Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
S6BP401A
Power Management IC
for Automotive ADAS Platform
Quad Buck 2.1 MHz DC/DC Converter and Dual LDO with Watchdog Timer
S6BP401A is a power management IC, consists of quad buck 2.1 MHz DC/DC converter with built-in switching FETs, dual Low
Drop-out regulator (LDOs) and a digital windowed watchdog timer. Having the switching FETs built-in, S6BP401A realizes high
power conversion efficiency and high switching frequency up to 2.4 MHz. The internal FETs are capable to handle up to 3 A load. As
S6BP401A employs the current mode architecture, it has fast load transient response. Built-in output voltage setting resistors and
compensation circuits reduce BOM cost and component area.
Features
Block Diagram
◼ Quad Buck DC/DC Converter (DD1 to DD4)
VIN
Input Range: 4.5 V to 5.5 V
Frequency
External clock mode: 1.8 MHz to 2.4 MHz
Internal clock mode: 2.0 MHz to 2.2 MHz
Built-in Switching FETs up to 3 A
Built-in Output Voltage Setting Resistors
Built-in Compensation Circuits
Switching
S6BP401A : PMIC
1.20 V to 1.575 V / 2 A
5V
1.00 V to 1.275 V / 3 A
DC/DC converter
◼ Dual LDO (LD1, LD2)
1.20 V to 2.575 V / 2 A
VIN
Input Voltage Range: 2.97 V to 5.5 V
Built-in Output Voltage Setting resistors
3.3 V to 3.4 V / 1 A
◼ Power Good Monitor Output for each DC/DC Converters,
3.3 V to 3.4 V / 0.2 A
LDO
LDOs
1.20 V to 2.875 V / 0.5 A
◼ Built-in Windowed Watchdog Timer (WDT)
◼ Under Voltage Lockout (UVLO)
5
Power Good
◼ Thermal Shutdown (TSD)
Watch Dog
◼ Over Current Protection (OCP)
◼ Over Voltage Protection (OVP)
◼ Independent Enabling for each DC/DC Converters and LDOs
◼ Load-independent Soft-Start
◼ Built-in Discharge Resistors
◼ Small 6 mm × 6 mm QFN-40 Package
◼ AEC-Q100 compliant (Grade-1)
Applications
◼ Automotive Applications
◼ Advanced Driver Assistance Systems (ADAS)
◼ Camera Systems such as Security Camera
◼ Industrial Applications
Cypress Semiconductor Corporation
Document Number: 002-03341 Rev.*I
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised January 16, 2020
S6BP401A
More Information
Cypress provides a wealth of data at www.cypress.com/pmic to help you to select the right PMIC device for your design, and to help
you to quickly and effectively integrate the device into your design. Following is an abbreviated list for S6BP401A:
◼ Overview: Automotive PMIC Portfolio, Automotive PMIC
Roadmap
◼ Product Selector:
S6BP401A:
6 ch Automotive PMIC for ADAS
◼ Application Notes: Cypress offers S6BP401A application
notes. Recommended application notes for getting started
with S6BP401A are:
AN98649: How to Design a Power Management System
AN201006: Thermal Considerations and Parameters
Document Number: 002-03341 Rev.*I
◼ Evaluation Kit Operation Manual:
S6SBP401AM2SA1001:
ADAS platform
Power block for automotive
◼ Related Products:
S6BP201A,
S6BP202A, S6BP203A:
1 ch Buck-Boost Automotive PMIC
S6BP501A, S6BP502A:
3 ch Automotive PMIC for Instrument Cluster
Page 2 of 41
S6BP401A
Contents
Features................................................................................................................................................................................... 1
Applications ............................................................................................................................................................................ 1
Block Diagram......................................................................................................................................................................... 1
More Information .................................................................................................................................................................... 2
1.
Typical Application ........................................................................................................................................................ 4
2.
Pin Configuration ........................................................................................................................................................... 5
3.
Pin Functions ................................................................................................................................................................. 6
4.
Preset Output Voltage.................................................................................................................................................... 7
5.
Architecture Block Diagram .......................................................................................................................................... 9
6.
Absolute Maximum Ratings ........................................................................................................................................ 11
7.
Recommended Operating Conditions ........................................................................................................................ 12
8.
Electrical Characteristics ............................................................................................................................................ 13
9.
Operating Mode List..................................................................................................................................................... 18
10. Function ........................................................................................................................................................................ 19
10.1 Turning ON and OFF Sequence .................................................................................................................................. 19
10.2 Over Current Protection............................................................................................................................................... 21
10.3 Over Voltage Protection .............................................................................................................................................. 21
10.4 Thermal Shutdown (TSD) ............................................................................................................................................ 22
10.5 Under Voltage Lockout (UVLO) ................................................................................................................................... 22
10.6 Soft-Start Operation..................................................................................................................................................... 22
10.7 Discharge Operation.................................................................................................................................................... 23
10.8 Power Good Monitor and Reset Function.................................................................................................................... 24
10.9 Watchdog Timer .......................................................................................................................................................... 26
10.10 Internal Linear Regulator Output (VREG) .................................................................................................................... 29
11. Application Circuit Example........................................................................................................................................ 30
12. Reference Data ............................................................................................................................................................. 32
13. Ordering Information ................................................................................................................................................... 35
14. Package Dimensions ................................................................................................................................................... 36
15. Major Changes ............................................................................................................................................................. 37
Document History ................................................................................................................................................................. 38
Document Number: 002-03341 Rev.*I
Page 3 of 41
S6BP401A
1. Typical Application
Figure 1-1 Typical Application
Document Number: 002-03341 Rev.*I
Page 4 of 41
S6BP401A
2. Pin Configuration
LDO2
PVCCL2
PVCCL1
LDO1
VCC
PG1
VREG
PG2
CP1
GND
(Corner Pad)
PGL2
Figure 2-1 Pin Configuration
40
39
38
37
36
35
34
33
32
31
CP4
(Corner Pad)
PG4
1
30
FB1
FB4
2
29
PVCC1
PVCC4
3
28
LX1
LX4
4
27
PGND1
PGND4
5
26
PGND2
PGND3
6
25
PGND2
LX3
7
24
LX2
PVCC3
8
23
LX2
FB3
9
22
PVCC2
PG3
10
21
PVCC2
Document Number: 002-03341 Rev.*I
11
12
13
14
15
16
17
18
19
20
WDI
RST
ENL2
ENL1
EN4
EN3
EN2
EN1
FB2
CP2
EP (Exposed Pad)
SYNC
(Corner Pad)
Top View
CP3
(Corner Pad)
Page 5 of 41
S6BP401A
3. Pin Functions
Table 3-1 Pin Functions
Functional
Block
DD1
DD2
DD3
DD4
LD1
LD2
WDT
Pin Number
Pin Name
I/O
19
EN1
I
Enable input terminal of DD1.
