0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S6E2GM8J0AGV2000A

S6E2GM8J0AGV2000A

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    LQFP176

  • 描述:

    IC MCU 32BIT 1MB FLASH 176LQFP

  • 数据手册
  • 价格&库存
S6E2GM8J0AGV2000A 数据手册
Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com S6E2G Series 32-bit Arm® Cortex®-M4F FM4 Microcontroller S6E2G Series are FM4 devices with up to 180 MHz CPU, 1 MB flash, 192 KB SRAM, 20x communication peripherals, 33x digital peripherals and 3x analog peripherals. They are designed for industrial automation and metering applications. Devices in the S6E2G Series are highly integrated 32-bit microcontrollers with high performance and competitive cost. This series is based on the Arm® Cortex®-M4F processor with on-chip flash memory and SRAM. The series has peripherals such as motor control timers, A/D converters, and communications interfaces (USB, CAN, UART, CSIO (SPI), I2C, LIN). The products that are described in this data sheet are placed into TYPE5-M4 product categories in the "FM4 Family Peripheral Manual Main Part (002-04856)”. Features  32-bit Arm Cortex-M4F Core  Up  Watch Counter to 180 MHz frequency operation  External Interrupt Controller Unit  On-chip Memories  Watchdog Timer (Two channels)  Flash memory: Up to 1024 Kbytes memory: • SRAM0: up to 128 Kbytes • SRAM1: 32 Kbytes • SRAM2: 32 Kbytes  SRAM  Cyclic Redundancy Check (CRC) Accelerator  SD Card Interface Available on S6E2GM, S6E2GH, and S6E2GK Devices Only  Direct Memory Access (DMA) Controller (Eight Channels)  Descriptor System Data Transfer Controller (DSTC); 256 channels  Ethernet-MAC Available on S6E2GM, S6E2GK, and S6E2G2 Devices only  Smartcard Interface (Max 2 channels)  Five Clock Sources  External Bus Interface  USB Interface (Max two channels): Host and Device  Six Reset Sources  CAN Interface (Max one channel) Available on S6E2GM  Clock Supervisor (CSV)  Multi-function Serial Interface (Max 10 Channels)  Six Low-power Consumption Modes and S6E2GH Devices Only  UART (Universal Asynchronous Receiver/Transmitter)  Clock Synchronous Serial Interface (CSIO (SPI))  Local Interconnect Network (LIN)  Inter-Integrated Circuit (I2C)  Inter-IC Sound (I2S)  Low-Voltage Detector (LVD)  Sleep  Timer  RTC  Stop  Deep  Deep  Base Timer (Max 16 channels) standby RTC standby stop  Peripheral Clock Gating System  General Purpose I/O Port  Up to 121 high-speed general-purpose I/O ports in 144-pin package  Up to 153 high-speed general-purpose I/O ports in 176-pin package  Crypto Assist Function  Debug  Serial wire JTAG debug port (SWJ-DP) trace macrocells (ETM) provide comprehensive debug and trace facilities.  AHB trace macrocells (HTM)  Embedded  Multi-function Timer (Max two units)  Real-Time Clock (RTC)  Analog to Digital Converter (ADC) (Max 32 Channels)  41-bit Unique ID  Dual Timer (32-/16-bit Down Counter)  Wide range voltage: VCC = 2.7 to 5.5 V  Quadrature Position/Revolution Counter (QPRC; Max two channels) Cypress Semiconductor Corporation Document Number: 001-98708 Rev. *E • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised June 24, 2019 S6E2G Series Ecosystem for Cypress FM4 MCUs Cypress provides a wealth of data at www.cypress.com to help you to select the right MCU for your design, and to help you to quickly and effectively integrate the device into your design. Following is an abbreviated list for FM4 MCUs:  Overview: Product Portfolio, Product Roadmap  Product Selectors: FM4 MCUs  Application notes: Cypress offers a large number of FM4 application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FM4 family of MCUs are:  AN204468 - FM4 I2S USB MP3 Player Application 32-Bit Microcontroller FM4 Family: This application note describes the general structure of the I²S USB MP3Player software example, its single modules in detail and how it is used.  AN204471 - FM4 S6E2CC Series External Memory Programmer: This document describes use of the MCU Universal Programmer as an off-line programmer for Quad SPI flash memory programming on the S6E2CC Series SK.  AN203277 - FM 32-Bit Microcontroller Family Hardware Design Considerations: This application note reviews several topics for designing a hardware system around FM0+, FM3, and FM4 family MCUs. Subjects include power system, reset, crystal, and other pin connections, and programming and debugging interfaces.  AN202488 - FM4 MB9BF56x and S6E2HG Series MCU Servo Motor Speed Control: This document covers servo motor speed control solution on FM4 MCU - MB9BF56x and S6E2HG. Document Number: 001-98708 Rev. *E  AN99235 - FM4 S6E2HG Series MCU - 16-Bit PWM Using a Base Timer: Cypress FM4 Family of 32-bit Arm® Cortex®-M4 Microcontrollers FM4 S6E2H Series Motor Control Arm® Cortex®-M4 MCU  AN202487 - Differences Among FM0+, FM3, and FM4 32-Bit Microcontrollers: Highlights the peripheral differences in Cypress’s FM family MCUs. It provides dedicated sections for each peripheral and contains lists, tables, and descriptions of peripheral feature and register differences.  AN204438 - How to Setup Flash Security for FM0+, FM3 and FM4 Families: This application note describes how to setup the Flash Security for FM0+, FM3, and FM4 devices  Development kits:  FM4-U120-9B560 - Arm® Cortex®-M4 MCU Starter Kit with USB and CMSIS-DAP  FM4-216-ETHERNET Arm® Cortex®-M4 MCU Development Kit with Ethernet, CAN and USB Host  FM4-176L-S6E2CC-ETH - Arm® Cortex®-M4 MCU Starter Kit with Ethernet and USB Host  FM4-176L-S6E2GM - Arm® Cortex®-M4 MCU Pioneer Kit with Ethernet and USB Host  Peripheral Manuals Page 2 of 190 S6E2G Series Table of Contents 1. S6E2G Series Block Diagram ................................ 4 2. Product Lineup ....................................................... 5 3. Package-Dependent Features ............................... 7 4. Product Features in Detail ..................................... 8 5. Pin Assignments .................................................. 12 6. Pin Descriptions ................................................... 14 7. I/O Circuit Type ..................................................... 54 8. Handling Precautions .......................................... 63 8.1 Precautions for Product Design ........................... 63 8.2 Precautions for Package Mounting ...................... 64 8.3 Precautions for Use Environment ........................ 66 9. Handling Devices ................................................. 67 10. Memory Map ......................................................... 70 11. Pin Status in Each CPU State .............................. 74 12. Electrical Characteristics .................................... 84 12.1 Absolute Maximum Ratings ................................. 84 12.2 Recommended Operating Conditions ................. 86 12.3 DC Characteristics .............................................. 91 12.3.1 Current Rating .................................................. 91 12.3.2 Pin Characteristics .......................................... 101 12.4 AC Characteristics ............................................. 103 12.4.1 Main Clock Input Characteristics .................... 103 12.4.2 Sub Clock Input Characteristics ...................... 104 12.4.3 Built-In CR Oscillation Characteristics ............ 104 12.4.4 Operating Conditions of Main PLL (in the Case of Using Main Clock for Input Clock of PLL) ....... 105 12.4.5 Operating Conditions of USB/Ethernet PLL (in the Case of Using Main Clock for Input Clock of PLL) ....................................................................... 105 12.4.6 Operating Conditions of Main PLL (in the Case of Using Built-in High-Speed CR Clock for Input Clock of Main PLL) ................................................... 106 Document Number: 001-98708 Rev. *E 12.4.7 12.4.8 12.4.9 12.4.10 12.4.11 12.4.12 12.4.13 12.4.14 Reset Input Characteristics ............................. 106 Power-On Reset Timing .................................. 107 GPIO Output Characteristics........................... 107 External Bus Timing ........................................ 108 Base Timer Input Timing ................................. 119 CSIO (SPI) Timing .......................................... 120 External Input Timing ...................................... 153 Quadrature Position/Revolution Counter Timing ........................................................................ 154 12.4.15 I2C Timing ....................................................... 157 12.4.16 SD Card Interface Timing................................ 160 12.4.17 ETM/ HTM Timing ........................................... 162 12.4.18 JTAG Timing ................................................... 164 12.4.19 Ethernet-MAC Timing ..................................... 165 12.4.20 I2S Timing (Multi-function Serial Interface) ...... 170 12.5 12-bit A/D Converter .......................................... 171 12.6 USB Characteristics ........................................... 175 12.7 Low-Voltage Detection Characteristics .............. 179 12.7.1 Low-Voltage Detection Reset.......................... 179 12.7.2 Interrupt of Low-Voltage Detection .................. 179 12.8 MainFlash Memory Write/Erase Characteristics ........................................................................... 180 12.9 Standby Recovery Time .................................... 181 12.9.1 Recovery Cause: Interrupt/WKUP .................. 181 12.9.2 Recovery Cause: Reset .................................. 183 13. Ordering Information .......................................... 185 14. Package Dimensions .......................................... 186 Document History ....................................................... 188 Worldwide Sales and Design Support....................... 190 Page 3 of 190 S6E2G Series 1. S6E2G Series Block Diagram Document Number: 001-98708 Rev. *E Page 4 of 190 S6E2G Series 2. Product Lineup Memory Size Product Name S6E2GM6 S6E2GK6 S6E2GH6 S6E2G36 S6E2G26 S6E2GM8 S6E2GK8 S6E2GH8 S6E2G38 S6E2G28 512 Kbytes 1024 Kbytes SRAM 128 Kbytes 192 Kbytes SRAM0 64 Kbytes 128 Kbytes SRAM1 32 Kbytes 32 Kbytes SRAM2 32 Kbytes 32 Kbytes Memory Type On-chip flash memory On-chip Function Availability by Part Product Name Description CPU S6E2GM6 S6E2GM8 S6E2GK6 S6E2GK8 S6E2GH6 S6E2GH8 S6E2G36 S6E2G38 S6E2G26 S6E2G28 Cortex-M4F, MPU, NVIC 128 ch Freq. 180 MHz Power supply voltage range 2.7 V to 5.5 V USB2.0 (Device/Host) 2 ch 1 ch. (Max) MII: 1 ch / RMII: 1 ch (Max) Ethernet-MAC CAN 1 ch (Max) SD card interface 1ch. (Max) MII: 1 ch / RMII: 1 ch (Max) N/A N/A 1 ch (Max) 1 unit N/A N/A DMAC 8 ch DSTC 256 ch Addr: 25-bit (Max), Data: 8-/16-bit CS: 9 (Max), External bus interface SRAM, NOR flash NAND flash SDRAM Multi-function serial interface (UART/CSIO(SPI)/LIN/I2C /I2S) Document Number: 001-98708 Rev. *E 10ch (Max) ch 1, ch 4 to ch 7: FIFO, ch 0, ch 2, ch3, ch 8 to ch 15: No FIFO ch 1: I2S Page 5 of 190 S6E2G Series Product Name Description S6E2GM6 S6E2GM8 S6E2GK6 S6E2GK8 MF timer Base timer (PWC/Reload timer/PWM/PPG) S6E2GH6 S6E2GH8 S6E2G26 S6E2G28 16 ch (Max) A/D activation compare 6 ch Input capture 4 ch Free-run timer 3 ch Output compare 6 ch Waveform generator 3 ch PPG 3 ch 2 units (Max) Smartcard (ISO7816) 2 ch (Max) QPRC 2 ch (Max) Dual timer 1 unit Real-time clock 1 unit Watch counter 1 unit CRC accelerator Yes (fixed) Watchdog timer 1 ch (SW) + 1 ch (HW) External interrupts 32 pins (Max)+ NMI × 1 CSV (clock supervisor) Yes LVD (low-voltage detector) 2 ch Built-in CR S6E2G36 S6E2G38 High-speed 4 MHz Low-speed 100 kHz Debug function Unique ID SWJ-DP/ETM/HTM Yes *1: Crypto Assist Function is built in following products. S6E2GM6HHA, S6E2GM8HHA, S6E2GM6JHA, S6E2GM8JHA Notes: − Because of package pin limitations, not all functions within the device can be brought out to external pins. You must carefully work out the pin allocation needed for your design. You must use the port relocate function of the I/O port according to your function use. − See 12.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR. Document Number: 001-98708 Rev. *E Page 6 of 190 S6E2G Series 3. Package-Dependent Features All S6E2G Series of parts are available in both 144-pin LQFP and 176-pin LQFP. Base Part Number S6E2G Description Package Suffix H0A LQFP: (0.5 mm pitch) I/O Ports J0A JHA* 144 pins 176 pins 121 pins (Max) 153 pins (Max) 24 (3 units) 32 ch (3 units) 12-bit ADC converter Crypto Assist Function HHA* — Yes — Yes *HHA and JHA parts have the Crypto Assist Function built in. HHA and JHA options are not available for the S6E2GH or S6E2G3 parts. The HHA and JHA options are available on the S6E2GM, S6E2GK, and S6E2G2 parts. Notes: − For an explicit list of part numbers and the feature differences among them, see 13. Ordering Information − See 14. Package Dimensions for detailed information on each package. Document Number: 001-98708 Rev. *E Page 7 of 190 S6E2G Series 4. Product Features in Detail 32-bit Arm Cortex-M4F Core  Up to 180 MHz frequency operation  FPU built-in  Support DSP instructions  Memory protection unit (MPU): improves the reliability of an embedded system  Integrated nested vectored interrupt controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral interrupts and 16 priority levels  24-bit system timer (Sys Tick): system timer for OS task management On-chip Memories  Flash memory This series is on-chip flash memories.  Up to 1024 Kbytes flash accelerator for zero wait state  Security function for code protection  Built-in  SRAM This is composed of three independent SRAMs (SRAM0, SRAM1 and SRAM2). SRAM0 is connected to the I-code bus and D-code bus of Cortex-M4F core. SRAM1 and SRAM2 are connected to system bus of Cortex-M4F core.  SRAM0: up to 128 Kbytes 32 Kbytes  SRAM2: 32 Kbytes  SRAM1: • EndPoint 0 is control transfer • EndPoint 1,2 can be selected bulk-transfer, interrupttransfer or isochronous-transfer • EndPoint 3 to 5 can select bulk-transfer or interrupttransfer  EndPoint 1 to 5 comprise double buffer  The size of each endpoint is as follows. • Endpoint 0, 2 to 5: 64 byte • EndPoint 1: 256 byte  USB Host  USB2.0 Full-Speed/Low-Speed supported interrupt-transfer, and isochronoustransfer support  USB Device connected/dis-connected automatically detect  IN/OUT token handshake packet automatically  Max 256-byte packet length supported  Wake-up function supported  Bulk-transfer, CAN Interface (Max one channel) Available on S6E2GM and S6E2GH Devices Only  Compatible with CAN specification 2.0A/B  Maximum transfer rate: 1 Mbps  Built-in 32-message buffer Multi-function Serial Interface (Max 10 Channels)  Separate 64 byte receive and transmit FIFO buffers for channels 1 and channels 4 to 7.  Operation mode is selectable for each channel from the following:  UART  CSIO External Bus Interface  Supports SRAM, NOR, NAND flash and SDRAM device  Up to 9 chip selects CS0 to CS8 (CS8 is only for SDRAM)  8-/16-/32-bit data width  Up to 25-bit address bus  Supports address/data multiplexing  Supports external RDY function  Supports scramble function  Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to 0xDFFF_FFFF in 4 Mbytes units.  Possible to set two kinds of the scramble key  Note: It is necessary to use the Cypress provided software library to use the scramble function. USB Interface (Max two channels) The USB interface is composed of a Device and a Host.  USB Device  USB  Max 2.0 Full-speed supported 6 EndPoint supported Document Number: 001-98708 Rev. *E (SPI)  LIN  I2 C  I2 S  UART  Full-duplex double buffer with or without parity supported  Built-in dedicated baud rate generator  External clock available as a serial clock  Various error detect functions available (parity errors, framing errors, and overrun errors)  Selection  CSIO (SPI)  Full-duplex double buffer dedicated baud rate generator  Overrun error detect function available  Serial chip select function (ch 6 and ch 7 only)  Supports high-speed SPI (ch 4 and ch 6 only)  Data length 5 to 16-bit  Built-in  LIN  LIN protocol Rev.2.1 supported double buffer  Master/slave mode supported  LIN break field generation (can change to 13- to 16-bit length)  Full-duplex Page 8 of 190 S6E2G Series  LIN break delimiter generation (can change to 1- to 4-bit length)  Various error detect functions available (parity errors, framing errors, and overrun errors)  I2 C  Standard mode (Max 100 kbps)/Fast mode (Max 400 kbps) supported  Fast mode Plus (Fm+) (Max 1000 kbps, only for ch 3 = ch A and ch 7 = ch B) supported  I2 S CSIO (SPI) (ch 1 only) and I2S clock generator  Supports two transfer protocol: I2S and MSB-justified  Master mode only  Using DMA Controller (Eight Channels) DMA controller has an independent bus, so the CPU and DMA controller can process simultaneously.  Eight independently configured and operated channels  Transfer can be started by software or request from the built-in peripherals  16-bit PPG timer  16-/32-bit reload timer  16-/32-bit PWC timer  Event counter mode (External clock mode) General Purpose I/O Port This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals; moreover, the port relocate function is built in. It can set the I/O port to which the peripheral function can be allocated.  