly select a protection mode so that later accidental or malicious programming of
the ASP register and OTP configuration is prevented. This is to ensure that only the intended OTP protection and
configuration features are enabled.
During system power up and boot code execution:
1. Trusted boot code can determine whether there is any need to program additional SSR (OTP area) information. If no SSR
changes are needed the FREEZE bit (CR1V[0]) can be set to 1 to protect the SSR from changes during the remainder of
normal system operation while power remains on.
2. If the persistent protection mode is in use, trusted boot code can determine whether there is any need to modify the
persistent (PPB) sector protection via the PPBP or PPBE commands. If no PPB changes are needed the PPBLOCK bit
can be cleared to 0 via the PPBL to protect the PPB bits from changes during the remainder of normal system operation
while power remains on.
3. The dynamic (DYB) sector protection bits can be written as desired via the DYBAR.
Document Number: 002-03631 Rev. *G
Page 70 of 145
S25FS064S
11. Commands
All communication between the host system and FS-S Family memory devices is in the form of units called commands.
All commands begin with an instruction that selects the type of information transfer or device operation to be performed. Commands
may also have an address, instruction modifier, latency period, data transfer to the memory, or data transfer from the memory. All
instruction, address, and data information is transferred sequentially between the host system and memory device.
Command protocols are also classified by a numerical nomenclature using three numbers to reference the transfer width of three
command phases:
instruction;
address and instruction modifier (mode);
data.
Single bit wide commands start with an instruction and may provide an address or data, all sent only on the SI/IO0 signal. Data may
be sent back to the host serially on the SO/IO1 signal. This is referenced as a 1-1-1 command protocol for single bit width
instruction, single bit width address and modifier, single bit data.
Dual Output or Quad Output commands provide an address sent from the host on IO0. Data is returned to the host as bit pairs on
IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. This is referenced as 1-1-2 for Dual Output and 1-1-4 for Quad
Output command protocols.
Dual or Quad Input / Output (I/O) commands provide an address sent from the host as bit pairs on IO0 and IO1 or, four bit (nibble)
groups on IO0, IO1, IO2, and IO3. Data is returned to the host similarly as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0,
IO1, IO2, and IO3. This is referenced as 1-2-2 for Dual I/O and 1-4-4 for Quad I/O command protocols.
The FS-S Family also supports a QPI mode in which all information is transferred in 4-bit width, including the instruction, address,
modifier, and data. This is referenced as a 4-4-4 command protocol.
Commands are structured as follows:
Each command begins with an eight bit (byte) instruction. However, some read commands are modified by a prior read
command, such that the instruction is implied from the earlier command. This is called Continuous Read Mode. When the device
is in continuous read mode, the instruction bits are not transmitted at the beginning of the command because the instruction is the
same as the read command that initiated the Continuous Read Mode. In Continuous Read mode the command will begin with the
read address. Thus, Continuous Read Mode removes eight instruction bits from each read command in a series of same type
read commands.
The instruction may be stand alone or may be followed by address bits to select a location within one of several address spaces
in the device. The address may be either a 24 bit or 32 bit, byte boundary, address.
The Serial Peripheral Interface with Multiple IO provides the option for each transfer of address and data information to be done
one, two, or four bits in parallel. This enables a trade off between the number of signal connections (IO bus width) and the speed
of information transfer. If the host system can support a two or four bit wide IO bus the memory performance can be increased by
using the instructions that provide parallel two bit (dual) or parallel four bit (quad) transfers.
In legacy SPI Multiple IO mode, the width of all transfers following the instruction are determined by the instruction sent. Following
transfers may continue to be single bit serial on only the SI or Serial Output (SO) signals, they may be done in two bit groups per
(dual) transfer on the IO0 and IO1 signals, or they may be done in 4 bit groups per (quad) transfer on the IO0-IO3 signals. Within
the dual or quad groups the least significant bit is on IO0. More significant bits are placed in significance order on each higher
numbered IO signal. Single bits or parallel bit groups are transferred in most to least significant bit order.
In QPI mode, the width of all transfers, including instructions, is a 4-bit wide (quad) transfer on the IO0-IO3 signals.
Dual I/O and Quad I/O read instructions send an instruction modifier called mode bits, following the address, to indicate that the
next command will be of the same type with an implied, rather than an explicit, instruction. The next command thus does not
provide an instruction byte, only a new address and mode bits. This reduces the time needed to send each command when the
same command type is repeated in a sequence of commands.
The address or mode bits may be followed by write data to be stored in the memory device or by a read latency period before
read data is returned to the host.
Read latency may be zero to several SCK cycles (also referred to as dummy cycles).
Document Number: 002-03631 Rev. *G
Page 71 of 145
S25FS064S
All instruction, address, mode, and data information is transferred in byte granularity. Addresses are shifted into the device with
the most significant byte first. All data is transferred with the lowest address byte sent first. Following bytes of data are sent in
lowest to highest byte address order i.e. the byte address increments.
All attempts to read the flash memory array during a program, erase, or a write cycle (embedded operations) are ignored. The
embedded operation will continue to execute without any affect. A very limited set of commands are accepted during an
embedded operation. These are discussed in the individual command descriptions. While a program, erase, or write operation is
in progress, it is recommended to check that the Write-In Progress (WIP) bit is 0 before issuing most commands to the device, to
ensure the new command can be accepted.
Depending on the command, the time for execution varies. A command to read status information from an executing command is
available to determine when the command completes execution and whether the command was successful.
Although host software in some cases is used to directly control the SPI interface signals, the hardware interfaces of the host
system and the memory device generally handle the details of signal relationships and timing. For this reason, signal relationships
and timing are not covered in detail within this software interface focused section of the document. Instead, the focus is on the
logical sequence of bits transferred in each command rather than the signal timing and relationships. Following are some general
signal relationship descriptions to keep in mind. For additional information on the bit level format and signal timing relationships of
commands, see Command Protocol on page 13.
– The host always controls the Chip Select (CS#), Serial Clock (SCK), and Serial Input (SI/IO0) for single bit wide transfers.
The memory drives Serial Output (SO/IO1) for single bit read transfers. The host and memory alternately drive the IO0-IO3
signals during Dual and Quad transfers.
– All commands begin with the host selecting the memory by driving CS# low before the first rising edge of SCK. CS# is kept
low throughout a command and when CS# is returned high the command ends. Generally, CS# remains low for eight bit
transfer multiples to transfer byte granularity information. Some commands will not be accepted if CS# is returned high not at
an 8 bit boundary.
11.1
Command Set Summary
11.1.1
Extended Addressing
1. Instructions that always require a 4-Byte address, used to access up to 32 Gb of memory.
Command Name
Function
Instruction (Hex)
4READ
Read
13
4FAST_READ
Read Fast
0C
4DOR
Dual Output Read
3C
4QOR
Quad Output Read
6C
4DIOR
Dual I/O Read
BC
4QIOR
Quad I/O Read
EC
4DDRQIOR
DDR Quad I/O Read
EE
4PP
Page Program
12
4QPP
Quad Page Program
34
4P4E
Parameter 4 KB Erase
21
4SE
Erase 64 KB
DC
4ECCRD
ECC Status Read
18
4DYBRD
DYB Read
E0
4DYBWR
DYBWR
E1
4PPBRD
PPB Read
E2
4PPBP
PPB Program
E3
Document Number: 002-03631 Rev. *G
Page 72 of 145
S25FS064S
2. A 4 Byte address mode for backward compatibility to the 3 Byte address instructions. The standard 3 Byte instructions
can be used in conjunction with a 4 Byte address mode controlled by the Address Length configuration bit (CR2V[7]). The
default value of CR2V[7] is loaded from CR2NV[7] (following power up, hardware reset, or software reset), to enable
default 3-Byte (24-bit) or 4 Byte (32 bit) addressing. When the address length (CR2V[7]) set to 1, the legacy commands
are changed to require 4-Bytes (32-bits) for the address field. The following instructions can be used in conjunction with
the 4 Byte address mode configuration to switch from 3-Bytes to 4-Bytes of address field.
Command Name
Function
Instruction (Hex)
READ
Read
03
FAST_READ
Read Fast
0B
DOR
Dual Output Read
3B
QOR
Quad Output Read
6B
DIOR
Dual I/O Read
BB
QIOR
Quad I/O Read
EB
DDRQIOR
DDR Quad I/O Read)
ED
PP
Page Program
02
QPP
Quad Page Program
32
P4E
Parameter 4 KB Erase
20
SE
Erase 64 / 256 KB
D8
RDAR
Read Any Register
65
WRAR
Write Any Register
71
EES
Evaluate Erase Status
D0
OTPP
OTP Program
42
OTPR
OTP Read
4B
ECCRD
ECC Status Read
19
DYBRD
DYB Read
FA
DYBWR
DYBWR
FB
PPBRD
PPB Read
FC
PPBP
PPB Program
FD
Document Number: 002-03631 Rev. *G
Page 73 of 145
S25FS064S
11.1.2
Command Summary by Function
Table 51. FS-S Family Command Set (sorted by function)
Function
Read
Device ID
Command Name
Address
Length
(Bytes)
QPI
9F
133
0
Yes
RSFDP
Read JEDEC Serial Flash Discoverable Parameters
5A
50
3
Yes
RDQID
Read Quad ID
AF
133
0
Yes
Read Unique ID
4C
133
0
Yes
RDSR1
Read Status Register-1
05
133
0
Yes
RDSR2
Read Status Register-2
07
133
0
No
RDCR
Read Configuration Register-1
35
133
0
No
RDAR
Read Any Register
65
133
3 or 4
Yes
WRR
Write Register (Status-1, Configuration-1)
01
133
0
Yes
WRDI
Write Disable
04
133
0
Yes
WREN
Write Enable
06
133
0
Yes
WRAR
Write Any Register
71
133
3 or 4
Yes
CLSR
Clear Status Register-1 - Erase/Program Fail Reset
This command may be disabled and the instruction value instead
used for a program / erase resume command - see Configuration
Register 3 on page 56.
30
133
0
Yes
CLSR
Clear Status Register-1(Alternate instruction) - Erase/Program Fail
Reset
82
133
0
Yes
4BEN
Enter 4 Byte Address Mode
B7
133
0
No
SBL
Set Burst Length
C0
133
0
No
EES
Evaluate Erase Status
D0
133
3 or 4
Yes
ECC Read
19
133
3 or 4
Yes
4ECCRD
DLPRD
PNVDLR
WVDLR
READ
4READ
Program
Flash Array
Maximum
Frequency
(MHz)
Read ID (JEDEC Manufacturer ID and JEDEC CFI)
ECCRD
Read Flash
Array
Instruction
Value (Hex)
RDID
RUID
Register
Access
Command Description
ECC Read
18
133
4
Yes
Data Learning Pattern Read
41
133
0
No
Program NV Data Learning Register
43
133
0
No
Write Volatile Data Learning Register
4A
133
0
No
Read
03
50
3 or 4
No
Read
13
50
4
No
FAST_READ
Fast Read
0B
133
3 or 4
No
4FAST_READ
Fast Read
0C
133
4
No
No
DOR
Dual Output Read
3B
133
3 or 4
4DOR
Dual Output Read
3C
133
4
No
QOR
Quad Output Read
6B
133
3 or 4
No
4QOR
Quad Output Read
6C
133
4
No
DIOR
Dual I/O Read
BB
66
3 or 4
No
4DIOR
Dual I/O Read
BC
66
4
No
QIOR
Quad I/O Read
EB
133
3 or 4
Yes
4QIOR
Quad I/O Read
EC
133
4
Yes
DDRQIOR
DDR Quad I/O Read
ED
80
3 or 4
Yes
4DDRQIOR
DDR Quad I/O Read
EE
80
4
Yes
PP
Page Program
02
133
3 or 4
Yes
4PP
Page Program
12
133
4
Yes
QPP
Quad Page Program
32
133
3 or 4
No
4QPP
Quad Page Program
34
133
4
No
Document Number: 002-03631 Rev. *G
Page 74 of 145
S25FS064S
Table 51. FS-S Family Command Set (sorted by function) (Continued)
Function
Erase Flash
Array
Erase /
Program
Suspend /
Resume
One Time
Program
Array
Advanced
Sector
Protection
Command Name
P4E
Parameter 4KB-sector Erase
4P4E
DPD
Instruction
Value (Hex)
Maximum
Frequency
(MHz)
Address
Length
(Bytes)
QPI
20
133
3 or 4
Yes
Parameter 4KB-sector Erase
21
133
4
Yes
SE
Erase 64KB
D8
133
3 or 4
Yes
4SE
Erase 64KB
DC
133
4
Yes
BE
Bulk Erase
60
133
0
Yes
BE
Bulk Erase (alternate instruction)
C7
133
0
Yes
EPS
Erase / Program Suspend
75
133
0
Yes
EPS
Erase / Program Suspend (alternate instruction)
85
133
0
Yes
EPS
Erase / Program Suspend (alternate instruction
B0
133
0
Yes
EPR
Erase / Program Resume
7A
133
0
Yes
EPR
Erase / Program Resume (alternate instruction)
8A
133
0
Yes
EPR
Erase / Program Resume (alternate instruction
This command may be disabled and the instruction value instead
used for a clear status command - see Configuration Register 3
on page 56.
30
133
0
Yes
OTPP
OTP Program
42
133
3 or 4
No
OTPR
OTP Read
4B
133
3 or 4
No
DYBRD
DYB Read
FA
133
3 or 4
Yes
4DYBRD
DYB Read
E0
133
4
Yes
DYBWR
DYB Write
FB
133
3 or 4
Yes
4DYBWR
DYB Write
E1
133
4
Yes
PPBRD
PPB Read
FC
133
3 or 4
No
4PPBRD
PPB Read
E2
133
4
No
PPBP
PPB Program
FD
133
3 or 4
No
4PPBP
PPB Program
E3
133
4
No
PPBE
PPB Erase
E4
133
0
No
ASPRD
ASP Read
2B
133
0
No
ASP Program
2F
133
0
No
ASPP
Reset
Command Description
PLBRD
PPB Lock Bit Read
A7
133
0
No
PLBWR
PPB Lock Bit Write
A6
133
0
No
PASSRD
No
Password Read
E7
133
0
PASSP
Password Program
E8
133
0
No
PASSU
Password Unlock
E9
133
0
No
RSTEN
Software Reset Enable
66
133
0
Yes
Software Reset
99
133
0
Yes
Legacy Software Reset
F0
133
0
No
RST
RESET
MBR
Mode Bit Reset
FF
133
0
Yes
DPD
Enter Deep Power Down Mode
B9
133
0
Yes
RES
Release from Deep Power Down Mode
AB
133
0
Yes
Note
47.Commands not supported in QPI mode have undefined behavior if sent when the device is in QPI mode.
Document Number: 002-03631 Rev. *G
Page 75 of 145
S25FS064S
11.1.3
Read Device Identification
There are multiple commands to read information about the device manufacturer, device type, and device features. SPI memories
from different vendors have used different commands and formats for reading information about the memories. The FS-S Family
supports the three device information commands.
11.1.4
Register Read or Write
There are multiple registers for reporting embedded operation status or controlling device configuration options. There are
commands for reading or writing these registers. Registers contain both volatile and non-volatile bits. Non-volatile bits in registers
are automatically erased and programmed as a single (write) operation.
11.1.4.1 Monitoring Operation Status
The host system can determine when a write, program, erase, suspend or other embedded operation is complete by monitoring the
Write in Progress (WIP) bit in the Status Register. The Read from Status Register-1 command or Read Any Register command
provides the state of the WIP bit. The program error (P_ERR) and erase error (E_ERR) bits in the status register indicate whether
the most recent program or erase command has not completed successfully. When P_ERR or E_ERR bits are set to one, the WIP
bit will remain set to one indicating the device remains busy and unable to receive most new operation commands. Only status read
(RDSR1 05h), Read Any Register (RDAR 65h), status clear (CLSR 30h or 82h), and software reset (RSTEN 66h, RST 99h or
RESET F0h) are valid commands when P_ERR or E_ERR is set to 1. A Clear Status Register (CLSR) followed by a Write Disable
(WRDI) command must be sent to return the device to standby state. Clear Status Register clears the WIP, P_ERR, and E_ERR
bits. WRDI clears the WEL bit. Alternatively, Hardware Reset, or Software Reset (RST or RESET) may be used to return the device
to standby state.
11.1.4.2 Configuration
There are commands to read, write, and protect registers that control interface path width, interface timing, interface address length,
and some aspects of data protection.
11.1.5
Read Flash Array
Data may be read from the memory starting at any byte boundary. Data bytes are sequentially read from incrementally higher byte
addresses until the host ends the data transfer by driving CS# input High. If the byte address reaches the maximum address of the
memory array, the read will continue at address zero of the array.
Burst Wrap read can be enabled by the Set Burst Length (SBL 77h) command with the requested wrapped read length and
alignment, see Set Burst Length (SBL C0h) on page 90. Burst Wrap read is only for Quad I/O, Quad Output and QPI modes.
There are several different read commands to specify different access latency and data path widths. Double Data Rate (DDR)
commands also define the address and data bit relationship to both SCK edges:
The Read command provides a single address bit per SCK rising edge on the SI/IO0 signal with read data returning a single bit
per SCK falling edge on the SO/IO1signal. This command has zero latency between the address and the returning data but is
limited to a maximum SCK rate of 50MHz.
Other read commands have a latency period between the address and returning data but can operate at higher SCK frequencies.
The latency depends on a configuration register read latency value.
The Fast Read command provides a single address bit per SCK rising edge on the SI/IO0 signal with read data returning a single
bit per SCK falling edge on the SO/IO1 signal.
Dual or Quad Output Read commands provide address on SI/IO0 pin on the SCK rising edge with read data returning two bits, or
four bits of data per SCK falling edge on the IO0 - IO3 signals.
Dual or Quad I/O Read commands provide address two bits or four bits per SCK rising edge with read data returning two bits, or
four bits of data per SCK falling edge on the IO0 - IO3 signals.
Quad Double Data Rate read commands provide address four bits per every SCK edge with read data returning four bits of data
per every SCK edge on the IO0 - IO3 signals.
Document Number: 002-03631 Rev. *G
Page 76 of 145
S25FS064S
11.1.6
Program Flash Array
Programming data requires two commands: Write Enable (WREN), Page Program (PP) and Quad Page Program (QPP). The Page
Program and Quad Page Program commands accepts from 1 byte up to 256 or 512 consecutive bytes of data (page) to be
programmed in one operation. Programming means that bits can either be left at 1, or programmed from 1 to 0. Changing bits from
0 to 1 requires an erase operation.
11.1.7
Erase Flash Array
The Parameter Sector Erase, Sector Erase, or Bulk Erase commands set all the bits in a sector or the entire memory array to 1. A bit
needs to be first erased to 1 before programming can change it to a 0. While bits can be individually programmed from a 1 to 0,
erasing bits from 0 to 1 must be done on a sector-wide or array-wide (bulk) level. The Write Enable (WREN) command must precede
an erase command.
11.1.8
OTP, Block Protection, and Advanced Sector Protection
There are commands to read and program a separate One Time Programmable (OTP) array for permanent data such as a serial
number. There are commands to control a contiguous group (block) of Flash memory array sectors that are protected from program
and erase operations.There are commands to control which individual Flash memory array sectors are protected from program and
erase operations.
11.1.9
Reset
There are commands to reset to the default conditions present after power on to the device. However, the software reset commands
do not affect the current state of the FREEZE or PPB Lock bits. In all other respects a software reset is the same as a hardware
reset.
There is a command to reset (exit from) the Continuous Read Mode.
11.1.10 DPD
A Deep Power Down (DPD) mode is supported by the FS-S Family devices. If the device has been placed in DPD mode by the DPD
(B9h) command, the interface standby current is (IDPD). The DPD command is accepted only while the device is not performing an
embedded algorithm as indicated by the Status Register-1 volatile Write In Progress (WIP) bit being cleared to zero (SR1V[0] = 0).
While in DPD mode the device ignores all commands except the Release from DPD (RES ABh) command, that will return the device
to the Interface Standby state after a delay of tRES.
11.1.11
Reserved
Some instructions are reserved for future use. In this generation of the FS-S Family some of these command instructions may be
unused and not affect device operation, some may have undefined results.
Some commands are reserved to ensure that a legacy or alternate source device command is allowed without effect. This allows
legacy software to issue some commands that are not relevant for the current generation FS-S Family with the assurance these
commands do not cause some unexpected action.
Some commands are reserved for use in special versions of the FS-S not addressed by this document or for a future generation.
This allows new host memory controller designs to plan the flexibility to issue these command instructions. The command format is
defined if known at the time this document revision is published.
Document Number: 002-03631 Rev. *G
Page 77 of 145
S25FS064S
11.2
Identification Commands
11.2.1
Read Identification (RDID 9Fh)
The Read Identification (RDID) command provides read access to manufacturer identification, device identification, and Common
Flash Interface (CFI) information. The manufacturer identification is assigned by JEDEC. The CFI structure is defined by JEDEC
standard. The device identification and CFI values are assigned by Cypress.
The JEDEC Common Flash Interface (CFI) specification defines a device information structure, which allows a vendor-specified
software Flash management program (driver) to be used for entire families of Flash devices. Software support can then be deviceindependent, JEDEC manufacturer ID independent, forward and backward-compatible for the specified Flash device families.
System vendors can standardize their Flash drivers for long-term software compatibility by using the CFI values to configure a family
driver from the CFI information of the device in use.
Any RDID command issued while a program, erase, or write cycle is in progress is ignored and has no effect on execution of the
program, erase, or write cycle that is in progress.
The RDID instruction is shifted on SI. After the last bit of the RDID instruction is shifted into the device, a byte of manufacturer
identification, two bytes of device identification, extended device identification, and CFI information will be shifted sequentially out on
SO. As a whole this information is referred to as ID-CFI. See Device ID and Common Flash Interface (ID-CFI) Address Map —
Standard on page 121 for the detail description of the ID-CFI contents.
Continued shifting of output beyond the end of the defined ID-CFI address space will provide undefined data. The RDID command
sequence is terminated by driving CS# to the logic high state anytime during data output.
The maximum clock frequency for the RDID command is 133 MHz.
Figure 45. Read Identification (RDID) Command Sequence
CS#
SCK
SI_ IO0
7
6
5
4
3
2
1
0
SO _ IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Data 1
Data N
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3 and the returning data is shifted
out on IO0-IO3.
Figure 46. Read Identification (RDID) QPI Mode Command
CS#
SCLK
IO0
4
0
4
0
4
0
4
0
4
0
4
0
IO1
5
1
5
1
5
1
5
1
5
1
5
1
IO2
6
2
6
2
6
2
6
2
6
2
6
2
IO3
7
3
7
3
7
3
7
3
7
3
7
3
Phase
Instruction
Document Number: 002-03631 Rev. *G
D1
D2
D3
D4
Data N
Page 78 of 145
S25FS064S
11.2.2
Read Quad Identification (RDQID AFh)
The Read Quad Identification (RDQID) command provides read access to manufacturer identification, device identification, and
Common Flash Interface (CFI) information. This command is an alternate way of reading the same information provided by the
RDID command while in QPI mode. In all other respects the command behaves the same as the RDID command.
The command is recognized only when the device is in QPI Mode (CR2V[6]=1). The instruction is shifted in on IO0-IO3. After the last
bit of the instruction is shifted into the device, a byte of manufacturer identification, two bytes of device identification, extended
device identification, and CFI information will be shifted sequentially out on IO0-IO3. As a whole this information is referred to as IDCFI. See Device ID and Common Flash Interface (ID-CFI) Address Map — Standard on page 121 for the detail description of the IDCFI contents.