Pin Setting When
Not Being Used
Ground
30
FB1
I
Output voltage feedback terminal of DD1.
Ground
33
PG1
O
Power good output terminal of DD1.
Ground
29
PVCC1
-
Power supply terminal of DD1.
VCC
Leave pin open
Description
28
LX1
O
Inductor connect terminal of DD1.
27
PGND1
-
Power ground terminal of DD1.
Ground
18
EN2
I
Enable input terminal of DD2.
Ground
20
FB2
I
Output voltage feedback terminal of DD2.
Ground
31
PG2
O
Power good output terminal of DD2.
Ground
21, 22
PVCC2
-
Power supply terminal of DD2.
VCC
23, 24
LX2
O
Inductor connect terminal of DD2.
Leave pin open
25, 26
PGND2
-
Power ground terminal of DD2.
Ground
17
EN3
I
Enable input terminal of DD3.
Ground
9
FB3
I
Output voltage feedback terminal of DD3.
Ground
10
PG3
O
Power good output terminal of DD3.
Ground
8
PVCC3
-
Power supply terminal of DD3.
VCC
Leave pin open
7
LX3
O
Inductor connect terminal of DD3.
6
PGND3
-
Power ground terminal of DD3.
Ground
16
EN4
I
Enable input terminal of DD4.
Ground
2
FB4
I
Output voltage feedback terminal of DD4.
Ground
1
PG4
O
Power good output terminal of DD4.
Ground
3
PVCC4
-
Power supply terminal of DD4.
VCC
4
LX4
O
Inductor connect terminal of DD4.
Leave pin open
5
PGND4
-
Power ground terminal of DD4.
Ground
15
ENL1
I
Enable input terminal of LD1.
Ground
36
PVCCL1
-
Power supply terminal of LD1.
VCC
35
LDO1
O
Output terminal of LD1.
Leave pin open
14
ENL2
I
Enable input of LD2.
Ground
40
PGL2
O
Power good output terminal of LD2.
Ground
37
PVCCL2
-
Power supply terminal of LD2.
VCC
38
LDO2
O
Output terminal of LD2.
Leave pin open
12
WDI
I
Trigger input terminal of WDT.
Ground
13
RST
O
Reset input terminal of WDT.
Ground
Ground
SYNC
11
SYNC
I
External clock input terminal.
-
34
VCC
-
−
-
32
VREG
O
Power supply terminal for analog controller.
Internal 1.8 V supply voltage capacitor terminal. Do NOT
supply or load this terminal externally.
-
39
GND
-
Ground terminal for analog controller.
−
-
EP
EP
-
Exposed pad. Connect to ground plane.
−
-
CP1, CP2,
CP3, CP4
-
Corner pad for reinforcing attachment to a board.
Connect to ground plane.
−
Document Number: 002-03341 Rev.*I
CP
−
Page 6 of 41
S6BP401A
4. Preset Output Voltage
Table 4-1 Preset Output Voltage (Buck DC/DC Converter)
Channel
DD1
DD2
DD3
DD4
Preset Output
Voltage [V]
1.200
1.225
1.250
1.275
1.300
1.325
1.500
1.525
1.550
1.575
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250
1.275
1.200
1.225
1.250
1.275
1.500
1.525
1.550
1.575
1.800
1.825
1.850
1.875
2.500
2.525
2.550
2.575
3.300
3.325
3.350
3.375
3.400
Soft-start Time
[ms]
1.200
1.225
1.250
1.275
1.300
1.325
1.500
1.525
1.550
1.575
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250
1.275
1.200
1.225
1.250
1.275
1.500
1.525
1.550
1.575
1.800
1.825
1.850
1.875
2.500
2.525
2.550
2.575
3.300
3.325
3.350
3.375
3.400
Maximum Output
Current [mA]
Under Voltage
Threshold [%]
Over Voltage
Threshold [%]
2000
94.0
106.0
3000
94.0
106.0
2000
95.2
106.0
1000
95.5
106.0
Notes:
−
Soft-start time values are at fOSC = 2.1 MHz
−
See 8. Electrical Characteristics for the minimum or maximum values of output voltage, under voltage threshold and over
voltage threshold.
Document Number: 002-03341 Rev.*I
Page 7 of 41
S6BP401A
Table 4-2 Preset Output Voltage (LDO)
Channel
LD1
LD2
Preset Output
Voltage [V]
Soft-start Time
[ms]
3.300
3.300
3.325
3.325
3.350
3.350
3.375
3.375
3.400
3.400
1.200
1.200
1.225
1.225
1.250
1.250
1.275
1.275
1.800
1.800
1.825
1.825
1.850
1.850
1.875
1.875
2.800
2.800
2.825
2.825
2.850
2.850
2.875
2.875
Maximum Output
Current [mA]
Under Voltage
Threshold [%]
Over Voltage
Threshold [%]
200
94.0
106.0
500
94.0
106.0
Notes:
−
Soft-start time values are at fOSC = 2.1 MHz
−
See 8. Electrical Characteristics for the minimum or maximum values of output voltage, under voltage threshold and over
voltage threshold.
