0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S6E1B34G0AGV20000

S6E1B34G0AGV20000

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    LQFP120

  • 描述:

    IC MCU 32BIT 304KB FLASH 120LQFP

  • 数据手册
  • 价格&库存
S6E1B34G0AGV20000 数据手册
PRELIMINARY S6E1B3 Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller The S6E1B3 Series is a series of highly integrated 32-bit microcontrollers designed for embedded controllers aiming at low power consumption and low cost. This series has the ARM Cortex-M0+ Processor with on-chip Flash memory and SRAM, and consists of 2 2 peripheral functions such as various timers, ADC and communication interfaces (UART, CSIO (SPI), I C, I S, Smart Card, and USB). The products which are described in this data sheet are placed into TYPE2-M0+ product categories in "FM0+ Family Peripheral Manual". Features  USB host 32-bit ARM Cortex-M0+ Core  USB 2.0 Full/Low-Speed supported Interrupt-transfer and Isochronous-transfer support  USB Device connected/disconnected automatically detect  IN/OUT token handshake packet automatically  Max 256-byte packet-length supported  Wake-up function supported  Processor version: r0p1  Bulk-transfer,  Maximum operating frequency: 40.8 MHz  Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 24 peripheral interrupt with 4 selectable interrupt priority levels  24-bit System timer (Sys Tick): System timer for OS task management Multi-Function Serial Interface (Max 8channels)  128 bytes with Tx/Rx FIFO in all channels (The number of Bit Band Operation FIFO steps varies depending on the settings of the communication mode or bit length.) Compatible with Cortex-M3 bit band operation.  The operation mode of each channel can be selected from On-Chip Memory one of the following.  UART  CSIO (CSIO is known to many customers as SPI) 2 I C  Flash memory  Up to 512 K+48 Kbytes bank  upper bank : 512 Kbytes(64 Kbytes x 8) • lower bank : 48 Kbytes(8K bytes x 6)  Read cycle: 0 wait-cycle  Security function for code protection  Dual  UART  Full duplex double buffer can be enabled or disabled.  Built-in dedicated baud rate generator  External clock available as a serial clock  Various error detection functions (parity errors, framing errors, and overrun errors)  Parity  SRAM The on-chip SRAM of this series has one independent SRAM .  Up to SRAM: 60 K+4 Kbytes  4Kbytes: can retain value in Deep standby Mode  CSIO (also known as SPI)  Full duplex double buffer dedicated baud rate generator  Overrun error detection function  Serial chip select function (ch1 and ch3 only)  Data length: 5 to 16 bits  Built-in USB Interface USB interface is composed of Device and Host PLL for USB is built-in, USB clock can be generated by multiplication of Main clock.  I2 C  USB Device 2.0 Full-Speed supported 6 EndPoint supported EndPoint 0 is control transfer EndPoint 1, 2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer EndPoint 1 to 5 comprise Double Buffer The size of each EndPoint is according to the follows EndPoint 0, 2 to 5 : 64 bytes EndPoint 1 : 256 bytes  Standard-mode (Max: 100 kbps) supported / Fast-mode (Max 400 kbps) supported.  USB  Max • • • • • • • Cypress Semiconductor Corporation Document Number: 001-99224 Rev.** •  I2 S 198 Champion Court  Using 2 CSIO (ch.5, ch.6) and I S clock generator  Supports two transfer protocol 2 • IS • MSB-justified  Master mode only • San Jose, CA 95134-1709 • 408-943-2600 Revised August 31, 2015 PRELIMINARY S6E1B3 Series Descriptor System Data Transfer Controller (DSTC) (64 Channels) Multi-Function Timer  The DSTC can transfer data at high-speed without going via  16-bit free-run timer × 3 channels the CPU. The DSTC adopts the Descriptor  system and, following the specified contents of the Descriptor that has already been constructed on the  memory, can access directly the memory / peripheral device and performs the data transfer operation.  It supports the software activation, the hardware activation, and the chain activation functions The Multi-function Timer consists of the following blocks.  Input capture × 4 channels  Output compare × 6 channels  ADC start compare × 6 channel  Waveform generator × 3 channels  16-bit PPG timer × 3 channels A/D Converter (Max: 24 Channels) IGBT mode is contained. The following function can be used to achieve the motor control.  12-bit A/D Converter  PWM signal output function  Successive approximation type  Conversion time: 2.0 μs @ 2.7 V to 3.6 V  Priority conversion available (2 levels of priority)  Scan conversion mode  Built-in FIFO for conversion data storage (for scan conversion: 16 steps, for priority conversion: 4 steps) Base Timer (Max: 8 Channels) The operation mode of each channel can be selected from one of the following.  16-bit PWM timer  16-bit PPG timer  16/32-bit reload timer  16/32-bit PWC timer General-Purpose I/O Port  DC chopper waveform output function  Dead time function  Input capture function  ADC start function  DTIF (motor emergency stop) interrupt function Real-Time Clock (RTC with Vbat) The Real-time Clock counts year/month/day/hour/minute/second/day of the week from year 01 to year 99.  The RTC can generate an interrupt at a specific time (year/month/day/hour/minute/second/day of the week) and can also generate an interrupt in a specific year, in a specific month, on a specific day, at a specific hour or at a specific minute. This series can use its pin as a general-purpose I/O port when it is not used for an external bus or a peripheral function. All ports can be set to fast general-purpose I/O ports or slow general-purpose I/O ports. In addition, this series has a port relocate function that can set to which I/O port a peripheral function can be allocated.  It has a timer interrupt function generating an interrupt upon  All ports are Fast GPIO which can be accessed by 1cycle Watch Counter  Capable of controlling the pull-up of each pin The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock.  Capable of reading pin level directly  Port relocate function  Up to 102 fast general-purpose I/O ports @120-pin package  Certain ports are 5 V tolerant. See 4. List of Pin Functions and 5. I/O Circuit Type for the corresponding pins. a specific time or at specific intervals.  It can keep counting while rewriting the time.  It can count leap years automatically. Interval timer: up to 64 s (sub clock: 32.768 kHz) External Interrupt Controller Unit  Up to 24 external interrupt input pins  Non-maskable interrupt (NMI) input pin: 1 Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. The operation mode of each timer channel can be selected from one of the following. Watchdog Timer (2 Channels)  Free-running mode This series consists of two different watchdogs, hardware watchdog and software watchdog.  Periodic mode (= Reload mode)  One-shot mode Document Number: 001-99224 Rev.** The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value. The hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the hardware watchdog is Page 2 of 115 PRELIMINARY active in any low-power consumption modes except RTC, Stop, Deep standby RTC and Deep standby Stop mode. CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage.  CCITT CRC16 and IEEE-802.3 CRC32 are supported.  CCITT CRC16 Generator Polynomial: 0x1021 CRC32 Generator Polynomial: 0x04C11DB7  IEEE-802.3 HDMI-CEC/Remote Control Receiver (Up to 2 Channels)  HDMI-CEC transmitter  Header block automatic transmission by judging Signal free  Generating status interrupt by detecting Arbitration lost  Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data  Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)  HDMI-CEC receiver Clock Supervisor (CSV) The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator.  If an external clock failure (clock stop) is detected, a reset is asserted.  If an external frequency anomaly is detected, an interrupt or a reset is asserted. Low-Voltage Detector (LVD) This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset.  LVDR: monitor VCC and auto-reset operation  LVD1: monitor VCC and error reporting via an interrupt  LVD2: selectable to monitor VCC or LVDI and error reporting via an interrupt Low Power Consumption Mode This series has six low power consumption modes.  Sleep  Automatic  Timer  Line  RTC ACK reply function available error detection function available  Remote control receiver 4 bytes reception buffer  Repeat code detection function available S6E1B3 Series  Stop  Deep standby RTC (selectable between keeping the value of RAM and not) Smart Card Interface  Compliant with ISO7816-3 specification  Deep standby Stop (selectable between keeping the value of RAM and not)  Card Reader only/B class card only Peripheral Clock Gating  Available protocols The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used.  Transmitter: 8E2, 8O2, 8N2 8E1, 8O1, 8N2, 8N1, 9N1  Inverse mode  Receiver:  TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes) Clock and Reset  Clocks A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL).  Main clock: 4 MHz to 40 MHz  Sub clock: 32.768 kHz  Built-in high-speed CR clock: 4 MHz  Built-in low-speed CR clock : 100 kHz  Main PLL clock  Resets  Reset request from the INITX pin  Power on reset  Software reset  Watchdog timer reset  Low-voltage detection reset  Clock supervisor reset Document Number: 001-99224 Rev.** VBAT The consumption power during the RTC operation can be reduced by supplying the power supply independent VBAT pin. RTC (calendar circuit) / 32 kHz oscillation circuit. The following circuit can also be used.  RTC  32 kHz oscillation circuit  Power-on circuit  Back up register: 32 bytes  Port circuit Debug  Serial Wire Debug Port (SW-DP)  Micro Trace Buffer (MTB) Unique ID A 41-bit unique value of the device has been set. Page 3 of 115 PRELIMINARY S6E1B3 Series Power Supply  Wide voltage range: VCC = 1.65V to 3.6 V VCC = 3.0V to 3.6V (when USB is used)  Power supply for VBAT: VBAT = 1.65 V to 3.6 V Document Number: 001-99224 Rev.** Page 4 of 115 PRELIMINARY S6E1B3 Series Table of Contents Features................................................................................................................................................................................... 1 1. Product Lineup ............................................................................................................................................................... 7 2. Packages......................................................................................................................................................................... 8 3. Pin Assignment .............................................................................................................................................................. 9 4. List of Pin Functions .................................................................................................................................................... 12 5. I/O Circuit Type ............................................................................................................................................................. 35 6. Handling Precautions .................................................................................................................................................. 40 6.1 Precautions for Product Design ................................................................................................................................... 40 6.2 Precautions for Package Mounting .............................................................................................................................. 41 6.3 Precautions for Use Environment ................................................................................................................................ 43 7. Handling Devices ......................................................................................................................................................... 44 8. Block Diagram .............................................................................................................................................................. 47 9. Memory Map ................................................................................................................................................................. 48 10. Pin Status in Each CPU State ...................................................................................................................................... 51 11. Electrical Characteristics ............................................................................................................................................ 58 11.1 Absolute Maximum Ratings ......................................................................................................................................... 58 11.2 Recommended Operating Conditions.......................................................................................................................... 59 11.3 DC Characteristics....................................................................................................................................................... 60 11.3.1 Current Rating .............................................................................................................................................................. 60 11.3.2 Pin Characteristics ....................................................................................................................................................... 