Continued shifting of output beyond the end of the defined ID-CFI address space will provide undefined data. The command
sequence is terminated by driving CS# to the logic high state anytime during data output.
The maximum clock frequency for the command is 133 MHz. Command sequence is terminated by driving CS# to the logic high
state anytime during data output.
Figure 47. Read Quad Identification (RDQID) Command Sequence Quad Mode
CS#
SCLK
IO0
4
0
4
0
IO1
7
6
5
4
5
1
5
1
IO2
6
2
6
2
IO3
7
3
7
Phase
3
2
1
0
Instruction
D1
3
Data N
Figure 48. Read Quad Identification (RDQID) Command Sequence QPI Mode
CS#
SCLK
IO0
4
0
4
0
4
0
4
0
4
0
4
0
IO1
5
1
5
1
5
1
5
1
5
1
5
1
IO2
6
2
6
2
6
2
6
2
6
2
6
2
IO3
7
3
7
3
7
3
7
3
7
3
7
3
Phase
11.2.3
Instruction
D1
D2
D3
D4
Data N
Read Serial Flash Discoverable Parameters (RSFDP 5Ah)
The command is initiated by shifting on SI the instruction code “5Ah”, followed by a 24-bit address of 000000h, followed by 8 dummy
cycles. The SFDP bytes are then shifted out on SO starting at the falling edge of SCK after the dummy cycles. The SFDP bytes are
always shifted out with the MSB first. If the 24-bit address is set to any other value, the selected location in the SFDP space is the
starting point of the data read. This enables random access to any parameter in the SFDP space. The RSFDP command is
supported up to 50 MHz.
Figure 49. RSFDP Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0 23
1
0
SO_IO1
Phase
7
Instruction
Address
Dummy Cycles
6
5
4
3
2
1
0
Data 1
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3 and the returning data is shifted
out on IO0-IO3.
Document Number: 002-03631 Rev. *G
Page 79 of 145
S25FS064S
Figure 50. RSFDP QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
Phase
11.2.4
Instruct.
Address
Dummy
D1
D2
D3
D4
Read Unique ID (RUID 4Ch)
The Read Identification (RUID) command provides read access to factory set read only 64 bit number that is unique to each device.
The RUID instruction is shifted on SI followed by four dummy bytes or 16 dummy bytes QPI (32 clock cycles). This latency period
(i.e., dummy bytes) allows the device’s internal circuitry enough time to access data at the initial address. During latency cycles, the
data value on IO0-IO3 are “don’t care” and may be high impedance.
Then the 8 bytes of Unique ID will be shifted sequentially out on SO / IO1.
Continued shifting of output beyond the end of the defined Unique ID address space will provide undefined data. The RUID
command sequence is terminated by driving CS# to the logic high state anytime during data output.
Figure 51. Read Unique ID (RUID) Command Sequence
CS#
SCK
SI_IO0
7 6 5 4 3 2 1 0
SO_IO1
6362 61605958575655
Phase
Instruction
Dummy Byte 1
Dummy Byte 4
5 4 3 2 1 0
64 bit Unique ID
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3 and the returning data is shifted
out on IO0–IO3.
Figure 52. Read Unique ID (RUID) QPI Mode Command
CS#
SCLK
IO0
4
0
60
56
4
8
4
0
IO1
5
1
61
57
5
9
5
1
IO2
6
2
62
58
6
10
6
2
IO3
7
3
63
59
7
11
7
3
Phase
Instruction Dummy 1 Dummy 2 Dummy 3
Document Number: 002-03631 Rev. *G
Dummy 13Dummy 14Dummy 15Dummy 16
64 bit Unique ID
Page 80 of 145
S25FS064S
11.3
Register Access Commands
11.3.1
Read Status Register-1 (RDSR1 05h)
The Read Status Register-1 (RDSR1) command allows the Status Register-1 contents to be read from SO/IO1.
The volatile version of Status Register-1 (SR1V) contents may be read at any time, even while a program, erase, or write operation
is in progress. It is possible to read Status Register-1 continuously by providing multiples of eight clock cycles. The status is updated
for each eight cycle read. The maximum clock frequency for the RDSR1 (05h) command is 133 MHz.
Figure 53. Read Status Register-1 (RDSR1) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
O2-IO3
Phase
Instruction
Status
Updated Status
This command is also supported in QPI mode. In QPI mode, the instruction is shifted in on IO0–IO3 and the returning data is shifted
out on IO0–IO3.
Figure 54. Read Status Register-1 (RDSR1) QPI Mode Command
CS#
SCLK
IO0
4
0
4
0
4
0
4
0
IO1
5
1
5
1
5
1
5
1
IO2
6
2
6
2
6
2
6
2
IO3
7
3
7
3
7
3
7
3
Phase
11.3.2
Instruct.
Status
Updated Status
Updated Status
Read Status Register-2 (RDSR2 07h)
The Read Status Register-2 (RDSR2) command allows the Status Register-2 contents to be read from SO/IO1.
The Status Register-2 contents may be read at any time, even while a program, erase, or write operation is in progress. It is possible
to read the Status Register-2 continuously by providing multiples of eight clock cycles. The status is updated for each eight cycle
read. The maximum clock frequency for the RDSR2 command is 133 MHz.
Figure 55. Read Status Register-2 (RDSR2) Command
CS#
SCK
SI_IO0
7
6
5
4
3
2
SO_IO1
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Status
Updated Status
In QPI mode, status register 2 may be read via the Read Any Register command, see Read Any Register (RDAR 65h) on page 88.
Document Number: 002-03631 Rev. *G
Page 81 of 145
S25FS064S
11.3.3
Read Configuration Register (RDCR 35h)
The Read Configuration Register (RDCR) commands allows the volatile Configuration Registers (CR1V) contents to be read from
SO/IO1.
It is possible to read CR1V continuously by providing multiples of eight clock cycles. The Configuration Register contents may be
read at any time, even while a program, erase, or write operation is in progress.
Figure 56. Read Configuration Register (RDCR) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
SO_IO1
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Register Read
Repeat Register Read
In QPI mode, configuration register 1 may be read via the Read Any Register command, see Read Any Register (RDAR 65h)
on page 88
11.3.4
Write Registers (WRR 01h)
The Write Registers (WRR) command allows new values to be written to both the Status Register 1 and Configuration Register 1.
Before the Write Registers (WRR) command can be accepted by the device, a Write Enable (WREN) command must be received.
After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) in the
Status Register to enable any write operations.
The Write Registers (WRR) command is entered by shifting the instruction and the data bytes on SI/IO0. The Status Register is one
data byte in length.
The WRR operation first erases the register then programs the new value as a single operation. The Write Registers (WRR)
command will set the P_ERR or E_ERR bits if there is a failure in the WRR operation. See Status Register 1 Volatile (SR1V)
on page 49 for a description of the error bits. Any Status or Configuration Register bit reserved for the future must be written as a “0”.
CS# must be driven to the logic high state after the eighth or sixteenth bit of data has been latched. If not, the Write Registers (WRR)
command is not executed. If CS# is driven high after the eighth cycle then only the Status Register 1 is written; otherwise, after the
sixteenth cycle both the Status and Configuration Registers are written. As soon as CS# is driven to the logic high state, the selftimed Write Registers (WRR) operation is initiated. While the Write Registers (WRR) operation is in progress, the Status Register
may still be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a “1” during the self-timed
Write Registers (WRR) operation, and is a “0” when it is completed. When the Write Registers (WRR) operation is completed, the
Write Enable Latch (WEL) is set to a “0”. The maximum clock frequency for the WRR command is 133 MHz.
Figure 57. Write Register (WRR) Command Sequence
CS#
SCK
SI_IO0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
SO_IO1-IO3
Phase
Instruction
Input Status Reg-1
Input Conf Reg-1
Input Conf Reg-2
Input Conf Reg-3
This command is also supported in QPI mode. In QPI mode the instruction and data is shifted in on IO0-IO3.
Document Number: 002-03631 Rev. *G
Page 82 of 145
S25FS064S
Figure 58. Write Register (WRR) Command Sequence QPI
CS#
SCLK
IO0
4
0
4
0
4
0
4
0
4
0
IO1
5
1
5
1
5
1
5
1
5
1
IO2
6
2
6
2
6
2
6
2
6
2
IO3
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Input Status 1
Input Config 1
Input Config 2
Input Config 3
The Write Registers (WRR) command allows the user to change the values of the Block Protect (BP2, BP1, and BP0) bits in either
the non-volatile Status Register 1 or in the volatile Status Register 1, to define the size of the area that is to be treated as read-only.
The BPNV_O bit (CR1NV[3]) controls whether WRR writes the non-volatile or volatile version of Status Register 1. When
CR1NV[3] = 0 WRR writes SR1NV[4:2]. When CR1NV[3] = 1 WRR writes SR1V[4:2].
The Write Registers (WRR) command also allows the user to set the Status Register Write Disable (SRWD) bit to a “1” or a “0”. The
Status Register Write Disable (SRWD) bit and Write Protect (WP#) signal allow the BP bits to be hardware protected.
When the Status Register Write Disable (SRWD) bit of the Status Register is a “0” (its initial delivery state), it is possible to write to
the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) command,
regardless of the whether Write Protect (WP#) signal is driven to the logic high or logic low state.
When the Status Register Write Disable (SRWD) bit of the Status Register is set to a “1”, two cases need to be considered,
depending on the state of Write Protect (WP#):
If Write Protect (WP#) signal is driven to the logic high state, it is possible to write to the Status and Configuration Registers
provided that the Write Enable Latch (WEL) bit has previously been set to a “1” by initiating a Write Enable (WREN) command.
If Write Protect (WP#) signal is driven to the logic low state, it is not possible to write to the Status and Configuration Registers
even if the Write Enable Latch (WEL) bit has previously been set to a “1” by a Write Enable (WREN) command. Attempts to write
to the Status and Configuration Registers are rejected, not accepted for execution, and no error indication is provided. As a
consequence, all the data bytes in the memory area that are protected by the Block Protect (BP2, BP1, BP0) bits of the Status
Register, are also hardware protected by WP#.
The WP# hardware protection can be provided:
by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (WP#) signal to the logic low state;
or by driving Write Protect (WP#) signal to the logic low state after setting the Status Register Write Disable (SRWD) bit to a “1”.
The only way to release the hardware protection is to pull the Write Protect (WP#) signal to the logic high state. If WP# is
permanently tied high, hardware protection of the BP bits can never be activated.
Table 52. Block Protection Modes
WP#
SRWD Bit
1
1
1
0
0
0
0
1
Mode
Write Protection of Registers
Memory Content
Protected Area
Unprotected Area
Status and Configuration Registers are Writable (if WREN
Software command has set the WEL bit). The values in the SRWD,
Protected BP2, BP1, and BP0 bits and those in the Configuration
Register can be changed
Protected against Page Ready to accept Page
Program, Sector Erase, Program, and Sector
and Bulk Erase
Erase commands
Status and Configuration Registers are Hardware Write
Hardware Protected. The values in the SRWD, BP2, BP1, and BP0
Protected bits and those in the Configuration Register cannot be
changed
Protected against Page Ready to accept Page
Program, Sector Erase, Program or Erase
and Bulk Erase
commands
Notes
48.The Status Register originally shows 00h when the device is first shipped from Cypress to the customer.
49.Hardware protection is disabled when Quad Mode is enabled (CR1V[1] = 1). WP# becomes IO2; therefore, it cannot be utilized.
Document Number: 002-03631 Rev. *G
Page 83 of 145
S25FS064S
11.3.5
Write Enable (WREN 06h)
The Write Enable (WREN) command sets the Write Enable Latch (WEL) bit of the Status Register 1 (SR1V[1]) to a “1”. The Write
Enable Latch (WEL) bit must be set to a “1” by issuing the Write Enable (WREN) command to enable write, program and erase
commands.
CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0. Without CS#
being driven to the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0, the write enable
operation will not be executed.
Figure 59. Write Enable (WREN) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3.
Figure 60. Write Enable (WREN) Command Sequence QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
11.3.6
Instruction
Write Disable (WRDI 04h)
The Write Disable (WRDI) command clears the Write Enable Latch (WEL) bit of the Status Register-1 (SR1V[1]) to a “0”.
The Write Enable Latch (WEL) bit may be cleared to a “0” by issuing the Write Disable (WRDI) command to disable Page Program
(PP), Sector Erase (SE), Bulk Erase (BE), Write Registers (WRR or WRAR), OTP Program (OTPP), and other commands, that
require WEL be set to “1” for execution. The WRDI command can be used by the user to protect memory areas against inadvertent
writes that can possibly corrupt the contents of the memory. The WRDI command is ignored during an embedded operation while
WIP bit =1.
CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0. Without CS#
being driven to the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0, the write disable
operation will not be executed.
Figure 61. Write Disable (WRDI) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3.
Document Number: 002-03631 Rev. *G
Page 84 of 145
S25FS064S
Figure 62. Write Disable (WRDI) Command Sequence QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
11.3.7
Instruction
Clear Status Register (CLSR 30h or 82h)
The Clear Status Register command resets bit SR1V[5] (Erase Fail Flag) and bit SR1V[6] (Program Fail Flag). It is not necessary to
set the WEL bit before a Clear Status Register command is executed. The Clear Status Register command will be accepted even
when the device remains busy with WIP set to 1, as the device does remain busy when either error bit is set. The WEL bit will be
unchanged after this command is executed.
The legacy Clear Status Register (CLSR 30h) instruction may be disabled and the 30h instruction value instead used for a program
/ erase resume command - see Section 9.6.5 Configuration Register 3 on page 56. The Clear Status Register alternate instruction
(CLSR 82h) is always available to clear the status register.
Figure 63. Clear Status Register (CLSR) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3.
Figure 64. Clear Status Register (CLSR) QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
Document Number: 002-03631 Rev. *G
Instruction
Page 85 of 145
S25FS064S
11.3.8
ECC Status Register Read (ECCRD 19h or 4EECRD 18h)
To read the ECC Status Register, the command is followed by the ECC unit (16 Bytes) address, the four least significant bits (LSB)
of address must be set to zero. This is followed by the number of dummy cycles selected by the read latency value in CR2V[3:0].
Then the 8-bit contents of the ECC Register, for the ECC unit selected, are shifted out on SO/IO1 16 times, once for each byte in the
ECC Unit. If CS# remains low the next ECC unit status is sent through SO/IO1 16 times, once for each byte in the ECC Unit, this
continues until CS# goes high. The maximum operating clock frequency for the ECC READ command is 133 MHz. See Automatic
ECC on page 100 for details on ECC unit.
Figure 65. ECC Status Register Read Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Dummy Cycles
Data
Notes:
50.A = MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7]=1 with command 19h.
51.A = MSB of address = 31 with command 18h
This command is also supported in QPI mode. In QPI mode the instruction and address is shifted in and returning data out on IO0IO3.
Figure 66. ECC Status Register Read QPI Mode, Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Dummy
Data
Data
Data
Data
Notes:
52.A = MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7]=1 with command 19h.
53.A = MSB of address = 31 with command 18h
Document Number: 002-03631 Rev. *G
Page 86 of 145
S25FS064S
11.3.9
Program NVDLR (PNVDLR 43h)
Before the Program NVDLR (PNVDLR) command can be accepted by the device, a Write Enable (WREN) command must be
issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the
Write Enable Latch (WEL) to enable the PNVDLR operation.
The PNVDLR command is entered by shifting the instruction and the data byte on SI/IO0.
CS# must be driven to the logic high state after the eighth (8th) bit of data has been latched. If not, the PNVDLR command is not
executed. As soon as CS# is driven to the logic high state, the self-timed PNVDLR operation is initiated. While the PNVDLR
operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In
Progress (WIP) bit is a “1” during the self-timed PNVDLR cycle, and is a 0. when it is completed. The PNVDLR operation can report
a program error in the P_ERR bit of the status register. When the PNVDLR operation is completed, the Write Enable Latch (WEL) is
set to a “0” The maximum clock frequency for the PNVDLR command is 133 MHz.
Figure 67. Program NVDLR (PNVDLR) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Input Data
11.3.10 Write VDLR (WVDLR 4Ah)
Before the Write VDLR (WVDLR) command can be accepted by the device, a Write Enable (WREN) command must be issued and
decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write
Enable Latch (WEL) to enable WVDLR operation.
The WVDLR command is entered by shifting the instruction and the data byte on SI/IO0. CS# must be driven to the logic high state
after the eighth (8th) bit of data has been latched. If not, the WVDLR command is not executed. As soon as CS# is driven to the logic
high state, the WVDLR operation is initiated with no delays. The maximum clock frequency for the WVDLR command is 133 MHz.
Figure 68. Write VDLR (WVDLR) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
11.3.11
Instruction
Input Data
Data Learning Pattern Read (DLPRD 41h)
The instruction is shifted on SI/IO0, then the 8-bit DLP is shifted out on SO/IO1. It is possible to read the DLP continuously by
providing multiples of eight clock cycles. The maximum operating clock frequency for the DLPRD command is 133MHz.
Figure 69. DLP Read (DLPRD) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Document Number: 002-03631 Rev. *G
DY
Register Read
Repeat Register Read
Page 87 of 145
S25FS064S
11.3.12 Enter 4 Byte Address Mode (4BAM B7h):
The enter 4 Byte Address Mode (4BAM) command sets the volatile Address Length bit (CR2V[7]) to 1 to change most 3 Byte
address commands to require 4 Bytes of address. The Read SFDP (RSFDP) command is the only 3 Byte command that is not
affected by the Address Length bit. RSFDP is required by the JEDEC JESD216 Rev B standard to always have only 3 Bytes of
address.
A hardware or software reset is required to exit the 4 Byte address mode.
Figure 70. Enter 4 Byte Address Mode (4BEN B7h) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3.
Figure 71. Enter 4 Byte Address QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
Instruction
11.3.13 Read Any Register (RDAR 65h)
The Read Any Register (RDAR) command provides a way to read all device registers - non-volatile and volatile. The instruction is
followed by a 3 or 4 Byte address (depending on the address length configuration CR2V[7], followed by a number of latency
(dummy) cycles set by CR2V[3:0]. Then the selected register contents are returned. If the read access is continued the same
addressed register contents are returned until the command is terminated - only one register is read by each RDAR command.
Reading undefined locations provides undefined data.
The RDAR command may be used during embedded operations to read status register-1 (SR1V).
The RDAR command is not used for reading registers that act as a window into a larger array: ECCSR, PPBAR, and DYBAR. There
are separate commands required to select and read the location in the array accessed.
The RDAR command will read invalid data from the PASS register locations if the ASP Password protection mode is selected by
programming ASPR[2] to 0.
Table 53. Register Address Map
Byte Address (Hex)
Register Name
00000000
SR1NV
00000001
N/A
00000002
CR1NV
00000003
CR2NV
00000004
CR3NV
00000005
CR4NV
...
N/A
00000010
NVDLR
Document Number: 002-03631 Rev. *G
Description
Non-volatile Status and Configuration Registers
Non-volatile Data Learning Register
Page 88 of 145
S25FS064S
Table 53. Register Address Map (Continued)
Byte Address (Hex)
Register Name
...
N/A
00000020
PASS[7:0]
00000021
PASS[15:8]
00000022
PASS[23:16]
00000023
PASS[31:24]
00000024
PASS[39:32]
00000025
PASS[47:40]
00000026
PASS[55:48]
00000027
PASS[63:56]
...
N/A
00000030
ASPR[7:0]
00000031
ASPR[15:8]
...
N/A
00800000
SR1V
00800001
SR2V
00800002
CR1V
00800003
CR2V
00800004
CR3V
00800005
CR4V
...
N/A
00800010
VDLR
...
N/A
00800040
PPBL
...
N/A
Description
Non-volatile Password Register
Non-volatile ASP Register
Volatile Status and Configuration Registers
Volatile Data Learning Register
Volatile PPB Lock Register
Figure 72. Read Any Register Read Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Dummy Cycles
Data
Note
54.A = MSB of address = 23 for Address length CR2V[7] = 0, or 31 for CR2V[7]=1
This command is also supported in QPI mode. In QPI mode, the instruction and address is shifted in and returning data out on IO0IO3.
Document Number: 002-03631 Rev. *G
Page 89 of 145
S25FS064S
Figure 73. Read Any Register, QPI Mode, Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Dummy
Data
Data
Data
Data
Note
55.A = MSB of address = 23 for Address length CR2V[7] = 0, or 31 for CR2V[7]=1
11.3.14 Write Any Register (WRAR 71h)
The Write Any Register (WRAR) command provides a way to write any device register - non-volatile or volatile. The instruction is
followed by a 3 or 4 Byte address (depending on the address length configuration CR2V[7], followed by one byte of data to write in
the address selected register.
Before the WRAR command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the
device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The WIP bit in SR1V may be
checked to determine when the operation is completed. The P_ERR and E_ERR bits in SR1V may be checked to determine if any
error occurred during the operation.
Some registers have a mixture of bit types and individual rules controlling which bits may be modified. Some bits are read only,
some are OTP.
Read only bits are never modified and the related bits in the WRAR command data byte are ignored without setting a program or
erase error indication (P_ERR or E_ERR in SR1V). Hence, the value of these bits in the WRAR data byte do not matter.
OTP bits may only be programmed to the level opposite of their default state. Writing of OTP bits back to their default state is
ignored and no error is set.
Non-volatile bits which are changed by the WRAR data, require non-volatile register write time (tW) to be updated. The update
process involves an erase and a program operation on the non-volatile register bits. If either the erase or program portion of the
update fails the related error bit and WIP in SR1V will be set to 1.
Volatile bits which are changed by the WRAR data, require the volatile register write time (tCS) to be updated.
Status Register-1 may be repeatedly read (polled) to monitor the Write-In-Progress (WIP) bit (SR1V[0]) and the error bits
(SR1V[6,5]) to determine when the register write is completed or failed. If there is a write failure, the clear status command is used to
clear the error status and enable the device to return to standby state.
However, the PPBL register can not be written by the WRAR command. Only the PPB Lock Bit Write (PLBWR) command can write
the PPBL register.
The command sequence and behavior is the same as the PP or 4PP command with only a single byte of data provided. See Page
Program (PP 02h or 4PP 12h) on page 101.
The address map of the registers is the same as shown for Read Any Register (RDAR 65h) on page 88.
11.3.15 Set Burst Length (SBL C0h)
The Set Burst Length (SBL) command is used to configure the Burst Wrap feature. Burst Wrap is used in conjunction with Quad I/O
Read, DDR Quad I/O Read and Quad Output Read, in legacy SPI or QPI mode, to access a fixed length and alignment of data.
Certain applications can benefit from this feature by improving the overall system code execution performance. The Burst Wrap
feature allows applications that use cache, to start filling a cache line with instruction or data from a critical address first, then fill the
remainder of the cache line afterwards within a fixed length (8/16/32/64-bytes) of data, without issuing multiple read commands.
The Set Burst Length (SBL) command writes the CR4V register bits 4, 1, and 0 to enable or disable the wrapped read feature and
set the wrap boundary. Other bits of the CR4V register are not affected by the SBL command. When enabled the wrapped read
feature changes the related read commands from sequentially reading until the command ends, to reading sequentially wrapped
within a group of bytes.
When CR4V[4] = 1, the wrap mode is not enabled and unlimited length sequential read is performed.
Document Number: 002-03631 Rev. *G
Page 90 of 145
S25FS064S
When CR4V[4] = 0, the wrap mode is enabled and a fixed length and aligned group of 8, 16, 32, or 64 bytes is read starting at the
byte address provided by the read command and wrapping around at the group alignment boundary.