Document Number: 002-03341 Rev.*I
Page 8 of 41
S6BP401A
5. Architecture Block Diagram
Figure 5-1 Architechture Block Diagram
>
FB1
PVCC1
Discharge
PWM
Comparator
Low Priority
en1
Voltage
Reference
PWM
AntiLogic
Shoot
Control Through
Error
Amplifier
Slope
Compensation
Power Good
Monitor
LX1
Current
Sense
PGND1
pg1
Peak Current
Comparator
ss1
clk
>
FB2
PVCC2
Discharge
en2
Voltage
Reference
PVCC2
PWM
Comparator
Low Priority
PWM
AntiLogic
Shoot
Control Through
Error
Amplifier
Slope
Compensation
Power Good
Monitor
LX2
LX2
Current
Sense
PGND2
PGND2
pg2
Peak Current
Comparator
ss2
clk
>
FB3
PVCC3
Discharge
PWM
Comparator
Low Priority
en3
Voltage
Reference
PWM
AntiLogic
Shoot
Control Through
Error
Amplifier
Slope
Compensation
Power Good
Monitor
LX3
Current
Sense
PGND3
pg3
Peak Current
Comparator
ss3
clk
>
FB4
PVCC4
Discharge
PWM
Comparator
Low Priority
en4
Voltage
Reference
Power Good
Monitor
pg4
ss4
PWM
AntiLogic
Shoot
Control Through
Error
Amplifier
Slope
Compensation
LX4
Current
Sense
PGND4
Peak Current
Comparator
clk
Document Number: 002-03341 Rev.*I
Page 9 of 41
S6BP401A
>
Low Priority
PVCCL1
Voltage
Reference
LDO1
Power Good
Monitor
Discharge
pgl1
ssl1
enl1
>
Low Priority
PVCCL2
Voltage
Reference
LDO2
Power Good
Monitor
Discharge
pgl2
ssl2
enl2
>
>
PG1
Thermal
Shutdown
PG2
VCC
Under Voltage
Lockout
PG3
EN1
en1
EN2
en2
PG4
PGL2
EN3
en3
pg1
pg2
pg3
pg4
pgl2
Control
Logic
EN4
en4
ENL1
enl1
ENL2
enl2
>
RST
Watchdog
Timer
clk
pgl1
WDI
ss1
ss2
ss3
Soft-Start
Control
ss4
ssl1
enl2
clk
VCC
VCC
VREG
SYNC
Linear
Regulator
Power Good
Monitor
Oscillator
with Synchronization
clk
GND
Document Number: 002-03341 Rev.*I
Page 10 of 41
S6BP401A
6. Absolute Maximum Ratings
Table 6-1 Absolute Maximum Ratings
Parameter
Symbol
VVCC
Power supply voltage
VPVCC
VPVCCL
VEN
VWDI
Input voltage
VSYNC
VFB
VPG
VRST
Condition
VCC
PVCC1, PVCC2, PVCC3, PVCC4
PVCCL1, PVCCL2
EN1, EN2, EN3, EN4, ENL1, ENL2
WDI
SYNC
FB1, FB2, FB3, FB4
PG1, PG2, PG3, PG4, PGL2
Min
-0.3
Rating
Max
+6.9
Unit
V
-0.3
-0.3
+6.9
+6.9
V
V
-0.3
-0.3
+6.9
+6.9
V
V
-0.3
-0.3
+6.9
+6.9
V
V
-0.3
+6.9
V
RST
-0.3
+6.9
V
LX voltage
LX1, LX2, LX3, LX4
VLX
-0.3
+6.9
V
PVCC1 -VCC, PVCC2-VCC,
VPVCC-VCC
-0.3
+0.3
V
PVCC3-VCC, PVCC4-VCC
PGND1-GND, PGND2-GND,
VPGND-GND
-0.3
+0.3
V
PGND3-GND, PGND4-GND
PVCC1-LX1, PVCC2-LX2,
Voltage difference
VPVCC-LX
-0.3
+6.9
V
PVCC3-LX3, PVCC4-LX4
VCC-EN1, VCC-EN2, VCC-EN3,
VCC-EN4, VCC-EN1L, VCC-EN2L,
VVCC-INPUT
-0.3
+6.9
V
VCC-WDI, VCC-SYNC, VCC-FB1,
VCC-FB2, VCC-FB3, VCC-FB4
TA ≤ + 25 °C,
Power dissipation
PD
6940
mW
Thermal resistance (θJA): 18 °C /W (*1)
Junction temperature
TJ
-40
+150
°C
Storage temperature
TSTG
-55
+150
°C
*1: When the IC is mounted on 76.2 mm × 114.3 mm four-layer epoxy board. IC is mounted on a four-layer epoxy board, which
terminal bias, and the IC’s thermal pad is connected to the epoxy board.
WARNING
1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.
Maximum Power dissipation PD
[mW]
Figure 6-1 Maximum Power Dissipation - Operating Ambient Temperature Characteristics
8000
7000
6000
5000
4000
3000
2000
1000
0
-60 -40 -20
0
20 40 60 80 100 120 140
Ambient Temperature TA [°C]
Document Number: 002-03341 Rev.*I
Page 11 of 41
S6BP401A
7. Recommended Operating Conditions
Table 7-1 Recommended Operating Conditions
Parameter
Power supply voltage
Input voltage
Symbol
Min
Value
Typ
Max
Unit
VVCC
VPVCC
VCC
PVCC1, PVCC2, PVCC3, PVCC4
+4.5
-
+5.0
VVCC
+5.5
-
V
V
VPVCCL
VEN
PVCCL1, PVCCL2
EN1, EN2, EN3, EN4, ENL1, ENL2
WDI
+2.97
0
+5.0
-
VVCC
VVCC
V
V
0
0
-
VVCC
VVCC
V
V
0
0
-
VVCC
+5.5
V
V
0
-
+5.5
V
-40
+25
+125
°C
VWDI
VSYNC
VFB
VPG
VRST
Operating ambient
temperature
Condition
TA
SYNC
FB1, FB2, FB3, FB4
PG1, PG2, PG3, PG4, PGL2
RST
-
WARNING:
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of
the device's electrical characteristics are warranted when the device is operated under these conditions.
2.
Any use of semiconductor devices will be under their recommended operating condition.
3.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
4.
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-03341 Rev.*I
Page 12 of 41
S6BP401A
8. Electrical Characteristics
VVCC = VPVCC = 5.0 V, VPVCCL = 5.0 V, TA = TJ = -40 to +125 °C, unless otherwise noted. Typical values are at TA = +25 °C.