65 11.4 AC Characteristics ....................................................................................................................................................... 66 11.4.1 Main Clock Input Characteristics .................................................................................................................................. 66 11.4.2 Sub Clock Input Characteristics ................................................................................................................................... 67 11.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 68 11.4.4 Operating Conditions of Main PLL (In the Case of Using the Main Clock as the Input Clock of the PLL) .................... 69 11.4.5 Operating Conditions of Main PLL (In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL) ........................................................................................................................................ 69 11.4.6 Reset Input Characteristics .......................................................................................................................................... 70 11.4.7 Power-on Reset Timing................................................................................................................................................ 70 11.4.8 Base Timer Input Timing .............................................................................................................................................. 71 11.4.9 CSIO/SPI/UART Timing ............................................................................................................................................... 72 11.4.10 External Input Timing ................................................................................................................................................ 89 2 11.4.11 I C Timing ................................................................................................................................................................. 90 2 11.4.12 I S Timing ................................................................................................................................................................. 91 11.4.13 Smart Card Interface Characteristics ........................................................................................................................ 92 11.4.14 SW-DP Timing .......................................................................................................................................................... 93 11.5 12-bit A/D Converter .................................................................................................................................................... 94 11.6 USB Characteristics .................................................................................................................................................... 97 11.7 Low-Voltage Detection Characteristics ...................................................................................................................... 102 11.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 102 11.7.2 Low-Voltage Detection Interrupt ................................................................................................................................. 103 11.7.3 Low-Voltage Detection Interrupt 2 .............................................................................................................................. 104 11.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 105 11.9 Return Time from Low-Power Consumption Mode .................................................................................................... 106 11.9.1 Return Factor: Interrupt/WKUP .................................................................................................................................. 106 11.9.2 Return Factor: Reset .................................................................................................................................................. 108 Document Number: 001-99224 Rev.** Page 5 of 115 PRELIMINARY S6E1B3 Series 12. Ordering Information ................................................................................................................................................. 110 13. Package Dimensions ................................................................................................................................................. 111 Document History ............................................................................................................................................................... 114 Sales, Solutions, and Legal Information........................................................................................................................... 115 Document Number: 001-99224 Rev.** Page 6 of 115 PRELIMINARY S6E1B3 Series 1. Product Lineup Memory Size Product Name Upper Bank On-chip Flash memory Lower Bank On-chip SRAM S6E1B34E/F/G 256 Kbytes 48 Kbytes 32 Kbytes S6E1B36E/F/G 512 Kbytes 48 Kbytes 64 Kbytes Function S6E1B34E0A S6E1B36E0A 80 Product Name Pin count CPU Multi-function Timer Frequency Power supply voltage range USB 2.0 (Device/Host) DSTC Multi-function Serial Interface 2 2 (UART/CSIO(SPI)/I C/I S) Base Timer (PWC/Reload timer/PWM/PPG) A/D activation compare Input capture Free-run timer Output compare Waveform generator PPG Dual Timer S6E1B34F0A S6E1B36F0A 100 Cortex-M0+ 40.8 MHz 1.65 V to 3.6 V 1 unit 64ch 8ch (Max) with 128 bytes FIFO 2 I S: ch.5, ch.6 S6E1B34G0A S6E1B36G0A 120 8ch (Max) 6ch 4ch 3ch 6ch 3ch 3ch HDMI-CEC/ Remote Control Receiver 1 unit 1 unit 2ch (max) Smart Card Interface 2 units Real-time Clock 1 unit (with battery power) Watch Counter 1 unit CRC Accelerator Yes Watchdog timer 1ch (SW) + 1ch (HW) External Interrupt 24 pins (Max), NMI × 1 I/O port 65 pins (Max) 82 pins (Max) 102 pins (Max) 12-bit A/D converter 16ch (1 unit) 23ch (1 unit) 24ch (1 unit) CSV (Clock Supervisor) Yes LVD (Low-voltage Detection) 2ch High-speed 4 MHz Built-in CR Low-speed 100 kHz Debug Function SW-DP Unique ID Yes Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See "11. Electrical Characteristics 11.4 AC Characteristics 11.4.3 Built-in CR Oscillation Characteristics" for accuracy of built-in CR. Document Number: 001-99224 Rev.** Page 7 of 115 PRELIMINARY S6E1B3 Series 2. Packages Product Name Package LQFP: FPT-80P-M21 (0.50 mm pitch) LQFP: FPT-100P-M20 (0.50 mm pitch) LQFP: FPT-120P-M21 (0.50 mm pitch) : Available S6E1B34E/S6E1B36E S6E1B34F/S6E1B36F S6E1B34G/S6E1B36G  - - -  - - -  Note: − See "13. Package Dimensions" for detailed information on each package. Document Number: 001-99224 Rev.** Page 8 of 115 PRELIMINARY S6E1B3 Series 3. Pin Assignment FPT-80P-M21 61 P00/SOT3_2/INT14_1 62 P01/SWCLK 63 P02/SIN3_2/TIOB5_0 64 P03/SWDIO 65 P04/SCK3_2/INT06_2 66 P07/AN22/ADTG_0/SCK4_2/INT23_1/SOT4_0 67 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0/CEC0_1 68 P0B/INT18_0/UDM0 69 P0C/INT19_0/UDP0 70 P0D/RTS4_0/TIOA3_2/INT20_0/IC0_VPEN_0 71 P0E/CTS4_0/TIOB3_2/INT21_0/IC0_VCC_0 72 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 73 P63/MI2SWS5_0/INT03_0/TIOB6_1/IC0_DATA_0 74 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/TIOA6_1/IC0_RST_0 75 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2 76 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 77 P80/SIN7_2/INT20_1 78 P81/SOT7_2/INT11_0 79 P82/SCK7_2 80 VSS (TOP VIEW) VCC 1 60 P21/AN18/SIN0_0/INT06_1/WKUP2 P50/INT00_0/SIN3_1 2 59 P22/AN17/SOT0_0/TIOB7_1 P51/INT01_0/SOT3_1 3 58 P23/AN16/SCK0_0/TIOA7_1/RTO00_1 P52/INT02_0/SCK3_1 4 57 P1B/AN11/SOT4_1/IC02_1/INT20_2 P53/SIN6_0/TIOA1_2/INT07_2 5 P54/SOT6_0/TIOB1_2/INT18_1 6 P55/SCK6_0/ADTG_1/INT19_1 7 P56/INT08_2/MI2SMCK6_1/WKUP9/CEC1_1 8 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/WKUP4 9 P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2 10 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2 11 P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6 12 49 P17/AN07/SIN2_2/INT04_1 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0 13 48 P16/AN06/SCK0_1/INT15_0 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0 14 47 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0 56 P1A/AN10/SIN4_1/IC01_1/INT05_1 LQFP - 100 55 P19/AN09/SCK2_2/IC00_1 ` 54 P18/AN08/SOT2_2 53 AVRH 52 AVRL 51 AVSS LQFP - 80 50 AVCC P3B/RTO01_0/TIOA1_1/IC1_DATA_0 15 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0 46 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2 16 45 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0 17 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/WKUP8 44 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2 18 43 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1/IC1_CLK_0 19 42 P10/AN00/IC1_CLK_1/CTS1_1 VSS 40 PE3/X1 39 PE2/X0 38 35 P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6 MD0 37 34 P4C/TIOB2_0/SOT7_1/INT12_0/CEC0_0 PE0/MD1 36 33 P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/IGTRG0_0 P4A/TIOB0_0/SCS70_1/INT21_1 32 VBAT 31 P49/VWAKEUP 30 P48/VREGCTL 29 P47/X1A 28 P46/X0A 27 26 INITX VCC 25 VSS 24 23 C P45/LVDI/TIOA5_0/IC0_CIN_1 22 41 VCC P44/TIOA4_0/INT10_0/RTS1_2/IC0_DATA_1 21 VSS 20 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99224 Rev.** Page 9 of 115 PRELIMINARY S6E1B3 Series FPT-100P-M20 P82/SCK7_2 P81/SOT7_2/INT11_0 P80/SIN7_2/INT20_1 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/TIOA6_1/IC0_RST_0 P63/MI2SWS5_0/INT03_0/TIOB6_1/IC0_DATA_0 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 P0E/CTS4_0/TIOB3_2/INT21_0/IC0_VCC_0 P0D/RTS4_0/TIOA3_2/INT20_0/IC0_VPEN_0 P0C/INT19_0/UDP0 P0B/INT18_0/UDM0 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0/CEC0_1 P09/TIOB0_2/RTS4_2/INT17_0 P08/AN23/TIOA0_2/CTS4_2/INT16_0 P07/AN22/ADTG_0/SCK4_2/INT23_1/SOT4_0 P06/AN21/TIOB5_2/SOT4_2/INT01_1 P05/AN20/TIOA5_2/SIN4_2/INT00_1/WKUP10 P04/SCK3_2/INT06_2 P03/SWDIO P02/SIN3_2/TIOB5_0 P01/SWCLK P00/SOT3_2/INT14_1 VCC 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 100 VSS (TOP VIEW) VCC 1 75 VSS P50/INT00_0/SIN3_1 2 74 P20/AN19/INT05_0/CROUT_0 P51/INT01_0/SOT3_1 3 73 P21/AN18/SIN0_0/INT06_1/WKUP2 72 P22/AN17/SOT0_0/TIOB7_1 P52/INT02_0/SCK3_1 4 P53/SIN6_0/TIOA1_2/INT07_2 5 P54/SOT6_0/TIOB1_2/INT18_1 6 P55/SCK6_0/ADTG_1/INT19_1 7 69 P1D/AN13/CTS4_1/DTTI0X_1/INT22_2 P56/INT08_2/MI2SMCK6_1/WKUP9/CEC1_1 8 68 P1C/AN12/SCK4_1/IC03_1/INT21_2 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/WKUP4 9 67 P1B/AN11/SOT4_1/IC02_1/INT20_2 71 P23/AN16/SCK0_0/TIOA7_1/RTO00_1 LQFP - 100 70 P1E/AN14/RTS4_1/ADTG_5/FRCK0_1/INT23_2 P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2 10 66 P1A/AN10/SIN4_1/IC01_1/INT05_1 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2 11 65 P19/AN09/SCK2_2/IC00_1 P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6 12 64 P18/AN08/SOT2_2 LQFP - 100 P34/SCS61_1/FRCK0_0/TIOB4_1 13 63 AVRH P35/SCS62_1/IC03_0/TIOB5_1/INT08_1 14 62 AVRL P36/IC02_0/SIN5_2/INT09_1/WKUP11 15 61 AVSS P37/IC01_0/SOT5_2/INT10_1 16 60 AVCC P38/IC00_0/SCK5_2/INT11_1 17 59 P17/AN07/SIN2_2/INT04_1 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0 18 58 P16/AN06/SCK0_1/INT15_0 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0 19 57 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0 P3B/RTO01_0/TIOA1_1/IC1_DATA_0 20 56 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0 21 55 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0 22 54 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/WKUP8 23 53 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1/IC1_CLK_0 24 52 P10/AN00/IC1_CLK_1/CTS1_1 VSS 50 PE3/X1 49 PE2/X0 48 45 P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6 MD0 47 44 P4C/TIOB2_0/SOT7_1/INT12_0/CEC0_0 PE0/MD1 46 43 P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/IGTRG0_0 P4A/TIOB0_0/SCS70_1/INT21_1 42 VBAT 41 P49/VWAKEUP 40 P48/VREGCTL 39 P47/X1A 38 36 INITX P46/X0A 37 VCC 35 VSS 34 33 C P45/LVDI/TIOA5_0/IC0_CIN_1 32 P44/TIOA4_0/INT10_0/RTS1_2/IC0_DATA_1 31 30 P43/TIOA3_0/INT09_0/ADTG_7/CTS1_2/IC0_RST_1 P42/TIOA2_0/INT08_0/SCK1_2/IC0_VPEN_1 29 P41/TIOA1_0/INT13_1/SOT1_2/IC0_VCC_1 28 VCC 26 51 VCC P40/TIOA0_0/INT12_1/SIN1_2/IC0_CLK_1 27 VSS 25 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99224 Rev.