Capable of pull-up control per pin  Capable of reading pin level directly  Built-in port-relocate function  Up to 121 high-speed general-purpose I/O ports in 144-pin package  Some pins 5 V tolerant I/O. See 6. Pin Descriptions and 7. I/O Circuit Type for the corresponding pins.  Transfer address area: 32-bit (4 GB) Multi-function Timer (Max two units)  Transfer mode: Block transfer/Burst transfer/Demand The multi-function timer is composed of the following blocks: Minimum resolution: 5.56 ns  Transfer data type: bytes/half-word/word  16-bit free-run timer × 3 ch/unit  Transfer block count: 1 to 16  Input capture × 4 ch/unit  Number of transfers: 1 to 65536  Output compare × 6 ch/unit DSTC (Descriptor System Data Transfer Controller; 256 channels)  A/D activation compare × 6 ch/unit transfer The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor system and, following the specified contents of the descriptor that has already been constructed on the memory, can access directly the memory/peripheral device and perform the data-transfer operation. It supports the software activation, the hardware activation, and the chain activation functions.  Waveform generator × 3 ch/unit  16-bit PPG timer × 3 ch/unit The following functions can be used to achieve the motor control:  PWM signal output function  DC chopper waveform output function  Dead time function  Input capture function  A/D convertor activate function A/D Converter (Max 32 Channels)  12-bit A/D Converter  DTIF (motor emergency stop) interrupt function  Successive Real-Time Clock (RTC)  Built-in The real-time clock can count year, month, day, hour, minute, second, or day of the week from 00 to 99. approximation type three units  Conversion time: 0.5 μs at 5 V  Priority conversion available (priority at two levels)  Scanning conversion mode  Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: 4 steps)  Interrupt function with specifying date and time (year/month/day/hour/minute) is available. This function is also available by specifying only year, month, day, hour, or minute. Base Timer (Max 16 channels)  Timer interrupt function after set time or each set time. Operation mode is selected from the following for each channel:  Capable of rewriting the time with continuing the time count.  16-bit PWM timer Document Number: 001-98708 Rev. *E  Leap year automatic count is available. Page 9 of 190 S6E2G Series Quadrature Position/Revolution Counter (QPRC; Max two channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. It is also possible to use up/down counter. CCITT CRC16 and IEEE-802.3 CRC32 are supported.  CCITT CRC16 generator polynomial: 0x1021  IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7  The detection edge of the three external event input pins SD Card Interface Available on S6E2GM, S6E2GH, and S6E2GK Devices Only  16-bit position counter It is possible to use the SD card that conforms to the following standards.  16-bit revolution counter  Part 1 Physical Layer Specification version 3.01  Two 16-bit compare registers  Part E1 SDIO Specification version 3.00 AIN, BIN and ZIN is configurable. Dual Timer (32-/16-bit Down Counter) The dual timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the following for each channel:  Free-running  Periodic (= Reload)  One shot Watch Counter The watch counter is used for wake up from low-power consumption mode. It is possible to select the main clock, sub clock, built-in High-speed CR clock, or built-in low-speed CR clock as the clock source.  Interval timer: up to 64 s (max) with a sub clock of 32.768 kHz  Part A2 SD Host Controller Standard Specification version 3.00  1-bit or 4-bit data bus Ethernet-MAC Available on S6E2GM, S6E2GK, and S6E2G2 Devices only           Compliant with IEEE802.3 specification 10 Mbps/100 Mbps data transfer rates supported MII/RMII for external PHY device supported. MII: Max one channel RMII: Max one channel Full-duplex and half-duplex mode supported. Wake-ON-LAN supported Built-in dedicated descriptor-system DMAC Built-in 2 Kbytes transmit FIFO and 2 Kbytes receive FIFO. Compliant IEEE1558-2008 (PTP) External Interrupt Controller Unit Smartcard Interface (Max 2 channels)  External interrupt input pin: Max 32 pins  Compliant with ISO7816-3 specification  Both edges(Rise edge and Fall edge) detect  Include one non-maskable interrupt (NMI) Watchdog Timer (Two channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs: a "hardware" watchdog and a "software" watchdog. The hardware watchdog timer is clocked by low-speed internal CR oscillator. The hardware watchdog is thus active in any power saving mode except RTC mode and Stop mode. Cyclic Redundancy Check (CRC) Accelerator The CRC accelerator helps to verify data transmission or storage integrity. Document Number: 001-98708 Rev. *E  Card Reader only/B class card only  Available protocols  Transmitter: 8E2, 8O2, 8N2 8E1, 8O1, 8N2, 8N1, 9N1  Inverse mode  Receiver:  TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes) Clock and Reset  Clocks Five clock sources (two external oscillators, two internal CR oscillators, and Main PLL) that are dynamically selectable.  Main clock: 4 MHz to 48 MHz clock: 30 kHz to 100 kHz  High-speed internal CR clock: 4 MHz  Low-speed internal CR clock: 100 kHz  Main PLL Clock  Sub Page 10 of 190 S6E2G Series  Resets  Reset requests from INITX pin  Power on reset  Software reset  Watchdog timer reset  Low-voltage detector reset  Clock supervisor reset Clock Supervisor (CSV) Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.  External OSC clock failure (clock stop) is detected, reset is asserted.  External OSC frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) This Series include two-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, the low-voltage detector function generates an interrupt or reset.  LVD1: error reporting via interrupt  LVD2: auto-reset operation Low-power Consumption Mode Crypto Assist Function These features are enabled for the crypto assist function. The dedicated middleware is necessary for this calculator operation.  PKA (Public Key Accelerator)  PKA(Public Key Accelerator)is modular exponentiation calculation accelerator used of RSA Public Key crypto and so on.  Available bit length: Up to 2048-bit  AES calculator  AES (Advanced Encryption Standard) calculator is a AES common key crypto accelerator which is compliant with FIPS (Federal Information Processing Standard Publication)197.  Available key length: 128/192/256-bit  CBC mode and ECB mode support  External Bus Data Scramble  It enables to scramble input/output data of External Bus Interface. Debug  Serial wire JTAG debug port (SWJ-DP)  Embedded trace macrocells (ETM) provide comprehensive debug and trace facilities.  AHB trace macrocells (HTM) Six low power consumption modes are supported. Unique ID      Unique value of the device (41-bit) is set. Sleep Timer RTC Stop Deep standby RTC (selectable from with/without RAM retention)  Deep standby stop (selectable from with/without RAM retention) Power Supply  Four power supplies    Peripheral Clock Gating The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used. Document Number: 001-98708 Rev. *E  Wide range voltage: VCC = 2.7 V to 5.5 V Power supply for USB ch 0 I/O: USBVCC0 = 3.0 V to 3.6 V (when USB is used) = 2.7 V to 5.5 V (when GPIO is used) Power supply for USB ch 1 I/O: USBVCC1 = 3.0 V to 3.6 V (when USB is used) = 2.7 V to 5.5 V (when GPIO is used) Power supply for Ethernet-MAC I/O: ETHVCC = 3.0 V to 5.5 V (when Ethernet is used.) Page 11 of 190 S6E2G Series 5. Pin Assignments LQS144 Note: − Only the GPIO function is shown on GPIO pins. See the table in Pin Descriptions for the full, multiplexed signal name. Document Number: 001-98708 Rev. *E Page 12 of 190 S6E2G Series LQP176 Note: − Only the GPIO function is shown on GPIO pins. See the table in Pin Descriptions for the full, multiplexed signal name. Document Number: 001-98708 Rev. *E Page 13 of 190 S6E2G Series 6. Pin Descriptions List of Pin Functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin Number LQFP-176 LQFP-144 1 1 Pin Name I/O Circuit Type Pin State Type VCC - - E K E I E I E I E I E K PA0 RTO00_1 (PPG00_1) 2 TIOA8_0 2 INT00_0 MADATA00_0 IC0_CIN_0 PA1 3 3 RTO01_1 (PPG01_1) TIOA9_0 MADATA01_0 IC0_DATA_0 PA2 4 4 RTO02_1 (PPG02_1) TIOA10_0 MADATA02_0 IC0_RST_0 PA3 5 5 RTO03_1 (PPG03_1) TIOA11_0 MADATA03_0 IC0_VPEN_0 PA4 6 6 RTO04_1 (PPG04_1) TIOA12_0 MADATA04_0 IC0_VCC_0 PA5 RTO05_1 (PPG05_1) 7 7 TIOA13_0 INT01_0 MADATA05_0 IC0_CLK_0 Document Number: 001-98708 Rev. *E Page 14 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type E K E K E I E I E I I Q N I N I E K E I PA6 8 8 DTTI0X_1 INT00_2 MADATA06_0 PA7 IC00_1 9 9 INT02_2 MADATA07_0 RTCCO_1 SUBOUT_1 P50 10 - SCS72_0 IC01_1 TIOA8_2 P51 11 - SCS73_0 IC02_1 TIOB8_2 P52 12 IC03_1 - TIOA9_2 PA8 SIN7_0 13 10 FRCK0_1 INT02_0 WKUP1 MADATA08_0 PA9 14 11 SOT7_0 (SDA7_0) AIN1_1 MADATA09_0 PAA 15 12 SCK7_0 (SCL7_0) BIN1_1 MADATA10_0 PAB SCS70_0 16 13 ZIN1_1 INT03_0 MADATA11_0 PAC 17 14 SCS71_0 TIOB8_0 MADATA12_0 Document Number: 001-98708 Rev. *E Page 15 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type N I N I I K E K E K L I E K E I L K L I PAD 18 15 SCK3_0 (SCL3_0) TIOB9_0 MADATA13_0 PAE ADTG_0 19 16 SOT3_0 (SDA3_0) TIOB10_0 MADATA14_0 PAF SIN3_0 20 17 TIOB11_0 INT16_0 MADATA15_0 P08 21 18 TIOB12_0 INT17_0 MDQM0_0 P09 22 19 TIOB13_0 INT18_0 MDQM1_0 P0A 23 20 ADTG_1 MCLKOUT_0 P30 MI2SWS1_1 24 RX0_1 - TIOB11_2 INT01_2 P31 25 - MI2SMCK1_1 TX0_1 TIOA12_2 P32 26 21 INT19_0 S_DATA1_0 P33 27 22 FRCK0_0 S_DATA0_0 Document Number: 001-98708 Rev. *E Page 16 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type L K P34 28 IC03_0 23 INT00_1 S_CLK_0 29 24 VCC - - 30 25 VSS - - L K L K L K E I G K G K G K P35 31 IC02_0 26 INT01_1 S_CMD_0 P36 32 IC01_0 27 INT02_1 S_DATA3_0 P37 33 IC00_0 28 INT03_1 S_DATA2_0 P38 34 ADTG_2 29 DTTI0X_0 S_WP_0 P39 RTO00_0 (PPG00_0) 35 TIOA0_1 30 AIN1_0 INT16_1 S_CD_0 MAD24_0 P3A RTO01_0 (PPG01_0) 36 TIOA1_1 31 BIN1_0 INT17_1 MAD23_0 P3B RTO02_0 (PPG02_0) 37 TIOA2_1 32 ZIN1_0 INT18_1 MAD22_0 Document Number: 001-98708 Rev. *E Page 17 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type G K G I G I E K E I E I P3C SIN2_1 38 33 RTO03_0 (PPG03_0) TIOA3_1 INT19_1 MAD21_0 P3D SOT2_1 (SDA2_1) 39 34 RTO04_0 (PPG04_0) TIOA4_1 MAD20_0 P3E SCK2_1 (SCL2_1) 40 35 RTO05_0 (PPG05_0) TIOA5_1 MAD19_0 P5D SIN1_1 41 - MI2SDI1_1 TIOB12_2 INT03_2 P5E 42 - SOT1_1 (SDA1_1) MI2SDO1_1 TIOA13_2 P5F 43 - SCK1_1 (SCL1_1) MI2SCK1_1 TIOB13_2 44 36 VSS - - 45 37 VCC - - G K P40 SIN7_1 46 38 RTO10_0 (PPG10_0) TIOA0_0 AIN0_0 INT23_0 MCSX7_0 Document Number: 001-98708 Rev. *E Page 18 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type G I G I G K G I G I P41 SOT7_1 (SDA7_1) 47 39 RTO11_0 (PPG11_0) TIOA1_0 BIN0_0 MCSX6_0 P42 SCK7_1 (SCL7_1) 48 40 RTO12_0 (PPG12_0) TIOA2_0 ZIN0_0 MCSX5_0 P43 SCS70_1 49 41 RTO13_0 (PPG13_0) TIOA3_0 INT04_0 MCSX4_0 P44 SCS71_1 50 42 RTO14_0 (PPG14_0) TIOA4_0 MCSX3_0 P45 SCS72_1 51 43 RTO15_0 (PPG15_0) TIOA5_0 MCSX2_0 52 44 C - - 53 45 VSS - - 54 46 VCC - - D S D T B C 55 47 56 48 57 49 Document Number: 001-98708 Rev. *E P46 X0A P47 X1A INITX Page 19 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type E K E K L K L I L I L K L K L K PF0 SCS73_1 58 RX0_2 - TIOA15_1 INT22_1 PF1 59 - TX0_2 TIOB15_1 INT23_1 P48 SIN1_0 60 50 MI2SDI1_0 DTTI1X_0 INT06_0 MRASX_0 P49 61 51 SOT1_0 (SDA1_0) MI2SDO1_0 IC10_0 MCASX_0 P4A 62 52 SCK1_0 (SCL1_0) MI2SCK1_0 IC11_0 MSDWEX_0 P4B MI2SWS1_0 63 53 IC12_0 INT04_2 MCSX8_0 P4C MI2SMCK1_0 64 54 IC13_0 INT05_2 MSDCKE_0 P4D 65 55 FRCK1_0 INT07_0 MSDCLK_0 Document Number: 001-98708 Rev. *E Page 20 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type L Q L I I K E I E K E I E I E K L I P4E 66 56 SCK9_0 (SCL9_0) INT05_0 WKUP2 MCSX1_0 P70 ADTG_7 67 57 SOT9_0 (SDA9_0) MCSX0_0 P71 ADTG_8 68 58 SIN9_0 INT04_1 MRDY_0 P72 69 TIOB0_0 59 INT06_2 MAD00_0 P73 SIN8_0 70 60 TIOB1_0 INT20_0 MAD01_0 P74 71 61 SOT8_0 (SDA8_0) TIOB2_0 MAD02_0 P75 72 62 SCK8_0 (SCL8_0) TIOB3_0 MAD03_0 P76 SIN6_0 73 63 TIOB4_0 INT21_0 MAD04_0 P77 74 64 SOT6_0 (SDA6_0) TIOB5_0 MAD05_0 Document Number: 001-98708 Rev. *E Page 21 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type L I E K E K E I E K E K E K E K P78 75 65 SCK6_0 (SCL6_0) AIN0_1 MAD06_0 P79 SCS60_0 76 66 BIN0_1 INT22_0 MAD07_0 P7A SCS61_0 77 67 ZIN0_1 INT07_2 MAD08_0 PF2 SCS62_0 78 - DTTI1X_1 TIOA6_1 IC1_CLK_1 PF3 SCS63_0 79 - FRCK1_1 TIOB6_1 INT05_1 IC1_VCC_1 PF4 IC10_1 80 TIOA7_1 - INT06_1 IC1_VPEN_1 PF5 SIN3_1 81 IC11_1 - TIOB7_1 INT07_1 IC1_RST_1 PF6 SOT3_1 (SDA3_1) 82 IC12_1 - TIOA14_1 INT20_1 IC1_DATA_1 Document Number: 001-98708 Rev. *E Page 22 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 I/O Circuit Type Pin State Type E K C E J D A A A B VSS - - Pin Name PF7 SCK3_1 (SCL3_1) 83 IC13_1 - TIOB14_1 INT21_1 IC1_CIN_1 84 68 85 69 PE0 MD1 MD0 PE2 86 70 87 71 88 72 89 73 VCC - - 90 74 AVCC - - 91 75 AVSS - - 92 76 AVRL - - 93 77 AVRH - - F M F L F L F M X0 PE3 X1 P10 AN00 94 TIOA0_2 78 INT08_0 MNREX_0 IC1_CLK_0 P11 AN01 95 79 TIOB0_2 MNWEX_0 IC1_VCC_0 P12 AN02 96 80 TIOA1_2 MNCLE_0 IC1_VPEN_0 P13 AN03 SIN9_1 97 81 TIOB1_2 INT25_1 MNALE_0 IC1_RST_0 Document Number: 001-98708 Rev. *E Page 23 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type F N F N F O F N F N F O F O P14 AN04 98 82 SOT9_1 (SDA9_1) TIOA2_2 IC1_DATA_0 TRACED0 P15 AN05 99 83 SCK9_1 (SCL9_1) TIOB2_2 IC1_CIN_0 TRACED1 P16 AN06 100 SIN6_1 84 RX0_0 INT09_0 TRACED2 P17 AN07 101 85 SOT6_1 (SDA6_1) TX0_0 TRACED3 PB0 AN16 102 - SCK6_1 (SCL6_1) TIOA9_1 TRACED8 PB1 AN17 SCS60_1 103 TIOB9_1 - AIN0_2 INT08_1 TRACED9 PB2 AN18 SCS61_1 104 - TIOA10_1 BIN0_2 INT09_1 TRACED10 Document Number: 001-98708 Rev. *E Page 24 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type F N F O F O F N F O F O F O PB3 AN19 105 - SCS62_1 TIOB10_1 ZIN0_2 TRACED11 P18 AN08 106 SIN2_0 86 TIOA3_2 INT10_0 TRACED4 P19 AN09 107 87 SOT2_0 (SDA2_0) TIOB3_2 INT24_1 TRACED5 P1A AN10 108 88 SCK2_0 (SCL2_0) TIOA4_2 TRACED6 P1B AN11 109 89 TIOB4_2 INT11_0 TRACED7 PB4 AN20 110 - SCS63_1 TIOA11_1 INT10_1 TRACED12 PB5 AN21 SIN8_1 111 - TIOB11_1 AIN1_2 INT11_1 TRACED13 Document Number: 001-98708 Rev. *E Page 25 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type F N F N F N F L F M F M F M PB6 AN22 112 - SOT8_1 (SDA8_1) TIOA12_1 BIN1_2 TRACED14 PB7 AN23 113 - SCK8_1 (SCL8_1) TIOB12_1 ZIN1_2 TRACED15 P1C AN12 114 90 SCK0_1 (SCL0_1) TIOA5_2 TRACECLK P1D AN13 115 91 SOT0_1 (SDA0_1) TIOB5_2 MAD09_0 P1E AN14 116 SIN0_1 92 TIOA8_1 INT26_1 MAD10_0 P1F AN15 117 RTS5_0 93 TIOB8_1 INT27_1 MAD11_0 P2A AN24 118 94 CTS5_0 INT08_2 MAD12_0 Document Number: 001-98708 Rev. *E Page 26 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type F M F M F M E M F M F L F L E M P29 AN25 119 95 SCK5_0 (SCL5_0) INT09_2 MAD13_0 P28 AN26 120 96 SOT5_0 (SDA5_0) INT10_2 MAD14_0 P27 AN27 121 97 SIN5_0 INT24_0 MAD15_0 P26 ADTG_6 122 98 TIOA6_2 INT11_2 MAD16_0 P25 AN28 123 99 TIOB6_2 INT25_0 MAD17_0 P24 124 100 AN29 TIOA13_1 MAD18_0 P23 UHCONX1 125 101 AN30 SCK0_0 (SCL0_0) TIOB13_1 P22 AN31 126 102 SOT0_0 (SDA0_0) INT26_0 Document Number: 001-98708 Rev. *E Page 27 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type I K I F - - H R H R P21 ADTG_4 127 103 SIN0_0 INT27_0 CROUT_0 P20 128 104 NMIX 129 105 USBVCC1 WKUP0 P82 130 106 131 107 132 108 VSS - - 133 109 VCC - - 134 110 E G 135 111 E G E G E G E G E K E K UDM1 P83 UDP1 P00 TRSTX P01 TCK SWCLK 136 112 137 113 P02 TDI P03 TMS SWDIO P04 138 114 TDO SWO P90 139 RTO10_1 (PPG10_1) - TIOB0_1 INT12_1 IC0_CLK_1 P91 SIN5_1 140 - RTO11_1 (PPG11_1) TIOB1_1 INT13_1 IC0_VCC_1 Document Number: 001-98708 Rev. *E Page 28 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type E K E K E I E I K V K V K V K V K V K V P92 SOT5_1 (SDA5_1) 141 - RTO12_1 (PPG12_1) TIOB2_1 INT14_1 IC0_VPEN_1 P93 SCK5_1 (SCL5_1) 142 - RTO13_1 (PPG13_1) TIOB3_1 INT15_1 IC0_RST_1 P94 CTS5_1 143 - RTO14_1 (PPG14_1) TIOB4_1 IC0_DATA_1 P95 RTS5_1 144 - RTO15_1 (PPG15_1) TIOB5_1 IC0_CIN_1 145 PC0 115 E_RXER PC1 146 116 TIOB6_0 E_RX03 PC2 147 117 TIOA6_0 E_RX02 PC3 148 118 TIOB7_0 E_RX01 PC4 149 119 TIOA7_0 E_RX00 PC5 150 120 TIOB14_0 E_RXDV Document Number: 001-98708 Rev. *E Page 29 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 I/O Circuit Type Pin State Type K V E W K V K V K V ETHVCC - - VSS - - L W K V L W L W L W L W L W L V Pin Name PC6 151 121 TIOA14_0 E_MDIO PC7 152 INT13_0 122 E_MDC CROUT_1 153 123 PC8 E_RXCK_REFCK PC9 154 124 TIOB15_0 E_COL PCA 155 125 TIOA15_0 E_CRS 156 126 157 127 PCB 158 128 INT28_0 E_COUT 159 PCC 129 E_TCK PCD 160 130 SOT4_1 (SDA4_1) INT14_0 E_TXER PCE 161 131 SIN4_1 INT15_0 E_TX03 PCF 162 132 RTS4_1 INT12_0 E_TX02 PD0 163 133 INT30_1 E_TX01 PD1 164 134 INT31_1 E_TX00 PD2 165 135 CTS4_1 E_TXEN Document Number: 001-98708 Rev. *E Page 30 of 190 S6E2G Series Pin Number LQFP-176 LQFP-144 Pin Name I/O Circuit Type Pin State Type E W E K I K L K L I L I I Q - - H R H R - - P6E ADTG_5 166 136 SCK4_1 (SCL4_1) INT29_0 E_PPS 167 - 168 - P65 INT28_1 P64 CTS4_0 INT29_1 P63 ADTG_3 169 137 RTS4_0 INT30_0 MOEX_0 P62 170 138 SCK4_0 (SCL4_0) TIOB7_2 MWEX_0 P61 UHCONX0 171 139 SOT4_0 (SDA4_0) TIOA7_2 MALE_0 RTCCO_0 SUBOUT_0 P60 172 SIN4_0 140 INT31_0 WKUP3 173 141 174 142 175 143 176 144 USBVCC0 Document Number: 001-98708 Rev. *E P80 UDM0 P81 UDP0 VSS Page 31 of 190 S6E2G Series Signal Descriptions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin Number Module Pin Name Function LQFP 176 LQFP 144 ADTG_0 19 16 ADTG_1 23 ADTG_2 34 29 ADTG_3 169 137 ADTG_4 A/D converter A/D converter external trigger input pin 20 127 103 ADTG_5 166 136 ADTG_6 122 98 ADTG_7 67 57 ADTG_8 68 58 AN00 94 78 AN01 95 79 AN02 96 80 AN03 97 81 AN04 98 82 AN05 99 83 AN06 100 84 AN07 101 85 AN08 106 86 AN09 107 87 AN10 108 88 AN11 109 89 AN12 114 90 AN13 115 91 AN14 116 92 AN15 A/D converter analog input pin. 117 93 AN16 ANxx describes A/D converter ch xx. 102 - AN17 103 - AN18 104 - AN19 105 - AN20 110 - AN21 111 - AN22 112 - AN23 113 - AN24 118 94 AN25 119 95 AN26 120 96 AN27 121 97 AN28 123 99 AN29 124 100 AN30 125 101 AN31 126 102 Document Number: 001-98708 Rev. *E Page 32 of 190 S6E2G Series Module Pin Name Function TIOA0_0 TIOA0_1 Base Timer 0 Base Timer ch 0 TIOA pin 35 30 TIOA0_2 94 78 TIOB0_0 69 59 TIOB0_1 Base Timer ch 0 TIOB pin TIOB0_2 TIOA1_0 TIOA1_1 Base Timer 1 Base Timer ch 1 TIOA pin TIOA1_2 TIOB1_0 39 36 31 96 80 TIOB1_2 97 81 TIOA2_0 48 40 Base Timer ch 2 TIOA pin 37 32 TIOA2_2 98 82 TIOB2_0 71 61 Base Timer ch 2 TIOB pin TIOA3_0 TIOA3_1 Base Timer ch 3 TIOA pin TIOA3_2 TIOB3_0 141 - 99 83 49 41 38 33 106 86 72 62 142 - TIOB3_2 107 87 TIOA4_0 50 42 39 34 TIOA4_2 108 88 TIOB4_0 73 63 TIOB3_1 TIOA4_1 TIOB4_1 Base Timer ch 3 TIOB pin Base Timer ch 4 TIOA pin Base Timer ch 4 TIOB pin TIOB4_2 TIOA5_0 TIOA5_1 Base Timer ch 5 TIOA pin TIOA5_2 TIOB5_0 TIOB5_1 Base Timer ch 5 TIOB pin 143 - 109 89 51 43 40 35 114 90 74 64 144 - TIOB5_2 115 91 TIOA6_0 147 117 78 - TIOA6_1 Base Timer 6 47 - Base Timer ch 1 TIOB pin TIOB2_2 Base Timer 5 79 60 TIOB2_1 Base Timer 4 - 95 70 TIOA2_1 Base Timer 3 139 140 TIOB1_1 Base Timer 2 Pin Number LQFP 176 LQFP 144 46 38 Base Timer ch 6 TIOA pin TIOA6_2 122 98 TIOB6_0 146 116 TIOB6_1 Base Timer ch 6 TIOB pin TIOB6_2 Document Number: 001-98708 Rev. *E 79 - 123 99 Page 33 of 190 S6E2G Series Module Pin Name Function TIOA7_0 TIOA7_1 Base Timer 7 Base Timer ch 7 TIOA pin 80 - TIOA7_2 171 139 TIOB7_0 148 118 TIOB7_1 Base Timer ch 7 TIOB pin TIOB7_2 TIOA8_0 TIOA8_1 Base Timer 8 TIOB8_0 10 - 17 14 117 93 3 102 - TIOA9_1 Base Timer ch 9 TIOA pin TIOA9_2 12 - TIOB9_0 18 15 TIOA10_1 TIOB10_0 TIOA11_1 Base Timer ch 9 TIOB pin Base Timer ch 10 TIOA pin Base Timer ch 10 TIOB pin Base Timer ch 11 TIOA pin TIOB11_0 TIOB11_1 Base Timer ch 11 TIOB pin TIOB11_2 TIOA12_0 TIOA12_1 Base Timer ch 12 TIOA pin 103 - 4 4 104 - 19 16 105 - 5 5 110 - 20 17 111 - 24 - 6 6 112 - TIOA12_2 25 - TIOB12_0 21 18 113 - TIOB12_1 Base Timer ch 12 TIOB pin TIOB12_2 41 - TIOA13_0 7 7 124 100 42 - TIOA13_1 Base Timer ch 13 TIOA pin TIOA13_2 TIOB13_0 TIOB13_1 Base Timer ch 13 TIOB pin TIOB13_2 TIOA14_0 Base Timer 14 2 92 3 TIOA11_0 Base Timer 13 2 116 11 TIOB10_1 Base Timer 12 138 TIOA9_0 TIOA10_0 Base Timer 11 Base Timer ch 8 TIOB pin 81 170 TIOB8_2 TIOB9_1 Base Timer 10 Base Timer ch 8 TIOA pin TIOA8_2 TIOB8_1 Base Timer 9 Pin Number LQFP 176 LQFP 144 149 119 TIOA14_1 TIOB14_0 TIOB14_1 Base Timer ch 14 TIOA pin Base Timer ch 14 TIOB pin Document Number: 001-98708 Rev. *E 22 19 125 101 43 - 151 121 82 - 150 120 83 - Page 34 of 190 S6E2G Series Module Pin Name TIOA15_0 Base Timer 15 TIOA15_1 TIOB15_0 TIOB15_1 Function Base Timer ch 15 TIOA pin Base timer ch 15 TIOB pin TX0_0 TX0_1 CAN 0 CAN interface ch 0 TX output pin 58 - 154 124 59 - 101 85 25 - TX0_2 59 - RX0_0 100 84 24 - 58 - 135 111 137 113 RX0_1 CAN interface ch 0 RX input pin RX0_2 SWO Serial wire debug interface clock input pin Serial wire debug interface data input/ output pin Serial wire viewer output pin 138 114 TCK JTAG test clock input pin 135 111 SWCLK SWDIO TDI JTAG test data input pin 136 112 TDO JTAG debug data output pin 138 114 TMS JTAG test mode state input/output pin 137 113 Trace CLK output pin of ETM/HTM 114 90 98 82 TRACECLK TRACED0 TRACED1 99 83 100 84 TRACED3 101 85 TRACED4 106 86 TRACED5 107 87 TRACED6 108 88 TRACED7 109 89 TRACED8 102 - TRACED9 103 - TRACED2 Debugger Pin Number LQFP 176 LQFP 144 155 125 TRACED10 Trace data output pin of ETM/ Trace data output pin of HTM Trace data output pin of HTM 104 - TRACED11 105 - TRACED12 110 - TRACED13 111 - TRACED14 112 - TRACED15 TRSTX JTAG test reset Input pin Document Number: 001-98708 Rev. *E 113 - 134 110 Page 35 of 190 S6E2G Series Module Pin Name Function MAD00_0 MAD01_0 70 60 MAD02_0 71 61 MAD03_0 72 62 MAD04_0 73 63 MAD05_0 74 64 MAD06_0 75 65 MAD07_0 76 66 MAD08_0 77 67 MAD09_0 115 91 MAD10_0 116 92 117 93 118 94 MAD13_0 119 95 MAD14_0 120 96 MAD15_0 121 97 MAD16_0 122 98 MAD17_0 123 99 MAD18_0 124 100 MAD19_0 40 35 MAD20_0 39 34 MAD21_0 38 33 MAD22_0 37 32 MAD23_0 36 31 MAD24_0 35 30 MCSX0_0 67 57 MCSX1_0 66 56 MCSX2_0 51 43 50 42 49 41 MAD11_0 MAD12_0 External bus Pin Number LQFP 176 LQFP 144 69 59 MCSX3_0 MCSX4_0 MCSX5_0 External bus interface address bus External bus interface chip select output pin 48 40 MCSX6_0 47 39 MCSX7_0 46 38 MCSX8_0 63 53 Document Number: 001-98708 Rev. *E Page 36 of 190 S6E2G Series Module Pin Name Function MADATA00_0 MADATA01_0 3 3 MADATA02_0 4 4 MADATA03_0 5 5 MADATA04_0 6 6 MADATA05_0 7 7 MADATA06_0 8 8 MADATA07_0 External bus interface data bus MADATA08_0 (address/data multiplex bus) 9 9 13 10 MADATA09_0 14 11 MADATA10_0 15 12 MADATA11_0 16 13 MADATA12_0 17 14 MADATA13_0 18 15 MADATA14_0 19 16 MADATA15_0 20 17 21 18 22 19 171 139 68 58 23 20 97 81 96 80 94 78 95 79 169 137 170 138 65 55 64 54 60 50 61 51 62 52 MDQM0_0 MDQM1_0 External bus interface byte mask signal output pin External bus interface address latch enable output signal for multiplex External bus interface external RDY MRDY_0 input signal External bus interface external clock MCLKOUT_0 output pin External bus interface ALE signal to MNALE_0 control NAND flash output pin External bus interface CLE signal to MNCLE_0 control NAND flash output pin External bus interface read enable signal MNREX_0 to control NAND flash External bus interface write enable signal MNWEX_0 to control NAND flash External bus interface read enable MOEX_0 signal for SRAM External bus interface write enable MWEX_0 signal for SRAM SDRAM interface MSDCLK_0 SDRAM clock output pin SDRAM interface MSDCKE_0 SDRAM clock enable pin SDRAM interface MRASX_0 SDRAM row active strobe pin SDRAM interface MCASX_0 SDRAM column active strobe pin SDRAM interface MSDWEX_0 SDRAM write enable pin MALE_0 External bus Pin Number LQFP 176 LQFP 144 2 2 Document Number: 001-98708 Rev. *E Page 37 of 190 S6E2G Series Module Pin Name Function INT00_0 INT00_1 External interrupt request 00 input pin 28 23 INT00_2 8 8 INT01_0 7 7 31 26 24 - 13 10 32 27 9 9 16 13 33 28 INT01_1 External interrupt request 01 input pin INT01_2 INT02_0 INT02_1 External interrupt request 02 input pin INT02_2 INT03_0 INT03_1 External interrupt request 03 input pin INT03_2 41 - INT04_0 49 41 INT04_1 External interrupt request 04 input pin 68 58 INT04_2 63 53 INT05_0 66 56 INT05_1 External interrupt request 05 input pin INT05_2 INT06_0 External interrupt Pin Number LQFP 176 LQFP 144 2 2 INT06_1 External interrupt request 06 input pin 79 - 64 54 60 50 80 - 69 59 65 55 81 - INT07_2 77 67 INT08_0 94 78 103 - INT08_2 118 94 INT09_0 100 84 INT06_2 INT07_0 INT07_1 INT08_1 INT09_1 External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin INT09_2 INT10_0 INT10_1 External interrupt request 10 input pin INT10_2 INT11_0 INT11_1 External interrupt request 11 input pin 104 - 119 95 106 86 110 - 120 96 109 89 111 - INT11_2 122 98 INT12_0 162 132 139 - 152 122 140 - INT12_1 INT13_0 INT13_1 External interrupt request 12 input pin External interrupt request 13 input pin Document Number: 001-98708 Rev. *E Page 38 of 190 S6E2G Series Module Pin Name INT14_0 INT14_1 INT15_0 INT15_1 INT16_0 INT16_1 INT17_0 INT17_1 INT18_0 INT18_1 INT19_0 INT19_1 INT20_0 INT20_1 INT21_0 INT21_1 INT22_0 External interrupt INT22_1 INT23_0 INT23_1 INT24_0 INT24_1 INT25_0 INT25_1 INT26_0 INT26_1 INT27_0 INT27_1 INT28_0 INT28_1 INT29_0 INT29_1 INT30_0 INT30_1 INT31_0 INT31_1 NMIX Function External interrupt request 14 input pin External interrupt request 15 input pin External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin External interrupt request 24 input pin External interrupt request 25 input pin External interrupt request 26 input pin External interrupt request 27 input pin External interrupt request 28 input pin External interrupt request 29 input pin External interrupt request 30 input pin External interrupt request 31 input pin Non-maskable interrupt input pin Document Number: 001-98708 Rev. *E Pin Number LQFP 176 LQFP 144 160 130 141 - 161 131 142 - 20 17 35 30 21 18 36 31 22 19 37 32 26 21 38 33 70 60 82 - 73 63 83 - 76 66 58 - 46 38 59 - 121 97 107 87 123 99 97 81 126 102 116 92 127 103 117 93 158 128 167 - 166 136 168 - 169 137 163 133 172 140 164 134 128 104 Page 39 of 190 S6E2G Series Module Pin Name Function P00 P01 135 111 P02 136 112 137 113 P03 P04 General-purpose I/O port 0 138 114 P08 21 18 P09 22 19 P0A 23 20 P10 94 78 P11 95 79 P12 96 80 P13 97 81 P14 98 82 P15 99 83 P16 100 84 P17 101 85 P18 GPIO Pin Number LQFP 176 LQFP 144 134 110 General-purpose I/O port 1 106 86 P19 107 87 P1A 108 88 P1B 109 89 P1C 114 90 P1D 115 91 P1E 116 92 P1F 117 93 P20 128 104 P21 127 103 P22 126 102 P23 125 101 124 100 123 99 P26 122 98 P27 121 97 P28 120 96 P29 119 95 P2A 118 94 P24 P25 General-purpose I/O port 2 Document Number: 001-98708 Rev. *E Page 40 of 190 S6E2G Series Module Pin Name Function P30 P31 25 - P32 26 21 P33 27 22 P34 28 23 P35 31 26 32 27 33 28 P38 34 29 P36 P37 GPIO Pin Number LQFP 176 LQFP 144 24 - General-purpose I/O port 3 P39 35 30 P3A 36 31 P3B 37 32 P3C 38 33 P3D 39 34 P3E 40 35 P40 46 38 P41 47 39 P42 48 40 P43 49 41 P44 50 42 P45 51 43 55 47 56 48 P48 60 50 P49 61 51 P4A 62 52 P46 P47 General-purpose I/O port 4 P4B 63 53 P4C 64 54 P4D 65 55 P4E 66 56 P50 10 - P51 11 - P52 12 - 41 - 42 - P5D General-purpose I/O port 5 P5E P5F 43 - P60 172 140 P61 171 139 170 138 169 137 P64 168 - P65 167 - P6E 166 136 P62 P63 General-purpose I/O port 6 Document Number: 001-98708 Rev. *E Page 41 of 190 S6E2G Series Module Pin Name Function P70 P71 68 58 P72 69 59 P73 70 60 71 61 72 62 P76 73 63 P77 74 64 P78 75 65 P74 P75 General-purpose I/O port 7 P79 76 66 P7A 77 67 P80 174 142 P81 175 143 P82 GPIO Pin Number LQFP 176 LQFP 144 67 57 General-purpose I/O port 8 130 106 P83 131 107 P90 139 - P91 140 - P92 141 - P93 General-purpose I/O port 9 142 - P94 143 - P95 144 - PA0 2 2 PA1 3 3 PA2 4 4 PA3 5 5 PA4 6 6 PA5 7 7 PA6 8 8 PA7 PA8 General-purpose I/O port A 9 9 13 10 PA9 14 11 PAA 15 12 PAB 16 13 PAC 17 14 PAD 18 15 PAE 19 16 PAF 20 17 Document Number: 001-98708 Rev. *E Page 42 of 190 S6E2G Series Module Pin Name Function PB0 GPIO PB1 103 - PB2 104 - PB3 105 - PB4 General-purpose I/O port B 110 - PB5 111 - PB6 112 - PB7 113 - PC0 145 115 PC1 146 116 PC2 147 117 PC3 148 118 PC4 149 119 PC5 150 120 PC6 151 121 PC7 152 122 PC8 GPIO Pin Number LQFP 176 LQFP 144 102 - General-purpose I/O port C 153 123 PC9 154 124 PCA 155 125 PCB 158 128 PCC 159 129 PCD 160 130 PCE 161 131 PCF 162 132 PD0 163 133 164 134 PD2 165 135 PE0 84 68 PD1 PE2 General-purpose I/O port D General-purpose I/O port E 86 70 PE3 87 71 PF0 58 - PF1 59 - PF2 78 - 79 - 80 - PF5 81 - PF6 82 - PF7 83 - PF3 PF4 General-purpose I/O port F Document Number: 001-98708 Rev. *E Page 43 of 190 S6E2G Series Module Pin Name SIN0_0 SIN0_1 SOT0_0 (SDA0_0) MultiFunction Serial 0 SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Function Multi-function serial interface ch 0 input pin Multi-function serial interface ch 0 output pin This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 0 clock I/O pin This pin operates as SCK0 when it is used in a CSIO (operation mode 2) and as SCL0 when it is used in an I2C (operation mode 4) SIN1_0 Multi-function serial interface ch 1 input (MI2SDI1_0) pin. SIN1 pin operates as MI2SDI1 when used SIN1_1 2 (MI2SDI1_1) as an I S pin (operation mode 2). Multi-function serial interface ch 1 output SOT1_0 pin (SDA1_0) (MI2SDO1_0) This pin operates as SOT1 when it is used in a Pin Number LQFP 176 LQFP 144 127 103 116 92 126 102 115 91 125 101 114 90 60 50 41 - 61 51 42 - 62 52 43 - 63 53 24 - 64 54 25 - UART/CSIO/LIN (operation modes 0 to 3) and MultiFunction Serial 1 as SDA1 when it is used in an I2C (operation SOT1_1 mode 4). (SDA1_1) (MI2SDO1_1) SOT1 pin operates as MI2SDO1 when used as an I2S pin (operation mode 2). Multi-function serial interface ch 1 clock SCK1_0 I/O pin (SCL1_0) (MI2SCK1_0) This pin operates as SCK1 when it is used in a CSIO (operation mode 2) and as SCL1 when it is used in an I2C SCK1_1 (operation mode 4). (SCL1_1) as MI2SCK1 when (MI2SCK1_1) SCK1 pin operates used as an I2S pin (operation mode 2). MI2SWS1_0 MI2SWS1_1 MI2SMCK1_0 MI2SMCK1_1 I2S word select (WS) output pin I2S master clock I/O pin Document Number: 001-98708 Rev. *E Page 44 of 190 S6E2G Series Module Pin Name SIN2_0 SIN2_1 SOT2_0 (SDA2_0) MultiFunction Serial 2 SOT2_1 (SDA2_1) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SIN3_0 SIN3_1 SOT3_0 (SDA3_0) MultiFunction Serial 3 SOT3_1 (SDA3_1) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SIN4_0 SIN4_1 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) MultiFunction Serial 4 SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) CTS4_0 CTS4_1 RTS4_0 RTS4_1 Function Multi-function serial interface ch 2 input pin Multi-function serial interface ch 2 output pin This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 2 clock I/O pin This pin operates as SCK2 when it is used in a CSIO (operation mode 2) and as SCL2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 3 input pin Multi-function serial interface ch 3 output pin This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 3 clock I/O pin This pin operates as SCK3 when it is used in a CSIO (operation modes 2) and as SCL3 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 4 input pin Multi-function serial interface ch 4 output pin This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 4 clock I/O pin This pin operates as SCK4 when it is used in a CSIO (operation mode 2) and as SCL4 when it is used in an I2C (operation mode 4). Pin Number LQFP 176 LQFP 144 106 86 38 33 107 87 39 34 108 88 40 35 20 17 81 - 19 16 82 - 18 15 83 - 172 140 161 131 171 139 160 130 170 138 166 136 Multi-function serial interface ch 4 CTS input pin 168 - 165 135 Multi-function serial interface ch 4 RTS output pin 169 137 162 132 Document Number: 001-98708 Rev. *E Page 45 of 190 S6E2G Series Module Pin Name SIN5_0 SIN5_1 SOT5_0 (SDA5_0) SOT5_1 (SDA5_1) MultiFunction Serial 5 SCK5_0 (SCL5_0) SCK5_1 (SCL5_1) CTS5_0 CTS5_1 RTS5_0 RTS5_1 SIN6_0 SIN6_1 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) MultiFunction Serial 6 SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) SCS60_0 SCS60_1 SCS61_0 SCS61_1 SCS62_0 SCS62_1 SCS63_0 SCS63_1 Function Multi-function serial interface ch 5 input pin Multi-function serial interface ch 5 output pin This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 5 clock I/O pin This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 5 CTS input pin Multi-function serial interface ch 5 RTS output pin Multi-function serial interface ch 6 input pin Multi-function serial interface ch 6 output pin This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 6 clock I/O pin This pin operates as SCK6 when it is used in a CSIO (operation mode 2) and as SCL6 when it is used in an I2C (operation mode 4). Pin Number LQFP 176 LQFP 144 121 97 140 - 120 96 141 - 119 95 142 - 118 94 143 - 117 93 144 - 73 63 100 84 74 64 101 85 75 65 102 - Multi-function serial interface ch 6 chip select 0 input/output pin 76 66 103 - Multi-function serial interface ch 6 chip select1 input/output pin 77 67 104 - 78 - 105 - 79 - 110 - Multi-function serial interface ch 6 chip select2 input/output pin Multi-function serial interface ch 6 chip select3 input/output pin Document Number: 001-98708 Rev. *E Page 46 of 190 S6E2G Series Module Pin Name SIN7_0 SIN7_1 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) MultiFunction Serial 7 SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCS70_0 SCS70_1 SCS71_0 SCS71_1 SCS72_0 SCS72_1 SCS73_0 SCS73_1 SIN8_0 SIN8_1 SOT8_0 (SDA8_0) MultiFunction Serial 8 SOT8_1 (SDA8_1) SCK8_0 (SCL8_0) SCK8_1 (SCL8_1) SIN9_0 SIN9_1 SOT9_0 (SDA9_0) MultiFunction Serial 9 SOT9_1 (SDA9_1) SCK9_0 (SCL9_0) SCK9_1 (SCL9_1) Function Multi-function serial interface ch 7 input pin Pin Number LQFP 176 LQFP 144 13 10 46 38 14 11 47 39 15 12 48 40 Multi-function serial interface ch 7 chip select 0 input/output pin 16 13 49 41 Multi-function serial interface ch 7 chip select 1 input/output pin 17 14 50 42 Multi-function serial interface ch 7 chip select 2 input/output pin 10 - 51 43 Multi-function serial interface ch 7 chip select 3 input/output pin 11 - Multi-function serial interface ch 7 output pin This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 7 clock I/O pin This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 8 input pin Multi-function serial interface ch 8 output pin This pin operates as SOT8 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA8 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 8 clock I/O pin This pin operates as SCK8 when it is used in a CSIO (operation mode 2) and as SCL8 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 9 input pin Multi-function serial interface ch 9 output pin This pin operates as SOT9 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA9 when it is used in an I2C (operation mode 4). Multi-function serial interface ch 9 clock I/O pin This pin operates as SCK9 when it is used in a CSIO (operation mode 2) and as SCL9 when it is used in an I2C (operation mode 4). Document Number: 001-98708 Rev. *E 58 - 70 60 111 - 71 61 112 - 72 62 113 - 68 58 97 81 67 57 98 82 66 56 99 83 Page 47 of 190 S6E2G Series Module Pin Name DTTI0X_0 DTTI0X_1 FRCK0_0 FRCK0_1 Function Input signal controlling waveform generator outputs RTO00 to RTO05 of Multi-Function Timer 0. 