Table 8-1 Electrical Characteristics
Parameter
Symbol
Condition
Min
Value
Typ
Max
Unit
-
1
10
µA
3.80
0.27
3.95
0.30
4.10
0.33
V
V
Supply Current
VCC pin,
VEN1 = VEN2 = VEN3 = VEN4 = VENL1 =
VENL2 = 0 V
UVLO: Under Voltage Lockout (VCC)
Threshold voltage
VUVLOF
VVCC falling, UVLO stop voltage
Shutdown current
Hysteresis
IVCCS
VUVHYS
-
TSD: Thermal Shutdown
Shutdown temperature
TTSD
Hysteresis
TTSDHYS
Temperature rising
-
165 (*1)
-
°C
-
-
10 (*1)
-
°C
Enable Inputs (EN1, EN2, EN3, EN4, ENL1, ENL2)
Input high voltage
VIHEN
-
2.0
-
VVCC
V
Input low voltage
-
0
-
0.4
V
33
50
100
µA
50
100
150
kΩ
1.74
1.80
1.86
V
5
-
-
mA
1.86
1.81
1.67
1.62
1.92
1.87
1.73
1.68
1.98
1.93
1.79
1.74
V
V
V
V
2.0
2.1
2.2
MHz
2.0
0
33
50
1.8
-
50
100
2.1
fSYNC
VVCC
0.4
100
150
2.4
-
V
V
µA
kΩ
MHz
MHz
Input current
Pull down resistance
VILEN
IIHEN
RPDEN
VEN = 5.0 V
-
Internal Linear Regulator Output (VREG)
Output voltage
VVREG
VVCC = 5.0 V
Maximum output
IVREG
VVCC = 5.0 V
current
VVREGOVR VVREG rising, Power fail
Over voltage lockout
threshold
VVREGOVF VVREG falling, Power good
VVREGUVR VVREG rising, Power good
Under voltage lockout
threshold
VVREGUVF VVREG falling, Power fail
Oscillator
Switching frequency
fOSC
Synchronization Input (SYNC)
Input high voltage
VIHSYNC
Input Low voltage
VILSYNC
Input current
IIHSYNC
VEN = 5.0 V
Pull down resistance
RPDSYNC
Input frequency
fSYNC
Switching frequency
fOSC
-
Document Number: 002-03341 Rev.*I
Page 13 of 41
S6BP401A
Parameter
Symbol
Condition
Power Good Monitor (PG1, PG2, PGL2)
Over voltage
Ratio of power fail threshold to VOUT1, VOUT2,
VPGOV
threshold
VOUTL2 rising
Over voltage
VPGOVHYS
hysteresis
Under voltage
Ratio of power fail threshold to VOUT1, VOUT2,
VPGUV
threshold
VOUT3 falling
Under voltage
VPGUVHYS
hysteresis
Leakage current
ILEAKPG
VPG = 5.0 V
Output low voltage
VOLPG
IPG = 3 mA
Propagation time
TPPG
5 % outside of the threshold, Power fail
Power-on reset time
TRPG
Power good
Power Good Monitor (PG3)
Over voltage
VPGOV
Ratio of power fail threshold to VOUT3 rising
threshold
Over voltage
VPGOVHYS
hysteresis
Under voltage
VPGUV
Ratio of power fail threshold to VOUT3 falling
threshold
Under voltage
VPGUVHYS
hysteresis
Leakage current
ILEAKPG
VPG = 5.0 V
Output low voltage
VOLPG
IPG = 3 mA
Propagation time
TPPG
5 % outside of the threshold, Power fail
Power-on reset time
TRPG
Power good
Power Good Monitor (PG4)
Over voltage
VPGOV
Ratio of power fail threshold to VOUT4 rising
threshold
Over voltage
VPGOVHYS
hysteresis
Under voltage
VPGUV
Ratio of power fail threshold to VOUT4 falling
threshold
Under voltage
VPGUVHYS
hysteresis
Leakage current
ILEAKPG
VPG = 5.0 V
Output low voltage
VOLPG
IPG = 3 mA
Propagation time
TPPG
5 % outside of the threshold, Power fail
Power-on reset time
TRPG
Power good
Reset (RST)
Over voltage
VRSOV
Ratio of power fail threshold to VOUTL1 rising
threshold
Over voltage
VRSOVHYS
hysteresis
Under voltage
VRSUV
Ratio of power fail threshold to VOUTL1 falling
threshold
Under voltage
VRSUVHYS
hysteresis
Leakage current
ILEAKRST
VRST = 5.0 V
Output low voltage
VOLRST
IPG = 3 mA
Propagation time
TPRST
5 % outside of the threshold, Power fail
Power-on reset time
TRD
Power good
Document Number: 002-03341 Rev.*I
Min
Value
Typ
Max
Unit
104.5
106.0
107.5
%
0.5
1.0
1.5
%
92.5
94.0
95.5
%
0.5
1.0
1.5
%
8
0.15
4 (*1)
10
1
0.30
8 (*1)
12
µA
V
µs
ms
104.5
106.0
107.5
%
0.5
1.0
1.5
%
93.7
95.2
96.7
%
0.5
1.0
1.5
%
8
0.15
4 (*1)
10
1
0.30
8 (*1)
12
µA
V
µs
ms
104.5
106.0
107.5
%
0.5
1.0
1.5
%
94.0
95.5
97.0
%
0.5
1.0
1.5
%
8
0.15
4 (*1)
10
1
0.30
8 (*1)
12
µA
V
µs
ms
104.5
106.0
107.5
%
0.5
1.0
1.5
%
92.5
94.0
95.5
%
0.5
1.0
1.5
%
25.6
0.15
4 (*1)
32.0
1
0.30
8 (*1)
38.4
µA
V
µs
ms
Page 14 of 41
S6BP401A
Parameter
Symbol
Watchdog Timer (WDI)
Watchdog sampling
TSAM
time
Ignore window time
TIW
Open window time
TOW
Long open window
TLOW
time
Closed window time
TCW
Window watchdog
TWD
trigger time
Input high voltage
VIHWDI
Input low voltage
VILWDI
Input current
IIHWDI
Pull down resistance
RPDWDI
DD1: Buck DC/DC Converter
Output voltage
VOUT1
accuracy
DC regulation
VREG1
FB1 input resistance
RFB1
RONHS1
Switching FET
ON resistance
RONLS1
Switching FET
ILEAK1
leakage current
Maximum output
IOUT1
current
LX1 peak current limit
ILIMIT1
Over voltage
VOVP1
protection threshold
Over voltage
VOVPHYS1
protection hysteresis
FB1 discharge
RDIS1
resistance
Soft-start time
TCOESS1
coefficient
DD2: Buck DC/DC Converter
Output voltage
VOUT2
accuracy
DC regulation
VREG2
FB2 input resistance
Switching FET
ON resistance
Switching FET
leakage current
Maximum output
current