** Page 10 of 115 PRELIMINARY S6E1B3 Series FPT-120P-M21 P07/AN22/ADTG_0/SCK4_2/INT23_1/SOT4_0 P06/AN21/TIOB5_2/SOT4_2/INT01_1 P05/AN20/TIOA5_2/SIN4_2/INT00_1/WKUP10 P04/SCK3_2/INT06_2 P03/SWDIO P02/SIN3_2/TIOB5_0 P01/SWCLK P00/SOT3_2/INT14_1 VCC 99 98 97 96 95 94 93 92 91 100 P08/AN23/TIOA0_2/CTS4_2/INT16_0 101 P09/TIOB0_2/RTS4_2/INT17_0 102 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0/CEC0_1 103 P0B/INT18_0/UDM0 104 P0C/INT19_0/UDP0 105 P0D/RTS4_0/TIOA3_2/INT20_0/IC0_VPEN_0 106 P0E/CTS4_0/TIOB3_2/INT21_0/IC0_VCC_0 107 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 108 P68/SCK3_0/TIOB7_2/INT12_2 109 P67/SOT3_0/TIOA7_2/INT22_0 110 P66/SIN3_0/INT11_2 111 P65/SCK5_1/TIOB7_0/INT23_0 112 P64/SOT5_1/TIOA7_0/INT10_2 113 P63/SIN5_1/MI2SWS5_0/INT03_0/TIOB6_1/IC0_DATA_0 114 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/TIOA6_1/IC0_RST_0 115 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2 116 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 117 P80/SIN7_2/INT20_1 118 P81/SOT7_2/INT11_0 119 P82/SCK7_2 120 VSS (TOP VIEW) VCC 1 90 VSS P50/INT00_0/SIN3_1 2 89 P20/AN19/INT05_0/CROUT_0 P51/INT01_0/SOT3_1 3 88 P21/AN18/SIN0_0/INT06_1/WKUP2 P52/INT02_0/SCK3_1 4 87 P22/AN17/SOT0_0/TIOB7_1 P53/SIN6_0/TIOA1_2/INT07_2 5 86 P23/AN16/SCK0_0/TIOA7_1/RTO00_1 P54/SOT6_0/TIOB1_2/INT18_1 6 85 P24/SIN2_1/RTO01_1/INT17_1 P55/SCK6_0/ADTG_1/INT19_1 7 84 P25/SOT2_1/RTO02_1 P56/SIN1_0/INT08_2/MI2SMCK6_1/WKUP9/CEC1_1 8 83 P26/SCK2_1/RTO03_1 P57/SOT1_0 9 82 P27/AN15/RTO04_1/TIOA6_2/INT02_2 P58/SCK1_0 10 81 P28/ADTG_4/RTO05_1/TIOB6_2 P59/SIN7_0/INT16_1 11 80 P1E/AN14/RTS4_1/ADTG_5/FRCK0_1/INT23_2 P5A/SOT7_0/INT16_2 12 79 P1D/AN13/CTS4_1/DTTI0X_1/INT22_2 P5B/SCK7_0/INT17_2 13 78 P1C/AN12/SCK4_1/IC03_1/INT21_2 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/WKUP4 14 77 P1B/AN11/SOT4_1/IC02_1/INT20_2 P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2 15 76 P1A/AN10/SIN4_1/IC01_1/INT05_1 LQFP - 120 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2 16 75 P19/AN09/SCK2_2/IC00_1 P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6 17 74 P18/AN08/SOT2_2 P34/SCS61_1/FRCK0_0/TIOB4_1 18 73 AVRH P35/SCS62_1/IC03_0/TIOB5_1/INT08_1 19 72 AVRL P36/IC02_0/SIN5_2/INT09_1/WKUP11 20 71 AVSS P37/IC01_0/SOT5_2/INT10_1 21 70 AVCC P38/IC00_0/SCK5_2/INT11_1 22 69 P17/AN07/SIN2_2/INT04_1 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0 23 68 P16/AN06/SCK0_1/INT15_0 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0 24 67 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0 P3B/RTO01_0/TIOA1_1/IC1_DATA_0 25 66 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0 26 65 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 C VSS VCC INITX P46/X0A P47/X1A P48/VREGCTL P49/VWAKEUP VBAT P4A/TIOB0_0/SCS70_1/INT21_1 P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/IGTRG0_0 P4C/TIOB2_0/SOT7_1/INT12_0/CEC0_0 P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6 P70/SCS71_1/TIOA4_2 P71/SCS72_1/TIOB4_2/INT13_2 P72/SIN2_0/TIOA6_0/INT14_2 P73/SOT2_0/TIOB6_0/INT15_2 P74/SCK2_0 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS VCC P45/LVDI/TIOA5_0/IC0_CIN_1 VCC P44/TIOA4_0/INT10_0/RTS1_2/IC0_DATA_1 36 61 35 30 P43/TIOA3_0/INT09_0/ADTG_7/CTS1_2/IC0_RST_1 P10/AN00/IC1_CLK_1/CTS1_1 VSS 34 62 P42/TIOA2_0/INT08_0/SCK1_2/IC0_VPEN_1 29 33 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1/IC1_CLK_0 32 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2 63 31 64 28 P40/TIOA0_0/INT12_1/SIN1_2/IC0_CLK_1 27 P41/TIOA1_0/INT13_1/SOT1_2/IC0_VCC_1 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/WKUP8 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99224 Rev.** Page 11 of 115 PRELIMINARY S6E1B3 Series 4. List of Pin Functions List of Pin Numbers The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Pin No. LQFP-120 LQFP-100 LQFP-80 1 1 1 Pin Name I/O Circuit Type VCC Pin State Type - P50 2 2 2 SIN3_1 I J I J I J I J I J I J I O F I F I F J F J INT00_0 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 - - 9 - - 10 - - 11 - - 12 - - 8 Document Number: 001-99224 Rev.** P51 SOT3_1 INT01_0 P52 SCK3_1 INT02_0 P53 SIN6_0 TIOA1_2 INT07_2 P54 SOT6_0 TIOB1_2 INT18_1 P55 SCK6_0 ADTG_1 INT19_1 P56 MI2SMCK6_1 CEC1_1 INT08_2 WKUP9 SIN1_0 P57 SOT1_0 P58 SCK1_0 P59 SIN7_0 INT16_1 P5A SOT7_0 INT16_2 Page 12 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 13 - - 14 9 9 15 10 10 16 11 11 17 12 12 18 13 - 19 14 - 20 15 - 21 16 - 22 17 - Document Number: 001-99224 Rev.** Pin Name P5B SCK7_0 INT17_2 P30 TIOB0_1 SCS60_1 MI2SWS6_1 INT03_2 WKUP4 P31 TIOB1_1 SCK6_1 MI2SCK6_1 INT04_2 P32 TIOB2_1 SOT6_1 MI2SDO6_1 INT05_2 P33 TIOB3_1 SIN6_1 MI2SDI6_1 INT04_0 ADTG_6 P34 SCS61_1 FRCK0_0 TIOB4_1 P35 SCS62_1 IC03_0 TIOB5_1 INT08_1 P36 IC02_0 SIN5_2 INT09_1 WKUP11 P37 IC01_0 SOT5_2 INT10_1 P38 IC00_0 SCK5_2 INT11_1 S6E1B3 Series I/O Circuit Type Pin State Type F J I N I J I J I J I I I J I N I J F J Page 13 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 23 18 13 24 19 14 25 20 15 26 21 16 27 22 17 28 23 18 29 24 19 30 31 25 26 20 - 32 27 - 33 28 - Document Number: 001-99224 Rev.** Pin Name P39 DTTI0X_0 TIOB4_0 ADTG_2 INT06_0 P3A RTO00_0 TIOA0_1 RTCCO_2 SUBOUT_2 IC1_CIN_0 INT07_0 P3B RTO01_0 TIOA1_1 IC1_DATA_0 P3C RTO02_0 TIOA2_1 INT18_2 IC1_RST_0 P3D RTO03_0 TIOA3_1 IC1_VPEN_0 P3E RTO04_0 TIOA4_1 IC1_VCC_0 INT19_2 WKUP8 P3F RTO05_0 TIOA5_1 IC1_CLK_0 VSS VCC P40 TIOA0_0 IC0_CLK_1 INT12_1 SIN1_2 P41 TIOA1_0 SOT1_2 IC0_VCC_1 INT13_1 S6E1B3 Series I/O Circuit Type Pin State Type I J I J I I I J I I I N I I - - F J F J Page 14 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 34 29 - 35 30 - 36 31 21 37 32 22 38 39 40 41 33 34 35 36 23 24 25 26 42 37 27 43 38 28 44 39 29 45 40 30 46 41 31 47 42 32 48 43 33 49 44 34 50 45 35 Document Number: 001-99224 Rev.** Pin Name P42 TIOA2_0 SCK1_2 IC0_VPEN_1 INT08_0 P43 TIOA3_0 CTS1_2 ADTG_7 IC0_RST_1 INT09_0 P44 TIOA4_0 IC0_DATA_1 INT10_0 RTS1_2 P45 TIOA5_0 IC0_CIN_1 LVDI C VSS VCC INITX P46 X0A P47 X1A P48 VREGCTL P49 VWAKEUP VBAT P4A TIOB0_0 SCS70_1 INT21_1 P4B TIOB1_0 SIN7_1 INT22_1 WKUP7 IGTRG0_0 P4C TIOB2_0 SOT7_1 CEC0_0 INT12_0 P4D TIOB3_0 SCK7_1 INT13_0 WKUP6 S6E1B3 Series I/O Circuit Type Pin State Type F J F J I J I I B C D E E F I I I I - - I J I N I R I N Page 15 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 51 - - 52 - - 53 - - 54 - - 55 - - 56 46 36 57 47 37 58 48 38 59 49 39 60 50 40 61 51 41 62 52 42 63 53 43 64 54 44 65 55 45 Document Number: 001-99224 Rev.** Pin Name S6E1B3 Series I/O Circuit Type Pin State Type F I F J F J F J F I C D J M A A A B VSS - - VCC - - H K H P H K H K P70 TIOA4_2 SCS71_1 P71 TIOB4_2 SCS72_1 INT13_2 P72 SIN2_0 TIOA6_0 INT14_2 P73 SOT2_0 TIOB6_0 INT15_2 P74 SCK2_0 PE0 MD1 MD0 PE2 X0 PE3 X1 P10 IC1_CLK_1 CTS1_1 AN00 P11 IC1_VCC_1 SIN1_1 FRCK0_2 INT02_1 WKUP1 AN01 P12 IC1_VPEN_1 SOT1_1 IC00_2 AN02 P13 IC1_RST_1 SCK1_1 RTCCO_1 IC01_2 SUBOUT_1 AN03 Page 16 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 66 56 46 67 57 47 68 58 48 69 59 49 70 71 72 73 60 61 62 63 50 51 52 53 74 64 54 75 65 55 76 66 56 77 67 57 78 68 - 79 69 - Document Number: 001-99224 Rev.** Pin Name P14 IC1_DATA_1 RTS1_1 SIN0_1 IC02_2 INT03_1 AN04 P15 IC1_CIN_1 SOT0_1 IC03_2 INT14_0 AN05 P16 SCK0_1 INT15_0 AN06 P17 SIN2_2 INT04_1 AN07 AVCC AVSS AVRL AVRH P18 SOT2_2 AN08 P19 SCK2_2 IC00_1 AN09 P1A SIN4_1 IC01_1 INT05_1 AN10 P1B SOT4_1 IC02_1 INT20_2 AN11 P1C SCK4_1 IC03_1 INT21_2 AN12 P1D CTS4_1 DTTI0X_1 INT22_2 AN13 S6E1B3 Series I/O Circuit Type Pin State Type H L H L H L H L - - H K H K H L H L H L H L Page 17 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 80 70 - 81 - - 82 - - 83 - - 84 - - 85 - - 86 71 58 87 72 59 88 73 60 Document Number: 001-99224 Rev.** Pin Name P1E RTS4_1 FRCK0_1 ADTG_5 INT23_2 AN14 P28 RTO05_1 TIOB6_2 ADTG_4 P27 RTO04_1 TIOA6_2 INT02_2 AN15 P26 SCK2_1 RTO03_1 P25 SOT2_1 RTO02_1 P24 SIN2_1 RTO01_1 INT17_1 P23 SCK0_0 TIOA7_1 RTO00_1 AN16 P22 SOT0_0 TIOB7_1 AN17 P21 SIN0_0 INT06_1 WKUP2 AN18 S6E1B3 Series I/O Circuit Type Pin State Type H L F I G L F I F I F J H K H K H P Page 18 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 89 74 - 90 91 75 76 - 92 77 61 93 78 62 94 79 63 95 80 64 96 81 65 97 82 - 98 83 - 99 84 66 100 85 - 101 86 - Document Number: 001-99224 Rev.** Pin Name P20 INT05_0 CROUT_0 AN19 VSS VCC P00 SOT3_2 INT14_1 P01 SWCLK P02 SIN3_2 TIOB5_0 P03 SWDIO P04 SCK3_2 INT06_2 P05 TIOA5_2 SIN4_2 INT00_1 WKUP10 AN20 P06 TIOB5_2 SOT4_2 INT01_1 AN21 P07 SCK4_2 ADTG_0 INT23_1 AN22 SOT4_0 P08 TIOA0_2 CTS4_2 INT16_0 AN23 P09 TIOB0_2 RTS4_2 INT17_0 S6E1B3 Series I/O Circuit Type Pin State Type H L - - I J I H I I I H I J H P H L H L H L I J Page 19 of 115 PRELIMINARY Pin No. LQFP-120 LQFP-100 LQFP-80 102 87 67 103 88 68 104 89 69 105 90 70 106 91 71 107 92 72 108 - - 109 - - 110 - - 111 - - Document Number: 001-99224 Rev.** Pin Name P0A SIN4_0 INT00_2 WKUP5 IC0_CIN_0 UHCONX0 CEC0_1 P0B INT18_0 UDM0 P0C INT19_0 UDP0 P0D RTS4_0 TIOA3_2 INT20_0 IC0_VPEN_0 P0E CTS4_0 TIOB3_2 INT21_0 IC0_VCC_0 P0F CROUT_1 RTCCO_0 SUBOUT_0 MI2SMCK5_0 NMIX WKUP0 IC0_CLK_0 SCK4_0 P68 SCK3_0 TIOB7_2 INT12_2 P67 SOT3_0 TIOA7_2 INT22_0 P66 SIN3_0 INT11_2 P65 SCK5_1 TIOB7_0 INT23_0 S6E1B3 Series I/O Circuit Type Pin State Type I O K Q K Q I J I J I G F J F J F J F J Page 20 of 115 PRELIMINARY Pin No. LQFP-120 112 LQFP-100 LQFP-80 - - 93 73 - - 114 94 74 115 95 75 116 96 76 117 97 77 118 98 78 119 99 79 120 100 80 113 Pin Name P64 SOT5_1 TIOA7_0 INT10_2 P63 MI2SWS5_0 INT03_0 TIOB6_1 IC0_DATA_0 SIN5_1 P62 SCK5_0 MI2SCK5_0 ADTG_3 INT07_1 TIOA6_1 IC0_RST_0 P61 SOT5_0 MI2SDO5_0 TIOB2_2 DTTI0X_2 P60 SIN5_0 MI2SDI5_0 TIOA2_2 CEC1_0 INT15_1 WKUP3 IGTRG0_1 P80 SIN7_2 INT20_1 C0 P81 SOT7_2 INT11_0 C1 P82 SCK7_2 VSS S6E1B3 Series I/O Circuit Type Pin State Type F J I J I J I I I O I J I J I I - - *: 5 V tolerant I/O Document Number: 001-99224 Rev.** Page 21 of 115 PRELIMINARY S6E1B3 Series List of Pin Functions The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Pin Function LQFP-120 99 7 23 114 81 80 17 35 62 Pin No. LQFP-100 84 7 18 94 70 12 30 52 LQFP-80 66 7 13 74 12 42 AN01 63 53 43 AN02 64 54 44 AN03 65 55 45 AN04 66 56 46 AN05 67 57 47 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 68 69 74 75 76 77 78 79 80 82 86 87 88 89 97 98 99 100 32 24 100 47 14 101 58 59 64 65 66 67 68 69 70 71 72 73 74 82 83 84 85 27 19 85 42 9 86 48 49 54 55 56 57 58 59 60 66 14 32 9 - Pin Name ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 AN00 ADC Base Timer 0 Document Number: 001-99224 Rev.** Function Description A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Page 22 of 115 PRELIMINARY Pin Function Base Timer 1 Pin Name TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 Base Timer 7 Debugger Function Description Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_0 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOA4_2 TIOB4_0 TIOB4_1 TIOB4_2 TIOA5_0 TIOA5_1 TIOA5_2 TIOB5_0 TIOB5_1 TIOB5_2 TIOA6_0 TIOA6_1 TIOA6_2 TIOB6_0 TIOB6_1 TIOB6_2 TIOA7_0 TIOA7_1 TIOA7_2 TIOB7_0 TIOB7_1 TIOB7_2 SWCLK SWDIO Document Number: 001-99224 Rev.** Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin Base timer ch.6 TIOB pin Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin Serial wire debug interface clock input pin Serial wire debug interface data input / output pin S6E1B3 Series LQFP-120 33 25 5 48 15 6 34 Pin No. LQFP-100 28 20 5 43 10 6 29 LQFP-80 15 5 33 10 6 - 26 21 16 116 96 76 49 16 115 35 27 105 50 17 106 36 28 51 23 18 52 37 29 97 94 19 98 53 114 82 54 113 81 112 86 109 111 87 108 93 44 11 95 30 22 90 45 12 91 31 23 18 13 32 24 82 79 14 83 94 93 71 72 78 34 11 75 17 70 35 12 71 21 18 13 22 19 63 74 73 58 59 62 95 80 64 Page 23 of 115 PRELIMINARY Pin Function Pin Name INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 Function Description External interrupt request 00 input pin External interrupt request 01 input pin INT02_0 LQFP-120 2 97 102 3 Pin No. LQFP-100 2 82 87 3 LQFP-80 2 67 3 98 83 - 4 4 4 63 53 43 INT02_2 82 - - INT03_0 113 93 73 66 56 46 14 9 9 17 69 15 89 76 16 23 88 96 24 114 5 34 19 8 35 20 36 21 112 118 22 110 49 32 108 50 33 52 67 92 53 12 59 10 74 66 11 18 73 81 19 94 5 29 14 8 30 15 31 16 98 17 44 27 45 28 57 77 - 12 49 10 56 11 13 60 65 14 74 5 8 21 78 34 35 47 61 - INT02_1 INT03_1 External interrupt request 02 input pin External interrupt request 03 input pin INT03_2 External Interrupt S6E1B3 Series INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_0 INT06_1 INT06_2 INT07_0 INT07_1 INT07_2 INT08_0 INT08_1 INT08_2 INT09_0 INT09_1 INT10_0 INT10_1 INT10_2 INT11_0 INT11_1 INT11_2 INT12_0 INT12_1 INT12_2 INT13_0 INT13_1 INT13_2 INT14_0 INT14_1 INT14_2 Document Number: 001-99224 Rev.** External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin Page 24 of 115 PRELIMINARY Pin Function LQFP-120 68 Pin No. LQFP-100 58 LQFP-80 48 116 54 100 11 12 101 85 13 103 6 26 104 7 28 105 117 77 106 47 78 109 48 79 111 99 80 107 96 85 86 88 6 21 89 7 23 90 97 67 91 42 68 43 69 84 70 92 76 68 6 16 69 7 18 70 77 57 71 32 33 66 72 P00 92 77 61 P01 93 78 62 P02 94 79 63 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P0F 95 96 97 98 99 100 101 102 103 104 105 106 107 80 81 82 83 84 85 86 87 88 89 90 91 92 64 65 66 67 68 69 70 71 72 Pin Name Function Description INT15_0 External Interrupt GPIO S6E1B3 Series INT15_1 INT15_2 INT16_0 INT16_1 INT16_2 INT17_0 INT17_1 INT17_2 INT18_0 INT18_1 INT18_2 INT19_0 INT19_1 INT19_2 INT20_0 INT20_1 INT20_2 INT21_0 INT21_1 INT21_2 INT22_0 INT22_1 INT22_2 INT23_0 INT23_1 INT23_2 NMIX Document Number: 001-99224 Rev.** External interrupt request 15 input pin External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin Non-Maskable Interrupt input pin General-purpose I/O port 0 Page 25 of 115 PRELIMINARY Pin Function GPIO S6E1B3 Series P10 LQFP-120 62 Pin No. LQFP-100 52 LQFP-80 42 P11 63 53 43 P12 64 54 44 P13 65 55 45 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P20 P21 P22 P23 P24 P25 P26 P27 P28 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A 66 67 68 69 74 75 76 77 78 79 80 89 88 87 86 85 84 83 82 81 14 15 16 17 18 19 20 21 22 23 24 56 57 58 59 64 65 66 67 68 69 70 74 73 72 71 9 10 11 12 13 14 15 16 17 18 19 46 47 48 49 54 55 56 57 60 59 58 9 10 11 12 13 14 P3B 25 20 15 P3C 26 21 16 P3D 27 22 17 P3E P3F 28 29 23 24 18 19 Pin Name Document Number: 001-99224 Rev.** Function Description General-purpose I/O port 1 General-purpose I/O port 2 General-purpose I/O port 3 Page 26 of 115 PRELIMINARY Pin Function Pin Name P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P50 GPIO P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B P60 P61 P62 P63 P64 P65 P66 P67 P68 P70 P71 P72 P73 P74 P80 P81 Function Description General-purpose I/O port 4 General-purpose I/O port 5 General-purpose I/O port 6 General-purpose I/O port 7 General-purpose I/O port 8 P82 PE0* PE2 PE3 Document Number: 001-99224 Rev.