The group of bytes is of length and aligned on an 8, 16, 32, or 64 byte boundary. CR4V[1:0] selects the boundary. See Configuration
Register 4 Volatile (CR4V) on page 59.
The starting address of the read command selects the group of bytes and the first data returned is the addressed byte. Bytes are
then read sequentially until the end of the group boundary is reached. If the read continues the address wraps to the beginning of the
group and continues to read sequentially. This wrapped read sequence continues until the command is ended by CS# returning
high.
Table 54. Example Burst Wrap Sequences
SBL Data
Value (Hex)
Wrap
Boundary
(Bytes)
Start Address
(Hex)
1X
Sequential
XXXXXX03
03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
00
8
XXXXXX00
00, 01, 02, 03, 04, 05, 06, 07, 00, 01, 02, ...
00
8
XXXXXX07
07, 00, 01, 02, 03, 04, 05, 06, 07, 00, 01, ...
Address Sequence (Hex)
01
16
XXXXXX02
02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 00, 01, 02, 03, ...
01
16
XXXXXX0C
0C, 0D, 0E, 0F, 00, 01, 02, 03, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, ...
02
32
XXXXXX0A
0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 00, 01, 02,
03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, ...
02
32
XXXXXX1E
1E, 1F, 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 00, ...
03
64
XXXXXX03
03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B,
1C, 1D, 1E, 1F, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F 00, 01, 02, ...
03
64
XXXXXX2E
2E, 2F, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 00, 01, 02, 03, 04, 05, 06,
07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, , ...
The power-on reset, hardware reset, or software reset default burst length can be changed by programming CR4NV with the desired
value using the WRAR command.
Figure 74. Set Burst Length Command Sequence Quad I/O Mode
CS
SCLK
IO0
X
X
X
X
X
X
WL4
X
IO1
7
6
5
4
X
X
X
X
X
X
WL5
X
IO2
X
X
X
X
X
X
WL6
X
IO3
X
X
X
X
X
X
X
X
Phase
3
2
1
0
Instruction
Don't Care
Wrap
Figure 75. Set Burst Length Command Sequence QPI Mode
CS
SCLK
IO0
4
0
X
X
X
X
X
X
WL4
X
IO1
5
1
X
X
X
X
X
X
WL5
X
IO2
6
2
X
X
X
X
X
X
WL6
X
IO3
7
3
X
X
X
X
X
X
X
X
Phase
Instruct.
Document Number: 002-03631 Rev. *G
Don't Care
Wrap
Page 91 of 145
S25FS064S
11.4
Read Memory Array Commands
Read commands for the main Flash array provide many options for prior generation SPI compatibility or enhanced performance SPI:
Some commands transfer address or data on each rising edge of SCK. These are called Single Data Rate commands (SDR).
Some SDR commands transfer address one bit per rising edge of SCK and return data 1bit of data per rising edge of SCK. These
are called Single width commands.
Some SDR commands transfer address one bit per rising edge of SCK and return data 2 or 4 bits per rising edge of SCK. These
are called Dual Output for 2 bit, Quad Output for 4 bit.
Some SDR commands transfer both address and data 2 or 4 bits per rising edge of SCK. These are called Dual I/O for 2 bit, Quad
I/O, and QPI for 4 bit.
Some SDR commands in QPI mode also transfers instructions, address and data 4 bits per rising edge of SCK.
Some commands transfer address and data on both the rising edge and falling edge of SCK. These are called Double Data Rate
(DDR) commands.
There are DDR commands for 4 bits of address or data per SCK edge. These are called Quad I/O DDR and QPI DDR for 4 bit per
edge transfer.
All of these commands, except QPI Read, begin with an instruction code that is transferred one bit per SCK rising edge. QPI Read
transfers the instruction 4 bits per SCK rising edge.The instruction is followed by either a 3 or 4 byte address transferred at SDR or
DDR. Commands transferring address or data 2 or 4 bits per clock edge are called Multiple I/O (MIO) commands. These devices
may be configured to take a 4 byte address from the host system with the traditional 3 byte address commands. The 4 byte address
mode for traditional commands is activated by setting the Address Length bit in configuration register 2 to “0”. The higher order
address bits above A23 in the 4 byte address commands, or commands using 4 Byte Address mode are not relevant and are
ignored.
The Quad I/O and QPI commands provide a performance improvement option controlled by mode bits that are sent following the
address bits. The mode bits indicate whether the command following the end of the current read will be another read of the same
type, without an instruction at the beginning of the read. These mode bits give the option to eliminate the instruction cycles when
doing a series of Quad read accesses.
Some commands require delay cycles following the address or mode bits to allow time to access the memory array - read latency.
The delay or read latency cycles are traditionally called dummy cycles. The dummy cycles are ignored by the memory thus any data
provided by the host during these cycles is “don’t care” and the host may also leave the SI/IO1 signal at high impedance during the
dummy cycles. When MIO commands are used the host must stop driving the IO signals (outputs are high impedance) before the
end of last dummy cycle. When DDR commands are used the host must not drive the I/O signals during any dummy cycle. The
number of dummy cycles varies with the SCK frequency or performance option selected via the Configuration Register 2
(CR2V[3:0]) Latency Code. Dummy cycles are measured from SCK falling edge to next SCK falling edge. SPI outputs are
traditionally driven to a new value on the falling edge of each SCK. Zero dummy cycles means the returning data is driven by the
memory on the same falling edge of SCK that the host stops driving address or mode bits.
The DDR commands may optionally have an 8 edge Data Learning Pattern (DLP) driven by the memory, on all data outputs, in the
dummy cycles immediately before the start of data. The DLP can help the host memory controller determine the phase shift from
SCK to data edges so that the memory controller can capture data at the center of the data eye.
When using SDR I/O commands at higher SCK frequencies (>50 MHz), an LC that provides 1 or more dummy cycles should be
selected to allow additional time for the host to stop driving before the memory starts driving data, to minimize I/O driver conflict.
When using DDR I/O commands with the DLP enabled, an LC that provides 5 or more dummy cycles should be selected to allow 1
cycle of additional time for the host to stop driving before the memory starts driving the 4 cycle DLP.
Each read command ends when CS# is returned High at any point during data return. CS# must not be returned High during the
mode or dummy cycles before data returns as this may cause mode bits to be captured incorrectly; making it indeterminate as to
whether the device remains in continuous read mode.
Document Number: 002-03631 Rev. *G
Page 92 of 145
S25FS064S
11.4.1
Read (Read 03h or 4READ 13h)
The instruction
03h (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
03h (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
13h is followed by a 4-byte address (A31–A0)
Then the memory contents, at the address given, are shifted out on SO/IO1 . The maximum operating clock frequency for the READ
command is 50 MHz.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Figure 76. Read Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Data 1
Data N
Note
56.A = MSB of address = 23 for CR2V[7]=0, or 31 for CR2V[7]=1 or command 13h.
11.4.2
Fast Read (FAST_READ 0Bh or 4FAST_READ 0Ch)
The instruction
0Bh (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
0Bh (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
0Ch is followed by a 4-byte address (A31-A0)
The address is followed by dummy cycles depending on the latency code set in the Configuration Register CR2V[3:0]. The dummy
cycles allow the device internal circuits additional time for accessing the initial address location. During the dummy cycles the data
value on SO/IO1 is “don’t care” and may be high impedance. Then the memory contents, at the address given, are shifted out on
SO/IO1.
The maximum operating clock frequency for FAST READ command is 133 MHz.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Figure 77. Fast Read (FAST_READ) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Dummy Cycles
Data 1
Note
57.A = MSB of address = 23 for CR2V[7]=0, or 31 for CR2V[7]=1 or command 0Ch.
Document Number: 002-03631 Rev. *G
Page 93 of 145
S25FS064S
11.4.3
Dual Output Read (DOR 3Bh or 4DOR 3Ch)
The instruction
3Bh (CR2V[0] = 0) is followed by a 3-byte address (A23–A0) or
3Bh (CR2V[0] = 1) is followed by a 4-byte address (A31–A0) or
3Ch is followed by a 4-byte address (A31–A0)
The address is followed by dummy cycles depending on the latency code set in the Configuration Register CR3V[3:0]. The dummy
cycles allow the device internal circuits additional time for accessing the initial address location. During the dummy cycles the data
value on IO0 (SI) and IO1 (S0) is “don’t care” and may be high impedance.
Then the memory contents, at the address given, is shifted out two bits at a time through IO0 (SI) and IO1 (SO). Two bits are shifted
out at the SCK frequency by the falling edge of the SCK signal.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Figure 78. Dual Output Read Command Sequence
CS#
SCK
IO0
7
6
5
4
3
2
1
0
A
30 29 0
IO1
Phase
Instruction
Address
Dummy Cycles
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
Data 1
Data 2
Note
58.A = MSB of address = 23 for CR2V[7]=0 or 31 for CR2V[7]=1 or command 3Ch.
11.4.4
Quad Output Read (QOR 6Bh or 4QOR 6Ch)
The instruction
6Bh (CR2V[0] = 0) is followed by a 3-byte address (A23–A0) or
6Bh (CR2V[0] = 1) is followed by a 4-byte address (A31–A0) or
6Ch is followed by a 4-byte address (A31–A0)
The address is followed by dummy cycles depending on the latency code set in the Configuration Register CR3V[3:0]. The dummy
cycles allow the device internal circuits additional time for accessing the initial address location. During the dummy cycles the data
value on IO0–IO3 is “don’t care” and may be high impedance.
Then the memory contents, at the address given, is shifted out four bits at a time through IO0 - IO3. Each nibble (4 bits) is shifted out
at the SCK frequency by the falling edge of the SCK signal.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Document Number: 002-03631 Rev. *G
Page 94 of 145
S25FS064S
Figure 79. Quad Output Read Command Sequence
CS#
SCK
IO0
4
0 4
0 4
0
4 0
4
0 4
IO1
5
1 5
1 5
1
5 1
5
1
5
IO2
6
2 6
2 6
2
6 2
6
2
6
IO3
7
3 7
3 7
3
7 3
7
3
7
D3
D4
Phase
7
6
5 4
3
2 1
0 A
Instruction
1 0
Address
Dummy
D1
D2
D5
Note
59.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command 6Ch.
11.4.5
Dual I/O Read (DIOR BBh or 4DIOR BCh)
The instruction
BBh (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
BBh (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
BCh is followed by a 4-byte address (A31–A0)
The Dual I/O Read commands improve throughput with two I/O signals IO0 and IO1. This command takes input of the address and
returns read data two bits per SCK rising edge. In some applications, the reduced address input and data output time might allow for
code execution in place (XIP) i.e. directly from the memory device.
The maximum operating clock frequency for Dual I/O Read is 133 MHz.
The Dual I/O Read command has continuous read mode bits that follow the address so, a series of Dual I/O Read commands may
eliminate the 8 bit instruction after the first Dual I/O Read command sends a mode bit pattern of Axh that indicates the following
command will also be a Dual I/O Read command. The first Dual I/O Read command in a series starts with the 8 bit instruction,
followed by address, followed by four cycles of mode bits, followed by an optional latency period. If the mode bit pattern is Axh the
next command is assumed to be an additional Dual I/O Read command that does not provide instruction bits. That command starts
with address, followed by mode bits, followed by optional latency.
Variable latency may be added after the mode bits are shifted into IO0 and IO1 before data begins shifting out of IO0 and IO1. This
latency period (dummy cycles) allows the device internal circuitry enough time to access data at the initial address. During the
dummy cycles, the data value on IO0 and IO1 are “don’t care” and may be high impedance. The number of dummy cycles is
determined by the frequency of SCK. The latency is configured in CR2V[3:0].
The continuous read feature removes the need for the instruction bits in a sequence of read accesses and greatly improves code
execution (XIP) performance. The upper nibble (bits 7-4) of the Mode bits control the length of the next Dual I/O Read command
through the inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are “don’t care” (“x”)
and may be high impedance. If the Mode bits equal Axh, then the device remains in Dual I/O Continuous Read Mode and the next
address can be entered (after CS# is raised high and then asserted low) without the BBh or BCh instruction, as shown in Figure 80
on page 96; thus, eliminating eight cycles of the command sequence. The following sequences will release the device from
Dual I/O Continuous Read mode; after which, the device can accept standard SPI commands:
1. During the Dual I/O continuous read command sequence, if the Mode bits are any value other than Axh, then the next
time CS# is raised high the device will be released from Dual I/O continuous read mode.
2. Send the Mode Reset command.
Note that the four mode bit cycles are part of the device’s internal circuitry latency time to access the initial address after the last
address cycle that is clocked into IO0 and IO1.
It is important that the I/O signals be set to high-impedance at or before the falling edge of the first data out clock. At higher clock
speeds the time available to turn off the host outputs before the memory device begins to drive (bus turn around) is diminished. It is
allowed and may be helpful in preventing I/O signal contention, for the host system to turn off the I/O signal outputs (make them high
impedance) during the last two “don’t care” mode cycles or during any dummy cycles.
Following the latency period the memory content, at the address given, is shifted out two bits at a time through IO0 and IO1. Two bits
are shifted out at the SCK frequency at the falling edge of SCK signal.
Document Number: 002-03631 Rev. *G
Page 95 of 145
S25FS064S
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate.
Figure 80. Dual I/O Read Command Sequence
CS#
SCK
IO0
7
6
5
4
3
2
1
0 A-1
IO1
A
Phase
Instruction
2
0
6
4
2
0
6
4
2
0
6
4
2
0
3
1
7
5
3
1
7
5
3
1
7
5
3
1
Address
Mode
Dum
Data 1
Data 2
Notes
60.Least significant 4 bits of Mode are don’t care and it is optional for the host to drive these bits. The host may turn off drive during these cycles to increase bus turn
around time between Mode bits from host and returning data from the memory.
61.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command BBh.
Figure 81. Dual I/O Continuous Read Command Sequence
CS#
SCK
IO0
6
4
2
0
6
IO1
7
5
3
1
7
Phase
DN-1
0
A-1
1
A
DN
2
0
6
4
2
0
3
1
7
5
3
1
Address
Mode
Dum
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
Data 1
Data 2
Notes
62.Least significant 4 bits of Mode are don’t care and it is optional for the host to drive these bits. The host may turn off drive during these cycles to increase bus turn
around time between Mode bits from host and returning data from the memory.
63.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command BBh.
11.4.6
Quad I/O Read (QIOR EBh or 4QIOR ECh)
The instruction
EBh (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
EBh (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
ECh is followed by a 4-byte address (A31–A0)
The Quad I/O Read command improves throughput with four I/O signals IO0–IO3. It allows input of the address bits four bits per
serial SCK clock. In some applications, the reduced instruction overhead might allow for code execution (XIP) directly from FS-S
family devices. The QUAD bit of the Configuration Register must be set (CR1V[1] = 1) to enable the Quad capability of FS-S Family
devices.
The maximum operating clock frequency for Quad I/O Read is 133 MHz.
For the Quad I/O Read command, there is a latency required after the mode bits (described below) before data begins shifting out of
IO0–IO3. This latency period (i.e., dummy cycles) allows the device’s internal circuitry enough time to access data at the initial
address. During latency cycles, the data value on IO0–IO3 are “don’t care” and may be high impedance. The number of dummy
cycles is determined by the frequency of SCK. The latency is configured in CR2V[3:0].
Following the latency period, the memory contents at the address given, is shifted out four bits at a time through IO0-IO3. Each
nibble (4 bits) is shifted out at the SCK frequency by the falling edge of the SCK signal.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Document Number: 002-03631 Rev. *G
Page 96 of 145
S25FS064S
Address jumps can be done without the need for additional Quad I/O Read instructions. This is controlled through the setting of the
Mode bits (after the address sequence, as shown in Figure 82. This added feature removes the need for the instruction sequence
and greatly improves code execution (XIP). The upper nibble (bits 7-4) of the Mode bits control the length of the next Quad I/O
instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3–0) of the Mode bits are “don’t
care” (“x”). If the Mode bits equal Axh, then the device remains in Quad I/O High Performance Read Mode and the next address can
be entered (after CS# is raised high and then asserted low) without requiring the EBh or ECh instruction, as shown in Figure 84
on page 98; thus, eliminating eight cycles for the command sequence. The following sequences will release the device from Quad I/
O High Performance Read mode; after which, the device can accept standard SPI commands:
1. During the Quad I/O Read Command Sequence, if the Mode bits are any value other than Axh, then the next time CS# is
raised high the device will be released from Quad I/O High Performance Read mode.
2. Send the Mode Reset command.
Note that the two mode bit clock cycles and additional wait states (i.e., dummy cycles) allow the device’s internal circuitry latency
time to access the initial address after the last address cycle that is clocked into IIO0-IO3.
It is important that the IO0-IO3signals be set to high-impedance at or before the falling edge of the first data out clock. At higher
clock speeds the time available to turn off the host outputs before the memory device begins to drive (bus turn around) is diminished.
It is allowed and may be helpful in preventing IO0-IO3 signal contention, for the host system to turn off the IO0-IO3 signal outputs
(make them high impedance) during the last “don’t care” mode cycle or during any dummy cycles.
CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate.
In QPI mode (CR2V[6] = 1) the Quad I/O instructions are sent 4 bits per SCK rising edge. The remainder of the command protocol is
identical to the Quad I/O commands.
Figure 82. Quad I/O Read Initial Access Command Sequence
CS#
SCLK
IO0
7
6
5
0 20
4
0
4
0
4
0
4
0
4
0
4
0
IO1
21
5
1
5
1
5
1
5
1
5
1
5
1
IO2
22
6
2
6
2
6
2
6
2
6
2
6
2
IO3
A
7
3
7
3
7
3
7
3
7
3
7
3
Phase
4
3
2
1
Instruction
Address Mode
Dummy
D1
D2
D3
D4
Note
64.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command ECh.
Figure 83. Quad I/O Read Initial Access Command Sequence QPI mode
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Mode
Dummy
D1
D2
D3
D4
Note
65.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command ECh.
Document Number: 002-03631 Rev. *G
Page 97 of 145
S25FS064S
Figure 84. Continuous Quad I/O Read Command Sequence
CS#
SCK
IO0
4
0
4
0
A-3
4
0
4
0
4
0
4
0
6
4
2
0
IO1
5
1
5
1
A-2
5
1
5
1
5
1
5
1
7
5
3
1
IO2
6
2
6
2
A-1
6
2
6
2
6
2
6
1
7
5
3
1
IO3
7
3
7
3
A
7
3
7
3
7
3
7
1
7
5
3
1
Phase
DN-1
DN
Address
Mode
Dummy
D1
D2
D3
D4
Notes
66.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command ECh.
67.The same sequence is used in QPI mode
11.4.7
DDR Quad I/O Read (EDh, EEh)
The DDR Quad I/O Read command improves throughput with four I/O signals IO0-IO3. It is similar to the Quad I/O Read command
but allows input of the address four bits on every edge of the clock. In some applications, the reduced instruction overhead might
allow for code execution (XIP) directly from FS-S Family devices. The QUAD bit of the Configuration Register must be set
(CR1V[1] = 1) to enable the Quad capability.
The instruction
EDh (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
EDh (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
EEh is followed by a 4-byte address (A31–A0)
The address is followed by mode bits. Then the memory contents, at the address given, is shifted out, in a DDR fashion, with four
bits at a time on each clock edge through IO0–IO3.
The maximum operating clock frequency for DDR Quad I/O Read command is 100 MHz.
For DDR Quad I/O Read, there is a latency required after the last address and mode bits are shifted into the IO0-IO3 signals before
data begins shifting out of IO0–IO3. This latency period (dummy cycles) allows the device’s internal circuitry enough time to access
the initial address. During these latency cycles, the data value on IO0-IO3are “don’t care” and may be high impedance. When the
Data Learning Pattern (DLP) is enabled the host system must not drive the IO signals during the dummy cycles. The IO signals must
be left high impedance by the host so that the memory device can drive the DLP during the dummy cycles.
The number of dummy cycles is determined by the frequency of SCK. The latency is configured in CR2V[3:0].
Mode bits allow a series of Quad I/O DDR commands to eliminate the 8 bit instruction after the first command sends a
complementary mode bit pattern, as shown in Figure 85 and Figure 87. This feature removes the need for the eight bit SDR
instruction sequence and dramatically reduces initial access times (improves XIP performance). The Mode bits control the length of
the next DDR Quad I/O Read operation through the inclusion or exclusion of the first byte instruction code. If the upper nibble
(IO[7:4]) and lower nibble (IO[3:0]) of the Mode bits are complementary (i.e. 5h and Ah) the device transitions to Continuous DDR
Quad I/O Read Mode and the next address can be entered (after CS# is raised high and then asserted low) without requiring the
EDh or EEh instruction, eliminating eight cycles from the command sequence. The following sequences will release the device from
Continuous DDR Quad I/O Read mode; after which, the device can accept standard SPI commands:
1. During the DDR Quad I/O Read Command Sequence, if the Mode bits are not complementary the next time CS# is raised
high and then asserted low the device will be released from DDR Quad I/O Read mode.
2. Send the Mode Reset command.
The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address
in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read
instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back
to 000000h, allowing the read sequence to be continued indefinitely.
Document Number: 002-03631 Rev. *G
Page 98 of 145
S25FS064S
CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. Note that the memory
devices may drive the IOs with a preamble prior to the first data value. The preamble is a Data Learning Pattern (DLP) that is used
by the host controller to optimize data capture at higher frequencies. The preamble drives the IO bus for the four clock cycles
immediately before data is output. The host must be sure to stop driving the IO bus prior to the time that the memory starts
outputting the preamble.
The preamble is intended to give the host controller an indication about the round trip time from when the host drives a clock edge to
when the corresponding data value returns from the memory device. The host controller will skew the data capture point during the
preamble period to optimize timing margins and then use the same skew time to capture the data during the rest of the read
operation. The optimized capture point will be determined during the preamble period of every read operation. This optimization
strategy is intended to compensate for both the PVT (process, voltage, temperature) of both the memory device and the host
controller as well as any system level delays caused by flight time on the PCB.
Although the data learning pattern (DLP) is programmable, the following example shows example of the DLP of 34h. The DLP 34h
(or 00110100) will be driven on each of the active outputs (i.e. all four IOs). This pattern was chosen to cover both “DC” and “AC”
data transition scenarios. The two DC transition scenarios include data low for a long period of time (two half clocks) followed by a
high going transition (001) and the complementary low going transition (110). The two AC transition scenarios include data low for a
short period of time (one half clock) followed by a high going transition (101) and the complementary low going transition (010). The
DC transitions will typically occur with a starting point closer to the supply rail than the AC transitions that may not have fully settled
to their steady state (DC) levels. In many cases the DC transitions will bound the beginning of the data valid period and the AC
transitions will bound the ending of the data valid period. These transitions will allow the host controller to identify the beginning and
ending of the valid data eye. Once the data eye has been characterized the optimal data capture point can be chosen. See SPI DDR
Data Learning Registers on page 62 for more details.
In QPI mode (CR2V[6]=1) the DDR Quad I/O instructions are sent 4 bits per SCK rising edge. The remainder of the command
protocol is identical to the DDR Quad I/O commands.
Figure 85. DDR Quad I/O Read Initial Access
CS#
SCK
IO0
7
6
5
A-3
8 4 0 4 0
7 6 5 4 3 2 1 0 4 0 4 0
IO1
A-2
9 5 1 5 1
7 6 5 4 3 2 1 0 5 1 5 1
IO2
A-1
10 6 2 6 2
7 6 5 4 3 2 1 0 6 2 6 2
IO3
A
11 7 3 7 3
7 6 5 4 3 2 1 0 7 3 7 3
Phase
4
3
2
1
0
Instruction
Address
Mode
Dummy
DLP
D1
D2
Notes
68.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command EEh.