LX2 peak current limit
Over voltage
protection threshold
Over voltage
protection hysteresis
FB2 discharge
resistance
Soft-start time
coefficient
RFB2
RONHS2
RONLS2
Condition
Min
Value
Typ
Max
Unit
-
0.40
0.50
0.60
ms
-
25.6
25.6
32.0
32.0
38.4
38.4
ms
ms
-
102.4
128.0
153.6
ms
-
25.6
32.0
38.4
ms
-
38.4
48
51.2
ms
-
2.0
0
33
50
50
100
VVCC
0.4
100
150
V
V
µA
kΩ
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
95
-
190
100
65
285
190
125
kΩ
mΩ
mΩ
-
1
10
µA
2 (*1)
-
-
A
2.5 (*1)
-
-
A
125.0
130.0
135.0
%
-
2.0
5.0
8.0
%
-
160
400
640
Ω
0.9
1.0
1.1
ms/V
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
95
-
190
85
55
285
165
105
kΩ
mΩ
mΩ
-
1
10
µA
3 (*1)
-
-
A
3.5 (*1)
-
-
A
125.0
130.0
135.0
%
VWDI = 5.0 V
VVCC = 5.0 V,
IOUT1 = 10 mA
VVCC = VPVCC1 = 4.5 to 5.5 V,
IOUT1 = 0 to 2.0 A
VFB1 = 2.0 V
ILX1 = 20 mA (PVCC1 to LX1)
ILX1 = -20 mA (LX1 to PGND1)
IPVCC1 = 5.0 V
L = 1.5 µH
L = 1.5 µH
VOUT1 rising, Switching termination
threshold
TSS1 = VOUT1 x TCOESS1
VVCC = 5.0 V,
IOUT2 = 10 mA
VVCC = VPVCC2 = 4.5 to 5.5 V
IOUT2 = 0 to 3.0 A
VFB2 = 2.0 V
ILX2 = 20 mA (PVCC2 to LX2)
ILX2 = -20 mA (LX2 to PGND2)
ILEAK2
IPVCC2 = 5.0 V
IOUT2
L = 1.5 µH
ILIMIT2
L = 1.5 µH
VOUT2 rising, Switching termination
threshold
VOVP2
VOVPHYS2
-
2.0
5.0
8.0
%
RDIS2
-
160
400
640
Ω
0.9
1.0
1.1
ms/V
TCOESS2
Document Number: 002-03341 Rev.*I
TSS2 = VOUT2 x TCOESS2
Page 15 of 41
S6BP401A
Parameter
DD3: Buck DC/DC Converter
Output voltage
VOUT3
accuracy
DC regulation
VREG3
FB3 input resistance
RFB3
RONHS3
Switching FET
ON resistance
RONLS3
Switching FET
ILEAK3
leakage current
Maximum output
IOUT3
current
LX3 peak current limit
ILIMIT3
Over voltage
VOVP3
protection threshold
Over voltage
VOVPHYS3
protection hysteresis
FB3 discharge
RDIS3
resistance
Soft-start time
TCOESS3
coefficient
DD4: Buck DC/DC Converter
Output voltage
VOUT4
accuracy
DC regulation
VREG4
FB4 input resistance
Switching FET
ON resistance
Switching FET
leakage current
Maximum output
current
LX4 peak current limit
Over voltage
protection threshold
Over voltage
protection hysteresis
FB4 discharge
resistance
Soft-start time
coefficient
RFB4
RONHS4
RONLS4
Min
Value
Typ
Max
Unit
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
95
-
190
100
65
285
190
125
kΩ
mΩ
mΩ
-
1
10
µA
2 (*1)
-
-
A
2.5 (*1)
-
-
A
125.0
130.0
135.0
%
-
2.0
5.0
8.0
%
-
160
400
640
Ω
0.9
1.0
1.1
ms/V
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
95
-
190
100
65
285
190
125
kΩ
mΩ
mΩ
-
1
10
µA
1 (*1)
-
-
A
1.5 (*1)
-
-
A
125.0
130.0
135.0
%
Condition
Symbol
VVCC = 5.0 V,
IOUT3 = 10 mA
VVCC = VPVCC3 = 4.5 to 5.5 V,
IOUT3 = 0 to 2.0 A
VFB3 = 2.0 V
ILX3 = 20 mA (PVCC3 to LX3)
ILX3 = -20 mA (LX3 to PGND3)
IPVCC3 = 5.0 V
L = 1.5 µH
L = 1.5 µH
VOUT3 rising, Switching termination
threshold
TSS3 = VOUT3 × TCOESS3
VVCC = 5.0 V,
IOUT4 = 10 mA
VVCC = VPVCC4 = 4.5 to 5.5 V,
IOUT4 = 0 to 1.0 A
VFB4 = 2.0 V
ILX4 = 20 mA (PVCC4 to LX4)
ILX4 = -20 mA (LX4 to PGND4)
ILEAK4
IPVCC4 = 5.0 V
IOUT4
L = 1.5 µH
ILIMIT4
L = 1.5 µH
VOUT4 rising, Switching termination
threshold
VOVP4
VOVPHYS4
-
2.0
5.0
8.0
%
RDIS4
-
160
400
640
Ω
0.9
1.0
1.1
ms/V
TCOESS4
Document Number: 002-03341 Rev.*I
TSS4 = VOUT4 × TCOESS4
Page 16 of 41
S6BP401A
Parameter
LD1: LDO Regulator
Output voltage
accuracy
DC regulation
Output FET
leakage current
Maximum output
current
Output current limit
LDO1 discharge
resistance
Soft-start time
coefficient
LD2: LDO Regulator
Output voltage
accuracy
DC regulation
Output FET
leakage current
Maximum output
current
Output current limit
Symbol
VOUTL1
VREGL1
ILEAKL1
IOUTL1
ILIMITL1
Condition
VVCC = 5.0 V,
IOUTL1 = 10 mA
VVCC = 4.5 to 5.5 V, VPVCCL1 = 2.97 to VVCC
IOUTL1 = 0 to IOUTL1
IPVCCL1 = 5.0 V
VPVCCL1 - VOUTL1 ≥ 1.6 V
0.17 V ≤ VPVCCL1 - VOUTL1 < 1.6 V
VPVCCL1 - VOUTL1 ≥ 1.6 V
0.17 V ≤ VPVCCL1 - VOUTL1 < 1.6 V
RDISL1
TCOESSL1
VOUTL2
VREGL2
ILEAKL2
IOUTL2
ILIMITL2
TSSL1 = VOUTL1 × TCOESSL1
VVCC = 5.0 V,
IOUTL2 = 10 mA
VVCC = 4.5 to 5.5 V, VPVCCL2 = 2.97 to VVCC
IOUTL2 = 0 to IOUTL2
IPVCCL2 = 5.0 V
VPVCCL2 - VOUTL2 ≥ 1.6 V
0.17 V ≤ VPVCCL2 - VOUTL2 < 1.6 V
VPVCCL2 - VOUTL2 ≥ 1.6 V
0.17 V ≤ VPVCCL2 - VOUTL2 < 1.6 V
Min
Value
Typ
Max
Unit
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
-
1
10
µA
200 (*1)
100 (*1)
210 (*1)
105 (*1)
-
-
mA
mA
mA
mA
160
400
640
Ω
0.9
1.0
1.1
ms/V
-1.8
0
+1.8
%
-15 (*1)
0
+5 (*1)
mV
-
1
10
µA
500 (*1)
400 (*1)
525 (*1)
420 (*1)
-
-
mA
mA
mA
mA
400
640
Ω
1.0
1.1
ms/V
LDO2 discharge
RDISL2
160
resistance
Soft-start time
TCOESSL2 TSSL2 = VOUTL2 × TCOESSL2
0.9
coefficient
*1: The electrical characteristic is ensured by statistical characterization and indirect tests.