** General-purpose I/O port E S6E1B3 Series LQFP-120 32 33 34 35 36 37 42 43 44 45 47 48 49 50 2 Pin No. LQFP-100 27 28 29 30 31 32 37 38 39 40 42 43 44 45 2 LQFP-80 21 22 27 28 29 30 32 33 34 35 2 3 4 5 6 7 8 9 10 11 12 13 116 115 114 113 112 111 110 109 108 51 52 53 54 55 117 118 3 4 5 6 7 8 96 95 94 93 97 98 3 4 5 6 7 8 76 75 74 73 77 78 119 99 79 56 46 36 58 59 48 49 38 39 Page 27 of 115 PRELIMINARY Pin Function Multi-function Serial 0 LQFP-80 60 46 87 72 59 67 57 47 86 71 58 68 58 48 8 63 32 53 27 43 - 9 - - 64 54 44 33 28 - 10 - - 65 55 45 34 29 - 53 85 69 59 49 Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA2 when used as an I C pin (operation mode 4). 54 - - 84 - - 74 64 54 Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK2 when used as a CSIO pin (operation mode 2) and as SCL2 2 when used as an I C pin (operation mode 4). 55 - - 83 - - 75 65 55 SIN0_0 SIN0_1 Multi-function serial interface ch.0 input pin SOT0_1 (SDA0_1) SCK0_1 (SCL0_1) Multi-function Serial 2 Pin No. LQFP-100 73 56 Function Description SCK0_0 (SCL0_0) Multi-function Serial 1 LQFP-120 88 66 Pin Name SOT0_0 (SDA0_0) SIN1_0 SIN1_1 SIN1_2 SOT1_0 (SDA1_0) SOT1_1 (SDA1_1) SOT1_2 (SDA1_2) SCK1_0 (SCL1_0) SCK1_1 (SCL1_1) SCK1_2 (SCL1_2) SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) Document Number: 001-99224 Rev.** S6E1B3 Series Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA0 when used as an I C pin (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when used as a CSIO pin (operation mode 2) and as SCL0 2 when used as an I C pin (operation mode 4). Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA1 when used as an I C pin (operation mode 4). Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when used as a CSIO pin (operation mode 2) and as SCL1 2 when used as an I C pin (operation mode 4). Multi-function serial interface ch.2 input pin Page 28 of 115 PRELIMINARY Pin Function Pin Name Function Description SIN3_0 SIN3_1 Multi-function Serial 3 Multi-function Serial 4 SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) CTS4_0 CTS4_1 CTS4_2 RTS4_0 RTS4_1 RTS4_2 Document Number: 001-99224 Rev.** Multi-function serial interface ch.3 input pin S6E1B3 Series LQFP-120 110 Pin No. LQFP-100 - LQFP-80 - 2 2 2 94 79 63 Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA3 when used as an I C pin (operation mode 4). 109 - - 3 3 3 92 77 61 Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3 2 when used as an I C pin (operation mode 4). 108 - - 4 4 4 96 81 65 102 76 97 87 66 82 67 56 - Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA4 when used as an I C pin (operation mode 4). 99 84 66 77 67 57 98 83 - Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4 2 when used as an I C pin (operation mode 4). 107 92 72 78 68 - 99 84 66 106 79 100 105 80 101 91 69 85 90 70 86 71 70 - Multi-function serial interface ch.4 input pin Multi-function serial interface ch4 CTS input pin Multi-function serial interface ch4 RTS input pin Page 29 of 115 PRELIMINARY Pin Function Pin Name SIN5_0 (MI2SDI5_0) SIN5_1 SIN5_2 SOT5_0 (SDA5_0) (MI2SDO5_0) SOT5_1 (SDA5_1) Multi-function Serial 5 SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) (MI2SCK5_0) SCK5_1 (SCL5_1) SCK5_2 (SCL5_2) MI2SWS5_0 SIN6_0 SIN6_1 (MI2SDI6_1) SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) (MI2SDO6_1) Multi-function Serial 6 SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) (MI2SCK6_1) SCS60_1 SCS61_1 SCS62_1 MI2SWS6_1 Document Number: 001-99224 Rev.** Function Description Multi-function serial interface ch.5 input pin. SIN5_0 pin operates as I2SIN5_0 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA5 when used as an I C pin (operation mode 4). SOT5_0 pin operates as MI2SDO5_0 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when used as a CSIO (operation mode 2) and as SCL5 2 when used as an I C pin (operation mode 4). SCK5_0 pin operates as MI2SCK5_0 when 2 used as an I S pin (operation mode 2). 2 I S word select (WS) output Multi-function serial interface ch.6 input pin. SIN6_1 pin operates as I2SIN6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA6 when used as an I C pin (operation mode 4). SOT6_1 pin operates as MI2SDO6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when used as a CSIO (operation mode 2) and as SCL6 2 when used as an I C pin (operation mode 4). SCK6_6 pin operates as MI2SCK6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 serial chip select 0 input/output pin. Multi-function serial interface ch.6 serial chip select 1 input/output pin. Multi-function serial interface ch.6 serial chip select 2 input/output pin. 2 I S word select (WS) output S6E1B3 Series LQFP-120 Pin No. LQFP-100 LQFP-80 116 96 76 113 20 15 - 115 95 75 112 - - 21 16 - 114 94 74 111 - - 22 17 - 113 5 93 5 73 5 17 12 12 6 6 6 16 11 11 7 7 7 15 10 10 14 9 9 18 13 - 19 14 - 14 9 9 Page 30 of 115 PRELIMINARY Pin Function Multi-function Serial 7 Pin Name SIN7_0 SIN7_1 SIN7_2 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) SOT7_2 (SDA7_2) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCK7_2 (SCL7_2) SCS70_1 SCS71_1 SCS72_1 Smart Card interface 0 Smart Card interface 1 USB IC0_VCC_0 IC0_VCC_1 IC0_VPEN_0 IC0_VPEN_1 IC0_RST_0 IC0_RST_1 IC0_CIN_0 IC0_CIN_1 IC0_CLK_0 IC0_CLK_1 IC0_DATA_0 IC0_DATA_1 IC1_VCC_0 IC1_VCC_1 IC1_VPEN_0 IC1_VPEN_1 IC1_RST_0 IC1_RST_1 IC1_CIN_0 IC1_CIN_1 IC1_CLK_0 IC1_CLK_1 IC1_DATA_0 IC1_DATA_1 UDM0 UDP0 UHCONX0 Document Number: 001-99224 Rev.** Function Description Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA7 when used as an I C pin (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when used as a CSIO (operation mode 2) and as SCL7 2 when used as an I C pin (operation mode 4). Multi-function serial interface ch.7 serial chip select 0 input/output pin. Multi-function serial interface ch.7 serial chip select 1 input/output pin. Multi-function serial interface ch.7 serial chip select 2 input/output pin. Smart card ch.0 power enable output pin Smart card ch.0 programming output pin Smart card ch.0 reset output pin Smart card ch.0 insert detection input pin Smart card ch.0 serial interface clock output pin Smart card ch.0 serial interface data input/output pin Smart card ch.1 power enable output pin Smart card ch.1 programming output pin Smart card ch.1 reset output pin Smart card ch.1 insert detection input pin Smart card ch.1 serial interface clock output pin Smart card ch.1 serial interface data input/output pin USB device/host D – pin USB device/host D + pin USB external pull-up control pin S6E1B3 Series LQFP-120 11 48 117 Pin No. LQFP-100 43 97 LQFP-80 33 77 12 - - 49 44 34 118 98 78 13 - - 50 45 35 119 99 79 47 42 32 51 - - 52 - - 106 33 105 34 114 35 102 37 107 32 113 36 28 63 27 64 26 65 24 67 29 62 25 66 103 104 102 91 28 90 29 94 30 87 32 92 27 93 31 23 53 22 54 21 55 19 57 24 52 20 56 88 89 87 71 70 74 67 22 72 73 21 18 43 17 44 16 45 14 47 19 42 15 46 68 69 67 Page 31 of 115 PRELIMINARY Pin Function Pin Name DTTI0X_0 DTTI0X_1 DTTI0X_2 Function Description Input signal of waveform generator controlling RTO00 to RTO05 outputs of Multi-function Timer 0. FRCK0_0 FRCK0_1 LQFP-120 23 Pin No. LQFP-100 18 LQFP-80 13 79 69 - 115 95 75 18 13 - 80 70 - FRCK0_2 IC00_0 IC00_1 IC00_2 63 22 75 64 53 17 65 54 43 55 44 IC01_0 21 16 - IC01_1 76 66 56 65 55 45 20 15 - IC02_1 IC02_2 IC03_0 IC03_1 77 66 19 78 67 56 14 68 57 46 - IC03_2 67 57 47 24 19 14 86 71 58 25 20 15 85 - - 26 21 16 84 - - 27 22 17 83 - - 28 23 18 82 - - 29 24 19 81 - - 48 116 43 96 33 76 IC01_2 IC02_0 Multi-function Timer 0 16-bit free-run timer ch.0 external clock input pin. S6E1B3 Series RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) IGTRG0_0 IGTRG0_1 Document Number: 001-99224 Rev.** 16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. PPG IGBT mode external trigger input pin Page 32 of 115 PRELIMINARY Pin Function LQFP-120 107 Pin No. LQFP-100 92 LQFP-80 72 65 55 45 24 19 14 107 92 72 65 24 49 102 116 8 107 55 19 44 87 96 8 92 45 14 34 67 76 8 72 WKUP1 63 53 43 WKUP2 88 73 60 WKUP3 116 96 76 WKUP4 14 9 9 Pin Name Function Description RTCCO_0 RTCCO_1 Real-time Clock HDMI-CEC/ Remote Control Reception LowPower Consumption Mode VBAT SUBOUT_0 SUBOUT_1 SUBOUT_2 CEC0_0 CEC0_1 CEC1_0 CEC1_1 WKUP0 WKUP5 VBAT Power Sub clock output pin HDMI-CEC/Remote Control Reception ch.0 input/output pin HDMI-CEC/Remote Control Reception ch.1 input/output pin 102 87 67 WKUP6 50 45 35 WKUP7 48 43 33 WKUP8 28 23 18 WKUP9 8 8 8 WKUP10 97 82 - WKUP11 LVDI 20 15 - 37 32 22 45 40 30 44 39 29 41 36 26 MD0 Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H". 57 47 37 MD1 Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = "L" must be input. 56 46 36 VWAKEUP INITX Mode Power 0.5-seconds pulse output pin of Real-time clock RTCCO_2 VREGCTL Reset S6E1B3 Series VCC VBAT Document Number: 001-99224 Rev.** Deep standby mode return signal input pin Input pin to monitor the external voltage. The return signal input pin from a hibernation state On-board regulator control pin External Reset Input pin. A reset is valid when INITX="L". Power supply pin VBAT power supply pin Backup power supply (battery etc.) and system power supply 1 1 1 31 26 - 40 35 25 61 51 41 91 76 - 46 41 31 Page 33 of 115 PRELIMINARY Pin Function GND Clock Pin Name VSS Pin No. LQFP-100 25 LQFP-80 20 39 34 24 60 50 40 90 75 - 120 100 80 Main clock (oscillation) input pin 58 48 38 X0A Sub clock (oscillation) input pin 42 37 27 X1 Main clock (oscillation) I/O pin 59 49 39 Sub clock (oscillation) I/O pin Built-in high-speed CR oscillation clock output port Built-in high-speed CR oscillation clock output port A/D converter analog power supply pin A/D converter analog reference voltage input pin A/D converter analog reference voltage input pin Power supply stabilization capacitance pin 43 38 28 89 74 - 107 92 72 70 60 50 73 63 53 71 61 51 38 33 23 X1A CROUT_1 Analog GND C pin GND pin LQFP-120 30 X0 CROUT_0 Analog Power Function Description S6E1B3 Series AVCC AVRH AVSS C *: PE0 is an open drain pin, cannot output high. Document Number: 001-99224 Rev.** Page 34 of 115 PRELIMINARY S6E1B3 Series 5. I/O Circuit Type Type Circuit Remarks Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R It is possible to select the main oscillation / GPIO function Pull-up resistor control Digital input Standby mode control Feedback Clock input When the main oscillation is selected. Oscillation feedback resistor : Approximately 1 MΩ With standby mode control resistor A When the GPIO is selected. CMOS level output. CMOS level hysteresis input Standby mode control With pull-up resistor control With standby mode control Digital input Pull-up Standby mode control resistor R P-ch Pull-up resistor : Approximately 33 kΩ IOH = -4mA, IOL= 4 mA P-ch Digital output X0 N-ch Digital output Pull-up resistor control Document Number: 001-99224 Rev.** Page 35 of 115 PRELIMINARY Type S6E1B3 Series Circuit Remarks Pull-up resistor CMOS level hysteresis input Digital input B Pull-up resistor : Approximately 33 kΩ Digital input Digital output C Open drain output CMOS level hysteresis input N-ch X0A R Digital input ・CMOS level output ・ Please refer to the "VBAT domain" D Sub OSC/GPIO select setting of IO in of the “Peripheral Manual main part (MN710-00001)". OSC X1A R Digital input Sub OSC/ GPIO select OSC E It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. ・Oscillation feedback resistor : Approximately 12 MΩ RX When the GPIO is selected. ・CMOS level hysteresis input Sub OSC enable ・Please refer to the "VBAT domain" setting of IO in the “Peripheral Manual Clock input Document Number: 001-99224 Rev.** main part (MN710-00001)" . Page 36 of 115 PRELIMINARY Type S6E1B3 Series Circuit Remarks ・ CMOS level output P-ch P-ch Digital output ・ CMOS level hysteresis input ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor : Approximately 33 kΩ F N-ch Digital output ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, the R digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control P-ch P-ch Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control N-ch Digital output ・ Analog input ・ With pull-up resistor control ・ With standby mode control G ・ Pull-up resistor R Pull-up resistor control Digital input Standby mode control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control Document Number: 001-99224 Rev.** Page 37 of 115 PRELIMINARY Type S6E1B3 Series Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control ・ Analog input N-ch Digital output ・ 5 V tolerant ・ With pull-up resistor control ・ With standby mode control H ・ Pull-up resistor Pull-up resistor control R Digital input Standby mode control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA ・ Available to control of PZR registers. ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control ・ CMOS level output P-ch P-ch Digital output ・ CMOS level hysteresis input ・ 5 V tolerant ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor I N-ch Digital output : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA R ・ Available to control PZR registers ・ When this pin is used as an I2C pin, the Pull-up resistor control Digital input digital output P-ch transistor is always off Standby mode control Document Number: 001-99224 Rev.