69.Example DLP of 34h (or 00110100).
Figure 86. DDR Quad I/O Read Initial Access QPI Mode
CS#
SCLK
IO0
4
0
A-3
8
4
0
4
0
7
6
5
4
3
2
1
0
4
0
4
0
IO1
5
1
A-2
9
5
1
5
1
7
6
5
4
3
2
1
0
5
1
5
1
IO2
6
2
A-1
10 6
2
6
2
7
6
5
4
3
2
1
0
6
2
6
2
IO3
7
3
A
11 7
3
7
3
7
6
5
4
3
2
1
0
7
3
7
3
Phase
Instruct.
Address
Mode
Dummy
DLP
D1
D2
Notes
70.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command EEh.
71.Example DLP of 34h (or 00110100).
Document Number: 002-03631 Rev. *G
Page 99 of 145
S25FS064S
Figure 87. Continuous DDR Quad I/O Read Subsequent Access
CS#
SCK
IO0
A-3
8
4
0
4
0
7
6
5
4
3
2
1
0
4
0
4
0
1
IO1
A-2
9
5
1
5
1
7
6
5
4
3
2
1
0
5
1
5
1
2
IO2
A-1
10
6
2
6
2
7
6
5
4
3
2
1
0
6
2
6
2
IO3
A
11
7
3
7
3
7
6
5
4
3
2
1
0
7
3
7
Phase
Address
Mode
Dummy
DLP
D1
3
D2
Notes
72.A = MSB of address = 23 for CR2V[7] = 0, or 31 for CR2V[7] = 1 or command EEh.
73.The same sequence is used in QPI mode.
74.Example DLP of 34h (or 00110100).
11.5
Program Flash Array Commands
11.5.1
Program Granularity
11.5.1.1 Automatic ECC
Each 16 byte aligned and 16 byte length Programming Block has an automatic Error Correction Code (ECC) value. The data block
plus ECC form an ECC unit. In combination with Error Detection and Correction (EDC) logic the ECC is used to detect and correct
any single bit error found during a read access. When data is first programmed within an ECC unit the ECC value is set for the entire
ECC unit. If the same ECC unit is programmed more than once the ECC value is changed to disable the EDC function. A sector
erase is needed to again enable Automatic ECC on that Programming Block. The 16 byte Program Block is the smallest program
granularity on which Automatic ECC is enabled.
These are automatic operations transparent to the user. The transparency of the Automatic ECC feature enhances data accuracy
for typical programming operations which write data once to each ECC unit but, facilitates software compatibility to previous
generations of FL family of products by allowing for single byte programming and bit walking in which the same ECC unit is
programmed more than once. When an ECC unit has Automatic ECC disabled, EDC is not done on data read from the ECC unit
location.
An ECC status register is provided for determining if ECC is enabled on an ECC unit and whether any errors have been detected
and corrected in the ECC unit data or the ECC (See ECC Status Register (ECCSR) on page 60). The ECC Status Register Read
(ECCRD) command is used to read the ECC status on any ECC unit (See ECC Status Register Read (ECCRD 19h or 4EECRD
18h) on page 86).
Error Detection and Correction (EDC) is applied to all parts of the Flash address spaces other than registers. An Error Correction
Code (ECC) is calculated for each group of bytes protected and the ECC is stored in a hidden area related to the group of bytes. The
group of protected bytes and the related ECC are together called an ECC unit.
ECC is calculated for each 16 byte aligned and length ECC unit
Single Bit EDC is supported with 8 ECC bits per ECC unit, plus 1 bit for an ECC disable Flag
Sector erase resets all ECC bits and ECC disable flags in a sector to the default state (enabled)
ECC is programmed as part of the standard Program commands operation
ECC is disabled automatically if multiple programming operations are done on the same ECC unit.
Single byte programming or bit walking is allowed but disables ECC on the second program to the same 16 byte ECC unit.
The ECC disable flag is programmed when ECC is disabled
To re-enable ECC for an ECC unit that has been disabled, the Sector that includes the ECC unit must be erased
To ensure the best data integrity provided by EDC, each ECC unit should be programmed only once so that ECC is stored for that
unit and not disabled.
The calculation, programming, and disabling of ECC is done automatically as part of a programming operation. The detection and
correction, if needed, is done automatically as part of read operations. The host system sees only corrected data from a read
operation.
ECC protects the OTP region - however a second program operation on the same ECC unit will disable ECC permanently on that
ECC unit (OTP is one time programmable, hence an erase operation to re-enable the ECC enable/indicator bit is prohibited)
Document Number: 002-03631 Rev. *G
Page 100 of 145
S25FS064S
11.5.1.2 Page Programming
Page Programming is done by loading a Page Buffer with data to be programmed and issuing a programming command to move
data from the buffer to the memory array. This sets an upper limit on the amount of data that can be programmed with a single
programming command. Page Programming allows up to a page size (either 256 or 512 bytes) to be programmed in one operation.
The page size is determined by the configuration register bit CR3V[4]. The page is aligned on the page size address boundary. It is
possible to program from one bit up to a page size in each Page programming operation. It is recommended that a multiple of 16
byte length and aligned Program Blocks be written. This insures that Automatic ECC is not disabled. For the very best performance,
programming should be done in full pages of 512 bytes aligned on 512 byte boundaries with each Page being programmed only
once.
11.5.1.3 Single Byte Programming
Single Byte Programming allows full backward compatibility to the legacy standard SPI Page Programming (PP) command by
allowing a single byte to be programmed anywhere in the memory array. While single byte programming is supported, this will
disable Automatic ECC on the 16 byte ECC unit, if a another byte is programmed on the same ECC unit.
11.5.2
Page Program (PP 02h or 4PP 12h)
The Page Program (PP) command allows bytes to be programmed in the memory (changing bits from 1 to 0). Before the Page
Program (PP) commands can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the
device. After the Write Enable (WREN) command has been decoded successfully, the device sets the Write Enable Latch (WEL) in
the Status Register to enable any write operations.
The instruction
02h (CR2V[7] = 0) is followed by a 3-byte address (A23–A0) or
02h (CR2V[7] = 1) is followed by a 4-byte address (A31–A0) or
12h is followed by a 4-byte address (A31–A0)
and at least one data byte on SI/IO0. Depending on CR3V[4], the page size can either be 256 or 512 bytes. Up to a page can be
provided on SI/IO0 after the 3-byte address with instruction 02h or 4-byte address with instruction 12h has been provided. If more
data is sent to the device than the space between the starting address and the page aligned end boundary, the data loading
sequence will wrap from the last byte in the page to the zero byte location of the same page and begin overwriting any data
previously loaded in the page. The last page worth of data is programmed in the page. This is a result of the device being equipped
with a page program buffer that is only page size in length. If less than a page of data is sent to the device, these data bytes will be
programmed in sequence, starting at the provided address within the page, without having any affect on the other bytes of the same
page.
Using the Page Program (PP) command to load an entire page, within the page boundary, will save overall programming time
versus loading less than a page into the program buffer.
The programming process is managed by the Flash memory device internal control logic. After a programming command is issued,
the programming operation status can be checked using the Read Status Register-1 command. The WIP bit (SR1V[0]) will indicate
when the programming operation is completed. The P_ERR bit (SR1V[6]) will indicate if an error occurs in the programming
operation that prevents successful completion of programming. This includes attempted programming of a protected area.
Figure 88. Page Program (PP 02h or 4PP 12h) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Address
Input Data 1
Input Data 2
Note
75.A = MSB of address = A23 for PP 02h with CR2V[7] = 0, or A31 for PP 02h with CR2V[7] = 1, or for 4PP 12h.
Document Number: 002-03631 Rev. *G
Page 101 of 145
S25FS064S
This command is also supported in QPI mode. In QPI mode the instruction, address and data is shifted in on IO0–IO3.
Figure 89. Page Program (PP 02h or 4PP 12h) QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Input D1
Input D2
Input D3
Input D4
Note:
76.A = MSB of address = A23 for PP 02h with CR2V[7] = 0, or A31 for PP 02h with CR2V[7] = 1, or for 4PP 12h
11.5.3
Quad Page Program (QPP 32h or 4QPP 34h)
The Quad-input Page Program (QPP) command allows bytes to be programmed in the memory (changing bits from 1 to 0). The
Quad-input Page Program (QPP) command allows up to a page of data to be loaded into the Page Buffer using four signals: IO0IO3. QPP can improve performance for PROM Programmer and applications that have slower clock speeds (< 12 MHz) by loading 4
bits of data per clock cycle. Systems with faster clock speeds do not realize as much benefit for the QPP command since the
inherent page program time becomes greater than the time it takes to clock-in the data. The maximum frequency for the QPP
command is 133MHz.
To use Quad Page Program the Quad Enable Bit in the Configuration Register must be set (QUAD = 1). A Write Enable command
must be executed before the device will accept the QPP command (Status Register-1, WEL = 1).
The instruction
32h (CR2V[0] = 0) is followed by a 3-byte address (A23–A0) or
32h (CR2V[0] = 1) is followed by a 4-byte address (A31–A0) or
34h is followed by a 4-byte address (A31–A0)
and at least one data byte, into the IO signals.
All other functions of QPP are identical to Page Program. The QPP command sequence is shown in the figure below.
Figure 90. Quad Page Program Command Sequence
CS#
SCK
IO0
4
0
4
0
4
0
4
0
4
0
4
IO1
5
1
5
1
5
1
5
1
5
1
5
IO2
6
2
6
2
6
2
6
2
6
2
6
IO3
7
3
7
3
7
3
7
3
7
3
7
Phase
7
6
5
4
3
Instruction
2
1
0
A
1
Address
0
Data 1
Data 2
Data 3
Data 4
Data 5
...
Note
77.A = MSB of address = A23 for QPP 32h with CR2V[7]=0, or A31 for QPP 32h with CR2V[7]=1, or for 4QPP 34h.
Document Number: 002-03631 Rev. *G
Page 102 of 145
S25FS064S
11.6
Erase Flash Array Commands
11.6.1
Parameter Sector Erase (P4E 20h or 4P4E 21h)
The main Flash array address map may be configured to overlay parameter sectors over the lowest address portion of the lowest
address uniform sector (bottom parameter sectors) or over the highest address portion of the highest address uniform sector (top
parameter sectors). The main Flash array address map may also be configured to have only uniform size sectors. The parameter
sector configuration is controlled by the configuration bit CR3V[3]. The P4E and 4P4E commands are ignored when the device is
configured for uniform sectors only (CR3V[3]=1).
The Parameter Sector Erase commands set all the bits of a parameter sector to 1 (all bytes are FFh). Before the P4E or 4P4E
command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets
the Write Enable Latch (WEL) in the Status Register to enable any write operations.
The instruction
20h [CR2V[7] = 0] is followed by a 3-byte address (A23–A0), or
20h [CR2V[7] = 1] is followed by a 4-byte address (A31–A0), or
21h is followed by a 4-byte address (A31–A0)
CS# must be driven into the logic high state after the twenty-fourth or thirty-second bit of the address has been latched in on SI/IO0.
This will initiate the beginning of internal erase cycle, which involves the pre-programming and erase of the chosen sector of the
flash memory array. If CS# is not driven high after the last bit of address, the sector erase operation will not be executed.
As soon as CS# is driven high, the internal erase cycle will be initiated. With the internal erase cycle in progress, the user can read
the value of the Write-In Progress (WIP) bit to determine when the operation has been completed. The WIP bit will indicate a “1”.
when the erase cycle is in progress and a “0” when the erase cycle has been completed.
A P4E or 4P4E command applied to a sector that has been write protected through the Block Protection bits or ASP, will not be
executed and will set the E_ERR status. A P4E command applied to a sector that is larger than 4KB will not be executed and will not
set the E_ERR status.
Figure 91. Parameter Sector Erase (P4E 20h or 4P4E 21h) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1-IO3
Phase
Instruction
Address
Note
78.A = MSB of address = A23 for SE 20h with CR2V[7] = 0, or A31 for SE 20h with CR2V[7] = 1 or for 4SE 21h.
This command is also supported in QPI mode. In QPI mode the instruction and address is shifted in on IO0–IO3.
Figure 92. Parameter Sector Erase (P4E 20h or 4P4E 21h) QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
IO1
5
1
A-2
5
1
IO2
6
2
A-1
6
2
IO3
7
3
A
7
3
Phase
Instructtion
Address
Note
79.A = MSB of address = A23 for SE 20h with CR2V[7] = 0, or A31 for SE 20h with CR2V[7] = 1 or for 4SE 21h.
Document Number: 002-03631 Rev. *G
Page 103 of 145
S25FS064S
11.6.2
Sector Erase (SE D8h or 4SE DCh)
The Sector Erase (SE) command sets all bits in the addressed sector to 1 (all bytes are FFh). Before the Sector Erase (SE)
command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets
the Write Enable Latch (WEL) in the Status Register to enable any write operations.
The instruction
D8h [CR2V[7] = 0] is followed by a 3-byte address (A23–A0), or
D8h [CR2V[7] = 1] is followed by a 4-byte address (A31–A0), or
DCh is followed by a 4-byte address (A31–A0)
CS# must be driven into the logic high state after the twenty-fourth or thirty-second bit of address has been latched in on SI. This will
initiate the erase cycle, which involves the pre-programming and erase of the chosen sector. If CS# is not driven high after the last
bit of address, the sector erase operation will not be executed.
As soon as CS# is driven into the logic high state, the internal erase cycle will be initiated. With the internal erase cycle in progress,
the user can read the value of the Write-In Progress (WIP) bit to check if the operation has been completed. The WIP bit will indicate
a “1” when the erase cycle is in progress and a “0” when the erase cycle has been completed.
A Sector Erase (SE) command applied to a sector that has been Write Protected through the Block Protection bits or ASP, will not
be executed and will set the E_ERR status.
A device configuration option (CR3V[1]) determines whether the SE command erases 64KB or 256KB.
A device configuration option (CR3V[3]) determines whether 4 KB parameter sectors are in use. When CR3V[3] = 0, parameter
sectors overlay a portion of the highest or lowest address 32 KB of the device address space. If a sector erase command is applied
to a 64KB sector that is overlaid by parameter sectors, the overlaid parameter sectors are not affected by the erase. Only the visible
(non-overlaid) portion of the 64KB sector appears erased. Similarly if a sector erase command is applied to a 256 KB range that is
overlaid by sectors, the overlaid parameter sectors are not affected by the erase. When CR3V[3] = 1, there are no parameter sectors
in the device address space and the Sector Erase command always operates on fully visible 64 KB or 256KB sectors.
ASP has a PPB and a DYB protection bit for each physical sector, including any parameter sectors. If a sector erase command is
applied to a 256KB range that includes a 64 KB protected physical sector, the erase will not be executed on the 256KB range and
will set the E_ERR status.
Figure 93. Sector Erase (SE D8h or 4SE DCh) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1-IO3
Phase
Instruction
Address
Note
80.A = MSB of address = A23 for SE D8h with CR2V[7] = 0, or A31 for SE D8h with CR2V[7] = 1 or 4SE DCh.
This command is also supported in QPI mode. In QPI mode the instruction and address is shifted in on IO0–IO3.
Figure 94. Sector Erase (SE D8h or 4SE DCh) QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
IO1
5
1
A-2
5
1
IO2
6
2
A-1
6
2
IO3
7
3
A
7
3
Phase
Instructtion
Address
Note
81.A = MSB of address = A23 for SE D8h with CR2V[7] = 0, or A31 for SE D8h with CR2V[7] = 1 or 4SE DCh.
Document Number: 002-03631 Rev. *G
Page 104 of 145
S25FS064S
11.6.3
Bulk Erase (BE 60h or C7h)
The Bulk Erase (BE) command sets all bits to 1 (all bytes are FFh) inside the entire flash memory array. Before the BE command
can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write
Enable Latch (WEL) in the Status Register to enable any write operations.
CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0. This will initiate
the erase cycle, which involves the pre-programming and erase of the entire flash memory array. If CS# is not driven high after the
last bit of instruction, the BE operation will not be executed.
As soon as CS# is driven into the logic high state, the erase cycle will be initiated. With the erase cycle in progress, the user can
read the value of the Write-In Progress (WIP) bit to determine when the operation has been completed. The WIP bit will indicate a
“1” when the erase cycle is in progress and a “0” when the erase cycle has been completed.
A BE command can be executed only when the Block Protection (BP2, BP1, BP0) bits are set to “0” s. If the BP bits are not zero, the
BE command is not executed and E_ERR is not set. The BE command will skip any sectors protected by the DYB or PPB and the
E_ERR status will not be set.
Figure 95. Bulk Erase Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode, the instruction is shifted in on IO0–IO3.
Figure 96. Bulk Erase Command Sequence QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
11.6.4
Instruction
Evaluate Erase Status (EES D0h)
The Evaluate Erase Status (EES) command verifies that the last erase operation on the addressed sector was completed
successfully. If the selected sector was successfully erased the erase status bit (SR2V[2]) is set to 1. If the selected sector was not
completely erased SR2V[2] is 0.
The EES command can be used to detect erase operations failed due to loss of power, reset, or failure during the erase operation.
The EES instruction is followed by a 3 or 4 byte address, depending on the address length configuration (CR2V[7]). The EES
command requires tEES to complete and update the erase status in SR2V. The WIP bit (SR1V[0]) may be read using the RDSR1
(05h) command, to determine when the EES command is finished. Then the RDSR2 (07h) or the RDAR (65h) command can be
used to read SR2V[2]. If a sector is found not erased with SR2V[2] = 0, the sector must be erased again to ensure reliable storage of
data in the sector.
The Write Enable command (to set the WEL bit) is not required before the EES command. However, the WEL bit is set by the device
itself and cleared at the end of the operation, as visible in SR1V[1] when reading status.
Document Number: 002-03631 Rev. *G
Page 105 of 145
S25FS064S
Figure 97. EES Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1-IO3
Phase
Instruction
Address
Note
82.A = MSB of address = A23 for ESS D0h with CR2V[7] = 0, or A31 for ESS D0h with CR2V[7] = 1.
This command is also supported in QPI mode. In QPI mode the instruction and address is shifted in on IO0–IO3.
Figure 98. EES QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
IO1
5
1
A-2
5
1
IO2
6
2
A-1
6
2
IO3
7
3
A
7
3
Phase
Instructtion
Address
Note
83.A = MSB of address = A23 for ESS D0h with CR2V[7] = 0, or A31 for ESS D0h with CR2V[7] = 1.
11.6.5
Erase or Program Suspend (EPS 85h, 75h, B0h)
There are three instruction codes for Program or Erase Suspend (EPS) to enable legacy and alternate source software compatibility.
The EPS command allows the system to interrupt a programming or erase operation and then read from any other non-erasesuspended sector or non-program-suspended-page. Program or Erase Suspend is valid only during a programming or sector erase
operation. A Bulk Erase operation cannot be suspended.
The Write in Progress (WIP) bit in Status Register 1 (SR1V[0]) must be checked to know when the programming or erase operation
has stopped. The Program Suspend Status bit in the Status Register-2 (SR2[0]) can be used to determine if a programming
operation has been suspended or was completed at the time WIP changes to 0. The Erase Suspend Status bit in the Status
Register-2 (SR2[1]) can be used to determine if an erase operation has been suspended or was completed at the time WIP changes
to 0. The time required for the suspend operation to complete is tSL, see Table 17 on page 38.
An Erase can be suspended to allow a program operation or a read operation. During an erase suspend, the DYB array may be read
to examine sector protection and written to remove or restore protection on a sector to be programmed.
A program operation may be suspended to allow a read operation.
A new erase operation is not allowed with an already suspended erase or program operation. An erase command is ignored in this
situation.
Document Number: 002-03631 Rev. *G
Page 106 of 145
S25FS064S
Table 55. Commands Allowed During Program or Erase Suspend
Instruction
Name
Allowed
Allowed
During
Instruction During Erase
Program
Code (Hex)
Suspend
Suspend
Comment
READ
03
X
X
All array reads allowed in suspend
RDSR1
05
X
X
Needed to read WIP to determine end of suspend process
X
RDAR
65
X
WREN
06
X
Alternate way to read WIP to determine end of suspend process
RDSR2
07
X
X
Needed to read suspend status to determine whether the operation is suspended or
complete.
RUID
4C
X
X
Read Unique ID is allowed in suspend
PP
02
X
Required for array program during erase suspend. Only allowed if there is no other
program suspended program operation (SR2V[0] = 0). A program command will be
ignored while there is a suspended program. If a program command is sent for a location
within an erase suspended sector the program operation will fail with the P_ERR bit set.
4PP
12
X
Required for array program during erase suspend. Only allowed if there is no other
program suspended program operation (SR2V[0] = 0). A program command will be
ignored while there is a suspended program. If a program command is sent for a location
within an erase suspended sector the program operation will fail with the P_ERR bit set.
QPP
32
X
Required for array program during erase suspend. Only allowed if there is no other
program suspended program operation (SR2V[0] = 0). A program command will be
ignored while there is a suspended program. If a program command is sent for a location
within an erase suspended sector the program operation will fail with the P_ERR bit set.
4QPP
34
X
Required for array program during erase suspend. Only allowed if there is no other
program suspended program operation (SR2V[0] = 0). A program command will be
ignored while there is a suspended program. If a program command is sent for a location
within an erase suspended sector the program operation will fail with the P_ERR bit set.
4READ
13
X
CLSR
30
X
Clear status may be used if a program operation fails during erase suspend. Note the
instruction is only valid if enabled for clear status by CR4NV[2] = 1
CLSR
82
X
Clear status may be used if a program operation fails during erase suspend.
EPR
30
X
X
Required to resume from erase or program suspend. Note the command must be enabled
for use as a resume command by CR3NV[2] = 1
EPR
7A
X
X
Required to resume from erase or program suspend.
EPR
8A
X
X
Required to resume from erase or program suspend.
Required for program command within erase suspend.
X
All array reads allowed in suspend
RSTEN
66
X
X
Reset allowed anytime
RST
99
X
X
Reset allowed anytime
FAST_READ
0B
X
X
All array reads allowed in suspend
4FAST_REA
D
0C
X
X
All array reads allowed in suspend
DOR
3B
X
X
All array reads allowed in suspend
4DOR
3C
X
X
All array reads allowed in suspend
QOR
6B
X
X
Read Quad Output (3 or 4 Byte Address)
4QOR
6C
X
X
Read Quad Output (4 Byte Address)
EPR
7A
X
Required to resume from erase suspend.
EPR
8A
X
Required to resume from erase suspend.
DIOR
BB
X
X
All array reads allowed in suspend
4DIOR
BC
X
X
All array reads allowed in suspend
DYBRD
FA
X
It may be necessary to remove and restore dynamic protection during erase suspend to
allow programming during erase suspend.
DYBWR
FB
X
It may be necessary to remove and restore dynamic protection during erase suspend to
allow programming during erase suspend.
Document Number: 002-03631 Rev. *G
Page 107 of 145
S25FS064S
Table 55. Commands Allowed During Program or Erase Suspend (Continued)
Instruction
Name
Allowed
Instruction
During Erase
Code (Hex)
Suspend
Allowed
During
Program
Suspend
Comment
PPBRD
FC
X
Allowed for checking persistent protection before attempting a program command during
erase suspend.
4DYBRD
E0
X
It may be necessary to remove and restore dynamic protection during erase suspend to
allow programming during erase suspend.