Document Number: 002-03341 Rev.*I
Page 17 of 41
S6BP401A
9. Operating Mode List
Table 9-1 shows the operation list of S6BP401A.
Table 9-1 Operation Mode List
Condition
Operating Block
TJ
SYNC
ENL1
< TTSD
L or H
L
EN1/
EN2/
EN3/
EN4/
ENL2
L
OFF
OFF
< TTSD
L or H
L
H
ON
ON
< TTSD
L or H
H
L
ON
< TTSD
L or H
H
H
ON
< TTSD
clock
L
L
< TTSD
clock
L
< TTSD
clock
H
< TTSD
clock
H
H
ON
ON
ON
ON
ON
ON
≥ TTSD
L or H
L
L
OFF
OFF
OFF
OFF
OFF
OFF
≥ TTSD
L or H
L
H
ON
ON
OFF
OFF
OFF
OFF
≥ TTSD
L or H
H
L
ON
ON
OFF
OFF
OFF
OFF
≥ TTSD
L or H
H
H
ON
ON
OFF
OFF
OFF
OFF
≥ TTSD
clock
L
L
OFF
OFF
OFF
OFF
OFF
OFF
≥ TTSD
clock
L
H
ON
ON
OFF
OFF
OFF
OFF
≥ TTSD
clock
H
L
ON
ON
OFF
OFF
OFF
OFF
≥ TTSD
clock
H
H
ON
ON
OFF
OFF
OFF
OFF
Document Number: 002-03341 Rev.*I
Freq.
Sync.
LD1
OFF
OFF
OFF
DD1/
DD2/
DD3/
DD4/
LD2
OFF
OFF
OFF
OFF
ON
ON
ON
OFF
ON
OFF
ON
ON
OFF
ON
ON
OFF
OFF
OFF
OFF
OFF
OFF
H
ON
ON
OFF
ON
OFF
ON
L
ON
ON
ON
ON
ON
OFF
Chip
Control
WatchVREG LDO dog Trigger
Monitor
Page 18 of 41
S6BP401A
10. Function
10.1 Turning ON and OFF Sequence
When all of the enable input terminals (EN1, EN2, EN3, EN4, ENL1 and ENL2) are “Low”, the device is in shutdown state. When
any one or more than one of them go “High,” the device is initialized, then the internal linear regulator (VREG) starts generating 1.8
V internal supply voltage. After that, each DC/DC converters and LDOs state is transitioned to the state which can be started.
In order for the device to start, the VCC terminal voltage must be higher than the under-voltage lockout threshold (VUVLOF + VUVHYS).
Figure 10-1 depicts the turning-on and off sequence where the enable signals are connected to VCC. Figure 10-2 depicts that where
the enable signals are respectively controlled after the IC is powered.
Figure 10-1 Turning ON and OFF Sequence (where EN1 and ENL1 are Connected to VCC)
VVCC
VUVLOF
VUVLOF + VUVHYS
VEN1
VENL1
VVREG
VOUT1
VPGUV+VPGUVHYS
10%
TYP:40.5ms(*1)
VRSUV+VRSUVHYS
VOUTL1
10%
TYP:0.92ms(*1)
VRST
Initialization
(TYP:1ms)
TRD
Time
*1: Given that the system employs the same external parts with those specified in “11. Application Circuit Example”.
Document Number: 002-03341 Rev.*I
Page 19 of 41
S6BP401A
Figure 10-2 Turning ON and OFF Sequence (where EN1 and ENL1 are Respectively Controlled)
VVCC
VUVLOF + VUVHYS
VEN1
VENL1
VVREG
VPGUV+VPGUVHYS
VOUT1
10%
TYP:40.5ms(*1)
VRSUV+VRSUVHYS
VOUTL1
10%
TYP:0.92ms(*1)
VRST
Initialization
(TYP:1ms)
TRD
Initialization
(TYP:1ms)
Time
*1: Given that the system employs the same external parts with those specified in “11. Application Circuit Example”.
Document Number: 002-03341 Rev.*I
Page 20 of 41
S6BP401A
10.2 Over Current Protection
The over current protection of the DC/DC converters detects the inductor peak current with on-resistance of Internal high side
switching FET. If the DC/DC converter is over current state, the corresponding output voltage is decreased. If the device returns
from over current state, the output voltage is target voltage.
Each LDOs equips foldback current limiter in order to prevent the IC itself from being damaged or destroyed. The curve of output
current and output voltage in over current state is shown in the Figure 10-3.