** Page 38 of 115 PRELIMINARY Type Circuit S6E1B3 Series Remarks Mode input J ・ CMOS level hysteresis input GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output UDP0/P0C USB Full-speed/Low-speed control It is possible to select the USB I/O / GPIO function. UDP input K Di fferential Differential input USB/GPIO select UDM0/P0B UDM input UDM output When the USB I/O is selected.  Full-speed, Low-speed control When the GPIO is selected.  CMOS level output  CMOS level hysteresis input  With standby mode control USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 001-99224 Rev.** Page 39 of 115 PRELIMINARY S6E1B3 Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Document Number: 001-99224 Rev.** Page 40 of 115 PRELIMINARY S6E1B3 Series Latch-Up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Document Number: 001-99224 Rev.** Page 41 of 115 PRELIMINARY S6E1B3 Series Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 ˚C and 30 ˚C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. Document Number: 001-99224 Rev.** Page 42 of 115 PRELIMINARY 6.3 S6E1B3 Series Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf Document Number: 001-99224 Rev.** Page 43 of 115 PRELIMINARY S6E1B3 Series 7. Handling Devices Power Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device. Stabilizing Supply Voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub Crystal Oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.  Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: Approximately 6 pF to 7 pF  Lead type Load capacitance: Approximately 6 pF to 7 pF Document Number: 001-99224 Rev.** Page 44 of 115 PRELIMINARY S6E1B3 Series Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Can be used as general-purpose I/O ports. Set as External clock input X1(PE3), X1A (P47) 2 Handling when Using Multi-Function Serial Pin as I C Pin 2 2 If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled. However, I C pins need to 2 keep the electrical characteristic like other pins and not to connect to the external I C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Document Number: 001-99224 Rev.** Page 45 of 115 PRELIMINARY S6E1B3 Series Notes on Power-on Turn power on/off in the following order or at the same time. Turning on : VBAT → VCC VCC → AVCC → AVRH Turning off : VCC → VBAT AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory Products and MASK Products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5 V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Handling when Using Debug Pins When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input. Document Number: 001-99224 Rev.** Page 46 of 115 PRELIMINARY S6E1B3 Series 8. Block Diagram S6E1B36G To PIN-Function-Ctrl SWCLK SWDIO SW-DP Fast GPIO Cortex-M0+ Core @40 MHz(Max) NVIC WatchDog Timer (Software) Clock Reset Generator WatchDog Timer (Hardware) AHB-APB Bridge Dual-Timer Multi-layer AHB (Max 40 MHz) Flash I/F System ROM table INITX On-Chip SRAM 64 Kbyte MTB Bit Band Wrapper On-Chip Flash 560 Kbyte Security DSTC 64ch. AHB-AHB Bridge CSV Source Clock X0 X1 X0A X1A Main Osc PLL Sub Osc CR 4MHz CR 100kHz USB2.0 (Host/Device) PHY UDP0, UDM0 UHCONX0 Vbat domain Power-On Reset CROUT AVCC AVSS LVD Ctrl 12-bit A/D Converter AVRH AVRL ANxx IRQ-Monitor LVD Regulator C Unit 0 Watch Counter ADTG VWAKEUP RTCCO SUBOUT Vbat domain Real-Time Clock TIOBx CRC Accelerator A/D Activation Compare 3ch. ICOx 16-bit Input Capture 4ch. FRCKx 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI0x RTO0x IGTRGx PORTCTL Base Timer 16-bit 16ch. 32-bit 8ch. AHB-APB Bridge: APB1 (Max 40 MHz) TIOAx INTx MODE-ctrl MD0 MD1 To Fast GPIO Peripheral Clock Gating GPIO Waveform Generator 3ch. Multi-function Serial I/F 8ch. (with FIFO) 16-bit PPG 3ch. I2S Clock Generator 2ch. Smart Card I/F 2ch. Deep Standby Ctrl Document Number: 001-99224 Rev.** NMIX Low-speed CR Prescaler Multi-function Timer WKUPx VREGCTL External Interrupt Controller 24pin + NMI PIN-Function-Ctrl P0x P1x . Pxx SCKx SINx SOTx SCSx MI2SCKx MI2SWSx ICx_CLK ICx_VCC ICx_VPEN ICx_RST ICx_CIN ICx_DATA Page 47 of 115 PRELIMINARY S6E1B3 Series 9. Memory Map Memory Map (1) 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xF800_8000 0xF800_0000 IOP(single cycle IO) Reserved 0xF000_2000 0xF000_1000 MTB_DWT CM0+-CoresightMTB(SFR) Cortex-M0 Private Peripherals 0xF000_0000 0xE000_0000 Reserved 0x4400_0000 0x4200_0000 32Mbytes Bit band alias Peripherals 0x4000_0000 Reserved 0x2400_0000 0x2200_0000 32Mbytes Bit band alias Reserved 0x2008_0000 Reserved CR trimming Security 0x0008_C000 Reserved DSTC Reserved 0x4005_0000 0x4004_0000 0x4003_CB00 0x4003_CA00 0x4003_C900 0x4003_C200 0x4003_C100 0x4003_C000 0x4003_B000 0x4003_A000 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 SRAM 0x2000_0000 0x0010_4000 0x0010_2000 0x0010_0000 0x4006_2000 0x4006_1000 USB ch.0 Reserved 2 I S Clock Generator Smart Card I/F Reserved Peripheral Clock Gating Low Speed CR Prescaler RTC Watch Counter CRC MFS Reserved USB Clock Generator LVD / DS mode / Vref Calibration HDMI-CEC/Remote Control Receiver GPIO Reserved Int_Req. Read EXTI Reserved CR Trim Reserved 0x4002_8000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_1000 0x4002_0000 Flash A/DC Reserved Base Timer PPG Reserved MFT unit0 Reserved 0x4001_6000 0x4001_5000 0x0000_0000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 Dual Timer Reserved SW WDT HW WDT Clock/Reset See "Memory map (2)" for the memory size details. Document Number: 001-99224 Rev.** Reserved 0x4000_1000 0x4000_0000 Flash I/F Page 48 of 115 PRELIMINARY S6E1B3 Series Memory Map (2) S6E1B36G S6E1B34G 0x2008_0000 0x2008_0000 Reserved Reserved 0x2001_0000 0x2001_0000 SRAM 4 Kbytes 0x2000_F000 SRAM 60 Kbytes 0x2000_F000 SRAM 4 Kbytes 0x2000_8000 SRAM 28 Kbytes 0x2000_0000 Reserved Reserved 0x0010_4000 0x0010_2000 CR trimming 0x0010_4000 0x0010_2000 CR trimming 0x0010_0000 Security 0x0010_0000 Security Reserved 0x0008_C000 Reserved SA0-5 (8 KBx6) 0x0004_C000 SA6-9 (8 KBx4) 0x0000_0000 Flash 304 Kbytes 0x0000_0000 Flash 560 Kbytes SA6-13 (8 KBx8) SA0-5 (8 KBx6) *: See "S6E1B3 Series Flash Programming Manual" to check details of the Flash memory. Document Number: 001-99224 Rev.** Page 49 of 115 PRELIMINARY S6E1B3 Series Peripheral Address Map Start Address End Address Bus 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog Timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF AHB APB0 Peripheral Flash memory I/F register Reserved Software Watchdog Timer Reserved 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function Timer unit0 0x4002_1000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF Reserved 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF 0x4003_4000 0x4003_5000 0x4003_6000 0x4003_7000 0x4003_8000 0x4003_4FFF 0x4003_5FFF 0x4003_6FFF 0x4003_7FFF 0x4003_8FFF HDMI-CEC/ Remote Control Receiver Low-Voltage Detection / DS mode / Vref Calibration USB Clock Generator Reserved Multi-function Serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_C0FF Low-speed CR Prescaler 0x4003_C100 0x4003_C800 0x4003_C900 0x4003_CA00 0x4003_CB00 0x4004_0000 0x4006_0000 0x4006_1000 0x4006_2000 0x4003_C7FF 0x4003_FFFF 0x4003_C9FF 0x4003_CAFF 0x4003_EFFF 0x4005_FFFF 0x4006_0FFF 0x4006_1FFF 0x41FF_FFFF Peripheral Clock Gating Reserved Smart Card Interface 2 I S Clock Generator Reserved USB ch.0 Reserved DSTC Reserved Document Number: 001-99224 Rev.** APB1 AHB GPIO Page 50 of 115 PRELIMINARY S6E1B3 Series 10. Pin Status in Each CPU State The terms used for pin status have the following meanings.  INITX=0 This is the period when the INITX pin is the "L" level.  INITX=1 This is the period when the INITX pin is the "H" level.  SPL=0 This is the status that the standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0".  SPL=1 This is the status that the standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".  Input enabled Indicates that the input function can be used.  Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L".  Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  Setting disabled Indicates that the setting is disabled.  Maintain previous state Maintains the state in which a pin was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.  Analog input is enabled Indicates that the analog input is enabled.  Trace output Indicates that the trace function can be used.  GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Document Number: 001-99224 Rev.** Page 51 of 115 PRELIMINARY S6E1B3 Series Pin Status Type List of Pin Status A B State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state / When oscillation stops*1, Hi-Z / Internal input fixed at 0 Pull-up / Input enabled Input enabled Maintain previous state / When oscillation stops*1, Hi-Z / Internal input fixed at 0 Pull-up / Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Main crystal oscillator output pin C INITX input pin D Mode input pin Hi-Z / Internal input fixed at 0/ Input enabled Pull-up / Input enabled Input enabled State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 GPIO Hi-Z / selected / Internal Internal input fixed input fixed at 0 at 0 Maintain Maintain Maintain Maintain previous previous previous previous state / state/When state/When state/When Hi-Z / Hi-Z / When oscillation oscillation oscillation Internal Internal oscillation 1 1 1 stops* , stops* , stops* , input input stops*1, Hi-Z / Hi-Z / Hi-Z / fixed at 0 fixed at 0 Hi-Z / Internal Internal Internal Internal input fixed input fixed input fixed input fixed at 0 at 0 at 0 at 0 Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled Document Number: 001-99224 Rev.** Power Supply Stable INITX=1 GPIO selected Page 52 of 115 PRELIMINARY State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal oscillator E input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Pin Status Type State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group F GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External sub clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal oscillator output pin Hi-Z / Internal input fixed at 0/ Input enabled NMIX selected Setting disabled Resourc e other G than the above selected GPIO selected Hi-Z Hi-Z / Hi-Z / Internal Internal input input fixed at 0 fixed at 0 Setting disabled Hi-Z / Input enabled Document Number: 001-99224 Rev.** Maintain previous state Setting disabled Hi-Z / Input enabled Maintain previous state State in Timer Mode, RTC Mode, or Stop Mode S6E1B3 Series State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 Hi-Z / Maintain Internal previous input fixed state at 0 INITX=1 SPL=0 SPL=1 Power Supply Stable INITX=1 - Input enabled Input enabled Input enabled Input enabled GPIO selected Hi-Z / Input enabled GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state / When oscillation stops*2, Hi-Z/ Internal input fixed at 0 Maintain previous state / When oscillation stops*2, Hi-Z/ Internal input fixed at 0 Hi-Z / WKUP input enabled GPIO selected Maintain Maintain Maintain previous previous previous state / state/When state/When When oscillation oscillation oscillation 2 2 stops* , stops* , stops*2, Hi-Z / Hi-Z / Hi-Z/ Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 WKUP input enabled Page 53 of 115 Pin Status Type PRELIMINARY State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - Hi-Z Pull-up / Input enabled Pull-up / Input enabled Serial wire debug selected H GPIO selected Resourc e I selected GPIO selected External interrupt enabled selected Resourc J e other than the above selected GPIO selected Analog input selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at 0/ Analog input enabled Hi-Z / Internal input fixed at 0/ Analog input enabled K Resourc e other than the above selected GPIO selected Setting disabled Setting disabled Document Number: 001-99224 Rev.** Setting disabled State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 GPIO selected GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Power Supply Stable INITX=1 - Maintain previous state Maintain previous state Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable Maintain previous state Maintain previous state S6E1B3 Series GPIO selected / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Page 54 of 115 Pin Status Type PRELIMINARY State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0/ Analog input enabled Power Supply Stable INITX=1 - Analog input selected External L interrupt enabled selected Resourc e other than the above selected Hi-Z Power Supply Stable INITX=0 Hi-Z / Internal input fixed at 0/ Analog input enabled State in Timer Mode, RTC Mode, or Stop Mode S6E1B3 Series State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Power Supply Stable INITX=1 - Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Input enabled GPIO selected Hi-Z / Input enabled GPIO selected GPIO selected Hi-Z / Internal input fixed at 0 M Document Number: 001-99224 Rev.** Page 55 of 115 Pin Status Type PRELIMINARY State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group Power Supply Unstable - Analog input selected Hi-Z State Upon Device Internal Reset State in Run Mode or Sleep Mode State in Timer Mode, RTC Mode, or Stop Mode Power Power Power Supply Supply Supply Power Supply Stable Stable Stable Stable INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal input input input fixed input fixed input fixed fixed at fixed at at 0 / at 0 / at 0 / 0 / Analog 0 / Analog Analog Analog Analog input input input input input enabled enabled enabled enabled enabled WKUP enabled N External interrupt enabled selected Resourc e other than above selected GPIO selected CEC enabled Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state WKUP enabled O External interrupt enabled selected Resourc e other than above selected GPIO selected Setting disabled Setting disabled Maintain previous state Setting disabled Maintain previous state Hi-Z Hi-Z / Input enabled Document Number: 001-99224 Rev.