16-bit free-run timer ch 0 external clock input pin IC00_0 8 8 27 22 13 10 33 28 IC00_1 9 9 IC01_0 32 27 IC01_1 16-bit input capture input pin of Multi-Function Timer 0. ICxx describes channel number. 10 - 31 26 IC02_1 11 - IC03_0 28 23 IC03_1 12 - Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. 35 30 2 2 Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. 36 31 3 3 Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. 37 32 4 4 Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. 38 33 5 5 Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. 39 34 6 6 Waveform generator output pin of Multi-Function Timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. 40 35 7 7 IC02_0 RTO00_0 (PPG00_0) MultiFunction Timer 0 Pin Number LQFP 176 LQFP 144 34 29 RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) Document Number: 001-98708 Rev. *E Page 48 of 190 S6E2G Series Module Pin Name DTTI1X_0 DTTI1X_1 FRCK1_0 FRCK1_1 Input signal controlling waveform generator outputs RTO10 to RTO15 of Multi-Function Timer 1. 16-bit free-run timer ch 1 external clock input pin Pin Number LQFP 176 LQFP 144 60 50 78 - 65 55 79 - IC10_0 61 51 IC10_1 80 - IC11_0 62 52 IC11_1 16-bit input capture input pin of Multi-Function Timer 1. ICxx describes channel number. 81 - 63 53 IC12_1 82 - IC13_0 64 54 IC13_1 83 - 46 38 139 - 47 39 140 - 48 40 141 - 49 41 142 - 50 42 143 - 51 43 144 - IC12_0 RTO10_0 (PPG10_0) MultiFunction Timer 1 Function RTO10_1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) RTO14_1 (PPG14_1) RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. Waveform generator output pin of Multi-Function Timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. Document Number: 001-98708 Rev. *E Page 49 of 190 S6E2G Series Module Pin Name Function AIN0_0 AIN0_1 Quadrature Position/ Revolution Counter 0 QPRC ch 0 AIN input pin - BIN0_0 47 39 BIN0_1 QPRC ch 0 BIN input pin BIN0_2 ZIN0_0 QPRC ch 0 ZIN input pin AIN1_0 AIN1_1 QPRC ch 1 AIN input pin - 48 40 77 67 105 - 35 30 14 11 111 - 36 31 15 12 BIN1_1 QPRC ch 1 BIN input pin BIN1_2 112 - ZIN1_0 37 32 RTCCO_0 RTCCO_1 SUBOUT_0 SUBOUT_1 QPRC ch 1 ZIN input pin 0.5 seconds pulse output pin of real-time clock Sub-clock output pin 16 13 113 - 171 139 9 9 171 139 9 9 UDM0 USB ch 0 device/host D – pin 174 142 UDP0 USB ch 0 device/host D + pin 175 143 USB ch 0 external pull-up control pin 171 139 UDM1 USB ch 1 device/host D – pin 130 106 UDP1 USB ch 1 device/host D + pin 131 107 USB ch 1 external pull-up control pin Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 125 101 128 104 13 10 66 56 172 140 UHCONX0 UHCONX1 WKUP0 Low power consumption mode 66 BIN1_0 ZIN1_2 USB1 76 104 AIN1_2 ZIN1_1 USB0 65 103 ZIN0_2 Real-time clock 75 AIN0_2 ZIN0_1 Quadrature Position/ Revolution Counter 1 Pin Number LQFP 176 LQFP 144 46 38 WKUP1 WKUP2 WKUP3 Document Number: 001-98708 Rev. *E Page 50 of 190 S6E2G Series Module Pin Name S_CLK_0 SD memory card interface SD memory card clock output pin SD memory card interface SD memory card command output 23 31 26 S_DATA1_0 26 21 S_DATA0_0 27 22 32 27 33 28 35 30 S_DATA3_0 SD memory card interface SD memory card data bus S_DATA2_0 SD memory card interface SD memory card detection pin SD memory card interface SD memory card write protection Collision detection 34 29 154 124 Clock output for Ethernet PHY 158 128 E_CRS Carrier detection 155 125 E_MDC Management clock 152 122 E_MDIO Management data I/O 151 121 E_PPS PTP counter monitor 166 136 E_RX00 Received data0 149 119 E_RX01 Received data1 148 118 E_RX02 Received data2 147 117 E_RX03 Received data3 146 116 153 123 150 120 S_CD_0 S_WP_0 E_COL E_COUT Ethernet Pin Number LQFP 176 LQFP 144 28 S_CMD_0 SD I/F Function E_RXCK_RE Received clock input/ Reference clock FCK Received data enable E_RXDV Received data error detection 145 115 E_TCK Transition clock input 159 129 E_TX00 Transition data0 164 134 E_TX01 Transition data1 163 133 E_TX02 Transition data2 162 132 E_RXER E_TX03 Transition data3 161 131 E_TXEN Transition data enable 165 135 E_TXER Transition data error detection 160 130 Document Number: 001-98708 Rev. *E Page 51 of 190 S6E2G Series Module Pin Name IC0_VCC_0 IC0_VCC_1 IC0_VPEN_0 IC0_VPEN_1 IC0_RST_0 Smartcard0 IC0_RST_1 IC0_CIN_0 IC0_CIN_1 IC0_CLK_0 IC0_CLK_1 Smartcard ch 0 power enable output pin Smartcard ch 0 programming output pin Smartcard ch 0 reset output pin Smartcard ch 0 insert detection input pin Smartcard ch 0 serial interface clock output pin Pin Number LQFP 176 LQFP 144 6 6 140 - 5 5 141 - 4 4 142 - 2 2 144 - 7 7 139 - 3 3 IC0_DATA_0 Smartcard ch 0 serial interface data I/O IC0_DATA_1 pin 143 - IC1_VCC_0 95 79 IC1_VCC_1 IC1_VPEN_0 IC1_VPEN_1 IC1_RST_0 Smartcard1 Function IC1_RST_1 IC1_CIN_0 IC1_CIN_1 IC1_CLK_0 IC1_CLK_1 Smartcard ch 1 power enable output pin Smartcard ch 1 programming output pin Smartcard ch 1 reset output pin Smartcard ch 1 insert detection input pin Smartcard ch 1 serial interface clock output pin IC1_DATA_0 Smartcard ch 1 serial interface data I/O IC1_DATA_1 pin Document Number: 001-98708 Rev. *E 79 - 96 80 80 - 97 81 81 - 99 83 83 - 94 78 78 - 98 82 82 - Page 52 of 190 S6E2G Series Module Pin Name Reset INITX MD1 Mode MD0 VCC Function External reset Input pin A reset is valid when INITX = L. Mode 1 pin During serial programming to flash memory, MD1 = L must be input. Mode 0 pin During normal operation, MD0 = L must be input. During serial programming to flash memory, MD0 = H must be input. Power supply pin Power USBVCC0 USBVCC1 ETHVCC GND Clock VSS Power supply pin for Ethernet I/O GND pin 57 49 84 68 85 69 1 1 29 24 45 37 54 46 89 73 133 109 173 141 129 105 156 126 30 25 44 36 53 45 88 72 132 108 157 127 176 144 X0 Main clock (oscillation) input pin 86 70 X1 Main clock (oscillation) I/O pin 87 71 X0A Sub clock (oscillation) input pin 55 47 X1A Sub clock (oscillation) I/O pin 56 48 Built-in high-speed CR-oscillation clock output port 127 103 152 122 90 74 92 76 93 77 A/D converter and D/A converter GND pin 91 75 Power supply stabilization capacity pin 52 44 CROUT_0 CROUT_1 AVCC Analog power 3.3V power supply port for USB I/O Pin Number LQFP 176 LQFP 144 AVRL AVRH Analog GND AVSS C pin C A/D converter and D/A converter analog power-supply pin A/D converter analog reference voltage input pin A/D converter analog reference voltage input pin Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 001-98708 Rev. *E Page 53 of 190 S6E2G Series 7. I/O Circuit Type Type Circuit P-ch P-ch Remarks Digital output X1 N-ch Digital output R It is possible to select the main Oscillation/GPIO function. Pull-up resistor control Digital input Standby mode control Clock input A When the main oscillation is selected: ・ Oscillation feedback resistor: approximately 1 MΩ ・ Standby mode control When the GPIO is selected: ・ CMOS level output. ・ CMOS level hysteresis input Standby mode control ・ Pull-up resistor control ・ Standby mode control Digital input ・ Pull-up resistor: Standby mode control ・ IOH = -4 mA, IOL = 4 mA approximately 50 kΩ R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control B ・ CMOS level hysteresis input Pull-up resistor ・ Pull-up resistor: Digital input Document Number: 001-98708 Rev. *E approximately 50 kΩ Page 54 of 190 S6E2G Series Type Circuit Remarks Digital input ・ Open drain output C N-ch Document Number: 001-98708 Rev. *E Digital output ・ CMOS level hysteresis input Page 55 of 190 S6E2G Series Type Circuit P-ch X1A X1 P-ch N-ch Remarks Digital output Digital output R It is possible to select the sub oscillation/GPIO function. Pull-up resistor control Digital input When the main oscillation is selected: Standby mode control ・ Oscillation feedback resistor: Clock input ・ Standby mode control D approximately 5 MΩ When the GPIO is selected: ・ CMOS level output. Standby mode control Digital input Standby mode control ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA R X0A X0 P-ch P-ch Digital output N-ch Digital output Pull-up resistor control Document Number: 001-98708 Rev. *E Page 56 of 190 S6E2G Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control E N-ch Digital output R ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, Pull-up resistor control the digital output P-ch transistor is always off. Digital input Standby mode control P-ch P-ch Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ Input control N-ch Digital output ・ Analog input ・ Pull-up resistor control ・ Standby mode control F ・ Pull-up resistor: Pull-up resistor control R Digital input Standby mode control approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Analog input Input control Document Number: 001-98708 Rev. *E Page 57 of 190 S6E2G Series Type Circuit P-ch Remarks Digital output P-ch ・ CMOS level output ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: G N-ch Digital output R approximately 50 kΩ ・ IOH = -12 mA, IOL = 12 mA ・ When this pin is used as an I2C pin, the digital output P-ch Pull-up resistor control Digital input transistor is always off. Standby mode control GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output UDP/Pxx It is possible to select either USB I/O or GPIO function. USB Full-speed/Low-speed control UDP input When the USB I/O is selected: ・ Full-speed, low-speed control H Differential UDM/Pxx Differential input USB/GPIO select UDM input UDM output When the GPIO is selected: ・ CMOS level output ・ CMOS level hysteresis input ・ Standby mode control ・ IOH = -20.5 mA, IOL = 18.5 mA USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 001-98708 Rev. *E Page 58 of 190 S6E2G Series Type Circuit Remarks ・ CMOS level output ・ CMOS level hysteresis input P-ch P-ch Digital output ・ 5 V tolerant ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ I N-ch Digital output R ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR registers (pseudo-open drain control) ・ For PZR registers, refer to GPIO in Pull-up resistor control Digital input the FM4 Family Peripheral Manual Main Part (002-04856). Standby mode control J Mode input P-ch P-ch CMOS level hysteresis input Digital output ・ CMOS level output ・ TTL level hysteresis input K N-ch Digital output R ・ Pull-up resistor control ・Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA Pull-up resistor control Digital input Standby mode control Document Number: 001-98708 Rev. *E Page 59 of 190 S6E2G Series Type Circuit P-ch Remarks P-ch Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: L N-ch Digital output approximately 50 kΩ ・ IOH = -8 mA, IOL = 8 mA ・ When this pin is used as an I2C pin, the digital output P-ch Pull-up resistor control R transistor is always off. Digital input Standby mode control ・ CMOS level output ・ CMOS level hysteresis input P-ch P-ch Pull-up resistor control ・ 5V tolerant Digital output ・ Standby mode control ・ Pull-up resistor control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA (GPIO) N N-ch ・ IOL = 20mA (Fast mode Plus) N-ch Digital output ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in R Fast mode control Main Part (002-04856). ・ When this pin is used as an I2C pin, Digital input Standby mode control Document Number: 001-98708 Rev. *E the FM4 Family Peripheral Manual the digital output P-ch transistor is always off. Page 60 of 190 S6E2G Series Type Circuit Remarks ・ CMOS level output P-ch P-ch Pull-up resistor control ・ CMOS level hysteresis input Digital output ・ Pull-up resistor control ・ 5 V tolerant ・ Pull-up resistor: approximately 50 kΩ O ・ IOH = -4 mA, IOL = 4 mA N-ch Digital output ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the FM4 Family Peripheral Manual Main Part (002-04856). R Digital input P-ch P-ch X0A Pull-up resistor control Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ Pull-up resistor control P N-ch Digital output ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA R Digital input Standby mode control OSC Document Number: 001-98708 Rev. *E Page 61 of 190 S6E2G Series Type Circuit Pull-up resistor control Digital output P-ch X1A Remarks P-ch It is possible to select the sub oscillation/GPIO function. When the sub oscillation Digital output N-ch is selected: ・ Oscillation feedback resistor: approximately 10 MΩ Q When the GPIO is selected: ・ CMOS level output. R Digital input ・ CMOS level hysteresis input Standby mode control OSC ・ Pull-up resistor: ・ Pull-up resistor control approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA RX Standby mode control Clock input P-ch P-ch Pull-up resistor control Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ Analog output ・ Pull-up resistor control N-ch R Digital output ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA (4.5V to 5.5V) ・ IOH = -2 mA, IOL = 2 mA R Digital input (2.7V to 4.5V) Standby mode control Analog output Document Number: 001-98708 Rev. *E Page 62 of 190 S6E2G Series 8. Handling Precautions Every semiconductor device has a characteristic, inherent rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 8.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins that connect semiconductor devices to power supply and I/O functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions, if present for extended periods of time, can damage the device; therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power-supply pin or ground pin. Document Number: 001-98708 Rev. *E Page 63 of 190 S6E2G Series Latch-Up Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 8.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Document Number: 001-98708 Rev. *E Page 64 of 190 S6E2G Series Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent this, do the following: 1. Avoid exposure to rapid temperature changes, which can cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. 3. When Dry Packages are opened, it is recommended to have humidity between 40% and 70%. 4. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in these aluminum laminate bags for storage. 5. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons, and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, and the use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies. Document Number: 001-98708 Rev. *E Page 65 of 190 S6E2G Series 8.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of static electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive gases, dust, or oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, including cosmic radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, flame CAUTION: Plastic molded devices are flammable and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 001-98708 Rev. *E Page 66 of 190 S6E2G Series 9. Handling Devices Power-Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. All of these pins should be connected externally to the power supply or ground lines, however, in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Be sure to connect the current-supply source with the power pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this device. A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1V/μs at a momentary fluctuation such as switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane, as this is expected to produce stable operation. Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board. Sub Crystal Oscillator The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize the oscillation, Cypress recommends a crystal oscillator that meets the following conditions:  Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: approximately 6 pF to 7 pF  Lead type Load capacitance: approximately 6 pF to 7 pF Document Number: 001-98708 Rev. *E Page 67 of 190 S6E2G Series Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.  Example of Using an External Clock Device X0(X0A) Set as external clock input Can be used as general-purpose I/O ports. X1(PE3), X1A (P47) Handling When Using Multi-Function Serial Pin as I2C Pin If the application uses the multi-function serial pin as an I2C pin, the P-channel transistor of the digital output must be disabled. I2C pins need to conform to electrical limitations like other pins, however, and avoid connecting to live external systems with the MCU power off. C Pin Devices in this series contain a regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. Some laminated ceramic capacitors have a large capacitance variation due to thermal fluctuation. Please select a capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of the device. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, the distance between the mode pins and VCC pins or VSS pins is as short as possible, and the connection impedance is low when the pins are pulled up/down such as for switching the pin level and rewriting the flash memory data. This is important to prevent the device from erroneously switching to test mode as a result of noise. Document Number: 001-98708 Rev. *E Page 68 of 190 S6E2G Series Notes on Power-On Turn power on/off in the sequence shown below or at the same time. If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS. Turning on: Turning off: VCC → USBVCC0 VCC → USBVCC1 VCC →ETHVCC VCC → AVCC → AVRH AVRH → AVCC → VCC ETHVCC → VCC USBVCC1 → VCC USBVCC0 → VCC Serial Communication There is a possibility of receiving incorrect data as a result of noise or other issues introduced by the serial communication. Take care to design the printed circuit board to minimize noise. Consider the case of introducing error as a result of noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Characteristics within the Product Line The electric characteristics including power consumption, ESD, latch-up, noise, and oscillation differ among members of the product line because chip layout and memory structures are not the same; for example, different sizes, flash versus ROM, etc. If you are switching to a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5 V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Pin Doubled as Debug Function The pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK should be used as output only. Do not use as input. Document Number: 001-98708 Rev. *E Page 69 of 190 S6E2G Series 10. Memory Map Memory Map (1) See "Memory Map (2) for memory size details. Document Number: 001-98708 Rev. *E Page 70 of 190 S6E2G Series Memory Map (2) *: See S6E2GM/GK/GH/G3/G2 Series Flash Programming Manual to confirm the detail of flash Memory. Document Number: 001-98708 Rev. *E Page 71 of 190 S6E2G Series Peripheral Address Map Start Address End Address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/reset control 0x4001_1000 0x4001_1FFF Hardware watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-Function Timer unit 0 0x4002_1000 0x4002_1FFF Multi-Function Timer unit 1 0x4002_2000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF 0x4002_6000 0x4002_6FFF 0x4002_7000 0x4002_7FFF A/D converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Internal CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External interrupt controller 0x4003_1000 0x4003_1FFF Interrupt request batch-read function 0x4003_2000 0x4003_4FFF Reserved 0x4003_5000 0x4003_57FF Low voltage detector 0x4003_5800 0x4003_5FFF Deep standby mode Controller 0x4003_6000 0x4003_6FFF USB clock generator 0x4003_7000 0x4003_7FFF CAN prescaler 0x4003_8000 0x4003_8FFF Multi-function serial interface 0x4003_9000 0x4003_9FFF 0x4003_A000 0x4003_AFFF Watch counter 0x4003_B000 0x4003_BFFF RTC/port control 0x4003_C000 0x4003_C0FF Low-speed CR prescaler 0x4003_C100 0x4003_C7FF Peripheral clock gating 0x4003_C800 0x4003_C8FF Reserved 0x4003_C900 0x4003_CA00 0x4003_CB00 0x4003_F000 0x4003_C9FF 0x4003_CAFF 0x4003_EFFF 0x4003_FFFF I2S clock generator Smartcard Interface Reserved External memory interface Document Number: 001-98708 Rev. *E AHB APB0 APB1 APB2 MainFlash I/F register Reserved Software watchdog timer Reserved Base timer Quadrature position/revolution counter CRC Page 72 of 190 S6E2G Series Start Address 0x4004_0000 0x4005_0000 0x4006_0000 0x4006_1000 0x4006_2000 0x4006_3000 0x4006_4000 0x4006_6000 0x4006_7000 0x4006_E000 0x4006_F000 0x4007_0000 End Address 0x4004_FFFF 0x4005_FFFF 0x4006_0FFF 0x4006_1FFF 0x4006_2FFF 0x4006_3FFF 0x4006_5FFF 0x4006_6FFF 0x4006_DFFF 0x4006_EFFF 0x4006_FFFF 0x41FF_FFFF Document Number: 001-98708 Rev. *E Bus AHB Peripherals USB ch 0 USB ch 1 DMAC register DSTC register CAN ch 0 Reserved Ethernet-MAC ch 0 Ethernet-MAC setting register Reserved SD card I/F GPIO Reserved Page 73 of 190 S6E2G Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings:  INITX = 0 This is the period when the INITX pin is at the L level.  INITX = 1 This is the period when the INITX pin is at the H level.  SPL = 0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.  SPL = 1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.  Input enabled Indicates that the input function can be used.  Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L.  Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  Setting disabled Indicates that the setting is disabled.  Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.  Analog input is enabled Indicates that the analog input is enabled.  Trace output Indicates that the trace function can be used.  GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port.  Setting prohibition Prohibition of a setting by specification limitation Document Number: 001-98708 Rev. *E Page 74 of 190 S6E2G Series Pin Status Type List of Pin Behavior by Mode State Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ A B Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ SPL=0 Maintain previous state SPL=1 SPL=0 SPL=1 GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 - GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state Main crystal oscillator input pin/ external main clock input selected Input enabled Input Input enabled enabled Input enabled Input enabled Maintain previous state GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Maintain previous state Hi-Z/internal input fixed at 0 Maintain previous State GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state External main clock input selected Setting disabled Setting Setting disabled disabled Maintain previous state Main crystal oscillator output pin Hi-Z/ Hi-Z/ internal internal input fixed input at 0/ fixed or input at 0 enabled Hi-Z/ internal input fixed at 0 Input enabled Input enabled Maintain previous state Input enabled Hi-Z/internal input fixed at 0 GPIO selected Input Enabled Maintain previous state while oscillator active/ When oscillation stops*1, it will be Hi-Z/ Internal input fixed at 0 C INITX input pin Pull-up/ input enabled Pull-up/ Pull-up/ Pull-up/ Input Input Input enabled enabled enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled D Mode input pin Input enabled Input Input enabled enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Mode input pin Input enabled Input Input enabled enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state Maintain previous state Hi-Z/ input enabled GPIO selected Hi-Z/ input enabled GPIO selected E Document Number: 001-98708 Rev. *E Page 75 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ NMIX selected F Resource other than above selected Setting disabled Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Hi-Z Hi-Z Pull-up/ Pull-up/ input input enabled enabled G H GPIO selected Setting disabled Setting Setting disabled disabled JTAG selected Hi-Z Pull-up/ Pull-up/ input input enabled enabled Resource other than above selected ‐ INITX=1 SPL=0 Setting disabled Setting Setting disabled disabled Hi-Z Hi-Z/ Hi-Z/ input input enabled enabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state I GPIO selected Document Number: 001-98708 Rev. *E Hi-Z/ internal input fixed at 0 Maintain previous state Hi-Z/ internal input fixed at 0 Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state GPIO selected Resource selected SPL=1 SPL=0 SPL=1 Maintain previous state Setting Setting disabled disabled Hi-Z/ Hi-Z/ input input enabled enabled GPIO selected JTAG selected Run mode or Sleep mode State ‐ Device Internal Reset State Maintain previous state WKUP input enabled Hi-Z/ WKUP input enabled Maintain previous state Maintain previous state GPIO Hi-Z/ selected, internal input internal input fixed fixed at 0 at 0 Maintain previous state Maintain previous state GPIO selected Maintain previous state GPIO selected Maintain previous state GPIO Hi-Z/Internal selected, Hi-Z/Internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected GPIO Hi-Z/Internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Page 76 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ Analog output selected J External interrupt enable selected Hi-Z Resource other than above selected Hi-Z/ Hi-Z/ input input enabled enabled Maintain previous state INITX=1 SPL=0 SPL=1 *2 *3 Maintain previous state Maintain previous state GPIO selected External interrupt enable selected K Resource other than above selected Setting disabled GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 at 0 Maintain previous state Maintain previous state GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 Hi-Z/internal at 0 input fixed at 0 Hi-Z Setting Setting disabled disabled GPIO selected Document Number: 001-98708 Rev. *E GPIO selected Maintain previous state Setting Setting disabled disabled Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ internal internal Hi-Z/ Hi-Z/ Hi-Z/ internal input internal input input input internal input internal input internal input fixed fixed fixed at fixed at fixed fixed fixed at 0/ at 0/ 0/ 0/ at 0/ at 0/ at 0/ analog analog analog analog analog analog analog input input input input input enabled input enabled input enabled enabled enabled enabled enabled Setting disabled - Hi-Z/internal input fixed at 0 Hi-Z/ Hi-Z/ input input enabled enabled L Resource other than above selected SPL=1 Hi-Z GPIO selected Analog input selected SPL=0 Maintain previous state Maintain previous state GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Hi-Z/ internal input fixed at 0/ analog input enabled GPIO selected Page 77 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ Analog input selected M Hi-Z Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ INITX=1 SPL=0 N Setting disabled Setting Setting disabled disabled Maintain previous state Maintain previous state Hi-Z GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 Hi-Z/internal at 0 input fixed at 0 Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ internal internal Hi-Z/ Hi-Z/ Hi-Z/ internal input internal input input input internal input internal input internal input fixed fixed fixed fixed fixed fixed fixed at 0/ at 0/ at0/ at 0/ at 0/ at 0/ at 0/ analog analog analog analog analog analog analog input input input input input enabled input enabled input enabled enabled enabled enabled enabled Trace selected Resource other than above selected SPL=1 Hi-Z/ internal input fixed at 0/ analog input enabled Maintain previous state GPIO selected Analog input selected SPL=0 Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ internal internal Hi-Z/ Hi-Z/ Hi-Z/ internal input internal input input input internal input internal input internal input fixed fixed fixed fixed fixed fixed fixed at 0/ at 0/ at 0/ at 0/ at 0/ at 0/ at 0/ analog analog analog analog analog analog analog input input input input input enabled input enabled input enabled enabled enabled enabled enabled External interrupt enable selected Resource other than above selected SPL=1 GPIO selected Hi-Z/ internal input fixed at 0/ analog input enabled Trace output Setting disabled Setting Setting disabled disabled GPIO selected Document Number: 001-98708 Rev. *E Maintain previous state Maintain previous state GPIO selected, Hi-Z/internal Hi-Z/internal internal input input fixed fixed at 0 input fixed at 0 at 0 GPIO selected Page 78 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ Analog input selected O Hi-Z Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ INITX=1 SPL=0 SPL=1 Trace output External interrupt enable selected Maintain previous state Resource other than above selected SPL=1 Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ internal internal Hi-Z/ Hi-Z/ Hi-Z/ internal input internal input input input internal input internal input internal input fixed fixed fixed fixed fixed fixed fixed at 0/ at 0/ at 0/ at 0/ at 0/ at 0/ at 0/ analog analog analog analog analog analog analog input input input input input enabled input enabled input enabled enabled enabled enabled enabled Trace selected Setting disabled SPL=0 Setting Setting disabled disabled Maintain previous state Maintain previous state Hi-Z/internal input fixed at 0 GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 at 0 Hi-Z/ internal input fixed at 0/ analog input enabled GPIO selected GPIO selected Analog input selected P Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ internal internal Hi-Z/ Hi-Z/ Hi-Z/ internal input internal input input input internal input internal input internal input fixed fixed fixed at fixed at fixed fixed fixed at 0/ at 0/ 0/ 0/ at 0/ at 0/ at 0/ analog analog analog analog analog analog analog input input input input input enabled input enabled input enabled enabled enabled enabled enabled WKUP enabled Resource other than above selected Maintain previous state Setting disabled Setting Setting disabled disabled GPIO selected Document Number: 001-98708 Rev. *E Maintain previous state Maintain previous state WKUP input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ WKUP input enabled GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Page 79 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ INITX=1 SPL=0 WKUP enabled External interrupt enable selected Setting disabled Resource other than above selected Maintain previous state Setting Setting disabled disabled Maintain previous state Q SPL=1 Hi-Z Hi-Z/ Hi-Z/ input input enabled enabled Hi-Z Hi-Z/ Hi-Z/ Maintain input input previous state enabled enabled Maintain previous state SPL=0 SPL=1 - WKUP input enabled Hi-Z/ WKUP input enabled WKUP input enabled GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 Hi-Z/internal at 0 input fixed at 0 GPIO selected GPIO selected GPIO selected R USB I/O pin S Setting disabled Maintain previous state GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 Hi-Z at Hi-Z at Hi-Z at transtranstransmission/ mission/ mission/ input input input Setting Setting enabled/ enabled/ enabled/ disabled disabled internal input internal input internal input fixed fixed fixed at 0 at at 0 at at 0 at reception reception reception GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state Sub crystal oscillator input pin/ external main clock input selected Input enabled Input Input enabled enabled Input enabled Document Number: 001-98708 Rev. *E Maintain previous state Input enabled Hi-Z/ input enabled Hi-Z/ input enabled GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 Input enabled Input enabled Input enabled GPIO selected Hi-Z/ input enabled GPIO selected Input Enabled Page 80 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ T Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ SPL=0 Maintain previous state GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Maintain previous state Hi-Z/internal input fixed at 0 Maintain previous State GPIO selected Setting disabled Setting Setting disabled disabled External main clock input selected Setting disabled Setting Setting disabled disabled Maintain previous state Ethernet I/O selected *4 Resource other than above selected Hi-Z/ Hi-Z/ internal internal input fixed input at 0/ fixed or input at 0 enabled Setting disabled Hi-Z INITX=1 ‐ Maintain previous state Sub crystal oscillator output pin V Run mode or Sleep mode State ‐ Device Internal Reset State Hi-Z/ internal input fixed at 0 SPL=0 Maintain previous state SPL=1 Hi-Z/internal input fixed at 0 - Maintain previous state while oscillator active/ When oscillation stops*5, it will be Hi-Z/ Internal input fixed at 0 Maintain previous state Setting Setting disabled disabled Hi-Z/ Hi-Z/ input input enabled enabled SPL=1 Maintain previous state Maintain previous state GPIO selected, Hi-Z/internal internal input input fixed fixed at "0 Hi-Z/internal at 0 input fixed at 0 GPIO selected GPIO selected Document Number: 001-98708 Rev. *E Page 81 of 190 Pin Status Type S6E2G Series Function Group Power-On Reset or LowVoltage Detection State INITX Input State Power Supply Unstable ‐ ‐ Run mode or Sleep mode State Timer mode, RTC mode, or Stop mode State Deep Standby RTC mode or Deep Standby Stop mode State Return from Deep Standby mode State Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable Power Supply Stable INITX=0 INITX=1 INITX=1 INITX=1 INITX=1 ‐ Device Internal Reset State ‐ ‐ INITX=1 SPL=0 Ethernet input/output selected*4 W External interrupt enable selected Resource other than above selected Setting disabled GPIO selected S T Maintain previous state Setting Setting disabled disabled Maintain previous state Hi-Z SPL=1 SPL=1 - GPIO selected, Hi-Z/internal internal input input fixed fixed at 0 at 0 GPIO selected GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Maintain previous state Hi-Z/ Hi-Z/ input input enabled enabled SPL=0 Hi-Z/internal input fixed at 0 GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state Sub crystal oscillator input pin/ external main clock input selected Input enabled Input Input enabled enabled Input enabled Input enabled Maintain previous state GPIO Hi-Z/internal selected, Hi-Z/internal input fixed internal input input fixed at 0 fixed at 0 at 0 GPIO selected Maintain previous state Hi-Z/internal input fixed at 0 Maintain previous State GPIO selected Setting disabled Setting Setting disabled disabled Maintain previous state External main clock input selected Setting disabled Setting Setting disabled disabled Maintain previous state Sub crystal oscillator output pin Hi-Z/ Hi-Z/ internal internal input fixed input at 0/ fixed or input at 0 enabled Document Number: 001-98708 Rev. *E Hi-Z/ internal input fixed at 0 Maintain previous state Input enabled Input enabled Maintain previous state Input enabled Hi-Z/internal input fixed at 0 Input Enabled Maintain previous state while oscillator active/ When oscillation stops*5, it will be Hi-Z/ Internal input fixed at 0 Page 82 of 190 S6E2G Series 1: Oscillation is stopped at Sub Timer mode, sub CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. 