Figure 10-3 LDO Foldback Over Current Protection Characteristic
Voltage
VOUTL1
VOUTL2
Current
ISL1
ISL2
IOUTL1
IOUTL2
ILIMITL1
ILIMITL2
10.3 Over Voltage Protection
The over voltage protection of the DC/DC converters detects the output voltage. If the DC/DC converter is over voltage state, the
corresponding channel stops switching and inductor connecting terminal (LX1, LX2, LX3, LX4) is held at high impedance. If the
device returns from over voltage state, the channel returns switching automatically.
Figure 10-4 Over Voltage Protection Timing Chart
VEN1,VEN2,
VEN3,VEN4
VOVPHYS1, VOVPHYS2,
VOVPHYS3, VOVPHYS4
VOVP1, VOVP2,
VOVP3, VOVP4
VPGOV
VOUT1,VOUT2,
VOUT3,VOUT4
VPGOVHYS
TRPG
TPPG
TRPG
VPG1,VPG2,
VPG3,VPG4
LX1, LX2,
LX3, LX4
Hi-Z
Discharge
ON
Switching
Hi-Z
Switching
OFF
Time
Document Number: 002-03341 Rev.*I
Page 21 of 41
S6BP401A
10.4 Thermal Shutdown (TSD)
If the junction temperature reaches +165 °C, all DC/DC converters and LDOs stop outputting voltage. Then the discharge operation
is carried out to discharge the output capacitor (The discharge operation continues until the state of the thermal shutdown released.)
When the junction temperature drops below +155 °C, the soft-starters activate regulators and start generating voltage gradually if
the enable is "High."
Figure 10-5 Thermal Shutdown Timing Chart
165 deg.
TJ
155 deg.
VEN1
VOUT1
Soft-Start
Soft-Start
Time
10.5 Under Voltage Lockout (UVLO)
If the VCC terminal voltage (VVCC) drops below the lower UVLO threshold (VUVLOF), all DC/DC converters (DD1, DD2, DD3, DD4),
LDOs (LD1, LD2), windowed watchdog timer (WDT) and the internal linear regulator (VREG) stop working. When the VCC terminal
voltage (VVCC) is raised higher than the higher UVLO threshold (VUVLOF + VUVHYS), the device returns automatically.
10.6 Soft-Start Operation
S6BP401A equips load-independent soft-start function in order to prevent the DC/DC converters and LDOs from having rush current
at the start-up. The soft-start timing is shown in the Figure 10-6, and is given by the following equation;
𝑇𝑆𝑆 = 𝑉𝑂𝑈𝑇 × 𝑇𝐶𝑂𝐸𝑆𝑆 , where
TSS [ms] :
Soft-start time
VOUT [V] :
Output voltage (VOUT1, VOUT2, VOUT3, VOUT4, VOUTL1, VOUTL2)
TCOESS [ms/V] :
Soft-start time coefficient (TCOESS1, TCOESS2, TCOESS3, TCOESS4, TCOESSL1, TCOESSL2)
Document Number: 002-03341 Rev.*I
Page 22 of 41
S6BP401A
Figure 10-6 Soft-Start Operation Timing Chart
VEN
VOUT(3)
VOUT(2)
VOUT(1)
VOUT
TSS=VOUT(1)×TCOESS
TSS=VOUT(2)×TCOESS
TSS=VOUT(3)×TCOESS
Time
10.7 Discharge Operation
When an enable signal goes “Low”, the corresponding output capacitor is discharged by the internal discharge resistor and the
output voltage is decreased gradually. Note that the discharge time is not consistent: it depends on the output load current.
As for a DC/DC converter, the output capacitor is discharged from FB1, FB2, FB3 and FB4 terminal to PGND1, PGND2, PGND3
and PGND4 terminal respectively. As for a LDO, the output capacitor is dis-charged from LDO1, LDO2 terminal to GND terminal.
The discharge time required to decrease the output voltage by 90 % without any explicit load given by the following equation;
𝑇𝐷𝐼𝑆 = 2.3 × 𝑅𝐷𝐼𝑆 × 𝐶𝑂𝑈𝑇 , where
TDIS [ms] :
Discharge time
RDIS [kΩ] :
Discharge resistance (RDIS1, RDIS2, RDIS3, RDIS4, RDISL1, RDISL2)
COUT [µF] :
Output capacitor
Figure 10-7 Discharge Diagram (DC/DC Converter)
PVCC1,PVCC2,
PVCC3,PVCC4
Power
Supply
FB1,FB2,
FB3,FB4
Error Amp.
RDIS1,
RDIS2,
RDIS3,
RDIS4
LX1,LX2,
LX3,LX4
PWM
Control
PGND1,PGND2,
PGND3,PGND4
enable
Document Number: 002-03341 Rev.*I
Page 23 of 41
S6BP401A
Figure 10-8 Discharge Diagram (LDO)
PVCCL1,PVCCL2
Power
Supply
LDO1,LDO2
RDISL1,
RDISL2
enable
10.8 Power Good Monitor and Reset Function
Each DC/DC converters and LDOs has power good function to indicate whether the output voltage is in the expected range. The
Table 10-1 describes the power good pin names and their functions of each DC/DC converters and LDOs. The Figure 10-9 and
Figure 10-10 depict power-good timing chart.