** Hi-Z / Input enabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 S6E1B3 Series State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled Hi-Z / WKUP WKUP input input enabled enabled GPIO selected / Internal input fixed at 0 Maintain previous state WKUP input enabled GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / WKUP input enabled Hi-Z / Internal input fixed at 0 Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Maintain previous state GPIO selected / Internal input fixed at 0 Page 56 of 115 Pin Status Type PRELIMINARY State Upon Power-on State at Reset or INITX Low-Voltag Input Functio e Detection n Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0/ Analog input enabled Power Supply Stable INITX=1 - Analog input selected Hi-Z Power Supply Stable INITX=0 Hi-Z / Internal input fixed at 0/ Analog input enabled State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state GPIO selected External interrupt enabled selected Q Setting disabled Setting disabled Setting disabled USB IO GPIO selected Hi-Z CEC enabled Setting disabled Maintain previous state Maintain previous state Hi-Z/Input Hi-Z/Input enabled enabled Setting disabled Setting disabled Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable P WKUP enabled Resourc e other than the above selected S6E1B3 Series Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Maintain previous state WKUP input enabled Hi-Z / WKUP input enabled Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Maintain previous state GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z/Input enabled Hi-Z/Input enabled Hi-Z/Input enabled Hi/-Z/Input Hi/-Z/Input enabled enabled Maintain previous state Hi-Z GPIO Hi-Z GPIO Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 External Maintain interrupt Setting Setting Setting previous enabled disabled disabled disabled state selected GPIO R Maintain Maintain selected / Resourc previous previous Internal e other Hi-Z / state state input fixed than Hi-Z / Hi-Z / Internal at 0 above Hi-Z Input Input input fixed selected enabled enabled at 0 GPIO selected *1: Oscillation stops in Sub timer mode, Low-speed CR timer mode, Stop mode, RTC mode. *2: Oscillation stops in Stop mode. Document Number: 001-99224 Rev.** Page 57 of 115 PRELIMINARY S6E1B3 Series 11. Electrical Characteristics 11.1 Absolute Maximum Ratings Parameter Symbol 1, 2 Power supply voltage* * 1, 3 Analog power supply voltage* * 1, 3 Analog reference voltage* * Input voltage* 1 VCC AVCC AVRH VI Rating Min VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 Analog pin input voltage* Output voltage* 1 1 L level maximum output current* 4 5 L level average output current* L level total maximum output current 6 L level total average output current* H level maximum output current* 4 VIA VSS - 0.5 VO VSS - 0.5 IOL - IOLAV ∑IOL ∑IOLAV - IOH - 5 H level average output current* IOHAV H level total maximum output current ∑IOH 6 H level total average output current* ∑IOHAV Power consumption PD Storage temperature TSTG *1: These parameters are based on the condition that VSS=AVSS=0 V. - 55 Max VSS + 4.6 VSS + 4.6 VSS + 4.6 VCC + 0.5 (≤ 4.6 V) VSS + 6.5 VCC + 0.5 (≤ 4.6 V) VCC + 0.5 (≤ 4.6 V) 10 39 4 100 50 - 10 - 39 -4 - 100 - 50 250 + 150 Unit Remarks V V V V V 5 V tolerant V V mA mA mA mA mA mA mA mA mA mA mW °C P0B / P0C P0B / P0C *2: VCC must not drop below VSS - 0.5 V. *3: Ensure that the voltage does not to exceed VCC + 0.5 V at power-on. *4: The maximum output current is the peak value for a single pin. *5: The average output is the average current for a single pin over a period of 100 ms. *6: The total average output current is the average current for all pins over a period of 100 ms. *7: When P0C/UDP0 and P0B/UDM0 pins are used as GPIO (P0C, P0B). *8: When P0C/UDP0 and P0B/UDM0 pins are used as USB (UDP0, UDM0). − Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. Document Number: 001-99224 Rev.** Page 58 of 115 PRELIMINARY S6E1B3 Series 11.2 Recommended Operating Conditions (VSS=AVSS=0.0 V) Parameter Symbol Conditions Power supply voltage VCC - Sub Oscillation frequency Fin - AVCC - Analog power supply voltage Analog reference voltage AVRH - Value Min 3 1.65 * 3.0 Max 3.6 3.6 Unit V V Remarks - kHz 1.65 3.6 V *1 Typical is 32.768 kHz AVCC=VCC 2.7 AVCC V AVCC ≥ 2.7 V AVCC AVSS 10 + 105 V V μF °C AVCC < 2.7 V - AVCC AVRL AVSS Smoothing capacitor CS 1 Operating temperature TA - 40 *1: When P0C/UDP0 and P0B/UDM0 pins are used as USB (UDP0, UDM0). For regulator* 2 *2: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor. *3: In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only. 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 001-99224 Rev.** Page 59 of 115 PRELIMINARY S6E1B3 Series 11.3 DC Characteristics 11.3.1 Current Rating Symbol HCLK Conditions (Pin Name) 4 MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx Run mode, code executed from Flash 4 MHz external clock input, PLL ON Benchmark code executed Built-in high speed CR stopped PCLK1 stopped *8 *8 4 MHz crystal oscillation, PLL ON NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx ICC (VCC) Run mode, code executed from RAM Run mode, code executed from Flash Run mode, code executed from Flash ICCS (VCC) Sleep operation 4 MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx 4 MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped Built-in high speed CR*5 NOP code executed All peripheral clock stopped by CKENx 32 kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx Value Frequency*4 4 MHz Typ*1 Max*2 0.7 TBD 8 MHz 1.15 TBD 20 MHz 2.25 TBD 40 MHz 4.5 TBD 4 MHz 0.75 TBD 8 MHz 1.25 TBD 20 MHz 2.5 TBD 40 MHz 5.0 TBD 4 MHz 0.8 TBD 8 MHz 1.4 TBD 20 MHz 2.75 TBD 40 MHz 5.5 TBD 4 MHz 0.6 TBD 8 MHz 1.2 TBD 20 MHz 2.4 TBD 40 MHz 4.8 TBD 40 MHz 2.6 4 MHz Unit Remarks mA *3 mA *3 mA *3 mA *3 TBD mA *3,*6,*7 1.2 TBD mA *3 32 kHz 96 TBD μA *3 100 kHz 120 TBD μA *3 mA *3 4 MHz 0.6 TBD 4 MHz external clock input, PLL ON*8 8 MHz 1.1 TBD All peripheral clock stopped by CKENx 20 MHz 1.9 TBD 40 MHz 3.2 TBD 4 MHz 0.5 TBD mA *3 32 kHz 94 TBD μA *3 100 kHz 105 TBD μA *3 *5 Built-in high speed CR All peripheral clock stopped by CKENx 32 kHz crystal oscillation All peripheral clock stopped by CKENx Built-in low speed CR All peripheral clock stopped by CKENx *1 : TA=+25°C,VCC=3.3 V *2 : TA=+105°C,VCC=3.6 V *3 : All ports are fixed *4 : PCLK0 is set to divided rate 8 *5 : The frequency is set to 4 MHz by trimming *6 : Flash sync down is set to FRWTR.RWT=11 and FSYNDN.SD=1111 *7 : VCC=1.65 V *8 : When HCLK=4 MHz, PLL OFF Document Number: 001-99224 Rev.** Page 60 of 115 PRELIMINARY Parameter Symbol (Pin Name) ICCH (VCC) Power supply current ICCT (VCC) ICCR (VCC) Typ Value Max TA=25°C VCC=3.3 V 10 TBD μA *1 TA=25°C VCC=1.65 V 9 TBD μA *1 TA=105°C VCC=3.6 V - TBD μA *1 13 TBD μA *1 12 TBD μA *1 - TBD μA *1 10.5 TBD μA *1 9.5 TBD μA *1 - TBD μA *1 Conditions Stop mode Sub timer mode RTC mode S6E1B3 Series TA=25°C VCC=3.3 V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6 V 32 kHz Crystal oscillation TA=25°C VCC=3.3 V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6 V 32 kHz Crystal oscillation Unit Remarks *1: All ports are fixed. LVD off. Flash off. Document Number: 001-99224 Rev.** Page 61 of 115 PRELIMINARY Parameter Symbol (Pin Name) Value Conditions RAM off ICCHD (VCC) Deep standby Stop mode RAM on Power supply current RAM off ICCRD (VCC) S6E1B3 Series Deep standby RTC mode RAM on TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V Unit Remarks Typ Max 0.75 TBD μA *1 0.7 TBD μA *1 - TBD μA *1 1.1 TBD μA *1 1.0 TBD μA *1 - TBD μA *1 1.7 TBD μA *1 1.6 TBD μA *1 - TBD μA *1 1.9 TBD μA *1 1.7 TBD μA *1 - TBD μA *1 *1: All ports are fixed. LVD off. Document Number: 001-99224 Rev.** Page 62 of 115 PRELIMINARY Parameter Symbol (Pin Name) Power supply current Typ Value Max 0.9 TBD μA *1 0.8 TBD μA *1 - TBD μA *1 TA=25°C VCC=3.0V 0.05 TBD μA *1 TA=25°C VCC=1.65 V 0.02 TBD μA *1 - TBD μA *1 Conditions RTC operation ICCVBAT (VBAT) RTC stop S6E1B3 Series TA=25°C VCC=3.0V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6V 32 kHz Crystal oscillation TA=105°C VCC=3.6V Unit Remarks *1: All ports are fixed. Document Number: 001-99224 Rev.** Page 63 of 115 PRELIMINARY S6E1B3 Series LVD Current (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Low-Voltage detection circuit (LVD) power supply current Symbol ICCLVD Pin Name VCC Conditions Value Unit Remarks Typ Max 0.13 TBD μA For occurrence of reset 0.13 TBD μA For occurrence of interrupt At operation Flash Memory Current (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Flash memory write/erase current Symbol Pin Name Conditions ICCFLASH VCC At Write/Erase Value Typ Max 9.5 TBD Unit Remarks mA A/D converter Current (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Power supply current Reference power supply current (AVRH) Symbol Pin Name ICCAD AVCC ICCAVRH AVRH Document Number: 001-99224 Rev.** Conditions Value Unit At operation Typ 0.7 Max TBD At stop 0.13 TBD μA At operation 1.1 TBD mA At stop 0.1 TBD μA Remarks mA AVRH=3.6 V Page 64 of 115 PRELIMINARY S6E1B3 Series Peripheral Current Dissipation (VCC= 3.3 V, TA=25°C) Clock System Peripheral Conditions GPIO At all ports operation 0.02 0.04 0.11 0.22 DSTC At 2ch operation 0.07 0.15 0.37 0.74 Base timer At 4ch operation 0.02 0.04 0.08 0.16 Multi-functional timer/PPG At 1 unit/4ch operation 0.06 0.11 0.28 0.55 ADC At 1 unit operation 0.02 0.04 010 0.20 Multi-function serial At 1ch operation 0.03 0.06 0.16 0.31 HCLK PCLK1 Frequency (MHz) 8 20 4 40 Unit Remarks mA mA 11.3.2 Pin Characteristics (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter H level input voltage (hysteresis input) L level input voltage (hysteresis input) Symbol VIHS VILS L level output voltage Input leak current Pull-up resistance value Input capacitance - VCC +0.3 V VCC × 0.8 VCC × 0.7 - VSS +5.5 V VSS - 0.3 - CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin VCC ≥ 2.7 V VCC × 0.8 VCC < 2.7 V VCC × 0.7 VCC ≥ 2.7 V VCC < 2.7 V VOH Min VCC ≥ 2.7 V V VCC × 0.3 VSS - 0.3 - VCC × 0.2 VCC × 0.3 V - VCC V VCC - 0.5 VCC - 0.45 - USBVCC 0.4 - USBVCC V 4 mA type VCC ≥ 2.7 V, IOL 4 mA VCC < 2.7 V, IOL=2 mA VSS - 0.4 V - VSS - 0.4 V VCC ≥ 2.7 V VCC < 2.7 V -5 21 - 33 - +5 66 134 μA - - 5 15 pF IIL The pin doubled as USB I/O - RPU Pull-up pin CIN Other than VCC, USBVCC, VSS, AVCC, AVSS, AVRH Remarks VCC × 0.2 VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V, IOH = - 4 mA VCC < 2.7 V, IOH = - 2 mA Unit The pin doubled as USB I/O VOL Document Number: 001-99224 Rev.** Max Conditions 4 mA type H level output voltage Value Typ Pin Name kΩ Page 65 of 115 PRELIMINARY S6E1B3 Series 11.4 AC Characteristics 11.4.1 Main Clock Input Characteristics (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Input frequency Symbol Pin Name fCH X0, X1 Conditions Value Unit Remarks Min Max VCC ≥ 2.7 V VCC < 2.7 V 4 4 48 20 MHz When the crystal oscillator is connected - 4 48 MHz When the external clock is used - 20.83 250 ns PWH/tCYLH, PWL/tCYLH 45 55 % - - 5 ns Input clock pulse width - Input clock rising time and falling time tCF, tCR fCM - - - 40.8 MHz When the external clock is used When the external clock is used When the external clock is used Master clock fCC fCP0 fCP1 - - - 40.8 40.8 40.8 MHz MHz MHz Base clock (HCLK/FCLK) 2 APB0 bus clock* 2 APB1 bus clock* Input clock cycle Internal operating *1 clock frequency tCYLH Base clock (HCLK/FCLK) tCYCC 24.5 ns 2 APB0 bus clock* tCYCP0 24.5 ns 2 APB1 bus clock* tCYCP1 24.5 ns *1: For details of each internal operating clock, refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". Internal operating *1 clock cycle time *2: For details of the APB bus to which a peripheral is connected, see "8. Block Diagram". X0 Document Number: 001-99224 Rev.** Page 66 of 115 PRELIMINARY S6E1B3 Series 11.4.2 Sub Clock Input Characteristics (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Input frequency Symbol Pin Name Value Unit Min Typ Max - - 32.768 - kHz - 32 - 100 kHz - 10 - 31.25 μs 55 % fCL X0A, X1A Input clock cycle Conditions tCYLL Input clock pulse PWH/tCYLL, 45 width PWL/tCYLL *: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used. Remarks When the crystal oscillator is connected* When the external clock is used When the external clock is used When the external clock is used X0A Document Number: 001-99224 Rev.** Page 67 of 115 PRELIMINARY S6E1B3 Series 11.4.3 Built-in CR Oscillation Characteristics Built-in High-Speed CR (VCC=AVCC=1.65 V to 3.6 V, VSS =AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Value Conditions TA = -20°C to +85°C Min Typ Max 3.96 4 4.04 Unit Remarks During trimming Clock frequency Frequency stabilization time fCRH tCRWT TA = -40°C to +105°C 3.92 4 4.08 TA = - 40°C to +105°C 2.6 4 5.2 - - - *1 MHz Not during trimming μs 30 300 μs *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming. *2 If TRT is changed. *2 *2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Built-in Low-Speed CR (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Clock frequency Symbol Conditions fCRL - Document Number: 001-99224 Rev.