2: Maintain previous state at Timer mode. GPIO selected internal input fixed at 0 at RTC mode, Stop mode. 3: Maintain previous state at Timer mode. Hi-Z/internal input fixed at 0 at RTC mode, Stop mode. 4: It shows the case selected by EPFR14.E_SPLC register. Document Number: 001-98708 Rev. *E Page 83 of 190 S6E2G Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Symbol Rating Unit Remarks Min Max VCC VSS - 0.5 VSS + 6.5 V Power supply voltage (for USB) *1,*3 USBVCC0 VSS - 0.5 VSS + 6.5 V USB) *1,*3 USBVCC1 VSS - 0.5 VSS + 6.5 V ETHVCC VSS - 0.5 VSS + 6.5 V AVCC VSS - 0.5 VSS + 6.5 V AVRH VSS - 0.5 VSS + 6.5 V VSS - 0.5 VCC + 0.5 (≤ 6.5 V) V Except for USB and Ethernet-MAC pin VSS - 0.5 USBVCC0 + 0.5 (≤ 6.5 V) V USB ch 0 pin VSS - 0.5 USBVCC1 + 0.5 (≤ 6.5 V) V USB ch 1 pin VSS - 0.5 ETHVCC + 0.5 (≤ 6.5 V) V Ethernet-MAC Pin VSS - 0.5 VSS + 6.5 V 5 V tolerant VIA VSS - 0.5 AVCC + 0.5 (≤ 6.5 V) V VO VSS - 0.5 VCC + 0.5 (≤ 6.5 V) V 10 mA 4 mA type 20 mA 8 mA type 20 mA 12 mA type 22.4 mA I2C Fm+ 4 mA 4 mA type 8 mA 8 mA type 12 mA 12 mA type 20 mA I2C Fm+ Power supply voltage*1,*2 Power supply voltage (for Power supply voltage (for Ethernet-MAC) *1, *4 Analog power supply voltage *1 ,*5 Analog reference voltage Input voltage *1 VI Analog pin input voltage Output voltage *1 ,*5 *1 *1 L level maximum output current *6 IOL L level average output current *7 IOLAV L level total maximum output current L level total average output current*8 H level maximum output current *6 H level average output current H level total average output current Storage temperature - 100 mA ∑IOLAV - 50 mA - 10 mA 4 mA type -20 mA 8 mA type - 20 mA 12 mA type -4 mA 4 mA type -8 mA 8 mA type - 12 mA 12 mA type IOHAV H level total maximum output current *8 - ∑IOL IOH *7 - - - ∑IOH - - 100 mA ∑IOHAV - - 50 mA TSTG - 55 + 150 °C 1: These parameters are based on the condition that VSS = AVSS = 0.0 V. Document Number: 001-98708 Rev. *E Page 84 of 190 S6E2G Series 2: VCC must not drop below VSS - 0.5 V. 3: USBVCC0, USBVCC1 must not drop below VSS - 0.5 V. 4: ETHVCC must not drop below VSS - 0.5 V. 5: Ensure that the voltage does not exceed VCC + 0.5V, for example, when the power is turned on. 6: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. 7: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100-ms period. 8: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100-ms period. WARNING: − Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. Document Number: 001-98708 Rev. *E Page 85 of 190 S6E2G Series 12.2 Recommended Operating Conditions Parameter Power supply voltage Power supply voltage (for USB ch 0) Power supply voltage (for USB ch 1) Power supply voltage (for Ethernet-MAC) Conditions VCC - USBVCC0 - USBVCC1 ETHVCC Analog power supply voltage Value Min Max 2.7*10 5.5 3.0 3.6 (≤VCC) V *1 2.7 5.5 (≤VCC) 3.0 3.6 (≤VCC) *2 *3 V 2.7 5.5 (≤VCC) *4 3.0 3.6 (≤VCC) *5 4.5 5.5 (≤VCC) 2.7 5.5 (≤VCC) V *5 *6 - 2.7 5.5 V AVRH - *9 AVCC V AVRL - AVSS AVSS V CS - 1 10 μF Junction temperature TJ - - 40 + 125 °C Ambient temperature TA - -40 *8 °C Smoothing capacitor Remarks V - - Unit AVCC Analog reference voltage Operating temperature Symbol AVCC = VCC for built-in regulator *7 1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0) 2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80) 3: When P83/UDP1 and P82/UDM1 pins are used as USB (UDP1, UDM1) 4: When P83/UDP1 and P82/UDM1 pins are used as GPIO (P83, P82) 5: When the pins in Ethernet-MAC Timing, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used as Ethernet-MAC pin 6: When the pins in Ethernet-MAC Timing, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used as function pins 7: See "C pin" in 9 Handling Devices for the connection of the smoothing capacitor. 8: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the junction temperature (TJ). The calculation formula of the ambient temperature (TA) is: TA (Max) = TJ(Max) - Pd(Max) × θJA Pd: θJA: Power dissipation (W) Package thermal resistance (°C/W) Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH)) IOL: IOH: VOL: VOH: L level output current H level output current L level output voltage H level output voltage 9: The minimum value of analog reference voltage depends on the value of compare clock cycle (Tcck). See 12.5. 12-bit A/D Converter for the details. 10: For the voltage range between VCC(min) and the low voltage detection reset (VDH), the MCU must be clocked from either the High-speed CR or the low-speed CR. Document Number: 001-98708 Rev. *E Page 86 of 190 S6E2G Series Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices. Table for Package Thermal Resistance and Maximum Permissible Power Package LQS144 (0.5-mm pitch) LQP176 (0.5-mm pitch) Thermal Printed Resistance Circuit Board θja (°C/W) Maximum Permissible Power (mW) TA = +85 °C TA = +105 °C Single-layered both sides 48 833 417 4 layers 33 1212 606 Single-layered both sides 45 889 444 4 layers 31 1290 645 WARNING: − The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. − No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 001-98708 Rev. *E Page 87 of 190 S6E2G Series Ethernet-MAC Pins Pin Name Except For Ethernet-MAC Function Ethernet-MAC Function P6E/ADTG_5/SCK4_1/INT29_0/E_PPS E_PPS * P6E/ADTG_5/SCK4_1/INT29_0 PC0/E_RXER E_RXER PC0 PC1/TIOB6_0/E_RX03 E_RX03 PC1/TIOB6_0 PC2/TIOA6_0/E_RX02 E_RX02 PC2/TIOA6_0 PC3/TIOB7_0/E_RX01 E_RX01 PC3/TIOB7_0 PC4/TIOA7_0/E_RX00 E_RX00 PC4/TIOA7_0 PC5/TIOB14_0/E_RXDV E_RXDV PC5/TIOB14_0 PC6/TIOA14_0/E_MDIO E_MDIO PC6/TIOA14_0 PC7/INT13_0/E_MDC/CROUT_1 E_MDC PC7/INT13_0/CROUT_1 PC8/E_RXCK_REFCK E_RXCK_REFCK PC8 PC9/TIOB15_0/E_COL E_COL PC9/TIOB15_0 PCA/TIOA15_0/E_CRS E_CRS PCA/TIOA15_0 PCB/INT28_0/E_COUT E_COUT PCB/INT28_0 PCC/E_TCK E_TCK PCC PCD/SOT4_1/INT14_0/E_TXER E_TXER PCD/SOT4_1/INT14_0 PCE/SIN4_1/INT15_0/E_TX03 E_TX03 PCE/SIN4_1/INT15_0 PCF/RTS4_1/INT12_0/E_TX02 E_TX02 PCF/RTS4_1/INT12_0 PD0/INT30_1/E_TX01 E_TX01 PD0/INT30_1 PD1/INT31_1/E_TX00 E_TX00 PD1/INT31_1 PD2/CTS4_1/E_TXEN E_TXEN PD2/CTS4_1 Power Supply Type VCC ETHVCC *: It is used to confirm the PTP counter cycle in Ethernet-MAC by waveforms. Document Number: 001-98708 Rev. *E Page 88 of 190 S6E2G Series Calculation Method of Power Dissipation (Pd) The power dissipation is shown in the following formula. Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH)) IOL: L level output current IOH: H level output current VOL: L level output voltage VOH: H level output voltage ICC is the current drawn by the device. It can be analyzed as follows. ICC = ICC (INT) + ΣICC (IO) ICC (INT): Current drawn by internal logic and memory, etc. through the regulator ΣICC (IO): Sum of current (I/O switching current) drawn by the output pin For ICC (INT), it can be anticipated by "(1) Current Rating" in "12.3. DC Characteristics" (This rating value does not include ICC (IO) for a value at pin fixed). For ICC (IO), it depends on system used by customers. The calculation formula is shown below. ICC (IO) = (CINT + CEXT) × VCC × fSW CINT: Pin internal load capacitance CEXT: External load capacitance of output pin fSW: Pin switching frequency Parameter Pin internal load capacitance Symbol CINT Conditions Capacitance Value 4 mA type 1.93 pF 8 mA type 3.45 pF 12 mA type 3.42 pF Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself: Measure current value ICC (Typ) at normal temperature (+25°C). Add maximum leakage current value ICC (leak_max) at operating on a value in (1). ICC(Max) = ICC (Typ) + ICC (leak_max) Parameter Maximum leakage current at operating Symbol ICC (leak_max) Document Number: 001-98708 Rev. *E Conditions Current Value TJ = +125 °C 53.6 mA TJ = +105 °C 26.6 mA TJ = +85 °C 17.5 mA Page 89 of 190 S6E2G Series Current Explanation Diagram Pd=VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH)) ICC=ICC (INT)+ΣICC (IO) VCC A ICC Chip ICC (INT) ΣICC (IO) A Regulator VOL V A ・・・ V IOL Flash VOH ・・・ Logic IOH RAM ICC (IO) CEXT ・・・ Document Number: 001-98708 Rev. *E Page 90 of 190 S6E2G Series 12.3 DC Characteristics 12.3.1 Current Rating Table 12-1 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled) Parameter Symbol Pin Name Frequency*4 Conditions *5 *6 Power supply current ICC VCC Normal operation *7,*8 (PLL) *5 *6 Value Unit Typ*1 Max*2 180 MHz 73 131 mA 160 MHz 65 123 mA 144 MHz 59 117 mA 120 MHz 50 108 mA 100 MHz 43 101 mA 80 MHz 35 93 mA 60 MHz 27 85 mA 40 MHz 19 77 mA 20 MHz 11 69 mA 8 MHz 6.9 64 mA 4 MHz 5.3 63 mA 180 MHz 44 102 mA 160 MHz 40 98 mA 144 MHz 36 94 mA 120 MHz 31 89 mA 100 MHz 27 85 mA 80 MHz 22 80 mA 60 MHz 17 75 mA 40 MHz 13 71 mA 20 MHz 7.9 65 mA 8 MHz 5.2 63 mA 4 MHz 4.3 62 mA Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1) 6: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1) 7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory.” 8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 91 of 190 S6E2G Series Table 12-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled) Parameter Symbol Pin Name Frequency*4 Conditions *5 *6 Power supply current ICC VCC Normal operation *7,*8 (PLL) *5 *6 Value Unit Remarks Typ*1 Max*2 180 MHz 82 140 mA 160 MHz 74 132 mA 144 MHz 68 126 mA 120 MHz 58 116 mA 100 MHz 49 107 mA *3 80 MHz 40 98 mA 60 MHz 31 89 mA When all peripheral clocks are on 40 MHz 22 80 mA 20 MHz 13 71 mA 8 MHz 7.5 65 mA 4 MHz 5.6 63 mA 180 MHz 48 106 mA 160 MHz 44 102 mA 144 MHz 41 99 mA 120 MHz 35 93 mA 100 MHz 30 88 mA *3 80 MHz 25 83 mA 60 MHz 20 78 mA When all peripheral clocks are off 40 MHz 14 72 mA 20 MHz 8.7 66 mA 8 MHz 5.6 63 mA 4 MHz 4.5 62 mA 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 0) 6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0) 7: With data access to a MainFlash memory. 8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 92 of 190 S6E2G Series Table 12-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Frequency*4 Conditions *5 Power supply current ICC VCC Normal operation *6,*7 (PLL) *5 Value Unit Typ*1 Max*2 72 MHz 54 112 mA 60 MHz 47 105 mA 48 MHz 39 97 mA 36 MHz 31 89 mA 24 MHz 23 81 mA 12 MHz 14 72 mA 8 MHz 11 69 mA 4 MHz 7.2 65 mA 72 MHz 37 95 mA 60 MHz 33 91 mA 48 MHz 28 86 mA 36 MHz 23 81 mA 24 MHz 17 75 mA 12 MHz 11 69 mA 8 MHz 8.3 66 mA 4 MHz 5.9 63 mA Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000) 6: With data access to a MainFlash memory. 7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 93 of 190 S6E2G Series Table 12-4 Typical and Maximum Current Consumption in Normal Operation (Other than PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Normal operation *6, *7 (main oscillation) Power supply current ICC VCC Frequency*4 Conditions Normal operation *6 (built-in High-speed CR) *5 Value Unit Remarks Typ*1 Max*2 4.3 62 mA *3 When all peripheral clocks are on 3.7 61 mA *3 When all peripheral clocks are off 4 MHz *3 *5 3.5 61 mA 2.9 60 mA 0.47 58 mA 4 MHz When all peripheral clocks are on *3 When all peripheral clocks are off *3 Normal operation *6, *8 (sub oscillation) Normal operation *6 (built-in low-speed CR) *5 32 kHz When all peripheral clocks are on *3 0.46 58 mA 0.51 58 mA 0.50 58 mA When all peripheral clocks are off *3 *5 100 kHz When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000) 6: With data access to a MainFlash memory. 7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 8: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 94 of 190 S6E2G Series Table 12-5 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Power supply current Symbol ICCS Pin Name VCC Conditions Sleep operation*5 (PLL) Frequency*4 Value Typ* 1 Max*2 Unit 180 MHz 58 116 mA 160 MHz 52 110 mA 144 MHz 48 106 mA 120 MHz 40 98 mA 100 MHz 35 93 mA 80 MHz 28 86 mA 60 MHz 22 80 mA 40 MHz 16 74 mA 20 MHz 9.7 67 mA 8 MHz 6.2 64 mA 4 MHz 5.0 63 mA 180 MHz 30 88 mA 160 MHz 27 85 mA 144 MHz 25 83 mA 120 MHz 21 79 mA 100 MHz 18 76 mA 80 MHz 15 73 mA 60 MHz 12 70 mA 40 MHz 9.3 67 mA 20 MHz 6.2 64 mA 8 MHz 4.5 62 mA 4 MHz 4.0 62 mA Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 95 of 190 S6E2G Series Table 12-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK Parameter Power supply current Symbol ICCS Pin Name VCC Conditions Sleep operation*5 (PLL) Frequency*4 Value Typ* 1 Max*2 Unit 72 MHz 32 90 mA 60 MHz 27 85 mA 48 MHz 23 81 mA 36 MHz 18 76 mA 24 MHz 13 71 mA 12 MHz 8.5 66 mA 8 MHz 6.9 64 mA 4 MHz 5.3 63 mA 72 MHz 15 73 mA 60 MHz 13 71 mA 48 MHz 11 69 mA 36 MHz 9.3 67 mA 24 MHz 7.3 65 mA 12 MHz 5.4 63 mA 8 MHz 4.7 62 mA 4 MHz 4.1 62 mA Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 96 of 190 S6E2G Series Table 12-7 Typical and Maximum Current Consumption in Sleep Operation (Other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Conditions Sleep operation*5 (main oscillation) Sleep operation (built-in High-speed CR) Power supply current ICCS Frequency*4 Value Unit Remarks 60 mA *3 When all peripheral clocks are on 2.0 60 mA *3 When all peripheral clocks are off 2.0 60 mA *3 When all peripheral clocks are on 1.3 59 mA *3 When all peripheral clocks are off 0.46 58 mA *3 When all peripheral clocks are on 0.45 58 mA *3 When all peripheral clocks are off 0.47 58 mA *3 When all peripheral clocks are on 0.46 58 mA *3 When all peripheral clocks are off Typ*1 Max*2 2.6 4 MHz 4 MHz VCC Sleep operation*6 (sub oscillation) Sleep operation (built-in low-speed CR) 32 kHz 100 kHz 1: TA = +25 °C, VCC = 3.3 V 2: TJ = +125 °C, VCC = 5.5 V 3: When all ports are input and are fixed at 0. 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 97 of 190 S6E2G Series Table 12-8 Typical and Maximum Current Consumption in Stop Mode, Timer Mode and RTC Mode Parameter Symbol Pin Name Conditions Stop mode ICCH Timer mode*5 (main oscillation) Timer mode (built-in High-speed CR) Power supply current ICCT Frequency - 4 MHz 4 MHz Value Typ* 1 Max*2 Unit 0.41 1.9 mA *3, *4 TA = +25°C - 18 mA *3, *4 TA = +85°C - 26 mA *3, *4 TA = +105°C 1.4 2.9 mA *3, *4 TA = +25°C - 19 mA *3, *4 TA = +85°C - 27 mA *3, *4 TA = +105°C 0.71 2.2 mA *3, *4 TA = +25°C - 19 mA *3, *4 TA = +85°C - 27 mA *3, *4 TA = +105°C 0.41 1.9 mA *3, *4 TA = +25°C - 18 mA *3, *4 TA = +85°C - 27 mA *3, *4 TA = +105°C 0.42 1.9 mA *3, *4 TA = +25°C - 18 mA *3, *4 TA = +85°C - 27 mA *3, *4 TA = +105°C 0.42 1.9 mA *3, *4 TA = +25°C - 18 mA *3, *4 TA = +85°C - 27 mA *3, *4 TA = +105°C VCC Timer mode*6 (sub oscillation) Timer mode (built-in low-speed CR) ICCR RTC mode*6 (sub oscillation) 32 kHz 100 kHz 32 kHz Remarks 1: VCC = 3.3 V 2: VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: When LVD is off 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 98 of 190 S6E2G Series Table 12-9 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode Parameter Symbol Pin Name Conditions Deep standby Stop mode (When RAM is off) Frequency - Value Typ* 1 Max*2 Unit 89 162 μA *3, *4 TA = +25°C - 1689 μA *3, *4 TA = +85°C - 2189 μA *3, *4 TA = +105°C 101 245 μA *3, *4 TA = +25°C - 2401 μA *3, *4 TA = +85°C - 3223 μA *3, *4 TA = +105°C 93 166 μA *3, *4 TA = +25°C - 1693 μA *3, *4 TA = +85°C - 2193 μA *3, *4 TA = +105°C 105 249 μA *3, *4 TA = +25°C - 2405 μA *3, *4 TA = +85°C - 3227 μA *3, *4 TA = +105°C ICCHD Deep standby Stop mode (When RAM is on) Power supply current - VCC Deep standby RTC mode*6 (When RAM is off) 32 kHz ICCRD Deep standby RTC mode*6 (When RAM is on) Remarks 1: VCC = 3.3 V 2: VCC = 5.5 V 3: When all ports are input and are fixed at 0 4: When LVD is off 5: When sub oscillation is off 6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) Document Number: 001-98708 Rev. *E Page 99 of 190 S6E2G Series Table 12-10 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory Write/Erase Parameter Low-voltage detection circuit (LVD) power supply current MainFlash memory write/erase current Symbol Pin Name ICCLVD Conditions Value Unit Remarks Min Typ Max At operation - 4 7 μA For occurrence of interrupt At write/erase - 13.4 15.9 mA *1 VCC ICCFLASH 1: When programming or erase in flash memory, Flash Memory Write/Erase current (ICCFLASH) is added to the Power supply current (ICC). Table 12-11 Peripheral Current Dissipation Clock System HCLK PCLK1 PCLK2 Peripheral Unit GPIO Frequency (MHz) 45 90 180 All ports 0.69 1.39 2.76 DMAC - 0.74 1.46 2.83 DSTC - 0.58 1.13 2.12 External bus I/F - 0.23 0.44 0.87 SD card I/F - 0.56 1.10 2.18 CAN 1 ch 0.09 0.10 0.12 USB 1 ch 0.41 0.83 1.64 Ethernet-MAC - 1.52 2.97 5.84 Base timer 4 ch 0.38 0.76 1.50 Multi-functional timer/PPG 1 unit/4 ch 0.72 1.43 2.83 Quadrature position/revolution counter 1 unit 0.06 0.12 0.22 A/D converter 1 unit 0.31 0.61 1.22 Multi-function serial 1 ch 0.36 0.72 - IC Card Interface 1 ch 0.27 0.54 - I2S clock generator 1 ch 0.26 0.53 - Document Number: 001-98708 Rev. *E Unit Remarks mA TA=+25°C, VCC=3.3 V mA TA=+25°C, VCC=3.3 V mA TA=+25°C, VCC=3.3 V Page 100 of 190 S6E2G