4DYBWR
E1
X
It may be necessary to remove and restore dynamic protection during erase suspend to
allow programming during erase suspend.
4PPBRD
E2
X
Allowed for checking persistent protection before attempting a program command during
erase suspend.
QIOR
EB
X
X
All array reads allowed in suspend
4QIOR
EC
X
X
All array reads allowed in suspend
DDRQIOR
ED
X
X
All array reads allowed in suspend
4DDRQIOR
EE
X
X
All array reads allowed in suspend
RESET
F0
X
X
Reset allowed anytime
MBR
FF
X
X
May need to reset a read operation during suspend
Reading at any address within an erase-suspended sector or program-suspended page produces undetermined data.
The WRR, WRAR, or PPB Erase commands are not allowed during Erase or Program Suspend, it is therefore not possible to alter
the Block Protection or PPB bits during Erase Suspend. If there are sectors that may need programming during Erase suspend,
these sectors should be protected only by DYB bits that can be turned off during Erase Suspend.
After an erase-suspended program operation is complete, the device returns to the erase-suspend mode. The system can
determine the status of the program operation by reading the WIP bit in the Status Register, just as in the standard program
operation.
Figure 99. Program or Erase Suspend Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0-IO3.
Figure 100. Program or Erase Suspend Command Sequence QPI mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
Phase
Document Number: 002-03631 Rev. *G
3
Instruction
Page 108 of 145
S25FS064S
Figure 101. Program or Erase Suspend Command with Continuing Instruction Commands Sequence
tSL
CS#
SCK
SI_IO0
7
6 5
4
3
2
1
0
7
6
5
4
3 2
1
0
SO_IO1
7 6
7 6
5
4 3
2
1
5
4
3
2
1 0
0
IO2-IO3
Phase
Suspend Instruction
Read Status Instruction
Phase
11.6.6
Status
Instr. During Suspend
Repeat Status Read Until Suspended
Erase or Program Resume (EPR 7Ah, 8Ah, 30h)
An Erase or Program Resume command must be written to resume a suspended operation. There are three instruction codes for
Erase or Program Resume (EPR) to enable legacy and alternate source software compatibility.
After program or read operations are completed during a program or erase suspend the Erase or Program Resume command is
sent to continue the suspended operation.
After an Erase or Program Resume command is issued, the WIP bit in the Status Register-1 will be set to a 1 and the programming
operation will resume if one is suspended. If no program operation is suspended the suspended erase operation will resume. If there
is no suspended program or erase operation the resume command is ignored.
Program or erase operations may be interrupted as often as necessary e.g. a program suspend command could immediately follow
a program resume command but, in order for a program or erase operation to progress to completion there must be some periods of
time between resume and the next suspend command greater than or equal to tRS. See Table 17 on page 38.
Figure 102. Erase or Program Resume command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3.
Figure 103. Erase or Program Resume command Sequence QPI mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
Document Number: 002-03631 Rev. *G
Instruction
Page 109 of 145
S25FS064S
11.7
One Time Program Array Commands
11.7.1
OTP Program (OTPP 42h)
The OTP Program command programs data in the One Time Program region, which is in a different address space from the main
array data. The OTP region is 1024 bytes so, the address bits from A31 to A10 must be zero for this command. Refer to OTP
Address Space on page 46 for details on the OTP region.
Before the OTP Program command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded
by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The WIP bit in SR1V
may be checked to determine when the operation is completed. The P_ERR bit in SR1V may be checked to determine if any error
occurred during the operation.
To program the OTP array in bit granularity, the rest of the bits within a data byte can be set to “1”.
Each region in the OTP memory space can be programmed one or more times, provided that the region is not locked. Attempting to
program zeros in a region that is locked will fail with the P_ERR bit in SR1V set to “1”. Programming ones, even in a protected area
does not cause an error and does not set P_ERR. Subsequent OTP programming can be performed only on the un-programmed
bits (that is, “1” data). Programming more than once within an ECC unit will disable ECC on that unit.
The protocol of the OTP Program command is the same as the Page Program command. See Page Program (PP 02h or 4PP 12h)
on page 101 for the command sequence.
11.7.2
OTP Read (OTPR 4Bh)
The OTP Read command reads data from the OTP region. The OTP region is 1024 bytes so, the address bits from A31 to A10 must
be zero for this command. Refer to OTP Address Space on page 46 for details on the OTP region. The protocol of the OTP Read
command is similar to the Fast Read command except that it will not wrap to the starting address after the OTP address is at its
maximum; instead, the data beyond the maximum OTP address will be undefined. The OTP Read command read latency is set by
the latency value in CR2V[3:0]. See Fast Read (FAST_READ 0Bh or 4FAST_READ 0Ch) on page 93 for the command sequence.
11.8
Advanced Sector Protection Commands
11.8.1
ASP Read (ASPRD 2Bh)
The ASP Read instruction 2Bh is shifted into SI by the rising edge of the SCK signal. Then the 16-bit ASP register contents are
shifted out on the serial output SO, least significant byte first. Each bit is shifted out at the SCK frequency by the falling edge of the
SCK signal. It is possible to read the ASP register continuously by providing multiples of 16 clock cycles. The maximum operating
clock frequency for the ASP Read (ASPRD) command is 133 MHz.
Figure 104. ASPRD Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Document Number: 002-03631 Rev. *G
DY
Output IRP Low Byte
Output IRP High Byte
Page 110 of 145
S25FS064S
11.8.2
ASP Program (ASPP 2Fh)
Before the ASP Program (ASPP) command can be accepted by the device, a Write Enable (WREN) command must be issued. After
the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to
enable any write operations.
The ASPP command is entered by driving CS# to the logic low state, followed by the instruction and two data bytes on SI, least
significant byte first. The ASP Register is two data bytes in length.
The ASPP command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other
programming operation.
CS# input must be driven to the logic high state after the sixteenth bit of data has been latched in. If not, the ASPP command is not
executed. As soon as CS# is driven to the logic high state, the self-timed ASPP operation is initiated. While the ASPP operation is in
progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a
“1” during the self-timed ASPP operation, and is a “0” when it is completed. When the ASPP operation is completed, the Write
Enable Latch (WEL) is set to a “0”.
Figure 105. ASPP Command
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
11.8.3
Instruction
Input ASPR Low Byte
Input ASPR High Byte
DYB Read (DYBRD FAh or 4DYBRD E0h)
The instruction is latched into SI/IO0 by the rising edge of the SCK signal. The instruction is followed by the 24 or 32-Bit address,
depending on the address length configuration CR2V[7], selecting location zero within the desired sector. Note, the high order
address bits not used by a particular density device must be zero. Then the 8-bit DYB access register contents are shifted out on the
serial output SO/IO1. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the
same DYB access register continuously by providing multiples of eight clock cycles. The address of the DYB register does not
increment so this is not a means to read the entire DYB array. Each location must be read with a separate DYB Read command. The
maximum operating clock frequency for READ command is 133 MHz.
Figure 106. DYBRD Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Register
Repeat Register
Notes
84.A = MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7] = 1 with command FAh.
85.A = MSB of address = 31 with command E0h.
In QPI mode, the instruction is shifted in on IO0–IO3.
Document Number: 002-03631 Rev. *G
Page 111 of 145
S25FS064S
Figure 107. DYBRD QPI Mode Command Sequence
CS
SCLK
IO0
4
0
A-3
4
0
4
0
IO1
5
1
A-2
5
1
5
1
IO2
6
2
A-1
6
2
6
2
IO3
7
3
A
7
3
7
3
Phase
Instruction
Address
Output DYBAR
Notes
86.A = MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7] = 1 with command FAh.
87.A = MSB of address = 31 with command E0hDYBRD QPI Mode Command Sequence.
11.8.4
DYB Write (DYBWR FBh or 4DYBWR E1h)
Before the DYB Write (DYBWR) command can be accepted by the device, a Write Enable (WREN) command must be issued. After
the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to
enable any write operations.
The DYBWR command is entered by driving CS# to the logic low state, followed by the instruction, followed by the 24 or 32-Bit
address, depending on the address length configuration CR2V[7], selecting location zero within the desired sector (note, the high
order address bits not used by a particular density device must be zero), then the data byte on SI/IO0. The DYB Access Register is
one data byte in length. The data value must be 00h to protect or FFh to unprotect the selected sector.
The DYBWR command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other
programming operation.
CS# must be driven to the logic high state after the eighth bit of data has been latched in. As soon as CS# is driven to the logic high
state, the self-timed DYBWR operation is initiated. While the DYBWR operation is in progress, the Status Register may be read to
check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a “1” during the self-timed DYBWR operation,
and is a “0” when it is completed. When the DYBWR operation is completed, the Write Enable Latch (WEL) is set to a “0”.
Figure 108. DYB Write Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Address
Input Data 1
Input Data 2
Notes
88.A= MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7] = 1 with command FBh.
89.A = MSB of address = 31 with command E1h.
This command is also supported in QPI mode. In QPI mode, the instruction, address and data is shifted in on IO0–IO3.
Document Number: 002-03631 Rev. *G
Page 112 of 145
S25FS064S
Figure 109. DYB Write QPI Mode Command Sequence
CS#
SCLK
IO0
4
0
A-3
4
0
4
0
4
0
4
0
4
0
IO1
5
1
A-2
5
1
5
1
5
1
5
1
5
1
IO2
6
2
A-1
6
2
6
2
6
2
6
2
6
2
IO3
7
3
A
7
3
7
3
7
3
7
3
7
3
Phase
Instruct.
Address
Input D1
Input D2
Input D3
Input D4
Notes
90.A = MSB of address = 23 for Address length (CR2V[7] = 0, or 31 for CR2V[7] = 1 with command FBh.
91.A = MSB of address = 31 with command E1h.
11.8.5
PPB Read (PPBRD FCh or 4PPBRD E2h)
The instruction E2h is shifted into SI/IO0 by the rising edges of the SCK signal, followed by the 24 or 32-Bit address, depending on
the address length configuration CR2V[7], selecting location zero within the desired sector (note, the high order address bits not
used by a particular density device must be zero). Then the 8-bit PPB access register contents are shifted out on SO/IO1.
It is possible to read the same PPB access register continuously by providing multiples of eight clock cycles. The address of the PPB
register does not increment so this is not a means to read the entire PPB array. Each location must be read with a separate PPB
Read command. The maximum operating clock frequency for the PPB Read command is 133 MHz.
Figure 110. PPB Read Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Address
Register
Repeat Register
Notes
92.A = MSB of address = 23 for Address length (CR2V[0] = 0, or 31 for CR2V[0]=1 with command FCh.
93.A = MSB of address = 31 with command E2h.
11.8.6
PPB Program (PPBP FDh or 4PPBP E3h)
Before the PPB Program (PPBP) command can be accepted by the device, a Write Enable (WREN) command must be issued. After
the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to
enable any write operations.
The PPBP command is entered by driving CS# to the logic low state, followed by the instruction, followed by the 24 or 32-Bit
address, depending on the address length configuration CR2V[7], selecting location zero within the desired sector (note, the high
order address bits not used by a particular density device must be zero).
The PPBP command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other
programming operation.
CS# must be driven to the logic high state after the last bit of address has been latched in. If not, the PPBP command is not
executed. As soon as CS# is driven to the logic high state, the self-timed PPBP operation is initiated. While the PPBP operation is in
progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a
“1” during the self-timed PPBP operation, and is a “0” when it is completed. When the PPBP operation is completed, the Write
Enable Latch (WEL) is set to a “0”.
Document Number: 002-03631 Rev. *G
Page 113 of 145
S25FS064S
Figure 111. PPB Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
A
1
0
SO_IO1-IO3
Phase
Instruction
Address
Notes
94.A = MSB of address = 23 for Address length (CR2V[0] = 0, or 31 for CR2V[0] = 1 with command FDh.
95.A = MSB of address = 31 with command E3h.
11.8.7
PPB Erase (PPBE E4h)
The PPB Erase (PPBE) command sets all PPB bits to 1. Before the PPB Erase command can be accepted by the device, a Write
Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status
Register to enable any write operations.
The instruction E4h is shifted into SI/IO0 by the rising edges of the SCK signal.
CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI/IO0. This will initiate
the beginning of internal erase cycle, which involves the pre-programming and erase of the entire PPB memory array. Without CS#
being driven to the logic high state after the eighth bit of the instruction, the PPB erase operation will not be executed.
With the internal erase cycle in progress, the user can read the value of the Write-In Progress (WIP) bit to check if the operation has
been completed. The WIP bit will indicate a “1” when the erase cycle is in progress and a “0” when the erase cycle has been
completed. Erase suspend is not allowed during PPB Erase.
Figure 112. PPB Erase Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
11.8.8
Instruction
PPB Lock Bit Read (PLBRD A7h)
The PPB Lock Bit Read (PLBRD) command allows the PPB Lock Register contents to be read out of SO/IO1. It is possible to read
the PPB lock register continuously by providing multiples of eight clock cycles. The PPB Lock Register contents may only be read
when the device is in standby state with no other operation in progress. It is recommended to check the Write-In Progress (WIP) bit
of the Status Register before issuing a new command to the device.
Figure 113. PPB Lock Register Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
SO_IO1
Phase
1
0
7
Instruction
Document Number: 002-03631 Rev. *G
6
5
4
3
2
Register Read
1
0
7
6
5
4
3
2
1
0
Repeat Register Read
Page 114 of 145
S25FS064S
11.8.9
PPB Lock Bit Write (PLBWR A6h)
The PPB Lock Bit Write (PLBWR) command clears the PPB Lock Register to zero. Before the PLBWR command can be accepted
by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch
(WEL) in the Status Register to enable any write operations.
The PLBWR command is entered by driving CS# to the logic low state, followed by the instruction.
CS# must be driven to the logic high state after the eighth bit of instruction has been latched in. If not, the PLBWR command is not
executed. As soon as CS# is driven to the logic high state, the self-timed PLBWR operation is initiated. While the PLBWR operation
is in progress, the Status Register may still be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress
(WIP) bit is a “1” during the self-timed PLBWR operation, and is a “0” when it is completed. When the PLBWR operation is
completed, the Write Enable Latch (WEL) is set to a “0”. The maximum clock frequency for the PLBWR command is
133 MHz.
Figure 114. PPB Lock Bit Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
11.8.10 Password Read (PASSRD E7h)
The correct password value may be read only after it is programmed and before the Password Mode has been selected by
programming the Password Protection Mode bit to 0 in the ASP Register (ASP[2]). After the Password Protection Mode is selected
the password is no longer readable, the PASSRD command will output undefined data.
The PASSRD command is shifted into SI/IO0. Then the 64-bit Password is shifted out on the serial output SO/IO1, least significant
byte first, most significant bit of each byte first. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is
possible to read the Password continuously by providing multiples of 64 clock cycles. The maximum operating clock frequency for
the PASSRD command is 133 MHz.
Figure 115. Password Read (PASSRD) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
IO2-IO3
Phase
Instruction
Document Number: 002-03631 Rev. *G
DY
Data 1
Data 8
Page 115 of 145
S25FS064S
11.8.11
Password Program (PASSP E8h)
Before the Password Program (PASSP) command can be accepted by the device, a Write Enable (WREN) command must be
issued and decoded by the device. After the Write Enable (WREN) command has been decoded, the device sets the Write Enable
Latch (WEL) to enable the PASSP operation.
The password can only be programmed before the Password Mode is selected by programming the Password Protection Mode bit
to 0 in the ASP Register (ASP[2]). After the Password Protection Mode is selected the PASSP command is ignored.
The PASSP command is entered by driving CS# to the logic low state, followed by the instruction and the password data bytes on
SI/IO0, least significant byte first, most significant bit of each byte first. The password is sixty-four (64) bits in length.
CS# must be driven to the logic high state after the sixty-fourth (64th) bit of data has been latched. If not, the PASSP command is not
executed. As soon as CS# is driven to the logic high state, the self-timed PASSP operation is initiated. While the PASSP operation
is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit
is a “1” during the self-timed PASSP cycle, and is a “0” when it is completed. The PASSP command can report a program error in the
P_ERR bit of the status register. When the PASSP operation is completed, the Write Enable Latch (WEL) is set to a “0”. The
maximum clock frequency for the PASSP command is 133 MHz.
Figure 116. Password Program (PASSP) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Password Byte 1
Password Byte 8
11.8.12 Password Unlock (PASSU E9h)
The PASSU command is entered by driving CS# to the logic low state, followed by the instruction and the password data bytes on
SI/IO0, least significant byte first, most significant bit of each byte first. The password is sixty-four (64) bits in length.
CS# must be driven to the logic high state after the sixty-fourth (64th) bit of data has been latched. If not, the PASSU command is not
executed. As soon as CS# is driven to the logic high state, the self-timed PASSU operation is initiated. While the PASSU operation
is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit
is a “1” during the self-timed PASSU cycle, and is a “0” when it is completed.
If the PASSU command supplied password does not match the hidden password in the Password Register, an error is reported by
setting the P_ERR bit to 1. The WIP bit of the status register also remains set to 1. It is necessary to use the CLSR command to
clear the status register, the RESET command to software reset the device, or drive the RESET# input low to initiate a hardware
reset, in order to return the P_ERR and WIP bits to 0. This returns the device to standby state, ready for new commands such as a
retry of the PASSU command.
If the password does match, the PPB Lock bit is set to “1”. The maximum clock frequency for the PASSU command is 133 MHz.
Figure 117. Password Unlock (PASSU) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
Document Number: 002-03631 Rev. *G
Password Byte 1
Password Byte 8
Page 116 of 145
S25FS064S
11.9
Reset Commands
Software controlled Reset commands restore the device to its initial power up state, by reloading volatile registers from non-volatile
default values. However, the volatile FREEZE bit in the Configuration register CR1V[0] and the volatile PPB Lock bit in the PPB Lock
Register are not changed by a software reset. The software reset cannot be used to circumvent the FREEZE or PPB Lock bit
protection mechanisms for the other security configuration bits.
The Freeze bit and the PPB Lock bit will remain set at their last value prior to the software reset. To clear the FREEZE bit and set the
PPB Lock bit to its protection mode selected power on state, a full power-on-reset sequence or hardware reset must be done.
The non-volatile bits in the configuration register (CR1NV), TBPROT_O, TBPARM, and BPNV_O, retain their previous state after a
Software Reset.
The Block Protection bits BP2, BP1, and BP0, in the status register (SR1V) will only be reset to their default value if FREEZE = 0.
A reset command (RST or RESET) is executed when CS# is brought high at the end of the instruction and requires tRPH time to
execute.
In the case of a previous Power-up Reset (POR) failure to complete, a reset command triggers a full power up sequence requiring
tPU to complete.
Figure 118. Software / Mode Bit Reset Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3.
Figure 119. Software Reset / Mode Bit Command Sequence – QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
11.9.1
Instruction
Software Reset Enable (RSTEN 66h)
The Reset Enable (RSTEN) command is required immediately before a Reset command (RST) such that a software reset is a
sequence of the two commands. Any command other than RST following the RSTEN command, will clear the reset enable condition
and prevent a later RST command from being recognized.
11.9.2
Software Reset (RST 99h)
The Reset (RST) command immediately following a RSTEN command, initiates the software reset process.
11.9.3
Legacy Software Reset (RESET F0h)
The Legacy Software Reset (RESET) is a single command that initiates the software reset process. This command is disabled by
default but can be enabled by programming CR3V[0]=1, for software compatibility with Cypress legacy FL-S devices.
Document Number: 002-03631 Rev. *G
Page 117 of 145
S25FS064S
11.9.4
Mode Bit Reset (MBR FFh)
The Mode Bit Reset (MBR) command is used to return the device from continuous high performance read mode back to normal
standby awaiting any new command. Because some device packages lack a hardware RESET# input and a device that is in a
continuous high performance read mode may not recognize any normal SPI command, a system hardware reset or software reset
command may not be recognized by the device. It is recommended to use the MBR command after a system reset when the
RESET# signal is not available or, before sending a software reset, to ensure the device is released from continuous high
performance read mode.
The MBR command sends Ones on SI/IO0 8 SCK cycles. IO1–IO3 are “don’t care” during these cycles. This command is also
supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3, two clock cycles per byte.
11.10
DPD Commands
11.10.1 Enter Deep Power Down (DPD B9h)
Although the standby current during normal operation is relatively low, standby current can be further reduced with the Deep Power
Down command. The lower power consumption makes the Deep Power Down (DPD) command especially useful for battery
powered applications (see IDPD in DC Characteristics on page 25).
The DPD command is accepted only while the device is not performing an embedded algorithm as indicated by the Status Register1 volatile Write In Progress (WIP) bit being cleared to zero (SR1V[0] = 0).
The command is initiated by driving the CS# pin low and shifting the instruction code “B9h” as shown in Figure 120 on page 118.
The CS# pin must be driven high after the eighth bit has been latched. If this is not done the Deep Power-down command will not be
executed. After CS# is driven high, the power-down state will be entered within the time duration of tDPD (see Timing Specifications
on page 29).
While in the power-down state only the Release from Deep Power-down command, which restores the device to normal operation,
will be recognized. All other commands are ignored. This includes the Read Status Register command, which is always available
during normal operation. Ignoring all but one command also makes the Power Down state useful for write protection. The device
always powers-up in the interface standby state with the standby current of ICC1.
Figure 120. Deep Power Down (DPD) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode the instruction is shifted in on IO0–IO3.
Figure 121. Deep Power Down (DPD) Command Sequence – QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
Phase
Document Number: 002-03631 Rev. *G
3
Instruction
Page 118 of 145
S25FS064S
11.10.2 Release from Deep Power Down (RES ABh)
The Release from Deep Power-down command is used to release the device from the deep power-down state. In some legacy SPI
devices the RES command could also be used to obtain the device electronic identification (ID) number. However, the device ID
function is not supported by the RES command.
To release the device from the deep power-down state, the command is issued by driving the CS# pin low, shifting the instruction
code “ABh” and driving CS# high as shown in Figure 122 on page 119. Release from deep power-down will take the time duration of
tRES (see Timing Specifications on page 29) before the device will resume normal operation and other commands are accepted. The
CS# pin must remain high during the tRES time duration.
Hardware Reset will also release the device from the DPD state as part of the hardware reset process.
Figure 122. Release from Deep Power Down (RES) Command Sequence
CS#
SCK
SI_IO0
7
6
5
4
3
2
1
0
SO_IO1-IO3
Phase
Instruction
This command is also supported in QPI mode. In QPI mode, the instruction is shifted in on IO0–IO3.
Figure 123. Release from Deep Power Down (RES) Command Sequence – QPI Mode
CS#
SCLK
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7
3
Phase
Document Number: 002-03631 Rev. *G
Instruction
Page 119 of 145
S25FS064S
12. Data Integrity
12.1
Erase Endurance
Table 56. Erase Endurance
Parameter
Minimum
Unit
Program/Erase cycles per main Flash array sectors
100K
P/E cycle
Program/Erase cycles per PPB array or non-volatile register array (96)
100K
P/E cycle
Note:
96.Each write command to a non-volatile register causes a P/E cycle on the entire non-volatile register array. OTP bits and registers internally reside in a separate array
that is not P/E cycled.
12.2
Data Retention
Table 57. Data Retention
Parameter
Data Retention Time
Test Conditions
Minimum Time
Unit
10K Program/Erase Cycles
20
Years
100K Program/Erase Cycles
2
Years
Contact Cypress Sales and FAE for further information on the data integrity. Refer to the AN98549 - Endurance and Retention
Management and Validation for more details.