** Value Min Typ Max 50 100 150 Unit Remarks kHz Page 68 of 115 PRELIMINARY S6E1B3 Series 11.4.4 Operating Conditions of Main PLL (In the Case of Using the Main Clock as the Input Clock of the PLL) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Value Unit Min Typ Max 100 - - μs PLL input clock frequency fPLLI 4 PLL multiple rate 5 PLL macro oscillation clock frequency fPLLO 75 2 Main PLL clock frequency* fCLKPLL 3 USB clock frequency* fCLKSPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. - 16 37 150 40.8 48 MHz multiple MHz MHz MHz Remarks 1 PLL oscillation stabilization wait time* (LOCK UP time) tLOCK *2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". *3: For more information about USB clock, see "Chapter: USB Clock Generation" in "FM0+ Family Peripheral Manual Communication Macro Part”. 11.4.5 Operating Conditions of Main PLL (In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Value Unit Min Typ Max 100 - - μs PLL input clock frequency fPLLI 3.8 PLL multiple rate 19 PLL macro oscillation clock frequency fPLLO 72 2 Main PLL clock frequency* fCLKPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. 4 - 4.2 35 150 40.8 MHz multiple MHz MHz Remarks 1 PLL oscillation stabilization wait time* (LOCK UP time) tLOCK *2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". Note: − For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency has been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency. Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) PLL input clock K divider PLL macro oscillation clock Main PLL M divider Main PLL clock (CLKPLL) N divider Document Number: 001-99224 Rev.** Page 69 of 115 PRELIMINARY S6E1B3 Series USB PLL connection PLL input clock K divider Main clock (CLKMO) PLL macro oscillation clock M divider USB PLL USB clock N divider 11.4.6 Reset Input Characteristics (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Pin Name Conditions tINITX INITX - Reset input time Value Min Max 500 - Unit Remarks ns 11.4.7 Power-on Reset Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Power supply rising time tVCCR Power supply shut down time Time until releasing Power-on reset tOFF Pin Name VCC tPRT Value Unit Min Max 0 - ms 1 - ms 0.43 3.4 ms Remarks VCC_minimum VDH_minimum VCC 0.2V 0.2V 0.2V tVCCR tPRT Internal reset Reset active CPU Operation tOFF Release start Glossary  VCC_minimum : Minimum VCC of recommended operating conditions.  VDH_minimum : Minimum detection voltage of Low-Voltage detection reset. See "11.7 Low-Voltage Detection Characteristics". Document Number: 001-99224 Rev.** Page 70 of 115 PRELIMINARY S6E1B3 Series 11.4.8 Base Timer Input Timing Timer Input Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Input pulse width Symbol Pin Name Conditions tTIWH, tTIWL TIOAn/TIOBn (when using as ECK, TIN) - tTIWH Value Min Max 2 tCYCP - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger Input Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Input pulse width Symbol Pin Name Conditions tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) - tTRGH TGIN VIHS Value Min Max 2 tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see "8. Block Diagram". Document Number: 001-99224 Rev.** Page 71 of 115 PRELIMINARY S6E1B3 Series 11.4.9 CSIO/SPI/UART Timing CSIO (SPI=0, SCINV=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99224 Rev.** Page 72 of 115 PRELIMINARY S6E1B3 Series tSCYC VOH SCK VOL VOL tSLOVI VOH SOT VOL tIVSHI SIN tSHIXI VIH VIH VIL VIL Master mode tSLSH SCK tSHSL VIH VIH tF VIL VIL VIH tR tSLOVE SOT VOH VOL tIVSHE SIN VIH VIL tSHIXE VIH VIL Slave mode Document Number: 001-99224 Rev.** Page 73 of 115 PRELIMINARY S6E1B3 Series CSIO (SPI=0, SCINV=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99224 Rev.** Page 74 of 115 PRELIMINARY S6E1B3 Series tSCYC SCK VOH VOH VOL tSHOVI VOH SOT VOL tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR tF VIL VIL tSHOVE SOT VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode Document Number: 001-99224 Rev.** Page 75 of 115 PRELIMINARY S6E1B3 Series SPI (SPI=1, SCINV=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 30 - 2 tCYCP - 30 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99224 Rev.** Page 76 of 115 PRELIMINARY S6E1B3 Series tSCYC VOH SCK VOL SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH VIH SCK VIL tF * SOT VIL tSHSL tR VOH VOL tIVSLE SIN VIH VIH tSHOVE VOH VOL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register Document Number: 001-99224 Rev.** Page 77 of 115 PRELIMINARY S6E1B3 Series SPI (SPI=1, SCINV=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI SOT → SCK ↑ delay time tSOVHI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx Conditions SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns -30 +30 -20 +20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 30 - 2 tCYCP - 30 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99224 Rev.** Page 78 of 115 PRELIMINARY S6E1B3 Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode tR SCK VIL tF tSHSL VIH VIH tSLSH VIL VIL tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL Slave mode Document Number: 001-99224 Rev.** Page 79 of 115 PRELIMINARY S6E1B3 Series When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions VCC ≥ 2.7 V VCC < 2.7 V Min Max Unit Max Min (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns SCS deselect time tCSDE 3tCYCP+30 - 3tCYCP+30 - ns SCS↓→SOT delay time tDSE - 55 - 43 ns SCS↑→SOT delay time tDEE 0 - 0 - ns Master mode Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − When the external load capacitance CL=30 pF. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. Document Number: 001-99224 Rev.** Page 80 of 115 PRELIMINARY S6E1B3 Series SCSO tCSSI tCSHI tCSDI tCSHE tCSDE SCK SOT (SPI=0) SOT (SPI=1) Master mode SCSI tCSSE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99224 Rev.** Page 81 of 115 PRELIMINARY S6E1B3 Series When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol SCS↓→SCK↑ setup time tCSSI SCK↓→SCS↑ hold time tCSHI Conditions Master mode VCC ≥ 2.7 V VCC < 2.7 V Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↓→SCK↑ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↓→SCS↑ hold time tCSHE 0 - 0 - ns SCS deselect time tCSDE 3tCYCP+30 - 3tCYCP+30 - ns SCS↓→SOT delay time tDSE - 55 - 43 ns SCS↑→SOT delay time tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − When the external load capacitance CL=30 pF. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. Document Number: 001-99224 Rev.** Page 82 of 115 PRELIMINARY S6E1B3 Series SCSO tCSSI tCSHI tCSDI tCSHE tCSDE SCK SOT (SPI=0) SOT (SPI=1) Master mode SCSI tCSSE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99224 Rev.** Page 83 of 115 PRELIMINARY S6E1B3 Series When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions VCC ≥ 2.7 V VCC < 2.7 V Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns SCS↑→SCK↓ setup time tCSSI SCK↑→SCS↓ hold time tCSHI (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↑→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time SCS↓→SOT delay time Master mode 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns tDSE - 55 - 43 ns tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − For information About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. − When the external load capacitance CL=30 pF. Document Number: 001-99224 Rev.** Page 84 of 115 PRELIMINARY S6E1B3 Series tCSDI SCSO tCSSI tCSHI SCK SOT (SPI=0) SOT (SPI=1) Master mode tCSDE SCSI tCSSE tCSHE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99224 Rev.** Page 85 of 115 PRELIMINARY S6E1B3 Series When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions VCC ≥ 2.7 V VCC < 2.7 V Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns SCS↑→SCK↑ setup time tCSSI SCK↓→SCS↓ hold time tCSHI (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↑→SCK↑ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↓→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time SCS↓→SOT delay time Master mode 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns tDSE - 55 - 43 ns tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. − When the external load capacitance CL=30 pF. Document Number: 001-99224 Rev.** Page 86 of 115 PRELIMINARY S6E1B3 Series tCSDI SCSO tCSSI tCSHI SCK SOT (SPI=0) SOT (SPI=1) Master mode tCSDE SCSI tCSSE tCSHE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99224 Rev.** Page 87 of 115 PRELIMINARY S6E1B3 Series UART external clock input (EXT=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Serial clock L pulse width Serial clock H pulse width SCK falling time SCK rising time Symbol tSLSH tSHSL tF tR Value Conditions Min tCYCP +10 tCYCP +10 - CL=30 pF tR Document Number: 001-99224 Rev.** VIL Unit Remarks ns ns ns ns tF tSHSL SCK Max 5 5 VIH tSLSH VIH VIL VIL Page 88 of 115 PRELIMINARY S6E1B3 Series 11.4.10 External Input Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Pin Name Conditions Value Min Max Unit ADTGx FRCKx Input pulse width tINH, tINL - 1 2 tCYCP* - ns ICxx DTTIxX Remarks A/D converter trigger input - 1 2 tCYCP* 1 - ns INTxx, NMIX *2 *3 2 tCYCP +100* 500 - ns ns WKUPx *4 500 - ns Free-run timer input clock Input capture Wave form generator External interrupt, NMI Deep standby wake up *1: tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which the Multi-function Timer is connected and that of the APB bus to which the External Interrupt Controller is connected, see "8. Block Diagram". *2: In Run mode and Sleep mode *3: In Timer mode and RTC mode and Stop mode *4: In Deep Standby RTC mode and Deep Standby Stop mode Document Number: 001-99224 Rev.** Page 89 of 115 PRELIMINARY S6E1B3 Series 2 11.4.11 I C Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions Standard-Mode Min Max 0 100 Fast-Mode Min Max 0 400 Unit Remarks SCL clock frequency fSCL kHz (Repeated) Start condition hold time tHDSTA 4.0 0.6 μs SDA ↓ → SCL ↓ SCL clock L width tLOW 4.7 1.3 μs SCL clock H width tHIGH 4.0 0.6 μs (Repeated) Start setup time tSUSTA 4.7 0.6 μs SCL ↑ → SDA ↓ CL=30 pF, 1 Data hold time 2 3 R=(VP/IOL)* tHDDAT 0 3.45* 0 0.9* μs SCL ↓ → SDA ↓ ↑ Data setup time tSUDAT 250 100 ns SDA ↓ ↑ → SCL ↑ Stop condition setup time tSUSTO 4.0 0.6 μs SCL ↑ → SDA ↑ Bus free time between Stop condition and tBUF 4.7 1.3 μs Start condition 4 4 Noise filter tSP 2 tCYCP* 2 tCYCP* ns *1: R represents the pull-up resistance of the SCL and SDA lines, and CL the load capacitance of the SCL and SDA lines. VP represents the power supply voltage of the pull-up resistance, and IOL the VOL guaranteed current. *2: The maximum tHDDAT must satisfy at least the condition that the period during which the device is holding the SCL signal at L (tLOW) does not extend. 2 2 *3: A Fast-mode I C bus device can be used in a Standard-mode I C bus system, provided that the condition of tSUDAT ≥ 250 ns is fulfilled. *4: tCYCP represents the APB bus clock cycle time. 2 For the number of the APB bus to which the I C is connected, see "8. Block Diagram". To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL Document Number: 001-99224 Rev.** Page 90 of 115 PRELIMINARY S6E1B3 Series 2 11.4.12 I S Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter MI2SCK max frequency (*1) 2 I S clock cycle time (*1) 2 I S clock Duty cycle Symbol Pin Name FMI2SCK tICYC ∆ MI2SCKx MI2SCKx MI2SCKx MI2SCKx, MI2SWSx MI2SCKx, MI2SDOx MI2SCKx, MI2SDIx MI2SCKx, MI2SDIx MI2SCKx MI2SCKx MI2SCK↓ → MI2SWS delay time tSWDT MI2SCK↓ → MI2SDO delay time tSDDT MI2SDI → MI2SCK ↑ setup time tDSST MI2SCK ↑ → MI2SDI hold time tSDHT MI2SCK falling time MI2SCK rising time tF tR Conditions CL=30 pF VCC < 2.7 V Min Max 6.144 4 tCYCP 45% 55% VCC ≥ 2.7 V Min Max 6.144 4 tCYCP 45% 55% Unit MHz ns -30 +30 -20 +20 ns -30 +30 -20 +20 ns 50 - 36 - ns 0 - 0 - ns - 5 5 - 5 5 ns ns *1: I2S clock should meet the multiple of PCLK(tICYC) and the frequency less than FMI2SCK meantime. The detail information please refer to Chapter I2S of Communication Macro Part of Peripheral Manual. VIH MI2SCK VIH VIL VIL tF tR tSWDT, tSDDT MI2SWS and MI2SDO MI2SDI Document Number: 001-99224 Rev.** VOH VOL tDSST tSDHT VIH VIH VIL VIL Page 91 of 115 PRELIMINARY S6E1B3 Series 11.4.13 Smart Card Interface Characteristics (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Output rising time tR Output falling time tF Pin Name ICx_VCC, ICx_RST, ICx_CLK, Output clock frequency Duty cycle fCLK ∆ Conditions ICx_DATA ICx_CLK CL=30 pF Value Unit Min Max 4 20 ns 4 20 ns - 20 MHz 45% 55% Remarks  External pull-up resistor (20 kΩ to 50 kΩ) must be applied to ICx_CIN pin when it’s used as smart card reader function. Document Number: 001-99224 Rev.** Page 92 of 115 PRELIMINARY S6E1B3 Series 11.4.14 SW-DP Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Pin Name Conditions SWDIO setup time tSWS SWCLK, SWDIO SWDIO hold time tSWH SWDIO delay time tSWD Value Unit Min Max - 15 - ns SWCLK, SWDIO - 15 - ns SWCLK, SWDIO - - 45 ns Remarks Note: − External load capacitance CL=30 pF SWCLK SWDIO (When input) SWD SWDIO (When output) Document Number: 001-99224 Rev.