Table 10-1 Power Good Monitor and Reset Function Pin List
Channel Pin Name
DD1
DD2
DD3
DD4
Description
PG1
Enabling DD1 is followed by rising of the DD1 output voltage (VOUT1). Once VOUT1 reaches within the power
good range (VPGUV + VPGUVHYS < VOUT1 < VPGOV – VPGOVHYS), the power good monitor output (PG1 terminal)
changes its state from “Low” to “Open” after a power-on-reset time (TRPG). When VOUT1 is out of the power
good range (VOUT1 ≤ VPGUV or VOUT1 ≥ VPGOV), PG1 terminal changes its state from “Open” to “Low” after the
propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
PG2
Enabling DD2 is followed by rising of the DD2 output voltage (V OUT2). Once VOUT2 reaches within the power
good range (VPGUV + VPGUVHYS < VOUT2 < VPGOV – VPGOVHYS), the power good monitor output (PG2 terminal)
changes its state from “Low” to “Open” after a power-on-reset time (TRPG). When VOUT2 is out of the power
good range (VOUT2 ≤ VPGUV or VOUT2 ≥ VPGOV), PG2 terminal changes its state from “Open” to “Low” after the
propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
PG3
Enabling DD3 is followed by rising of the DD3 output voltage (V OUT3). Once VOUT3 reaches within the power
good range (VPGUV + VPGUVHYS < VOUT3 < VPGOV – VPGOVHYS), the power good monitor output (PG3 terminal)
changes its state from “Low” to “Open” after a power-on-reset time (TRPG). When VOUT3 is out of the power
good range (VOUT3 ≤ VPGUV or VOUT3 ≥ VPGOV), PG3 terminal changes its state from “Open” to “Low” after the
propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
PG4
Enabling DD4 is followed by rising of the DD4 output voltage (V OUT4). Once VOUT4 reaches within the power
good range (VPGUV + VPGUVHYS < VOUT4 < VPGOV – VPGOVHYS), the power good monitor output (PG4 terminal)
changes its state from “Low” to “Open” after a power-on-reset time (TRPG). When VOUT4 is out of the power
good range (VOUT4 ≤ VPGUV or VOUT4 ≥ VPGOV), PG4 terminal changes its state from “Open” to “Low” after the
propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
Document Number: 002-03341 Rev.*I
Page 24 of 41
S6BP401A
Channel Pin Name
LD1
LD2
Description
RST
Enabling LD1 is followed by rising of the LD1 output voltage (VOUTL1). Once VOUTL1 reaches within the power
good range (VRSUV + VRSUVHYS < VOUTL1 < VRSOV - VRSOVHYS), the RST terminal changes its state from “Low”
to “Open” after a power-on-reset time (TRD). When VOUTL1 is out of the power good range (VOUTL1 ≤ VRSUV or
VOUTL1 ≥ VRSOV), RST terminal changes “Open” to “Low” after the propagation delay (T PRST). The glitch within
TPRST does not affect the power good monitor output.
PGL2
Enabling LD2 is followed by rising of the LD2 output voltage (VOUTL2). Once VOUTL2 reaches within the power
good range (VPGUV + VPGUVHYS < VOUTL2 < VPGOV – VPGOVHYS), the power good monitor output (PGL2
terminal) changes its state from “Low” to “Open” through the power-on-reset time (TRPG). When VOUTL2 is out
of the power good range (VOUTL2 ≤ VPGUV or VOUTL2 ≥ VPGOV), PGL2 terminal changes “Open” to “Low” after
the propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
Figure 10-9 Power-Good Monitor Output Timing Chart (PG1, PG2, PG3, PG4, PGL2)
VEN1,VEN2,
VEN3,VEN4,
VENL2
VOUT1,VOUT2,
VOUT3,VOUT4,
VOUTL2
VPGOVHYS
VPGOV
VPGUV
VPGUVHYS
Not reset
VPG1,VPG2,
VPG3,VPG4,
VPGL2
TRPG
< TPPG
< TPPG
TPPG
TRPG
TPPG
TRPG
Time
Figure 10-10 Power-Good Monitor Output Timing Chart (RST)
VENL1
VRSOVHYS
VRSOV
VOUTL1
VRSUV
VRSUVHYS
Not reset
VRST
TRD
Document Number: 002-03341 Rev.*I
< TPRST
< TPRST
TPRST
TRD
TPRST
TRD
Time
Page 25 of 41
S6BP401A
10.9 Watchdog Timer
S6BP401A employs a digital windowed watchdog timer. The digital windowed watchdog timer starts monitoring trigger signal, when
the LD1 output voltage (VOUTL1) reaches the power good level after enabling LD1.
Figure 10-11 shows the state diagram of the digital watchdog timer. There are six states in the diagram. In the normal operation, the
state is expected to move back and forth between “CW” and “OW”,
At first, as described in the section 10.8, enabling LD1 brings “RESET” state, and the “RESET” state is kept for the “Reset Time
(TRD)” outputting “Low” from RST terminal.
In the second, after TRD in the “RESET” state, the state will transition to “Ignore Window (IW)”, and let RST terminal be “Open”. The
“IW” state will be elapsed in the “Ignore Window Time (T IW.)”
In the third, after elapsing, the state will transition to “Long Open Window (LOW)” state, and let RST terminal be “Open.” In this state,
a trigger signal is expected to be input: if an input trigger arrives, the state will immediately transition to the “Closed Window (CW)”
state. Without an input trigger in the “Long Open Window Time (TLOW,)” the state will be elapsed and will transition to “RESET” state.
In the “CW” state, a trigger signal is expected NOT to be input: if an input trigger arrives, the state will immediately transition to the
“RESET” state. Without an input trigger in the “Closed Window Time (T CW,)” the state will be elapsed and will transition to “Open
Window (OW)” state.
In the “OW” state, a trigger signal is expected to be input: if an input trigger arrives, the state will immediately transition to the
“Closed Window (CW)” state. Without an input trigger in the “Open Window Time (T OW,)” the state will be elapsed and will transition
to “RESET” state.
Figure 10-14 shows that to avoid wrong triggering due to glitch noise two “High” samples followed by two “Low” samples to input
WDI pin are decoded as a trigger.
In any states above, a power failure of LD1 will cause a transition to “OFF” state, and output “Low” from RST terminal until LD1 goes
well.
Figure 10-11 Watchdog Timer State Diagram
OFF
RST=Low
LD1 power good
LD1
power
fail
Reset
RST=Low
TRD timeout
No Trigger
(TLOW timeout)
LD1
power
fail
Trigger
No Trigger
(TOW timeout)
Trigger
IW
RST=open T timeout
IW
Long OW
RST=open Trigger
LD1 power fail
Document Number: 002-03341 Rev.*I
OW
RST=open
CW
RST=open
LD1 power fail
No Trigger
(TCW timeout)
LD1 power fail
Page 26 of 41
S6BP401A
Figure 10-12 Window Watchdog Timing Chart (WDI)
VRSUVHYS
VOUTL1
TWD
Ignore
VWDI
State
OFF
Reset
Long
OW
IW
No
Trigger
No
No
Trigger
Trigger (Wrong)
CW
CW
OW
OW
Reset
VRSUV
Wrong
Trigger
IW
Long
OW
CW
Reset
IW
Long
Reset
OW
IW
VRST
TRD
TIW