Document Number: 002-03631 Rev. *G
Page 120 of 145
S25FS064S
13. Software Interface Reference
13.1
OTP Memory Space Address Map
The SFDP address space has a header starting at address zero that identifies the SFDP data structure and provides a pointer to
each parameter. One parameter is mandated by the JEDEC JESD216 Rev B standard. Cypress provides an additional parameter
by pointing to the ID-CFI address space i.e. the ID-CFI address space is a sub-set of the SFDP address space. The JEDEC
parameter is located within the ID-CFI address space and is thus both a CFI parameter and an SFDP parameter. In this way both
SFDP and ID-CFI information can be accessed by either the RSFDP or RDID commands.
Table 58. SFDP Overview Map
Byte Address
0000h
Description
Location zero within JEDEC JESD216B SFDP space - start of SFDP header
,,,
Remainder of SFDP header followed by undefined space
1000h
Location zero within ID-CFI space - start of ID-CFI parameter tables
...
ID-CFI parameters
Start of SFDP parameter tables which are also grouped as one of the CFI parameter tables (the CFI parameter itself starts at
108Eh, the SFDP parameter table data is double word aligned starting at 1090h)
1090h
...
Remainder of SFDP parameter tables followed by either more CFI parameters or undefined space
13.2
Device ID and Common Flash Interface (ID-CFI) Address Map — Standard
13.2.1
Field Definitions
Table 59. Manufacturer and Device ID
Byte Address
Data
00h
01h
Manufacturer ID for Cypress
01h
02h
Device ID Most Significant Byte - Memory Interface Type
02h
17h (64Mb)
03h
04h
05h
4Dh
Description
Device ID Least Significant Byte - Density
ID-CFI Length - number bytes following. Adding this value to the current location of 03h gives
the address of the last valid location in the ID-CFI legacy address map. The legacy CFI address
map ends with the Primary Vendor-Specific Extended Query. The original legacy length is maintained for backward software compatibility. However, the CFI Query Identification String also
includes a pointer to the Alternate Vendor-Specific Extended Query that contains additional
information related to the FS-S family.
00h (Uniform 256KB physical
Physical Sector Architecture
sectors)
The FS-S Family may be configured with or without 4KB parameter sectors in addition to the
01h (Uniform 64KB physical sec- uniform sectors.
tors)
81h (FS-S Family)
Family ID
06h
xxh
07h
xxh
ASCII characters for Model
Refer to Ordering Part Number on page 140 for the model number definitions.
08h
xxh
Reserved
09h
xxh
Reserved
0Ah
xxh
Reserved
0Bh
xxh
Reserved
0Ch
xxh
Reserved
0Dh
xxh
Reserved
0Eh
xxh
Reserved
0Fh
xxh
Reserved
Document Number: 002-03631 Rev. *G
Page 121 of 145
S25FS064S
Table 60. CFI Query Identification String
Byte Address
Data
Description
10h
11h
12h
51h
52h
59h
Query Unique ASCII string “QRY”
13h
14h
02h
00h
Primary OEM Command Set
FL-P backward compatible command set ID
15h
16h
40h
00h
Address for Primary Extended Table
17h
18h
53h
46h
Alternate OEM Command Set
Ascii characters “FS” for SPI (F) interface, S Technology
19h
1Ah
51h
00h
Address for Alternate OEM Extended Table
Table 61. CFI System Interface String
Byte Address
Data
Description
1Bh
17h
VCC Min. (erase/program): 100 millivolts BCD)
1Ch
19h
VCC Max. (erase/program): 100 millivolts BCD)
1Dh
00h
VPP Min. voltage (00h = no VPP present)
1Eh
00h
VPP Max. voltage (00h = no VPP present)
1Fh
09h
Typical timeout per single byte program 2N µs
20h
09h
Typical timeout for Min. size Page program 2N µs
(00h = not supported)
21h
08h (4KB or 64KB)
Typical timeout per individual sector erase 2N ms
22h
05h (64 Mb)
23h
02h
Max. timeout for byte program 2N times typical
24h
02h
Max. timeout for page program 2N times typical
25h
03h
Max. timeout per individual sector erase 2N times typical
26h
02h
Max. timeout for full chip erase 2N times typical
(00h = not supported)
Typical timeout for full chip erase 2N ms (00h = not supported)
Table 62. Device Geometry Definition for Bottom Boot Initial Delivery State
Byte
Address
Data
27h
17h (64 Mb)
28h
02h
29h
01h
2Ah
08h
2Bh
00h
2Ch
03h
Document Number: 002-03631 Rev. *G
Description
Device Size = 2N bytes;
Flash Device Interface Description;
0000h = x8 only
0001h = x16 only
0002h = x8/x16 capable
0003h = x32 only
0004h = Single I/O SPI, 3-byte address
0005h = Multi I/O SPI, 3-byte address
0102h = Multi I/O SPI, 3 or 4 byte address
Max. number of bytes in multi-byte write = 2N
0000h = not supported
0008h = 256B page
0009h = 512B page
Number of Erase Block Regions within device
1 = Uniform Device, >1 = Boot Device
Page 122 of 145
S25FS064S
Table 62. Device Geometry Definition for Bottom Boot Initial Delivery State (Continued)
Byte
Address
Data
2Dh
07h
2Eh
00h
2Fh
10h
30h
00h
31h
00h
32h
00h
33h
80h
34h
00h
35h
7Eh (64Mb)
36h
00h
37h
00h
38h
00h
39h thru 3Fh
FFh
Description
Erase Block Region 1 Information (refer to JEDEC JEP137)
8 sectors = 8-1 = 0007h
4 KB sectors = 256 Bytes x 0010h
Erase Block Region 2 Information (refer to JEDEC JEP137)
1 sectors = 1-1 = 0000h
32 KB sector = 256 Bytes x 0080h
Erase Block Region 3 Information
127 sectors = 127-1 = 007Eh (64 Mb)
RFU
Note
97.FS-S MD devices are user configurable to have either a hybrid sector architecture (with eight 4KB sectors and all remaining sectors are uniform 64KB or 256KB) or a
uniform sector architecture with all sectors uniform 64KB or 256KB. FS-S devices are also user configurable to have the 4KB parameter sectors at the top of memory
address space. The CFI geometry information of the above table is relevant only to the initial delivery state. All devices are initially shipped from Cypress with the
hybrid sector architecture with the 4KB sectors located at the bottom of the array address map. However, the device configuration TBPARM bit CR1NV[2] may be
programed to invert the sector map to place the 4KB sectors at the top of the array address map. The 20h_NV bit (CR3NV[3} may be programmed to remove the 4KB
sectors from the address map. The Flash device driver software must examine the TBPARM and 20h_NV bits to determine if the sector map was inverted or hybrid
sectors removed at a later time.
Table 63. CFI Primary Vendor-Specific Extended Query
Byte Address
Data
40h
50h
Description
41h
52h
42h
49h
43h
31h
Major version number = 1, ASCII
44h
33h
Minor version number = 3, ASCII
45h
21h
Address Sensitive Unlock (Bits 1-0)
00b = Required, 01b = Not Required
Process Technology (Bits 5-2)
0000b = 0.23 µm Floating Gate
0001b = 0.17 µm Floating Gate
0010b = 0.23 µm MirrorBit
0011b = 0.11 µm Floating Gate
0100b = 0.11 µm MirrorBit
0101b = 0.09 µm MirrorBit
1000b = 0.065 µm MirrorBit
46h
02h
Erase Suspend
0 = Not Supported, 1 = Read Only, 2 = Read and Program
47h
01h
Sector Protect
00 = Not Supported, X = Number of sectors in group
48h
00h
Temporary Sector Unprotect
00 = Not Supported, 01 = Supported
49h
08h
Sector Protect/Unprotect Scheme
04 = High Voltage Method
05 = Software Command Locking Method
08 = Advanced Sector Protection Method
4Ah
00h
Simultaneous Operation
00 = Not Supported, X = Number of Sectors
Query-unique ASCII string “PRI”
Document Number: 002-03631 Rev. *G
Page 123 of 145
S25FS064S
Table 63. CFI Primary Vendor-Specific Extended Query (Continued)
Byte Address
Data
Description
4Bh
01h
Burst Mode (Synchronous sequential read) support
00 = Not Supported, 01 = Supported
4Ch
03h
Page Mode Type, initial delivery configuration, user configurable for 512B page
00 = Not Supported, 01 = 4 Word Read Page, 02 = 8 Read Word Page, 03 = 256 Byte Program Page, 04 =
512 Byte Program Page
4Dh
00h
ACC (Acceleration) Supply Minimum
00 = Not Supported, 100 mV
4Eh
00h
ACC (Acceleration) Supply Maximum
00 = Not Supported, 100 mV
4Fh
07h
WP# Protection
01 = Whole Chip
04 = Uniform Device with Bottom WP Protect
05 = Uniform Device with Top WP Protect
07 = Uniform Device with Top or Bottom Write Protect (user configurable)
50h
01h
Program Suspend
00 = Not Supported, 01 = Supported
The Alternate Vendor-Specific Extended Query provides information related to the expanded command set provided by the FS-S
Family. The alternate query parameters use a format in which each parameter begins with an identifier byte and a parameter length
byte. Driver software can check each parameter ID and can use the length value to skip to the next parameter if the parameter is not
needed or not recognized by the software.
Table 64. CFI Alternate Vendor-Specific Extended Query Header
Byte Address
Data
Description
51h
41h
52h
4Ch
53h
54h
54h
32h
Major version number = 2, ASCII
55h
30h
Minor version number = 0, ASCII
Query-unique ASCII string “ALT”
Table 65. CFI Alternate Vendor-Specific Extended Query Parameter 0
Parameter Relative
Byte Address Offset
Data
56h
00h
Parameter ID (Ordering Part Number)
57h
10h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
58h
53h
Ascii “S” for manufacturer (Cypress)
59h
32h
5Ah
35h
5Bh
46h
5Ch
53h
5Dh
30h (64 Mb)
5Eh
36h (64Mb)
5Fh
34h (64Mb)
60h
53h
61h
FFh
62h
FFh
63h
FFh
64h
FFh
65h
FFh
Description
Ascii “25” for Product Characters (Single Die SPI)
Ascii “FS” for Interface Characters (SPI 1.8Volt)
Ascii characters for density
Ascii “S” for Technology (65nm MirrorBit)
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Document Number: 002-03631 Rev. *G
Page 124 of 145
S25FS064S
Table 65. CFI Alternate Vendor-Specific Extended Query Parameter 0 (Continued)
Parameter Relative
Byte Address Offset
Data
66h
xxh
67h
xxh
Description
ASCII characters for Model. Refer to Ordering Part Number on page 140 for the model number definitions.
Table 66. CFI Alternate Vendor-Specific Extended Query Parameter 80h Address Options
Parameter Relative
Byte Address Offset
Data
68h
80h
Parameter ID (Ordering Part Number)
69h
01h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
EBh
Bits 7:5 - Reserved = 111b
Bit 4 - Address Length Bit in CR2V[7] - Yes = 0b
Bit 3 - AutoBoot support - No = 1b
Bit 2 - 4 byte address instructions supported - Yes = 0b
Bit 1 - Bank address + 3 byte address instructions supported - No = 1b
Bit 0 - 3 byte address instructions supported - No = 1b
6Ah
Description
Table 67. CFI Alternate Vendor-Specific Extended Query Parameter 84h Suspend Commands
Parameter Relative
Byte Address Offset
Data
6Bh
84h
Parameter ID (Suspend Commands
6Ch
08h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
Description
6Dh
85h
Program suspend instruction code
6Eh
2Dh
Program suspend latency maximum (uS)
6Fh
8Ah
Program resume instruction code
70h
64h
Program resume to next suspend typical (uS)
71h
75h
Erase suspend instruction code
72h
2Dh
Erase suspend latency maximum (uS)
73h
7Ah
Erase resume instruction code
74h
64h
Erase resume to next suspend typical (uS)
Table 68. CFI Alternate Vendor-Specific Extended Query Parameter 88h Data Protection
Parameter Relative
Byte Address Offset
Data
75h
88h
Parameter ID (Data Protection)
76h
04h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
77h
0Ah
OTP size 2^N bytes, FFh = not supported
78h
01h
OTP address map format, 01h = FL-S and FS-S format, FFh = not supported
79h
xxh
Block Protect Type, model dependent
00h = FL-P, FL-S, FS-S
FFh = not supported
7Ah
xxh
Advanced Sector Protection type, model dependent
01h = FL-S and FS-S ASP.
Document Number: 002-03631 Rev. *G
Description
Page 125 of 145
S25FS064S
Table 69. CFI Alternate Vendor-Specific Extended Query Parameter 94h ECC
Parameter Relative
Byte Address Offset
Data
83h
94h
Parameter ID (ECC)
84h
01h
Parameter Length (The number of following bytes in this parameter. Adding this value to the
current location value +1 = the first byte of the next parameter)
85h
10h
ECC unit size byte, FFh = ECC disabled
Description
Table 70. CFI Alternate Vendor-Specific Extended Query Parameter 8Ch Reset Timing
Parameter Relative
Byte Address Offset
Data
7Bh
8Ch
Parameter ID (Reset Timing)
7Ch
06h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
7Dh
96h
POR maximum value
7Eh
01h
POR maximum exponent 2^N uS
7Fh
23h
Hardware Reset maximum value, FFh = not supported (the initial delivery state has hardware
reset disabled but it may be enabled by the user at a later time)
80h
00h
Hardware Reset maximum exponent 2^N uS
81h
23h
Software Reset maximum value, FFh = not supported
82h
00h
Software Reset maximum exponent 2^N uS
Description
Table 71. CFI Alternate Vendor-Specific Extended Query Parameter F0h RFU
Parameter Relative
Byte Address Offset
Data
83h
F0h
Parameter ID (RFU)
84h
09h
Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter)
85h
FFh
RFU
...
FFh
RFU
8Dh
FFh
RFU
Description
This parameter type (Parameter ID F0h) may appear multiple times and have a different length each time. The parameter is used to
reserve space in the ID-CFI map or to force space (pad) to align a following parameter to a required boundary.
Document Number: 002-03631 Rev. *G
Page 126 of 145
S25FS064S
13.3
Serial Flash Discoverable Parameters (SFDP) Address Map
13.3.1
JEDEC SFDP Rev B Header Table
Table 72. SFDP Header
SFDP Byte
Address
SFDP Dword
Name
00h
01h
02h
SFDP Header 1st
DWORD
03h
Data
Description
53h
This is the entry point for Read SFDP (5Ah) command i.e. location zero within SFDP
space ASCII “S”
46h
ASCII “F”
44h
ASCII “D”
50h
ASCII “P”
06h
SFDP Minor Revision (06h = JEDEC JESD216 Revision B)
This revision is backward compatible with all prior minor revisions. Minor revisions are
changes that define previously reserved fields, add fields to the end, or that clarify definitions of existing fields. Increments of the minor revision value indicate that previously
reserved parameter fields may have been assigned a new definition or entire Dwords may
have been added to the parameter table. However, the definition of previously existing
fields is unchanged and therefore remain backward compatible with earlier SFDP parameter table revisions. Software can safely ignore increments of the minor revision number, as
long as only those parameters the software was designed to support are used i.e. previously reserved fields and additional Dwords must be masked or ignored. Do not do a simple compare on the minor revision number, looking only for a match with the revision
number that the software is designed to handle. There is no problem with using a higher
number minor revision.
05h
01h
SFDP Major Revision
This is the original major revision. This major revision is compatible with all SFDP reading
and parsing software.
06h
05h
Number of Parameter Headers (zero based, 05h = 6 parameters)
07h
FFh
Unused
08h
00h
Parameter ID LSB (00h = JEDEC SFDP Basic SPI Flash Parameter)
00h
Parameter Minor Revision (00h = JESD216)
- This older revision parameter header is provided for any legacy SFDP reading and parsing software that requires seeing a minor revision 0 parameter header. SFDP software
designed to handle later minor revisions should continue reading parameter headers looking for a higher numbered minor revision that contains additional parameters for that software revision.
0Ah
01h
Parameter Major Revision (01h = The original major revision - all SFDP software is compatible with this major revision.
0Bh
09h
Parameter Table Length (in double words = Dwords = 4 byte units) 09h = 9 Dwords
0Ch
90h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
JEDEC Basic SPI Flash parameter byte offset = 1090h
04h
SFDP Header 2nd
DWORD
09h
0Dh
0Eh
Parameter Header
0
1st DWORD
Parameter Header
0
2nd DWORD
10h
Parameter Table Pointer Byte 1
00h
Parameter Table Pointer Byte 2
0Fh
FFh
Parameter ID MSB (FFh = JEDEC defined legacy Parameter ID)
10h
00h
Parameter ID LSB (00h = JEDEC SFDP Basic SPI Flash Parameter)
05h
Parameter Minor Revision (05h = JESD216 Revision A)
- This older revision parameter header is provided for any legacy SFDP reading and parsing software that requires seeing a minor revision 5 parameter header. SFDP software
designed to handle later minor revisions should continue reading parameter headers looking for a later minor revision that
contains additional parameters.
12h
01h
Parameter Major Revision (01h = The original major revision - all SFDP software is compatible with this major revision.
13h
10h
Parameter Table Length (in double words = Dwords = 4 byte units) 10h = 16 Dwords
11h
Parameter Header
1
1st DWORD
Document Number: 002-03631 Rev. *G
Page 127 of 145
S25FS064S
Table 72. SFDP Header (Continued)
SFDP Byte
Address
SFDP Dword
Name
14h
15h
16h
Parameter Header
1
2nd DWORD
Data
Description
90h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
JEDEC Basic SPI Flash parameter byte offset = 1090h address
10h
Parameter Table Pointer Byte 1
00h
Parameter Table Pointer Byte 2
17h
FFh
Parameter ID MSB (FFh = JEDEC defined Parameter)
18h
00h
Parameter ID LSB (00h = JEDEC SFDP Basic SPI Flash Parameter)
19h
06h
Parameter Minor Revision (06h = JESD216 Revision B)
01h
Parameter Major Revision (01h = The original major revision - all SFDP software is compatible with this major revision.
1Bh
10h
Parameter Table Length (in double words = Dwords = 4 byte units) 10h = 16 Dwords
1Ch
90h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
JEDEC Basic SPI Flash parameter byte offset = 1090h address
10h
Parameter Table Pointer Byte 1
00h
Parameter Table Pointer Byte 2
FFh
Parameter ID MSB (FFh = JEDEC defined Parameter)
1Ah
1Dh
1Eh
Parameter Header
2
1st DWORD
Parameter Header
2
2nd DWORD
1Fh
20h
81h
Parameter ID LSB (81h = SFDP Sector Map Parameter)
21h
00h
Parameter Minor Revision (00h = Initial version as defined in JESD216 Revision B)
01h
Parameter Major Revision (01h = The original major revision - all SFDP software that recognizes this parameter’s ID is compatible with this major revision.
23h
1Ah
Parameter Table Length (in double words = Dwords = 4 byte units) OPN Dependent
26 = 1Ah
24h
D8h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
JEDEC parameter byte offset = 10D8h
10h
Parameter Table Pointer Byte 1
00h
Parameter Table Pointer Byte 2
FFh
Parameter ID MSB (FFh = JEDEC defined Parameter)
22h
25h
26h
Parameter Header
3
1st DWORD
Parameter Header
3
2nd DWORD
27h
28h
84h
Parameter ID LSB (00h = SFDP 4 Byte Address Instructions Parameter)
29h
00h
Parameter Minor Revision (00h = Initial version as defined in JESD216 Revision B)
01h
Parameter Major Revision (01h = The original major revision - all SFDP software that recognizes this parameter’s ID is compatible with this major revision.
2Bh
02h
Parameter Table Length (in double words = Dwords = 4 byte units) (2h = 2 Dwords)
2Ch
D0h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
JEDEC parameter byte offset = 10D0h
10h
Parameter Table Pointer Byte 1
2Ah
2Dh
2Eh
Parameter Header
4
1st DWORD
Parameter Header
4
2nd DWORD
00h
Parameter Table Pointer Byte 2
2Fh
FFh
Parameter ID MSB (FFh = JEDEC defined Parameter)
30h
01h
Parameter ID LSB (Cypress Vendor Specific ID-CFI parameter)
Legacy Manufacturer ID 01h = AMD / Spansion
01h
Parameter Minor Revision (01h = ID-CFI updated with SFDP Rev B table)
01h
Parameter Major Revision (01h = The original major revision - all SFDP software that recognizes this parameter’s ID is compatible with this major revision.
50h
Parameter Table Length (in double words = Dwords = 4 byte units) Parameter Table
Length (in double words = Dwords = 4 byte units)
31h
32h
Parameter Header
5
1st DWORD
33h
Document Number: 002-03631 Rev. *G
Page 128 of 145
S25FS064S
Table 72. SFDP Header (Continued)
SFDP Byte
Address
SFDP Dword
Name
Data
34h
35h
36h
Parameter Header
5
2nd DWORD
37h
13.3.2
Description
00h
Parameter Table Pointer Byte 0 (Dword = 4 byte aligned)
Entry point for ID-CFI parameter is byte offset = 1000h relative to SFDP location zero.
10h
Parameter Table Pointer Byte 1
00h
Parameter Table Pointer Byte 2
01h
Parameter ID MSB (01h = JEDEC JEP106 Bank Number 1)
JEDEC SFDP Rev B Parameter Tables
From the view point of the CFI data structure, all of the SFDP parameter tables are combined into a single CFI Parameter as a
contiguous byte sequence.
From the viewpoint of the SFDP data structure, there are three independent parameter tables. Two of the tables have a fixed length
and one table has a variable structure and length depending on the device density Ordering Part Number (OPN). The Basic Flash
Parameter table and the 4-Byte Address Instructions Parameter table have a fixed length and are presented below as a single table.
This table is section 1 of the overall CFI parameter.
The JEDEC Sector Map Parameter table structure and length depends on the density OPN and is presented as a set of tables, one
for each device density. The appropriate table for the OPN is section 2 of the overall CFI parameter and is appended to section 1.
Table 73. CFI and SFDP Section 1, Basic Flash and 4 Byte Address Instructions Parameter
CFI Parameter
SFDP ParameRelative Byte ter Relative Byte
Address Offset Address Offset
from108Eh
from1090h
00h
01h
---
02h
00h
03h
01h
SFDP
Dword
Name
Data
N/A
A5h
CFI Parameter ID (JEDEC SFDP)
B0h
CFI Parameter Length (The number of following bytes in this parameter. Adding
this value to the current location value +1 = the first byte of the next parameter).
OPN dependent:
18Dw + 26Dw = 44Dw *4B = 176B = B0h B
E7h
Start of SFDP JEDEC parameter, located at 1090h in the overall SFDP address
space.