** Page 93 of 115 PRELIMINARY S6E1B3 Series 11.5 12-bit A/D Converter Electrical Characteristics of A/D Converter (Preliminary Values) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage 1 Conversion time * 2 Sampling time * 3 Compare clock cycle * Symbol Pin Name VZT VFST ANxx ANxx - - tS - tCCK - Min - 4.5 - 2.5 - 15 AVRH - 15 2.0 4.0 10 0.6 1.2 3.0 100 200 500 Value Typ - Max 12 4.5 + 2.5 + 15 AVRH + 15 - Unit bit LSB LSB mV mV μs 10 μs 1000 ns State transition time to operation permission Analog input capacity tSTT - - - 1.0 μs CAIN - - - pF Analog input resistance RAIN - - - - ANxx ANxx 9.7 2.2 5.5 10.5 4 5 AVRH Interchannel disparity Analog port input leak current Analog input voltage Remarks kΩ AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V LSB μA AVSS V AVCC ≥ 2.7V 2.7 Reference voltage AVRH AVCC V AVCC < 2.7V AVCC *1: The conversion time is the value of sampling time (tS) + compare time (tC). The minimum conversion time is computed according to the following conditions: AVCC ≥ 2.7 V sampling time=0.6 μs, compare time=1.4 μs 1.8 ≤ AVCC < 2.7 V sampling time=1.2 μs, compare time=2.8 μs 1.65 ≤ AVCC < 1.8 V sampling time=3.0 μs, compare time=7.0 μs Ensure that the conversion time satisfies the specifications of the sampling time (tS) and compare clock cycle (tCCK). For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part". The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing. For the number of the APB bus to which the A/D Converter is connected, see "8. Block Diagram". The base clock (HCLK) is used to generate the sampling time and the compare clock cycle. *2: The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1). *3: The compare time (tC) is the result of (Equation 2). Document Number: 001-99224 Rev.** Page 94 of 115 PRELIMINARY S6E1B3 Series ANxx Analog input pins REXT Comparator RAIN Analog signal source CAIN (Equation 1) tS ≥ (RAIN + REXT ) × CAIN × 9 tS: RAIN: Sampling time Input resistance of A/D Converter = 2.2 kΩ with 2.7 < AVCC < 3.6 ch.1 to ch.14, ch.16 to ch.19 Input resistance of A/D Converter = 1.9 kΩ with 2.7 < AVCC < 3.6 ch.15 Input resistance of A/D Converter = 2.3 kΩ with 2.7 < AVCC < 3.6 ch.20 to ch.23 Input resistance of A/D Converter = 5.7 kΩ with 1.8 < AVCC < 2.7 ch.1 to ch.14, ch.16 to ch.19 Input resistance of A/D Converter = 5.6 kΩ with 1.8 < AVCC < 2.7 ch.15 Input resistance of A/D Converter = 5.8 kΩ with 1.8 < AVCC < 2.7 ch.20 to ch.23 Input resistance of A/D Converter = 12.6 kΩ with 1.65 < AVCC < 1.8 ch.1 to ch.19 Input resistance of A/D Converter = 12.7 kΩ with 1.65 < AVCC < 1.8 ch.20 to ch.23 CAIN: REXT: Input capacitance of A/D Converter = 9.7 pF with 2.7 < AVCC < 3.6 Output impedance of external circuit (Equation 2) tC=tCCK × 14 tC: Compare time tCCK : Compare clock cycle Document Number: 001-99224 Rev.** Page 95 of 115 PRELIMINARY S6E1B3 Series Definitions of 12-bit A/D Converter Terms  Resolution: Analog variation that is recognized by an A/D converter.  Integral Nonlinearity: Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.  Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD 0xN Actual conversion characteristics Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVSS Actual conversion characteristics AVRH AVSS Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = N VZT VFST VNT : : : : AVRH Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST – VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 001-99224 Rev.** Page 96 of 115 PRELIMINARY S6E1B3 Series 11.6 USB Characteristics (VCC=3.0 V to 3.6 V, VSS=0 V, TA=- 40°C to +105°C) Parameter Input characteristics Symbol Pin Name Conditions Input H level voltage VIH - Input L level voltage VIL - Differential input sensitivity VDI - Differential common mode range VCM - Value Min 2.0 VSS – VCC + 0.3 Unit V Remarks *1 *1 0.8 V 0.2 - V *2 0.8 2.5 V *2 2.8 3.6 V 0.0 0.3 V 0.3 External pull-down Max *3 Output H level voltage VOH Output L level voltage VOL Crossover voltage VCRS - 1.3 2.0 V *4 resistance = 15 kΩ UDP0, External pull-up UDM0 resistance = 1.5 kΩ *3 Output Rising time tFR Full-speed 4 20 ns *5 characteristic Falling time tFF Full-speed 4 20 ns *5 Rising/Falling time matching tFRFM Full-speed 90 111.11 % *5 Output impedance ZDRV Full-speed 28 44 Ω *6 tLR Low-speed 75 300 ns *7 tLF Low-speed 75 300 ns *7 tLRFM Low-speed 80 125 % *7 Rising time Falling time Rising/Falling time matching *1 : Minimum differential input sensitivity [V] *2 : The switching threshold voltage of single-end-receiver of USB I/O buffer is set as within VIL(Max)=0.8 V, VIH(Min)=2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. Use differential-receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. 1.0 0.2 0.8 2.5 Common mode input voltage [V] Document Number: 001-99224 Rev.** Page 97 of 115 PRELIMINARY *3 : *4 : S6E1B3 Series The output drive capability of the driver is below 0.3 V at Low-state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 1.5 kΩ load) at high-state (VOH) The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V. D+ Max 2.0V VCRS specified range Min 1.3V D- *5 : The indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission. D+ 90% 90% 10% 10% DTrise Rising time Tfall Falling time Full-speed buffer Rs=27 Ω TxD+ CL=50 pF Rs=27 Ω TxDCL=50 pF 3-state enable *6 : USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value : 27 Ω) series resistor Rs. Document Number: 001-99224 Rev.** Page 98 of 115 PRELIMINARY S6E1B3 Series Full-speed buffer Rs 28 Ω to 44 Ω equivalent impedance TxD+ Rs 28 Ω to 44 Ω equivalent impedance TxD- Mount it as external resistance. 3-state enable Rs series resistor 25 Ω to 30 Ω Series resistor of 27 Ω (recommendation value) must be added. And, use “resistance with an uncertainty of 5% by E24 sequence”. *7 : They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. D+ 90% 90% 10% 10% DTrise Rising time Tfall Falling time See “Low-speed load (Compliance Load)” for condition of external load. Document Number: 001-99224 Rev.** Page 99 of 115 PRELIMINARY S6E1B3 Series ・ Low-Speed Load (Upstream Port Load) – Reference 1 Low-speed buffer Rs=27 Ω TxD+ Rpd CL=50 pF to 150 pF Rs=27 Ω TxDRpd 3-state enable CL=50 pF to 150 pF Rpd=15 kΩ ・ Low-Speed Load (Downstream Port Load) – Reference 2 Low-speed buffer Rs=27 Ω VTERM TxD+ CL=200 pF to 600 pF Rs=27 Ω TxD- CL=50 pF to 150 pF 3-state enable Document Number: 001-99224 Rev.** Rpu=1.5 kΩ VTERM=3.6 V Page 100 of 115 PRELIMINARY S6E1B3 Series ・ Low-Speed Load (Compliance Load) Low-speed buffer Rs=27 Ω TxD+ CL=200 pF to 450 pF Rs=27 Ω TxDCL=200 pF to 450 pF 3-state enable Document Number: 001-99224 Rev.** Page 101 of 115 PRELIMINARY S6E1B3 Series 11.7 Low-Voltage Detection Characteristics 11.7.1 Low-Voltage Detection Reset (TA=-40°C to +105°C) Parameter Symbol Conditions Min 1.38 1.43 Value Typ 1.50 1.55 Max 1.60 1.65 Unit Detected voltage Released voltage VDL VDH LVD stabilization wait time tLVDW - - - 8160× *2 tCYCP μs LVD detection delay time tLVDDL - - - 200 μs Fixed *1 V V Remarks When voltage drops When voltage rises *1: The value of low voltage detection reset is always fixed. *2: tCYCP indicates the APB1 bus clock cycle time. Document Number: 001-99224 Rev.** Page 102 of 115 PRELIMINARY S6E1B3 Series 11.7.2 Low-Voltage Detection Interrupt (TA=-40°C to +105°C) Parameter SVHI=00100 SVHRLI=00100 SVHI=00101 SVHRLI=00101 SVHI=00110 SVHRLI=00110 SVHI=00111 SVHRLI=00111 SVHI=01000 SVHRLI=01000 SVHI=01001 SVHRLI=01001 SVHI=01010 SVHRLI=01010 SVHI=01011 SVHRLI=01011 SVHI=01100 SVHRLI=01100 SVHI=01101 SVHRLI=01101 SVHI=01110 SVHRLI=01110 SVHI=01111 SVHRLI=01111 SVHI=10000 SVHRLI=10000 SVHI=10001 SVHRLI=10001 SVHI=10010 SVHRLI=10010 SVHI=10011 SVHRLI=10011 Min 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 Value Typ 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 tLVDW - - - tLVDDL - - - Symbol Conditions Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time LVD detection delay time Max 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 8160 × tCYCP* 200 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs *:tCYCP represents the APB1 bus clock cycle time. Document Number: 001-99224 Rev.** Page 103 of 115 PRELIMINARY S6E1B3 Series 11.7.3 Low-Voltage Detection Interrupt 2 (TA=- 40°C to +105°C) Parameter SVH2I=00100 SVH2RLI=00100 SVH2I=00101 SVH2RLI=00101 SVH2I=00110 SVH2RLI=00110 SVH2I=00111 SVH2RLI=00111 SVH2I=01000 SVH2RLI=01000 SVH2I=01001 SVH2RLI=01001 SVH2I=01010 SVH2RLI=01010 SVH2I=01011 SVH2RLI=01011 SVH2I=01100 SVH2RLI=01100 SVH2I=01101 SVH2RLI=01101 SVH2I=01110 SVH2RLI=01110 SVH2I=01111 SVH2RLI=01111 SVH2I=10000 SVH2RLI=10000 SVH2I=10001 SVH2RLI=10001 SVH2I=10010 SVH2RLI=10010 SVH2I=10011 SVH2RLI=10011 Min 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 Value Typ 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 tLVDW - - - tLVDDL - - - Symbol Conditions Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time LVD detection delay time Max 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 8160 × tCYCP* 200 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs *:tCYCP represents the APB1 bus clock cycle time. Document Number: 001-99224 Rev.** Page 104 of 115 PRELIMINARY S6E1B3 Series 11.8 Flash Memory Write/Erase Characteristics (VCC=1.65 V to 3.6 V, TA=- 40°C to +105°C) Parameter Sector erase time Large sector Small sector Min - Value Typ* 1.1 Max* 2.7 - 0.3 0.9 Unit s Remarks The sector erase time includes the time of writing prior to internal erase. The halfword (16-bit) write time excludes the system-level overhead. The chip erase time includes the time of writing Chip erase time 11.2 28.8 s prior to internal erase. *: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write. Halfword (16-bit) write time - 30 528 μs Write/Erase Cycle and Data Hold Time (Target Value) Write/Erase Cycle Data Hold Time (Year) 1,000 20* 10,000 10* Remarks *: At average + 85C Document Number: 001-99224 Rev.** Page 105 of 115 PRELIMINARY S6E1B3 Series 11.9 Return Time from Low-Power Consumption Mode 11.9.1 Return Factor: Interrupt/WKUP The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC=1.65 V to 3.6 V, TA=-40°C to +105°C) Parameter Symbol Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode Value *1 Max 7*HCLK 12*HCLK 13*HCLK μs 20+12*HCLK 42+13*HCLK μs 20+12*HCLK 42+13*HCLK μs 71 (*2*4) 71+tOSCWT μs 80 μs tICNT Sub Timer mode Unit Typ 6*HCLK (*3) RTC mode, 38 (*2*4) Stop mode 38+tOSCWT Deep RTC mode, 45 Deep Stop mode *1: The maximum value depends on the condition of environment. Remarks μs The count time is different in different clock mode *2: tOSCWT : Oscillator stabilization time. *3: It is for HCR mode. *4: For clock mode except HCR mode. Operation Example of Return from Low-Power Consumption Mode (by External Interrupt*) External interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 001-99224 Rev.** Page 106 of 115 PRELIMINARY S6E1B3 Series Operation Example of Return from Low-Power Consumption Mode (by Internal Resource Interrupt*) Internal resource interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual". Document Number: 001-99224 Rev.** Page 107 of 115 PRELIMINARY S6E1B3 Series 11.9.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC=1.65 V to 3.6 V, TA=-40°C to +105°C) Parameter Symbol Value Typ Max* Unit *1 10 *2 40 70 μs 20 30 μs 61 114 μs Sub Timer mode 61 114 μs RTC/Stop mode 38 85 μs 95 μs Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode tRCNT Deep RTC mode, 46 Deep Stop mode *: The maximum value depends on the accuracy of built-in CR. Remarks *1 : HCR ON.(HCR/MOSC/PLL mode) *2 : HCR OFF.(LCR/SOS mode) Operation Example of Return from Low-Power Consumption Mode (by INITX) INITX Internal reset Reset active Release tRCNT CPU Operation Document Number: 001-99224 Rev.** Start Page 108 of 115 PRELIMINARY S6E1B3 Series Operation Example of Return from Low Power Consumption Mode (by Internal Resource Reset*) Internal resource reset Internal reset Reset active Release tRCNT CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual". − The time during the power-on reset/low-voltage detection reset is excluded. See "11.4.7 Power-on Reset Timing in 11.4 AC Characteristics in 11. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset. − When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. Document Number: 001-99224 Rev.** Page 109 of 115 PRELIMINARY S6E1B3 Series 12. Ordering Information Part Number S6E1B34E0AGV20000 S6E1B36E0AGV20000 S6E1B34F0AGV20000 S6E1B36F0AGV20000 S6E1B34G0AGV20000 S6E1B36G0AGV20000 On-Chip Flash Memory 304 560 304 560 304 560 Document Number: 001-99224 Rev.** On-Chip SRAM Package 32 64 32 64 32 64 Plastic  LQFP (0.50 mm pitch), 80 pins (FPT-80P-M21) Plastic  LQFP (0.50 mm pitch), 100 pins (FPT-100P-M20) Plastic  LQFP (0.50 mm pitch), 120 pins (FPT-120P-M21) Packing Tray Tray Tray Page 110 of 115 PRELIMINARY S6E1B3 Series 13. Package Dimensions Document Number: 001-99224 Rev.** Page 111 of 115 PRELIMINARY Document Number: 001-99224 Rev.** S6E1B3 Series Page 112 of 115 PRELIMINARY Document Number: 001-99224 Rev.** S6E1B3 Series Page 113 of 115 PRELIMINARY S6E1B3 Series Document History Document Title: S6E1B3 Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller Document Number: 001-99224 Revision ** ECN 4889752 Orig. of Submission Change Date TEKA Document Number: 001-99224 Rev.** 08/31/2015 Description of Change New Spec. Page 114 of 115 PRELIMINARY S6E1B3 Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface Lighting & Power Control cypress.com/go/interface cypress.com/go/powerpsoc Memory PSoC Touch Sensing USB Controllers Wireless/RF Spansion Products cypress.com/go/memory cypress.com/go/psoc psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/go/support cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless spansion.com/products Cypress, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-99224 Rev.** August 31, 2015 Page 115 of 115
S6E1B34G0AGV20000 价格&库存

很抱歉,暂时无法提供与“S6E1B34G0AGV20000”相匹配的价格&库存,您可以联系我们找货

免费人工找货