Bits 7:5 = unused = 111b
Bit 4:3 = 06h is status register write instruction and status register is default
non-volatile= 00b
Bit 2 = Program Buffer > 64Bytes = 1
Bits 1:0 = Uniform 4KB erase unavailable = 11b
FFh
Bits 15:8 = Uniform 4KB erase opcode = not supported = FFh
N/A
JEDEC
Basic Flash
Parameter
Dword-1
Description
04h
02h
FBh
Bit 23 = Unused = 1b
Bit 22 = Supports Quad Out Read = Yes= 1b
Bit 21 = Supports Quad I/O Read = Yes =1b
Bit 20 = Supports Dual I/O Read = Yes = 1b
Bit19 = Supports DDR = Yes =1b;
Bit 18:17 = Number of Address Bytes, 3 or 4 = 01b
Bit 16 = Supports Dual Out Read = Yes =1b
05h
03h
FFh
Bits 31:24 = Unused = FFh
06h
04h
07h
05h
08h
06h
09h
07h
03h (64 Mb)
0Ah
08h
48h
Bits 7:5 = number of Quad I/O (1-4-4) Mode cycles = 010b
Bits 4:0 = number of Quad I/O Dummy cycles = 01000b (Initial Delivery State)
0Bh
09h
EBh
Quad I/O instruction code
0Ch
0Ah
08h
Bits 23:21 = number of Quad Out (1-1-4) Mode cycles = 000b
Bits 20:16 = number of Quad Out Dummy cycles = 01000b
0Dh
0Bh
6Bh
Quad Out instruction code
FFh
JEDEC
Basic Flash
Parameter
Dword-2
JEDEC
Basic Flash
Parameter
Dword-3
Document Number: 002-03631 Rev. *G
FFh
FFh
Density in bits, zero based, 16Mb = 00FFFFFFh
Page 129 of 145
S25FS064S
Table 73. CFI and SFDP Section 1, Basic Flash and 4 Byte Address Instructions Parameter (Continued)
CFI Parameter
SFDP ParameRelative Byte ter Relative Byte
Address Offset Address Offset
from108Eh
from1090h
SFDP
Dword
Name
Data
Description
08h
Bits 7:5 = number of Dual Out (1-1-2) Mode cycles = 000b
Bits 4:0 = number of Dual Out Dummy cycles = 01000b
3Bh
Dual Out instruction code
88h
Bits 23:21 = number of Dual I/O (1-2-2) Mode cycles = 100b
Bits 20:16 = number of Dual I/O Dummy cycles = 01000b (Initial Delivery State)
0Fh
BBh
Dual I/O instruction code
10h
FEh
Bits 7:5 RFU = 111b
Bit 4 = QPI supported = Yes = 1b
Bits 3:1 RFU = 111b
Bit 0 = Dual All not supported = 0b
FFh
Bits 15:8 = RFU = FFh
FFh
Bits 23:16 = RFU = FFh
FFh
Bits 31:24 = RFU = FFh
0Eh
0Ch
0Fh
0Dh
10h
0Eh
11h
12h
JEDEC
Basic Flash
Parameter
Dword-4
JEDEC
Basic Flash
Parameter
Dword-5
13h
11h
14h
12h
15h
13h
16h
14h
17h
15h
18h
16h
19h
17h
1Ah
18h
1Bh
19h
1Ch
1Ah
1Dh
1Bh
1Eh
1Ch
1Fh
1Dh
20h
1Eh
21h
1Fh
22h
20h
23h
21h
24h
22h
00h
Erase type 4 size 2^N Bytes = not supported = 00h
25h
23h
FFh
Erase type 4 instruction = not supported = FFh
Bits 31:30 = Erase type 4 Erase, Typical time units (00b: 1 ms, 01b: 16 ms, 10b:
128 ms, 11b: 1 s) = 1S = 11b (RFU)
Bits 29:25 = Erase type 4 Erase, Typical time count = 11111b (RFU)
Bits 24:23 = Erase type 3 Erase, Typical time units (00b: 1 ms, 01b: 16 ms, 10b:
128 ms, 11b: 1 s) = 128mS = 10b
Bits 22:18 = Erase type 3 Erase, Typical time count = 00111b (typ erase time =
count +1 * units = 8*128mS = 1024mS)
Bits 17:16 = Erase type 2 Erase, Typical time units (00b: 1 ms, 01b: 16 ms, 10b:
128 ms, 11b: 1 s) = 16mS = 01b
Bits 15:11 = Erase type 2 Erase, Typical time count = 01110b (typ erase time =
count +1 * units = 15*16mS = 240mS)
Bits 10:9 = Erase type 1 Erase, Typical time units (00b: 1 ms, 01b: 16 ms, 10b:
128 ms, 11b: 1 s) = 16mS = 01b
Bits 8:4 = Erase type 1 Erase, Typical time count = 01011b (typ erase time =
count +1 * units = 12*16mS = 192mS)
Bits 3:0 = Multiplier from typical erase time to maximum erase time = 2*(N+1),
N=2h = 4x multiplier
JEDEC
Basic Flash
Parameter
Dword-6
JEDEC
Basic Flash
Parameter
Dword-7
JEDEC
Basic Flash
Parameter
Dword-8
JEDEC
Basic Flash
Parameter
Dword-9
FFh
Bits 7:0 = RFU = FFh
FFh
Bits 15:8 = RFU = FFh
FFh
Bits 23:21 = number of Dual All Mode cycles = 111b
Bits 20:16 = number of Dual All Dummy cycles = 11111b
FFh
Dual All instruction code
FFh
Bits 7:0 = RFU = FFh
FFh
Bits 15:8 = RFU = FFh
48h
Bits 23:21 = number of QPI Mode cycles = 010b
Bits 20:16 = number of QPI Dummy cycles = 01000b
EBh
QPI mode Quad I/O (4-4-4) instruction code
0Ch
Erase type 1 size 2^N Bytes = 4KB = 0Ch for Hybrid (Initial Delivery State)
20h
Erase type 1 instruction
10h
Erase type 2 size 2^N Bytes = 64KB = 10h
D8h
Erase type 2 instruction
12h
Erase type 3 size 2^N Bytes = 256KB = 12h
D8h
Erase type 3 instruction
26h
24h
B1h
27h
25h
72h
28h
26h
1Dh
JEDEC
Basic Flash
Parameter
Dword-10
29h
27h
FFh
Binary Fields: 11-11111-10-00111-01-01110-01-01011-0001
Nibble Format: 1111_1111_0001_1101_0111_0010_1011_0001
Hex Format: FF_1D_72_B1
Document Number: 002-03631 Rev. *G
Page 130 of 145
S25FS064S
Table 73. CFI and SFDP Section 1, Basic Flash and 4 Byte Address Instructions Parameter (Continued)
CFI Parameter
SFDP ParameRelative Byte ter Relative Byte
Address Offset Address Offset
from108Eh
from1090h
SFDP
Dword
Name
Data
Description
Bit 31 Reserved = 1b
Bits 30:29 = Chip Erase, Typical time units (00b: 16 ms, 01b: 256 ms, 10b: 4 s,
11b: 64 s) = 64Mb = 4s = 10b;
Bits 28:24 = Chip Erase, Typical time count, (count+1)*units,
64 Mb = 00111b = (7+1)*4 = 32s;
Bits 23 = Byte Program Typical time, additional byte units (0b:1uS, 1b:8uS) =
1uS = 0b
Bits 22:19 = Byte Program Typical time, additional byte count, (count+1)*units,
count = 0000b, ( typ Program time = count +1 * units = 1*1uS = 1uS
Bits 18 = Byte Program Typical time, first byte units (0b:1uS, 1b:8uS) = 8uS =
1b
Bits 17:14 = Byte Program Typical time, first byte count, (count+1)*units, count
= 1100b, ( typ Program time = count +1 * units = 13*8uS = 104uS
Bits 13 = Page Program Typical time units (0b:8uS, 1b:64uS) = 64uS = 1b
Bits 12:8 = Page Program Typical time count, (count+1)*units, count = 00110b,
( typ Program time = count +1 * units = 6*64uS = 384uS)
Bits 7:4 = Page size 2^N, N=8h, = 256B page
Bits 3:0 = Multiplier from typical time to maximum for Page or Byte program =
2*(N+1), N=2h = 6x multiplier
2Ah
28h
82h
2Bh
29h
26h
2Ch
2Ah
07h
JEDEC
Basic Flash
Parameter
Dword-11
2Dh
2Bh
C7h
64Mb
Binary Fields: 1-10-00111-0-0000-1-1100-1-00110-1000-0010
Nibble Format: 1100_0111_0000_0111_0010_0110_1001_0010
Hex Format: C7_07_26_82
2Eh
2Ch
ECh
2Fh
2Dh
93h
30h
2Eh
18h
JEDEC
Basic Flash
Parameter
Dword-12
31h
2Fh
45h
Bit 31 = Suspend and Resume supported = 0b
Bits 30:29 = Suspend in-progress erase max latency units (00b: 128ns, 01b:
1us, 10b: 8us, 11b: 64us) = 8us= 10b
Bits 28:24 = Suspend in-progress erase max latency count = 00101b, max
erase suspend latency = count +1 * units = 6*8uS = 48uS
Bits 23:20 = Erase resume to suspend interval count = 0001b, interval = count
+1 * 64us = 2 * 64us = 128us
Bits 19:18 = Suspend in-progress program max latency units (00b: 128ns, 01b:
1us, 10b: 8us, 11b: 64us) = 8us= 10b
Bits 17:13 = Suspend in-progress program max latency count = 00101b, max
erase suspend latency = count +1 * units = 6*8uS = 48uS
Bits 12:9 = Program resume to suspend interval count = 0001b, interval = count
+1 * 64us = 2 * 64us = 128us
Bit 8 = RFU = 1b
Bits 7:4 = Prohibited operations during erase suspend
= xxx0b: May not initiate a new erase anywhere (erase nesting not permitted)
+ xx1xb: May not initiate a page program in the erase suspended sector size
+ x1xxb: May not initiate a read in the erase suspended sector size
+ 1xxxb: The erase and program restrictions in bits 5:4 are sufficient
= 1110b
Bits 3:0 = Prohibited Operations During Program Suspend
= xxx0b: May not initiate a new erase anywhere (erase nesting not permitted)
+ xx0xb: May not initiate a new page program anywhere (program nesting not
permitted)
+ x1xxb: May not initiate a read in the program suspended page size
+ 1xxxb: The erase and program restrictions in bits 1:0 are sufficient
= 1100b
Binary Fields: 0-10-00101-0001-10-00100-1001-1-1110-1100
Nibble Format: 0100_0101_0001_1000_1001_0011_1110_1100
Hex Format: 45_18_93_EC
32h
30h
33h
31h
34h
32h
35h
33h
8Ah
JEDEC
Basic Flash
Parameter
Dword-13
Document Number: 002-03631 Rev. *G
85h
7Ah
Bits 31:24 = Erase Suspend Instruction = 75h
Bits 23:16 = Erase Resume Instruction = 7Ah
Bits 15:8 = Program Suspend Instruction = 85h
Bits 7:0 = Program Resume Instruction = 8Ah
75h
Page 131 of 145
S25FS064S
Table 73. CFI and SFDP Section 1, Basic Flash and 4 Byte Address Instructions Parameter (Continued)
CFI Parameter
SFDP ParameRelative Byte ter Relative Byte
Address Offset Address Offset
from108Eh
from1090h
SFDP
Dword
Name
Data
Description
Bit 31 = Deep Power Down Supported = supported = 0
Bits 30:23 = Enter Deep Power Down Instruction = B9h
Bits 22:15 = Exit Deep Power Down Instruction = ABh
Bits 14:13 = Exit Deep Power Down to next operation delay units = (00b:
128ns, 01b: 1us, 10b: 8us, 11b: 64us) = 1us = 01b
Bits 12:8 = Exit Deep Power Down to next operation delay count = 11101b, Exit
Deep Power Down to next operation delay = (count+1)*units = 29+1 *1us =
30us
Bits 7:4 = RFU = Fh
Bit 3:2 = Status Register Polling Device Busy
= 01b: Legacy status polling supported = Use legacy polling by reading the Status Register with 05h instruction and checking WIP bit[0] (0=ready; 1=busy).
= 01b
Bits 1:0 = RFU = 11b
36h
34h
F7h
37h
35h
BDh
38h
36h
D5h
JEDEC
Basic Flash
Parameter
Dword-14
39h
37h
5Ch
Binary Fields: 0-10111001-10101011-01-11101-1111-01-11
Nibble Format: 0101_1100_1101_0101_1011_1101_1111_0111
Hex Format: 5C_D5_BD_F7
3Ah
8Ch
38h
3Bh
39h
F6h
3Ch
3Ah
5Dh
JEDEC
Basic Flash
Parameter
Dword-15
3Dh
3Bh
FFh
Bits 31:24 = RFU = FFh
Bit 23 = Hold and WP Disable = not supported = 0b
Bits 22:20 = Quad Enable Requirements
= 101b: QE is bit 1 of the status register 2. Status register 1 is read using Read
Status instruction 05h. Status register 2 is read using instruction 35h. QE is set
via Write Status instruction 01h with two data bytes where bit 1 of the second
byte is one. It is cleared via Write Status with two data bytes where bit 1 of the
second byte is zero.
Bits 19:16 0-4-4 Mode Entry Method
= xxx1b: Mode Bits[7:0] = A5h Note: QE must be set prior to using this mode
+ x1xxb: Mode Bit[7:0]=Axh
+ 1xxxb: RFU
= 1101b
Bits 15:10 0-4-4 Mode Exit Method
= xx_xxx1b: Mode Bits[7:0] = 00h will terminate this mode at the end of the current read operation
+ xx_1xxxb: Input Fh (mode bit reset) on DQ0-DQ3 for 8 clocks. This will terminate the mode prior to the next read operation.
+ x1_xxxxb: Mode Bit[7:0] != Axh
+ 1x_x1xx: RFU
= 11_1101
Bit 9 = 0-4-4 mode supported = 1
Bits 8:4 = 4-4-4 mode enable sequences
= x_1xxxb: device uses a read-modify-write sequence of operations: read configuration using instruction 65h followed by address 800003h, set bit 6, write
configuration using instruction 71h followed by address 800003h. This configuration is volatile.
= 01000b
Bits 3:0 = 4-4-4 mode disable sequences
= x1xxb: device uses a read-modify-write sequence of operations: read configuration using instruction 65h followed by address 800003h, clear bit 6, write
configuration using instruction 71h followed by address 800003h.. This configuration is volatile.
+ 1xxxb: issue the Soft Reset 66/99 sequence
= 1100b
Binary Fields: 11111111-0-101-1101-111101-1-01000-1100
Nibble Format: 1111_1111_0101_1101_1111_0110_1000-1100
Hex Format: FF_5D_F6_8C
Document Number: 002-03631 Rev. *G
Page 132 of 145
S25FS064S
Table 73. CFI and SFDP Section 1, Basic Flash and 4 Byte Address Instructions Parameter (Continued)
CFI Parameter
SFDP ParameRelative Byte ter Relative Byte
Address Offset Address Offset
from108Eh
from1090h
SFDP
Dword
Name
Data
Description
Bits 31:24 = Enter 4-Byte Addressing
= xxxx_xxx1b: issue instruction B7h (preceding write enable not required)
+ xx1x_xxxxb: Supports dedicated 4-Byte address instruction set. Consult vendor data sheet for the instruction set definition.
+ 1xxx_xxxxb: Reserved
= 10100001b
Bits 23:14 = Exit 4-Byte Addressing
= xx_xx1x_xxxxb: Hardware reset
+ xx_x1xx_xxxxb: Software reset (see bits 13:8 in this DWORD)
+ xx_1xxx_xxxxb: Power cycle
+ x1_xxxx_xxxxb: Reserved
+ 1x_xxxx_xxxxb: Reserved
= 11_1110_0000b
Bits 13:8 = Soft Reset and Rescue Sequence Support
= x1_xxxxb: issue reset enable instruction 66h, then issue reset instruction 99h.
The reset
enable, reset sequence may be issued on 1, 2, or 4 wires depending on the
device operating mode.
+ 1x_xxxxb: exit 0-4-4 mode is required prior to other reset sequences above if
the device
may be operating in this mode.
= 110000b
Bit 7 = RFU = 1
Bits 6:0 = Volatile or Non-Volatile Register and Write Enable Instruction for Status Register 1
= + xx1_xxxxb: Status Register 1 contains a mix of volatile and non-volatile bits.
The 06h
instruction is used to enable writing of the register.
+ x1x_xxxxb: Reserved
+ 1xx_xxxxb: Reserved
= 1110000b
3Eh
3Ch
F0h
3Fh
3Dh
30h
40h
3Eh
F8h
JEDEC
Basic Flash
Parameter
Dword-16
41h
3Fh
A1h
Binary Fields: 10100001-1111100000-110000-1-1110000
Nibble Format: 1010_0001_1111_1000_0011_0000_1111_0000
Hex Format: A1_F8_30_F0
42h
40h
FFh
43h
41h
CEh
44h
42h
FFh
45h
43h
46h
44h
47h
45h
48h
46h
49h
47h
JEDEC 4
Byte
Address
Instructions
Parameter
Dword-1
JEDEC 4
Byte
Address
Instructions
Parameter
Dword-2
Document Number: 002-03631 Rev. *G
FFh
Supported = 1, Not Supported = 0
Bits 31:20 = RFU = FFFh
Bit 19 = Support for non-volatile individual sector lock write command, Instruction=E3h = 1
Bit 18 = Support for non-volatile individual sector lock read command, Instruction=E2h = 1
Bit 17 = Support for volatile individual sector lock Write command, Instruction=E1h = 1
Bit 16 = Support for volatile individual sector lock Read command, Instruction=E0h = 1
Bit 15 = Support for (1-4-4) DTR_Read Command, Instruction=EEh = 1
Bit 14 = Support for (1-2-2) DTR_Read Command, Instruction=BEh = 0
Bit 13 = Support for (1-1-1) DTR_Read Command, Instruction=0Eh = 0
Bit 12 = Support for Erase Command – Type 4 = 0
Bit 11 = Support for Erase Command – Type 3 = 1
Bit 10 = Support for Erase Command – Type 2 = 1
Bit 9 = Support for Erase Command – Type 1 = 1
Bit 8 = Support for (1-4-4) Page Program Command, Instruction=3Eh =0
Bit 7 = Support for (1-1-4) Page Program Command, Instruction=34h = 1
Bit 6 = Support for (1-1-1) Page Program Command, Instruction=12h = 1
Bit 5 = Support for (1-4-4) FAST_READ Command, Instruction=ECh = 1
Bit 4 = Support for (1-1-4) FAST_READ Command, Instruction=6Ch = 1
Bit 3 = Support for (1-2-2) FAST_READ Command, Instruction=BCh = 1
Bit 2 = Support for (1-1-2) FAST_READ Command, Instruction=3Ch = 1
Bit 1 = Support for (1-1-1) FAST_READ Command, Instruction=0Ch = 1
Bit 0 = Support for (1-1-1) READ Command, Instruction=13h = 1
21h
DCh
DCh
Bits 31:24 = FFh = Instruction for Erase Type 4: RFU
Bits 23:16 = DCh = Instruction for Erase Type 3
Bits 15:8 = DCh = Instruction for Erase Type 2
Bits 7:0 = 21h = Instruction for Erase Type 1
FFh
Page 133 of 145
S25FS064S
Sector Map Parameter Table Notes:
The following Sector Map Parameter Table provides a means to identify how the device address map is configured and provides a
sector map for each supported configuration. This is done by defining a sequence of commands to read out the relevant
configuration register bits that affect the selection of an address map. When more than one configuration bit must be read, all the
bits are concatenated into an index value that is used to select the current address map.
To identify the sector map configuration in S25FS064S the following configuration bits are read in the following MSB to LSB order to
form the configuration map index value:
CR3NV[3] - 0 = Hybrid Architecture, 1 = Uniform Architecture
CR1NV[2] - 0 = 4KB parameter sectors at bottom, 1 = 4KB sectors at top
CR3NV[1] - 0= 64KB uniform sector size, 1 = 256KB uniform sector size
The value of some configuration bits may make other configuration bit values not relevant (don’t care), hence not all possible
combinations of the index value define valid address maps. Only selected configuration bit combinations are supported by the SFDP
Sector Map Parameter Table. Other combinations must not be used in configuring the sector address map when using this SFDP
parameter table to determine the sector map. The following index value combinations are supported.
Device
FS64S
CR3NV[3]
CR1NV[2]
CR3NV[1]
Index Value
0
0
0
00h
Description
0
1
0
02h
4KB sectors at top with remainder 64KB sectors
0
0
1
01h
4KB sectors at bottom with remainder 256KB sectors
0
1
1
03h
4KB sectors at top with remainder 256KB sectors
1
0
0
04h
Uniform 64KB sectors
1
0
0
05h
Uniform 256KB sectors
4KB sectors at bottom with remainder 64KB sectors
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
4Ah
48h
SFDP Dword
Name
Data
FCh
4Bh
49h
65h
4Ch
4Ah
FFh
JEDEC Sector
Map Parameter
Dword-1
Config. Detect-1
4Dh
4Bh
4Eh
4Ch
4Fh
4Dh
50h
4Eh
51h
4Fh
52h
50h
53h
51h
65h
54h
52h
FFh
55h
53h
JEDEC Sector
Map Parameter
Dword-2
Config. Detect-1
08h
Document Number: 002-03631 Rev. *G
Bits 31:24 = Read data mask = 0000_1000b: Select bit 3 of the data byte for
20h_NV value
0= Hybrid map with 4KB parameter sectors
1= Uniform map
Bits 23:22 = Configuration detection command address length = 11b: Variable
length
Bits 21:20 = RFU = 11b
Bits 19:16 = Configuration detection command latency = 1111b: variable latency
Bits 15:8 = Configuration detection instruction = 65h: Read any register
Bits 7:2 = RFU = 111111b
Bit 1 = Command Descriptor = 0
Bit 0 = not the end descriptor = 0
04h
00h
00h
Bits 31:0 = Sector map configuration detection command address =
00_00_00_04h: address of CR3NV
00h
FCh
JEDEC Sector
Map Parameter
Dword-3
Config. Detect-2
Description
04h
Bits 31:24 = Read data mask = 0000_0100b: Select bit 2 of the data byte for
TBPARM_O value
0= 4KB parameter sectors at bottom
1= 4KB parameter sectors at top
Bits 23:22 = Configuration detection command address length = 11b: Variable
length
Bits 21:20 = RFU = 11b
Bits 19:16 = Configuration detection command latency = 1111b: variable latency
Bits 15:8 = Configuration detection instruction = 65h: Read any register
Bits 7:2 = RFU = 111111b
Bit 1 = Command Descriptor = 0
Bit 0 = not the end descriptor = 0
Page 134 of 145
S25FS064S
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table (Continued)
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
56h
54h
57h
55h
58h
56h
SFDP Dword
Name
JEDEC Sector
Map Parameter
Dword-4
Config. Detect-2
Data
02h
00h
00h
59h
57h
5Ah
58h
FDh
5Bh
59h
65h
5Ch
5Ah
5Dh
5Bh
5Eh
5Ch
5Fh
5Dh
60h
5Eh
61h
5Fh
62h
60h
63h
61h
64h
62h
65h
63h
JEDEC Sector
Map Parameter
Dword-6
Config. Detect-3
02h
00h
00h
00h
02h
FFh
66h
64h
F1h
65h
7Fh
68h
66h
00h
69h
67h
6Ah
68h
F2h
6Bh
69h
7Fh
6Ch
6Ah
6Dh
6Bh
00h
00h
JEDEC Sector
Map Parameter
Dword-9
Config-0
Region-1
Document Number: 002-03631 Rev. *G
Bits 31:0 = Sector map configuration detection command address =
00_00_00_04h: address of CR3NV
00h
67h
JEDEC Sector
Map Parameter
Dword-8
Config-0
Region-0
Bits 31:24 = Read data mask = 0000_0010b: Select bit 1 of the data byte for
D8h_NV value
0= 64KB uniform sectors
1= 256KB uniform sectors
Bits 23:22 = Configuration detection command address length = 11b: Variable
length
Bits 21:20 = RFU = 11b
Bits 19:16 = Configuration detection command latency = 1111b: variable latency
Bits 15:8 = Configuration detection instruction = 65h: Read any register
Bits 7:2 = RFU = 111111b
Bit 1 = Command Descriptor = 0
Bit 0 = The end descriptor = 1
04h
FEh
JEDEC Sector
Map Parameter
Dword-7
Config-0
Header
Bits 31:0 = Sector map configuration detection command address =
00_00_00_02h: address of CR1NV
00h
FFh
JEDEC Sector
Map Parameter
Dword-5
Config. Detect-3
Description
00h
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 02h: Three regions
Bits 15:8 = Configuration ID = 00h: 4KB sectors at bottom with remainder 64KB
sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = not the end descriptor = 0
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 8 x 4KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 4KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 4KB sector region
Bit 0 = Erase Type 1 support = 1b
--- Erase Type 1 is 4KB erase and is supported in the 4KB sector region
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 1 x 32KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 32KB sector region
Bit 1 = Erase Type 2 support = 1b
--- Erase Type 2 is 64KB erase and is supported in the 32KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 32KB sector region
Page 135 of 145
S25FS064S
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table (Continued)
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
6Eh
6Ch
6Fh
6Dh
FFh
70h
6Eh
7Eh (64 Mb)
71h
6Fh
72h
70h
73h
71h
74h
72h
75h
73h
SFDP Dword
Name
Data
F2h
JEDEC Sector
Map Parameter
Dword-10
Config-0
Region-2
00h
FEh
JEDEC Sector
Map Parameter
Dword-11
Config-2
Header
02h
02h
FFh
76h
74h
F2h
77h
75h
FFh
78h
76h
7Eh (64 Mb)
JEDEC Sector
Map Parameter
Dword-12
Config-2
Region-0
79h
77h
7Ah
78h
F2h
7Bh
79h
7Fh
7Ch
7Ah
7Dh
7Bh
00h
00h
JEDEC Sector
Map Parameter
Dword-13
Config-2
Region-1
Document Number: 002-03631 Rev. *G
00h
Description
Bits 31:8 = 64Mb device Region size = 007EFFh:
Region size as count-1 of 256 Byte units = 127x 65536B sectors = 8323072B
Count = 8323072B/256 = 32512, value = count -1 = 32512-1 = 32511= 7EFFh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 64KB sector region
Bit 1 = Erase Type 2 support = 1b
--- Erase Type 2 is 64KB erase and is supported in the 64KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 64KB sector region
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 02h: Three regions
Bits 15:8 = Configuration ID = 02h: 4KB sectors at top with remainder 64KB sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = not the end descriptor = 0
Bits 31:8 = 64Mb device Region size = 007EFFh:
Region size as count-1 of 256 Byte units = 127x 65536B sectors = 8323072B
Count = 8323072B/256 = 32512, value = count -1 = 32512-1 = 32511= 7EFFh
Bits 7:4 = RFU = Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 64KB sector region
Bit 1 = Erase Type 2 support = 1b
--- Erase Type 2 is 64KB erase and is supported in the 64KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 64KB sector region
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 1 x 32KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 32KB sector region
Bit 1 = Erase Type 2 support = 1b
--- Erase Type 2 is 64KB erase and is supported in the 32KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 32KB sector region
Page 136 of 145
S25FS064S
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table (Continued)
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
7Eh
7C
F1h
7Fh
7D
7Fh
80h
7E
81h
7F
82h
80h
83h
81h
84h
82h
85h
83h
SFDP Dword
Name
Data
00h
JEDEC Sector
Map Parameter
Dword-14
Config-2
Region-2
00h
FEh
JEDEC Sector
Map Parameter
Dword-15
Config-1
Header
01h
02h
FFh
86h
84h
F1h
87h
85h
7Fh
88h
86h
89h
87h
00h
JEDEC Sector
Map Parameter
Dword-16
Config-1
Region-0
00h
8Ah
88h
F4h
8Bh
89h
7Fh
8Ch
8Ah
03h
JEDEC Sector
Map Parameter
Dword-17
Config-1
Region-1
8Dh
8Bh
8Eh
8Ch
F4h
8Fh
8Dh
FFh
90h
8Eh
91h
8F
00h
7Bh (64 Mb)
JEDEC Sector
Map Parameter
Dword-18
Config-1
Region-2
Document Number: 002-03631 Rev. *G
00h
Description
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 8 x 4KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 4KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 4KB sector region
Bit 0 = Erase Type 1 support = 1b
--- Erase Type 1 is 4KB erase and is supported in the 4KB sector region
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 02h: Three regions
Bits 15:8 = Configuration ID = 01h: 4KB sectors at bottom with remainder 256KB
sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = not the end descriptor = 0
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 8 x 4KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is supported in the 4KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 4KB sector region
Bit 0 = Erase Type 1 support = 1b
--- Erase Type 1 is 4KB erase and is supported in the 4KB sector region
Bits 31:8 = Region size = 00037Fh:
Region size as count-1 of 256 Byte units = 1 x 224KB sectors = 224KB
Count = 224KB/256 = 896, value = count -1 = 896 -1 = 895 = 37Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 1b
--- Erase Type 3 is 256KB erase and is supported in the 224KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 224KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 224KB sector region
Bits 31:8 = 64 Mb device Region size = 007BFFh:
Region size as count-1 of 256 Byte units = 31 x 262144B sectors = 8126464B
Count = 8126464B/256 = 31744, value = count -1 = 31744-1 = 31743= 7BFFh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 1b
--- Erase Type 3 is 256KB erase and is supported in the 256KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 256KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 256KB sector region
Page 137 of 145
S25FS064S
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table (Continued)
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
92h
90h
93h
91h
94h
92h
95h
93h
SFDP Dword
Name
JEDEC Sector
Map Parameter
Dword-19
Config-3
Header
Data
Description
FEh
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 02h: Three regions
Bits 15:8 = Configuration ID = 03h: 4KB sectors at top with remainder 256KB sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = not the end descriptor = 0
03h
02h
FFh
96h
94h
F4h
97h
95h
FFh
98h
96h
99h
97h
7Bh (64 Mb)
JEDEC Sector
Map Parameter
Dword-20
Config-3
Region-0
00h
9Ah
98h
F4h
9Bh
99h
7Fh
9Ch
9Ah
03h
JEDEC Sector
Map Parameter
Dword-21
Config-3
Region-1
9Dh
9Bh
9Eh
9Ch
F1h
9Fh
9Dh
7Fh
A0h
9Eh
A1h
9Fh
A2h
A0h
A3h
A1h
A4h
A2h
A5h
A3h
00h
00h
JEDEC Sector
Map Parameter
Dword-22
Config-3
Region-2
JEDEC Sector
Map Parameter
Dword-23
Config-4
Header
Document Number: 002-03631 Rev. *G
00h
FEh
04h
00h
FFh
Bits 31:8 = 64 Mb device Region size = 007BFFh:
Region size as count-1 of 256 Byte units = 31 x 262144B sectors = 8126464B
Count = 8126464B/256 = 31744, value = count -1 = 31744-1 = 31743= 7BFFh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 1b
--- Erase Type 3 is 256KB erase and is supported in the 256KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 256KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 256KB sector region
Bits 31:8 = Region size = 00037Fh:
Region size as count-1 of 256 Byte units = 1 x 224KB sectors = 224KB
Count = 224KB/256 = 896, value = count -1 = 896 -1 = 895 = 37Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 1b
--- Erase Type 3 is 256KB erase and is supported in the 224KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 224KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 224KB sector region
Bits 31:8 = Region size = 00007Fh:
Region size as count-1 of 256 Byte units = 8 x 4KB sectors = 32KB
Count = 32KB/256 = 128, value = count -1 = 128 -1 = 127 = 7Fh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 4KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 4KB sector region
Bit 0 = Erase Type 1 support = 1b
--- Erase Type 1 is 4KB erase and is supported in the 4KB sector region
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 00h: One region
Bits 15:8 = Configuration ID = 04h: Uniform 64KB sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = not the end descriptor = 0
Page 138 of 145
S25FS064S
Table 74. CFI and SFDP Section 2, Sector Map Parameter Table (Continued)
CFI Parameter
Relative Byte
Address Offset
SFDP Parameter
Relative Byte
Address Offset
A6h
A4h
A7h
A5h
FFh
A8h
A6h
7Fh (64 Mb)
A9h
A7h
AAh
A8h
ABh
A9h
ACh
AAh
ADh
ABh
Data
F2h
JEDEC Sector
Map Parameter
Dword-24
Config-4
Region-0
JEDEC Sector
Map Parameter
Dword-25
Config-5
Header
00h
FFh
05h
00h
FFh
AEh
ACh
F4h
AFh
ADh
FFh
B0h
AEh
B1h
13.4
SFDP Dword
Name
AFh
7Fh (64 Mb)
JEDEC Sector
Map Parameter
Dword-26
Config-5
Region-0
00h
Description
Bits 31:8 = 64 Mb device Region size = 007FFBh:
Region size as count-1 of 256 Byte units = 128 x 65536B sectors = 8388608B
Count = 8388608B/256 = 32768, value = count -1 = 32768-1 = 32767= 7FFFh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 0b
--- Erase Type 3 is 256KB erase and is not supported in the 64KB sector region
Bit 1 = Erase Type 2 support = 1b
--- Erase Type 2 is 64KB erase and is supported in the 64KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 64KB sector region
Bits 31:24 = RFU = FFh
Bits 23:16 = Region count (Dwords -1) = 00h: One region
Bits 15:8 = Configuration ID = 05h: Uniform 256KB sectors
Bits 7:2 = RFU = 111111b
Bit 1 = Map Descriptor = 1
Bit 0 = The end descriptor = 1
Bits 31:8 = 64 Mb device Region size = 01FFFFh:
Region size as count-1 of 256 Byte units = 32 x 262144B sectors = 8388608B
Count = 8388608B/256 = 32768,value = count -1 = 32768-1 = 32767= 7FFFh
Bits 7:4 = RFU = Fh
Erase Type not supported = 0/ supported = 1
Bit 3 = Erase Type 4 support = 0b
--- Erase Type 4 is not defined
Bit 2 = Erase Type 3 support = 1b
--- Erase Type 3 is 256KB erase and is supported in the 256KB sector region
Bit 1 = Erase Type 2 support = 0b
--- Erase Type 2 is 64KB erase and is not supported in the 256KB sector region
Bit 0 = Erase Type 1 support = 0b
--- Erase Type 1 is 4KB erase and is not supported in the 256KB sector region
Initial Delivery State
The device is shipped from Cypress with non-volatile bits set as follows:
The entire memory array is erased: i.e., all bits are set to 1 (each byte contains FFh).
The OTP address space has the first 16 bytes programmed to a random number. All other bytes are erased to FFh.
The SFDP address space contains the values as defined in the description of the SFDP address space.
The ID-CFI address space contains the values as defined in the description of the ID-CFI address space.
The RUID address space contains the 64bit Unique Id number.
The Status Register 1 Non-volatile contains 00h (all SR1NV bits are cleared to 0’s).
The Configuration Register 1 Non-volatile contains 00h.
The Configuration Register 2 Non-volatile contains 00h.
The Configuration Register 3 Non-volatile contains 00h.
The Configuration Register 4 Non-volatile contains 10h.
The Password Register contains FFFFFFFF-FFFFFFFFh.
All PPB bits are “1”.
The ASP Register bits are FFFFh.
Document Number: 002-03631 Rev. *G
Page 139 of 145
S25FS064S
14. Ordering Part Number
The ordering part number is formed by a valid combination of the following:
S25FS
064
S
AG
M
F
I
00
1
Packing Type
0 = Tray
1 = Tube
3 = 13” Tape and Reel
Model Number (Additional Ordering Options)
01 = SOIC8 footprint
02 = 5x5 ball BGA footprint FAB
03 = LGA footprint
Temperature Range / Grade
I = Industrial (–40 °C to +85 °C)
V = Industrial Plus (–40 °C to +105 °C)
N = Extended (–40 °C to +125 °C)
A = Automotive, AEC-Q100 Grade 3 (–40 °C to +85 °C)
B = Automotive, AEC-Q100 Grade 2 (–40 °C to +105 °C)
M = Automotive, AEC-Q100 Grade 1 (–40 °C to +125 °C)
Package Materials
F = Halogen-free, Lead (Pb)-free
H = Halogen-free, Lead (Pb)-free
Package Type
M = 8-Lead SOIC
N = 8-contact LGA
B = 24-ball BGA 6 x 8 mm package, 1.00 mm pitch
Speed
AG = 133 MHz
DS = 80 MHz DDR
Device Technology
S = 65 nm MirrorBit Process Technology
Density
064 = 64 Mbit
Device Family
S25FS
Cypress 1.8 Volt-only, Serial Peripheral Interface (SPI) Flash Memory
Note
98.Halogen free definition is in accordance with IE 61249-2-21 specification.
Document Number: 002-03631 Rev. *G
Page 140 of 145
S25FS064S
Valid Combinations — Standard
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm
availability of specific valid combinations and to check on newly released combinations.
Table 75. S25FS064S Valid Combinations — Standard
Valid Combinations
Base Ordering Part
Number
Speed
Option
AG
S25FS064S
DS
Package and
Temperature
Model Number
Packing Type
MFI, MFV, MFN
01
0, 1, 3
FS064S + A + (Temp) + F + 1
NFI, NFV, NFN
03
0, 1, 3
FS064S + A + (Temp) + F + 3
BHI, BHV, BHN
02
0, 3
FS064S + A + (Temp) + H + 2
MFI, MFV, MFN
01
0, 1, 3
FS064S + D + (Temp) + F + 1
NFI, NFV, NFN
03
0, 1, 3
FS064S + D + (Temp) + F + 3
BHI, BHV, BHN
02
0, 3
FS064S + D + (Temp) + H + 2
Package Marking
Valid Combinations — Automotive Grade / AEC-Q100
The table below lists configurations that are Automotive Grade / AEC-Q100 qualified and are planned to be available in volume. The
table will be updated as new combinations are released. Consult your local sales representative to confirm availability of specific
combinations and to check on newly released combinations.
Production Part Approval Process (PPAP) support is only provided for AEC-Q100 grade products.
Products to be used in end-use applications that require ISO/TS-16949 compliance must be AEC-Q100 grade products in
combination with PPAP. Non–AEC-Q100 grade products are not manufactured or documented in full compliance with
ISO/TS-16949 requirements.
AEC-Q100 grade products are also offered without PPAP support for end-use applications that do not require ISO/TS-16949
compliance.
Table 76. S25FS064S Valid Combinations — Automotive Grade / AEC-Q100
Valid Combinations — Automotive Grade / AEC-Q100
Base Ordering Part
Number
Speed
Option
AG
S25FS064S
DS
Package and
Temperature
Model Number
Packing Type
Package Marking
MFA, MFB MFM
01
0, 1, 3
FS064S + A + (Temp) + F + 1
NFA, NFB, NFM
03
0, 1, 3
FS064S + A + (Temp) + F + 3
BHA, BHB, BHM
02
0, 3
FS064S + A + (Temp) + H + 2
MFA, MFB MFM
01
0, 1, 3
FS064S + D + (Temp) + F + 1
NFA, NFB, NFM
03
0, 1, 3
FS064S + D + (Temp) + F + 3
BHA, BHB, BHM
02
0, 3
FS064S + D + (Temp) + H + 2
Document Number: 002-03631 Rev. *G
Page 141 of 145
S25FS064S
15. Glossary
BCD = Binary Coded Decimal. A value in which each 4 bit nibble represents a decimal numeral.
Command = All information transferred between the host system and memory during one period while CS# is low. This includes
the instruction (sometimes called an operation code or opcode) and any required address, mode bits, latency cycles, or data.
DDP = Dual Die Package = Two die stacked within the same package to increase the memory capacity of a single package. Often
also referred to as a Multi-Chip Package (MCP)
DDR = Double Data Rate = When input and output are latched on every edge of SCK.
ECC Unit = 16 byte aligned and length data groups in the main Flash array and OTP array, each of which has its own hidden ECC
to enable error correction on each group.
Flash = the name for a type of Electrical Erase Programmable Read Only Memory (EEPROM) that erases large blocks of
memory bits in parallel, making the erase operation much faster than early EEPROM.
High = a signal voltage level ≥ VIH or a logic level representing a binary one (“1”).
Instruction = the 8 bit code indicating the function to be performed by a command (sometimes called an operation code or
opcode). The instruction is always the first 8 bits transferred from host system to the memory in any command.
Low = a signal voltage level VIL or a logic level representing a binary zero (“0”).
LSB = Least Significant Bit = Generally the right most bit, with the lowest order of magnitude value, within a group of bits of a
register or data value.
MSB = Most Significant Bit = Generally the left most bit, with the highest order of magnitude value, within a group of bits of a
register or data value.
N/A = Not Applicable. A value is not relevant to situation described.
Non-Volatile = no power is needed to maintain data stored in the memory.
OPN = Ordering Part Number = The alphanumeric string specifying the memory device type, density, package, factory nonvolatile configuration, etc. used to select the desired device.
Page = 512 Byte or 256 Byte aligned and length group of data.
PCB - Printed Circuit Board
Register Bit References = are in the format: Register_name[bit_number] or Register_name[bit_range_MSB: bit_range_LSB]
SDR = Single Data Rate = When input is latched on the rising edge and output on the falling edge of SCK.
Sector = erase unit size; depending on device model and sector location this may be 4KBytes, 64KBytes or 256KBytes
Write = an operation that changes data within volatile or non-volatile registers bits or non-volatile Flash memory. When changing
non-volatile data, an erase and reprogramming of any unchanged non-volatile data is done, as part of the operation, such that the
non-volatile data is modified by the write operation, in the same way that volatile data is modified – as a single operation. The nonvolatile data appears to the host system to be updated by the single write command, without the need for separate commands for
erase and reprogram of adjacent, but unaffected data.
Document Number: 002-03631 Rev. *G
Page 142 of 145
S25FS064S
16. Document History Page
Document Title: S25FS064S, 64 Mbit (8 Mbyte), 1.8 V FS-S Flash
Document Number: 002-03631
Rev.
ECN No.
Submission
Date
**
4905590
10/05/2015
Initial release
01/29/2016
Updated Table 1:
Updated details in both “FS-S” columns corresponding to “Auto Boot Mode” and “Updated Table 3:
Updated details in “SO / IO1” column corresponding to “Power-Off” Interface State.
Updated details in “IO3_RESET#” column corresponding to “Interface Standby” Interface State. Updated
Table 7:
Referred Note (14) in description of ICC1 parameter.
Updated Table 8:
Changed maximum value of IDPD parameter from 60 µA to 80 µA.
Updated Table 9:
Changed maximum value of IDPD parameter from 100 µA to 150 µA.
Updated Embedded Algorithm Performance Tables:
Changed maximum value of tPP parameter from 1080 µs to 2000 µs.
Updated Table 17: “Comments” column corresponding to tRS parameter.
Updated Address Space Maps:
Updated Configuration Register 1: Table 30 and Table 31:
Updated Configuration Register 2 Non-volatile (CR2NV): Table 33:
Updated Configuration Register 3: Table 36:
Updated ASP Register (ASPR): Table 41:
Updated Register Access Commands: Write VDLR (WVDLR 4Ah):
Updated Table 56: “Typical” with “Minimum” in column heading.
Updated Table 66: Details in “Data” column corresponding to “69h” Parameter Relative Byte Address
Offset.
Updated Table 67: Details in “Data” column corresponding to “6Ch” Parameter Relative Byte Address
Offset.
Updated Table 68: Details in “Data” column corresponding to “76h” Parameter Relative Byte Address
Offset.
Updated Table 70: Details in “Data” column corresponding to “7Ch” Parameter Relative Byte Address
Offset.
Updated Table 71: Details in “Parameter Relative Byte Address Offset” and “Data” columns.
02/23/2016
Updated description for “Dual or Quad I/O Read commands” and “Quad Double Data Rate read
commands” in Read Flash Array.
Updated Maximum value of IDPD in Table 7 through Table 9.
Updated tRPH Time in Table 13.
Updated Sales page with latest copyright disclaimer and links.
06/24/2016
Updated Table 6: changed Min value for VCC (cut-off).
Addition of LGA Package, Figure 39 and Section 8.2.2.
Removed “Table Program and Erase Performance Extended Temperature. Updated Table 16 Program
and Erase Performance inclusive of all temperature ranges, Changing typical timing parameter tW and
tSE (64KB or 4KB sectors) to 240ms, tSE (256KB sectors) to 960ms, tBE to 30s.
Updated Table 72 Header, change SFDP data Address 24h to “B1h”, Address 25h to “72h”, Address 26h
to “1Dh”, Address 28h to “82h”, Address 2Bh to “C7”.
Updated Table 13 tRPH time from 45 µs to 35 µs.
Addition of ECC feature description Section 11.5.1.1.
Addition of Register Descriptions Table 26.
Updated Data Integrity Section 12.
Updated Power On Reset Section 6.3.1.
Added Thermal Resistance Section 5.3.
Added Link to Cypress Flash Roadmap Section 1.3.1.
Updated to new template.
01/12/2017
Changed status from Preliminary to Final.
Added “Automotive, AEC-Q100 Grade 3”, “Automotive, AEC-Q100 Grade 2”, “Automotive, AEC-Q100
Grade 1” Temperature Range related information in all instances across the document.
Updated .
Updated Performance Summary:
Updated Typical Program and Erase Rates.
Updated Typical Current Consumption, -40°C to +85°C.
Updated Electrical Specifications:
Updated Operating Ranges:
Updated Temperature Ranges.
Updated Embedded Algorithm Performance Tables:
Updated Table 16.
Updated Table 17.
*A
*B
*C
*D
5090169
5149633
5311335
5563158
Document Number: 002-03631 Rev. *G
Description of Change
Page 143 of 145
S25FS064S
Document Title: S25FS064S, 64 Mbit (8 Mbyte), 1.8 V FS-S Flash
Document Number: 002-03631
Rev.
*D (cont.)
ECN No.
5563158
Submission
Date
Description of Change
01/12/2017
Updated Physical Interface:
Updated Physical Diagrams:
Updated SOIC 8-Lead, 208 mil Body Width (SOC008).
Updated LGA 8-contact 5 x 6 mm (W9A008).
Updated Ball Grid Array 24-ball 6 x 8 mm (FAB024).
Updated Data Integrity:
Updated Erase Endurance.
Updated Data Retention.
Updated Ordering Part Number:
Added Valid Combinations — Automotive Grade / AEC-Q100.
Updated to new template.
*E
5959879
11/08/2017
Updated Table 22 on page 45.
Changed VDD to VCC.
Corrected Figure 81 on page 96.
Updated Ordering Part Number on page 140 definition of letters in OPN indicating package material.
Updated DDR Data Valid Timing Using DLP on page 37, Example.
*F
6125350
04/04/2018
Added Table 10 Valid Enter DPD mode and Release from DPD Mode Sequence on page 28.
*G
6749143
12/13/2019
Updated Table 31 on page 53.
Updated Section 11.3.4 Write Registers (WRR 01h) on page 82.
Document Number: 002-03631 Rev. *G
Page 144 of 145
S25FS032S
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Arm® Cortex® Microcontrollers
Automotive
cypress.com/arm
cypress.com/automotive
Clocks & Buffers
Interface
cypress.com/clocks
cypress.com/interface
Internet of Things
Memory
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
Cypress Developer Community
Community | Projects | Video | Blogs | Training | Components
Technical Support
cypress.com/support
cypress.com/pmic
Touch Sensing
cypress.com/touch
USB Controllers
Wireless Connectivity
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
cypress.com/usb
cypress.com/wireless
© Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or
firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress
reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants
you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce
the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or
indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by
Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other
medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from
and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress
product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i)
Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to
use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-03631 Rev. *G
Revised December 13, 2019
Page 145 of 145