Series 12.3.2 Pin Characteristics (VCC = USBVCC0 = USBVCC1 = ETHVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V) Parameter H level input voltage (hysteresis input) L level input voltage (hysteresis input) Symbol Pin Name Conditions CMOS hysteresis input pin, MD0, MD1 - MADATAxx Remarks Typ Max VCC×0.8 - VCC + 0.3 V ETHVCC×0.8 - ETHVCC + 0.3 V VCC > 3.0 V, VCC ≤ 3.6 V, 2.4 - VCC + 0.3 V 5V tolerant input pin - VCC×0.8 - VSS + 5.5 V Input pin doubled as I2C Fm+ - VCC×0.7 - VSS + 5.5 V TTL Schmitt input pin - 2.0 - ETHVCC+0.3 V CMOS hysteresis input pin, MD0, MD1 VSS - 0.3 - VCC×0.2 V - VSS - 0.3 - ETHVCC×0.2 V 5V tolerant input pin - VSS - 0.3 - VCC×0.2 V Input pin doubled as I2C Fm+ - VSS - VCC×0.3 V TTL Schmitt input pin - VSS - 0.3 - 0.8 V VCC - 0.5 - VCC V VCC - 0.5 - ETHVCC V VCC - 0.5 - VCC V ETHVCC - 0.5 - ETHVCC V VCC - 0.5 - VCC V USBVCC - 0.4 - USBVCC V *1 VCC - 0.5 - VCC V At GPIO VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5 V, IOH = - 2 mA 4 mA type ETHVCC ≥ 4.5 V, IOH = - 4 mA ETHVCC < 4.5 V, IOH = - 2 mA VCC ≥ 4.5 V, IOH = - 8 mA VCC < 4.5 V, IOH = - 4 mA 8 mA type H level output voltage Unit Min VIHS VILS Value VOH ETHVCC ≥ 4.5 V, IOH = - 8 mA ETHVCC < 4.5 V, IOH = - 4 mA 12 mA type The pin doubled as USB I/O The pin doubled as I2C Fm+ Document Number: 001-98708 Rev. *E VCC ≥ 4.5 V, IOH = - 12 mA VCC < 4.5 V, IOH = - 8 mA USBVCC ≥ 4.5 V, IOH = - 20.5 mA USBVCC < 4.5 V, IOH = - 13.0 mA VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5V, IOH = - 3 mA At External Bus Page 101 of 190 S6E2G Series Parameter Symbol Pin Name VCC ≥ 4.5 V, IOL = 4 mA 4 mA type VCC < 4.5 V, IOL = 2 mA ETHVCC ≥ 4.5 V, IOL = 4 mA RTHVCC < 4.5 V, IOL = 2 mA VCC ≥ 4.5 V, IOL = 8 mA 8 mA type L level output voltage VCC < 4.5 V, IOL = 4 mA ETHVCC ≥ 4.5 V, IOL = 8 mA RTHVCC < 4.5 V, IOL = 4 mA VOL 12 mA type The pin doubled as USB I/O Value Conditions VCC ≥ 4.5 V, IOL = 12 mA VCC < 4.5 V, IOL = 8 mA USBVCC ≥ 4.5 V, IOL = 18.5 mA USBVCC < 4.5 V, IOL = 10.5 mA Unit Min Typ Max VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VCC ≥ 4.5 V, IOL = 4 mA The pin doubled as I2C Fm+ VCC < 4.5 V, IOL = 3 mA Pull-up resistor value Input capacitance IIL - RPU Pull-up pin CIN Other than VCC, USBVCC0, USBVCC1, ETHVCC, VSS, AVCC, AVSS, AVRH *1 At GPIO VSS - 0.4 V At I2C Fm+ VCC ≤ 4.5 V, IOL = 20 mA Input leak current Remarks - -5 - +5 VCC ≥ 4.5 V 25 50 100 VCC < 4.5 V 30 80 200 - - 5 15 μA kΩ pF 1: USBVCC0 and USBVCC1 are described as USBVCC. Document Number: 001-98708 Rev. *E Page 102 of 190 S6E2G Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40C to +105C) Parameter Input frequency Input clock cycle Input clock pulse width Input clock rise time and fall time Internal operating clock *1 frequency Internal operating clock *1 cycle time Symbol Pin Name Value Conditions Unit Min Max VCC ≥4.5 V 4 48 VCC < 4.5 V 4 20 VCC ≥4.5 V 4 48 VCC < 4.5 V 4 20 VCC ≥4.5 V 20.83 250 VCC < 4.5 V 50 250 - PWH/tCYLH, PWL/tCYLH 45 tCF, tCR - fCH tCYLH X0, X1 Remarks MHz When crystal oscillator is connected MHz When using external clock ns When using external clock 55 % When using external clock - 5 ns When using external clock fCC - - - 180 MHz Base clock (HCLK/FCLK) fCP0 - - - 90 MHz APB0bus clock *2 fCP1 - - - 180 MHz APB1bus clock *2 fCP2 - - - 90 MHz APB2bus clock *2 tCYCC - - 5.56 - ns Base clock (HCLK/FCLK) tCYCP0 - - 11.1 - ns APB0bus clock *2 tCYCP1 - - 5.56 - ns APB1bus clock *2 tCYCP2 - - 11.1 - ns APB2bus clock *2 1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856). 2: For more about each APB bus to which each peripheral is connected, see 1. S6E2G Series Block Diagram in this data sheet. X0 Document Number: 001-98708 Rev. *E Page 103 of 190 S6E2G Series 12.4.2 Sub Clock Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Input frequency Pin Name Value Conditions Unit Remarks - kHz When crystal oscillator is connected - 100 kHz When using external clock 10 - 31.25 μs When using external clock 45 - 55 % When using external clock Min Typ Max - - 32.768 - 32 tCYLL - - PWH/tCYLL, PWL/tCYLL 1/tCYLL X0A, X1A Input clock cycle Input clock pulse width * *: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices. tCYLL 0.8 × VCC 0.8 × VCC 0.2 × VCC X0A PWH 12.4.3 0.8 × VCC 0.2 × VCC PWL Built-In CR Oscillation Characteristics Built-In High-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Clock frequency Frequency stabilization time Symbol fCRH Value Conditions Min Typ Max TJ = - 20°C to + 105°C 3.92 4 4.08 TJ = - 40°C to + 125°C 3.88 4 4.12 TJ = - 40°C to + 125°C 2.9 4 5 - - - 30 tCRWT Unit MHz Remarks When trimmed *1 When not trimmed μs *2 1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming 2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is able to use the High-speed CR clock as a source clock. Built-In Low-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Condition Clock frequency fCRL - Document Number: 001-98708 Rev. *E Value Min Typ Max 50 100 150 Unit Remarks kHz Page 104 of 190 S6E2G Series 12.4.4 Operating Conditions of Main PLL (in the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Value Min Typ Max Unit PLL oscillation stabilization wait time*1 (lock up time) tLOCK 100 - - μs PLL input clock frequency fPLLI 4 - 16 MHz - 13 - 100 multiplier fPLLO 200 - 400 MHz fCLKPLL - - 180 MHz PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency*2 Remarks 1: Time from when the PLL starts operating until the oscillation stabilizes 2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856). 12.4.5 Operating Conditions of USB/Ethernet PLL (in the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Value Min Typ Max Unit Remarks PLL oscillation stabilization wait time*1 (lock up time) tLOCK 100 - - μs PLL input clock frequency fPLLI 4 - 16 MHz - 13 - 100 multiplier fPLLO 200 - 400 MHz USB/Ethernet fCLKPLL - - 50 MHz After the M frequency division PLL multiplication rate PLL macro oscillation clock frequency USB/Ethernet clock frequency *2 1: Time from when the PLL starts operating until the oscillation stabilizes 2: For more information about USB/Ethernet clock, see Chapter 2-2: USB/Ethernet Clock Generation in FM4 Family Peripheral Manual Communication Macro Part (002-04862). Document Number: 001-98708 Rev. *E Page 105 of 190 S6E2G Series 12.4.6 Operating Conditions of Main PLL (in the Case of Using Built-in High-Speed CR Clock for Input Clock of Main PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Value Min Typ Max Unit PLL oscillation stabilization wait time*1 (lock up time) tLOCK 100 - - μs PLL input clock frequency fPLLI 3.8 4 4.2 MHz - 50 - 95 multiplier fPLLO 190 - 400 MHz fCLKPLL - - 180 MHz PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency *2 Remarks 1: Time from when the PLL starts operating until the oscillation stabilizes 2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856). Note: − The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the source clock of the Main PLL. 12.4.7 Reset Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Reset input time Symbol Pin Name Conditions tINITX INITX - Document Number: 001-98708 Rev. *E Value Min Max 500 - Unit Remarks ns Page 106 of 190 S6E2G Series 12.4.8 Power-On Reset Timing (VSS = 0V) Pin Symbol Name Parameter Power supply shut down time Power ramp rate Time until releasing Power-on reset VCC Unit Min Typ Max - 1 - - VCC: 0.2V to 2.70V 0.6 - 1000 - 0.33 - 0.60 tOFF dV/dt Value Conditions tPRT ms Remarks *1 mV/µs *2 ms 1: VCC must be held below 0.2V for a minimum period of tOFF. Improper initialization may occur if this condition is not met. 2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1ms). Note: − If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 7. 2.7V VCC VDH 0.2V 0.2V dV/dt 0.2V tPRT Internal RST tOFF release RST Active CPU Operation start Glossary  VDH: detection voltage of Low Voltage detection reset. See “12.7. Low-Voltage Detection Characteristics”. 12.4.9 GPIO Output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency Symbol Pin Name tPCYCLE Pxx* Conditions Value Unit Min Max VCC ≥ 4.5V - 50 MHz VCC < 4.5V - 32 MHz Remarks *: GPIO is a target. Pxx tPCYCLE Document Number: 001-98708 Rev. *E Page 107 of 190 S6E2G Series 12.4.10 External Bus Timing External Bus Clock Output Characteristics Parameter Symbol Pin Name tCYCLE MCLKOUT *1 Output frequency Value Conditions Min Max - 50 *2 Unit Remarks MHz 1: The external bus clock (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral Manual Main Part (002-04856). 2: Generate MCLKOUT at setting more than four divisions when the AHB bus clock exceeds 100 MHz. 0.8 × VCC 0.8 × Vcc 0.8 ×Vcc VCC 0.8 × MCLK tCYCLE External Bus Signal I/O Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Signal input characteristics Signal output characteristics Input signal Document Number: 001-98708 Rev. *E Conditions VIH VIL - VOH VOL VIH VIL VIH VIL VOH VOL VOH VOL Value Unit 0.8 × VCC V 0.2 × VCC V 0.8 × VCC V 0.2 × VCC V Remarks Page 108 of 190 S6E2G Series Separate Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions tOEW MOEX MCSX↓→Address output delay time tCSL – AV MOEX↑→Address hold time tOEH - AX MCSX↓→ MOEX↓delay time tCSL - OEL MOEX↑→ MCSX↑time tOEH - CSH MOEX Minimum pulse width MCSX↓→ MDQM↓delay time Value Unit Min Max - MCLK×n-3 - ns MCSX[7: 0], MAD[24: 0] - -9 +9 ns MOEX, MAD[24: 0] - 0 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 0 MCLK×m+9 ns MOEX, MCSX[7: 0] tCSL - RDQML MCSX, MDQM[3: 0] - MCLK×m-9 MCLK×m+9 ns Data set up→MOEX↑ time tDS - OE MOEX, MADATA[31: 0] - 20 - ns MOEX↑→ Data hold time tDH - OE MOEX, MADATA[31: 0] - 0 - ns MWEX Minimum pulse width tWEW MWEX - MCLK×n-3 - ns MWEX↑→Address output delay time tWEH - AX MWEX, MAD[24: 0] - 0 MCLK×m+9 ns MCSX↓→ MWEX↓delay time tCSL - WEL - MCLK×n-9 MCLK×n+9 ns MWEX↑→ MCSX↑delay time tWEH - CSH - 0 MCLK×m+9 ns MCSX↓→ MDQM↓delay time tCSL-WDQML MCSX, MDQM[3: 0] - MCLK×n-9 MCLK×n+9 ns tCSL-DX MCSX, MADATA[31: 0] - MCLK-9 MCLK+9 ns tWEH - DX MWEX, MADATA[31: 0] - 0 MCLK×m+9 ns MCSX↓→ Data output time MWEX↑→ Data hold time MWEX, MCSX[7: 0] Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) Document Number: 001-98708 Rev. *E Page 109 of 190 S6E2G Series tCYCLE MCLK tOEH-CSH tWEH-CSH MCSX[7: 0] tCSL-AV MAD[24: 0] tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL MOEX tOEW tCSL-WDQML tCSL-RDQML MDQM[1: 0] tCSL-WEL tWEW MWEX tDS-OE MADATA[15: 0] tDH-OE RD tWEH-DX WD Invalid tCSL-DX Document Number: 001-98708 Rev. *E Page 110 of 190 S6E2G Series Separate Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions tAV MCLK, MAD[24: 0] Address delay time tCSL MCSX delay time tCSH Unit Min Max - 1 9 ns MCLK, MCSX[7: 0] - 1 9 ns - 1 9 ns MCLK, MOEX - 1 9 ns - 1 9 ns tREL MOEX delay time Value tREH Data set up →MCLK↑ time tDS MCLK, MADATA[31: 0] - 19 - ns MCLK↑→ Data hold time tDH MCLK, MADATA[31: 0] - 0 - ns MCLK, MWEX - 1 9 ns - 1 9 ns MCLK, MDQM[3: 0] - 1 9 ns - 1 9 ns MWEX delay time MDQM[1: 0] delay time tWEL tWEH tDQML tDQMH MCLK↑→ Data output time tODS MCLK, MADATA[31: 0] - MCLK+1 MCLK+18 ns MCLK↑→ Data hold time tOD MCLK, MADATA[31: 0] - 1 18 ns Remarks Note: − When the external load capacitance CL = 30 pF tCYCLE MCLK tCSL tCSH MCSX[7: 0] tAV tAV Address MAD[24: 0] Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[3: 0] MWEX MADATA[31: 0] tDS tDH RD tOD WD Invalid tODS Document Number: 001-98708 Rev. *E Page 111 of 190 S6E2G Series Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Multiplexed address delay time Multiplexed address hold time Symbol tALE-CHMADV tCHMADH Pin Name MALE, MAD[24: 0] Value Conditions Unit Min Max - 0 10 ns - MCLK×n+0 MCLK×n+10 ns Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) MCLK MCSX[7: 0] MALE MAD [24: 0] MOEX MDQM [3: 0] MWEX MADATA[31: 0] Document Number: 001-98708 Rev. *E Page 112 of 190 S6E2G Series Multiplexed Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol tCHAL MALE delay time tCHAH MCLK↑→Multiplexed address delay time tCHMADV MCLK↑→Multiplexed data output time tCHMADX Pin Name Conditions MCLK, MALE MCLK, MADATA[31: 0] Value Unit Min Max - 1 9 - 1 9 - 1 tOD ns - 1 tOD ns Remarks Note: − When the external load capacitance CL = 30 pF MCLK MCSX[7: 0] MALE MAD [24: 0] MOEX MDQM [3: 0] MWEX MADATA[31: 0] Document Number: 001-98708 Rev. *E Page 113 of 190 S6E2G Series NAND Flash Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions tNREW MNREX Data set up →MNREX↑time tDS – NRE MNREX↑→ Data hold time Value Unit Min Max - MCLK×n-3 - ns MNREX, MADATA[31: 0] - 20 - ns tDH – NRE MNREX, MADATA[31: 0] - 0 - ns MNALE↑→ MNWEX delay time tALEH - NWEL MNALE, MNWEX - MCLK×m-9 MCLK×m+9 ns MNALE↓→ MNWEX delay time tALEL - NWEL MNALE, MNWEX - MCLK×m-9 MCLK×m+9 ns MNCLE↑→ MNWEX delay time tCLEH - NWEL MNCLE, MNWEX - MCLK×m-9 MCLK×m+9 ns MNWEX↑→ MNCLE delay time tNWEH - CLEL MNCLE, MNWEX - 0 MCLK×m+9 ns MNWEX Min pulse width tNWEW MNWEX - MCLK×n-3 - ns MNWEX↓→ Data output time tNWEL – DV MNWEX, MADATA[31: 0] - -9 9 ns MNWEX↑→ Data hold time tNWEH – DX MNWEX, MADATA[31: 0] - 0 MCLK×m+9 ns MNREX Min pulse width Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) NAND Flash Read MCLK MNREX MADATA[31: 0] Document Number: 001-98708 Rev. *E Read Page 114 of 190 S6E2G Series NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[31: 0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[31: 0] Document Number: 001-98708 Rev. *E Write Page 115 of 190 S6E2G Series External Ready Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter MCLK↑ MRDY input setup time Symbol Pin Name Conditions tRDYI MCLK, MRDY - Value Min Max 19 - Unit Remarks ns  When RDY is input ··· MCLK Over 2cycle Original MOEX MWEX tRDYI MRDY  When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY Document Number: 001-98708 Rev. *E Page 116 of 190 S6E2G Series SDRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Value Output frequency tCYCSD MSDCLK Address delay time tAOSD MSDCLK↑→ Data output delay time Unit Unit Min Max - - 50 MHz MSDCLK, MAD[15: 0] - 2 12 ns tDOSD MSDCLK, MADATA[31: 0] - 2 12 ns MSDCLK↑→ Data output Hi-Z time tDOZSD MSDCLK, MADATA[31: 0] - 2 19.5 ns MDQM[3: 0] delay time tWROSD MSDCLK, MDQM[1: 0] - 1 12 ns MCSX delay time tMCSSD MSDCLK, MCSX8 - 2 12 ns MRASX delay time tRASSD MSDCLK, MRASX - 2 12 ns MCASX delay time tCASSD MSDCLK, MCASX - 2 12 ns MSDWEX delay time tMWESD MSDCLK, MSDWEX - 2 12 ns MSDCKE delay time tCKESD MSDCLK, MSDCKE - 2 12 ns Data set up time tDSSD MSDCLK, MADATA[31: 0] - 19 - ns Data hold time tDHSD MSDCLK, MADATA[31: 0] - 0 - ns Remarks Note: − When the external load capacitance CL = 30 pF Document Number: 001-98708 Rev. *E Page 117 of 190 S6E2G Series tCYCSD SDRAM Access MSDCLK tAOSD MAD[24:0] MDQM[1:0] MCSX MRASX MCASX MSDWEX MSDCKE Address tWROSD tMCSSD tRASSD tCASSD tMWESD tCKESD tDSSD MADATA[15:0] tDOSD MADATA[15:0] Document Number: 001-98708 Rev. *E tDHSD RD tDOZSD WD Page 118 of 190 S6E2G Series 12.4.11 Base Timer Input Timing Timer Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Input pulse width Value Symbol Pin Name Conditi ons Min Max tTIWH, tTIWL TIOAn/TIOBn (when using as ECK, TIN) - 2tCYCP - tTIWH Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Input pulse width Pin Name Conditi ons Min Max tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) - 2tCYCP - tTRGH TGIN Value Symbol VIHS Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the base timer is connected, see 1. S6E2G Series Block Diagram in this data sheet. Document Number: 001-98708 Rev. *E Page 119 of 190 S6E2G Series 12.4.12 CSIO (SPI) Timing Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Conditions - - - Serial clock cycle time tSCYC SCKx SCK↓→SOT delay time tSLOVI SCKx, SOTx Parameter Baud rate Internal shift clock operation VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns SIN→SCK↑ setup time tIVSHI SCKx, SINx SCK↑→SIN hold time tSHIXI SCKx, SINx 0 - 0 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 50 - 30 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 10 - 10 - ns SCK↑→SIN hold time tSHIXE SCKx, SINx 20 - 20 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: The above characteristics apply to CLK synchronous mode. − − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 120 of 190 S6E2G Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH SCK VIH tF VIL tSHSL VIL SIN VIH tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 121 of 190 S6E2G Series Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Conditions - - - Serial clock cycle time tSCYC SCKx SCK↑→SOT delay time tSHOVI SCKx, SOTx Parameter Baud rate Internal shift clock operation VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns SIN→SCK↓ setup time tIVSLI SCKx, SINx SCK↓→SIN hold time tSLIXI SCKx, SINx 0 - 0 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 50 - 30 ns SIN→SCK↓ setup time tIVSLE SCKx, SINx 10 - 10 - ns SCK↓→SIN hold time tSLIXE SCKx, SINx 20 - 20 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 122 of 190 S6E2G Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK VIL tR tSLSH VIH VIH SIN VIL tF tSHOVE SOT VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 123 of 190 S6E2G Series Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Conditions - - - Serial clock cycle time tSCYC SCK↑→SOT delay time Parameter VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max - 8 - 8 Mbps SCKx 4tCYCP - 4tCYCP - ns tSHOVI SCKx, SOTx - 30 + 30 - 20 + 20 ns SIN→SCK↓ setup time tIVSLI SCKx, SINx 50 - 30 - ns SCK↓→SIN hold time tSLIXI SCKx, SINx 0 - 0 - ns SOT→SCK↓ delay time tSOVLI SCKx, SOTx 2tCYCP - 30 - 2tCYCP - 30 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 50 - 30 ns SIN→SCK↓ setup time tIVSLE SCKx, SINx 10 - 10 - ns SCK↓→SIN hold time tSLIXE SCKx, SINx 20 - 20 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Baud rate Internal shift clock operation External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 124 of 190 S6E2G Series tSCYC VOH SCK SOT VOL VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK SOT VIH VIL tSHSL V VIL IH tF *V VIH tSHOVE tR VOH VOL OH VOL tIVSLE SIN tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register Document Number: 001-98708 Rev. *E Page 125 of 190 S6E2G Series Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Conditions - - - Serial clock cycle time tSCYC SCK↓→SOT delay time Parameter VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max - 8 - 8 Mbps SCKx 4tCYCP - 4tCYCP - ns tSLOVI SCKx, SOTx - 30 + 30 - 20 + 20 ns SIN→SCK↑ setup time tIVSHI SCKx, SINx 50 - 30 - ns SCK↑→SIN hold time tSHIXI SCKx, SINx 0 - 0 - ns SOT→SCK↑ delay time tSOVHI SCKx, SOTx 2tCYCP - 30 - 2tCYCP - 30 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 50 - 30 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 10 - 10 - ns SCK↑→SIN hold time tSHIXE SCKx, SINx 20 - 20 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Baud rate Internal shift clock operation External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 126 of 190 S6E2G Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 127 of 190 S6E2G Series When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol VCC ≥ 4.5 V Conditions Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns Internal shift clock operation External shift clock operation SCS deselect time tCSDE SCS↓→SOT delay time tDSE - 40 - 40 ns SCS↑→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 128 of 190 S6E2G Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 129 of 190 S6E2G Series When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol VCC ≥ 4.5 V Conditions Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns Internal shift clock operation External shift clock operation SCS deselect time tCSDE SCS↓→SOT delay time tDSE - 40 - 40 ns SCS↑→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 130 of 190 S6E2G Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 131 of 190 S6E2G Series When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter SCS↑→SCK↓ setup time Symbol VCC ≥ 4.5 V Conditions tCSSI Internal shift clock operation Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCK↑→SCS↓ hold time tCSHI SCS deselect time tCSDI (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns SCS↑→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↓ hold time tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns External shift clock operation SCS deselect time tCSDE SCS↑→SOT delay time tDSE - 40 - 40 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 132 of 190 S6E2G Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 133 of 190 S6E2G Series When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol SCS↑→SCK↑setup time VCC ≥ 4.5 V Conditions tCSSI Internal shift clock operation Units Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCK↓→SCS↓hold time tCSHI SCS deselect time tCSDI (*3)-50 +5tCYCP (*3)+50 +5tCYCP (*3)-50 +5tCYCP (*3)+50 +5tCYCP ns SCS↑→SCK↑setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↓→SCS↓hold time tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns External shift clock operation SCS deselect time tCSDE SCS↑→SOT delay time tDSE - 40 - 40 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 134 of 190 S6E2G Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 135 of 190 S6E2G Series High-Speed Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Serial clock cycle time tSCYC SCK↓→SOT delay time SIN→SCK↑ setup time Parameter Conditions VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max SCKx 4tCYCP - 4tCYCP - ns tSLOVI SCKx, SOTx - 10 + 10 - 10 + 10 ns tIVSHI SCKx, SINx - 12.5 - ns Internal shift clock operation 14 12.5* SCK↑→SIN hold time tSHIXI SCKx, SINx 5 - 5 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 5 - 5 - ns SCK↑→SIN hold time tSHIXE SCKx, SINx 5 - 5 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 001-98708 Rev. *E Page 136 of 190 S6E2G Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH tSHSL SCK VIH tF SOT VIL VIL VIH tR tSLOVE SIN VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 137 of 190 S6E2G Series High-Speed Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Serial clock cycle time tSCYC SCK↑→SOT delay time Parameter SIN→SCK↓ setup time Conditions VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max SCKx 4tCYCP - 4tCYCP - ns tSHOVI SCKx, SOTx - 10 + 10 - 10 + 10 ns tIVSLI SCKx, SINx - 12.5 - ns Internal shift clock operation 14 12.5* SCK↓→SIN hold time tSLIXI SCKx, SINx 5 - 5 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↓ setup time tIVSLE SCKx, SINx 5 - 5 - ns SCK↓→SIN hold time tSLIXE SCKx, SINx 5 - 5 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) Document Number: 001-98708 Rev. *E Page 138 of 190 S6E2G Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK VIL tR tSLSH VIH VIH SIN VIL tF tSHOVE SOT VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 139 of 190 S6E2G Series High-Speed Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Serial clock cycle time tSCYC SCK↑→SOT delay time SIN→SCK↓ setup time Parameter Conditions VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max SCKx 4tCYCP - 4tCYCP - ns tSHOVI SCKx, SOTx - 10 + 10 - 10 + 10 ns tIVSLI SCKx, SINx - 12.5 - ns Internal shift clock operation 14 12.5* SCK↓→SIN hold time tSLIXI SCKx, SINx 5 - 5 - ns SOT→SCK↓ delay time tSOVLI SCKx, SOTx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↓ setup time tIVSLE SCKx, SINx 5 - 5 - ns SCK↓→SIN hold time tSLIXE SCKx, SINx 5 - 5 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF) Document Number: 001-98708 Rev. *E Page 140 of 190 S6E2G Series tSCYC VOH SCK SOT VOL VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK SOT VIH VIL V VIL IH tF *V VIH tSHOVE tR VOH VOL OH VOL tIVSLE SIN tSHSL tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register Document Number: 001-98708 Rev. *E Page 141 of 190 S6E2G Series High-Speed Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Symbol Pin Name Serial clock cycle time tSCYC SCK↓→SOT delay time SIN→SCK↑ setup time Parameter Conditions VCC < 4.5 V VCC ≥ 4.5 V Unit Min Max Min Max SCKx 4tCYCP - 4tCYCP - ns tSLOVI SCKx, SOTx - 10 + 10 - 10 + 10 ns tIVSHI SCKx, SINx - 12.5 - ns 14 Internal shift clock operation 12.5* SCK↑→SIN hold time tSHIXI SCKx, SINx 5 - 5 - ns SOT→SCK↑ delay time tSOVHI SCKx, SOTx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↓→SOT delay time tSLOVE SCKx, SOTx - 15 - 15 ns SIN→SCK↑ setup time tIVSHE SCKx, SINx 5 - 5 - ns SCK↑→SIN hold time tSHIXE SCKx, SINx 5 - 5 - ns SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns External shift clock operation Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF) Document Number: 001-98708 Rev. *E Page 142 of 190 S6E2G Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 Document Number: 001-98708 Rev. *E Page 143 of 190 S6E2G Series When Using High-Speed Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol VCC ≥ 4.5 V Conditions Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns (*2)+0 (*2)+20 (*2)+0 (*2)+20 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+15 - 3tCYCP+15 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns Internal shift clock operation External shift clock operation SCS deselect time tCSDE SCS↓→SOT delay time tDSE - 25 - 25 ns SCS↑→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 144 of 190 S6E2G Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 145 of 190 S6E2G Series When Using High-Speed Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol VCC≥ 4.5 V Conditions Unit Min Min Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns (*2)+0 (*2)+20 (*2)+0 (*2)+20 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns SCS↓→SCK↑ setup time tCSSE 3tCYCP+15 - 3tCYCP+15 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns Internal shift clock operation External shift clock operation SCS deselect time tCSDE SCS↓→SOT delay time tDSE - 25 - 25 ns SCS↑→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 146 of 190 S6E2G Series SCS output tCSDI tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 SCS input tCSDE tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 147 of 190 S6E2G Series When Using High-Speed Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter SCS↑→SCK↓ setup time Symbol VCC ≥ 4.5 V Conditions tCSSI Internal shift clock operation Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns (*2)+0 (*2)+20 (*2)+0 (*2)+20 ns SCK↑→SCS↓ hold time tCSHI SCS deselect time tCSDI (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns SCS↑→SCK↓ setup time tCSSE 3tCYCP+15 - 3tCYCP+15 - ns SCK↑→SCS↓ hold time tCSHE 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns External shift clock operation SCS deselect time tCSDE SCS↑→SOT delay time tDSE - 25 - 25 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 148 of 190 S6E2G Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 149 of 190 S6E2G Series When Using High-Speed Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) VCC < 4.5 V Parameter Symbol SCS↓→SCK↓ setup time VCC ≥ 4.5 V Conditions tCSSI Internal shift clock operation Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns (*2)+0 (*2)+20 (*2)+0 (*2)+20 ns SCK↑→SCS↓ hold time tCSHI SCS deselect time tCSDI (*3)-20 +5tCYCP (*3)+20 +5tCYCP (*3)-20 +5tCYCP (*3)+20 +5tCYCP ns SCS↑→SCK↑ setup time tCSSE 3tCYCP+15 - 3tCYCP+15 - ns SCK↓→SCS↓ hold time tCSHE 0 - 0 - ns 3tCYCP+15 - 3tCYCP+15 - ns External shift clock operation SCS deselect time tCSDE SCS↑→SOT delay time tDSE - 40 - 40 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856). − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 150 of 190 S6E2G Series tCSDI SCS output tCSHI tCSSI SCK output SOT (SPI=0) SOT (SPI=1) MS bit = 0 tCSDE SCS input tCSHE tCSSE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) MS bit = 1 Document Number: 001-98708 Rev. *E Page 151 of 190 S6E2G Series External Clock (EXT = 1): When in Asynchronous Mode Only (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK fall time tF SCK rise time tR CL = 30 pF tR VIL VIH Unit Min Max tCYCP + 10 - ns tCYCP + 10 - ns - 5 ns - 5 ns tSHSL SCK Document Number: 001-98708 Rev. *E Value Condition tF tSLSH VIH VIL Remarks VIL VIH Page 152 of 190 S6E2G Series 12.4.13 External Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions Value Min Max Unit A/D converter trigger input ADTGx FRCKx - 2tCYCP*1 - ns tINH, tINL DTTIxX INT00 to INT31, NMIX WKUPx Free-run timer input clock Input capture Icxx Input pulse width Remarks - 2tCYCP*1 - ns 2tCYCP + 100*1 - ns 500*2 - ns 500*3 - ns - - Waveform generator External interrupt, NMI Deep standby wake up 1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in Timer mode. For more information about the APB bus number to which the A/D converter, multi-function timer, and external interrupt are connected, see 1. S6E2G Series Block Diagram in this data sheet. 2: When in Stop mode, in Timer mode 3: When in Deep Standby RTC mode, in Deep Standby Stop mode Document Number: 001-98708 Rev. *E Page 153 of 190 S6E2G Series 12.4.14 Quadrature Position/Revolution Counter Timing (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V) Parameter Symbol Conditions AIN pin H width tAHL - AIN pin L width tALL - BIN pin H width tBHL - BIN pin L width tBLL - BIN rise time from AIN pin H level tAUBU PC_Mode2 or PC_Mode3 AIN fall time from BIN pin H level tBUAD PC_Mode2 or PC_Mode3 BIN fall time from AIN pin L level tADBD PC_Mode2 or PC_Mode3 AIN rise time from BIN pin L level tBDAU PC_Mode2 or PC_Mode3 AIN rise time from BIN pin H level tBUAU PC_Mode2 or PC_Mode3 BIN fall time from AIN pin H level tAUBD PC_Mode2 or PC_Mode3 AIN fall time from BIN pin L level tBDAD PC_Mode2 or PC_Mode3 BIN rise time from AIN pin L level tADBU PC_Mode2 or PC_Mode3 ZIN pin H width tZHL QCR: CGSC = 0 ZIN pin L width tZLL QCR: CGSC = 0 AIN/BIN rise and fall time from determined ZIN level tZABE QCR: CGSC = 1 Determined ZIN level from AIN/BIN rise and fall time tABEZ QCR: CGSC = 1 Value Min Max 2tCYCP* - Unit ns *: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in Timer mode. For more information about the APB bus number to which the quadrature position/revolution counter is connected, see 1. S6E2G Series Block Diagram in this data sheet. Document Number: 001-98708 Rev. *E Page 154 of 190 S6E2G Series tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL tBLL tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL Document Number: 001-98708 Rev. *E tALL Page 155 of 190 S6E2G Series ZIN ZIN AIN/BIN Document Number: 001-98708 Rev. *E Page 156 of 190 S6E2G Series 12.4.15 I2C Timing Standard-Mode, Fast-Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions Standard-Mode Fast-Mode Unit Min Max Min Max fSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs SCL clock L width tLOW 4.7 - 1.3 - μs SCL clock H width tHIGH 4.0 - 0.6 - μs (Repeated) START condition setup time SCL ↑ → SDA ↓ tSUSTA 4.7 - 0.6 - μs Data hold time SCL ↓ → SDA ↓ ↑ tHDDAT 0 3.45*2 0 0.9*3 μs Data setup time SDA ↓ ↑ → SCL ↑ tSUDAT 250 - 100 - ns Stop condition setup time SCL ↑ → SDA ↑ tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs 2 MHz ≤ tCYCP<40 MHz 2 tCYCP*4 - 2 tCYCP*4 - ns 40 MHz ≤ tCYCP <60 MHz 4 tCYCP*4 - 4 tCYCP*4 - ns 60 MHz ≤ tCYCP <80 MHz 6 tCYCP *4 - 6 tCYCP *4 - ns 80 MHz ≤ tCYCP ≤100 MHz 8 tCYCP*4 - 8 tCYCP*4 - ns SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ Bus free time between Stop condition and START condition Noise filter tSP CL = 30 pF, R = (Vp/IOL)*1 Remarks *5 1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. 2: The maximum tHDDAT must not extend beyond the low period (tLOW) of the device’s SCL signal. 3: Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns. 4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I2C is connected, see 1.S6E2G Series Block Diagram in this data sheet. When using Standard-mode, the peripheral bus clock must be set more than 2 MHz. When using Fast-mode, the peripheral bus clock must be set more than 8 MHz. 5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB bus clock frequency. Document Number: 001-98708 Rev. *E Page 157 of 190 S6E2G Series Fast mode Plus (Fm+) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions Fast mode Plus (Fm+)*6 Unit Min Max fSCL 0 1000 kHz tHDSTA 0.26 - μs SCL clock L width tLOW 0.5 - μs SCL clock H width tHIGH 0.26 - μs (Repeated) START condition setup time SCL ↑ → SDA ↓ tSUSTA 0.26 - μs Data hold time SCL ↓ → SDA ↓ ↑ tHDDAT 0 0.45*2, *3 μs Data setup time SDA ↓ ↑ → SCL ↑ tSUDAT 50 - ns Stop condition setup time SCL ↑ → SDA ↑ tSUSTO 0.26 - μs tBUF 0.5 - μs 60 MHz ≤ tCYCP<80 MHz 6 tCYCP*4 - ns 80 MHz ≤ tCYCP ≤100 MHz *4 SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ Bus free time between Stop condition and START condition Noise filter tSP CL = 30 pF, R = (Vp/IOL)*1 Remarks *5 8 tCYCP - ns 1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. 2: The maximum tHDDAT must not extend beyond the low period (tLOW) of the device’s SCL signal. 3: The Fast mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns.” 4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I2C is connected, see 1.S6E2G Series Block Diagram in this data sheet. To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more. 5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB bus clock frequency. 6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I2C Fm+ in the EPFR register. See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (002-04856) for the details. Document Number: 001-98708 Rev. *E Page 158 of 190 S6E2G Series Document Number: 001-98708 Rev. *E Page 159 of 190 S6E2G Series 12.4.16 SD Card Interface Timing Default-Speed Mode  Clock CLK (All values are referenced to VIH and VIL transition points) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Clock frequency Data Transfer mode fPP Clock frequency Identification mode Value Conditions Remarks Min Max S_CLK 0 25 MHz fOD S_CLK 0/100 400 kHz Clock low time tWL S_CLK 10 - ns Clock high time tWH S_CLK 10 - ns Clock rise time tTLH S_CLK - 10 ns Clock fall time tTHL S_CLK - 10 ns CCARD ≤ 10 pF (1card) *: 0 Hz means to stop the clock. The given minimum frequency range is for cases where a continuous clock is required.  Card Inputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Pin Name Input set-up time tISU S_CMD, S_DATA3: 0 Input hold time tIH S_CMD, S_DATA3: 0 Value Conditions CCARD ≤ 10 pF (1card) Remarks Min Max 5 - ns 5 - ns  Card Outputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Pin Name Output Delay time during Data Transfer mode tODLY S_CMD, S_DATA3: 0 Output Delay time during Identification mode tODLY S_CMD, S_DATA3: 0 Value Conditions CCARD ≤ 40 pF (1card) Max 0 14 ns 0 50 ns tWH tWL S_CLK (SD Clock) VIH VIH VIH VIL VIL tTLH tTHL tIH tISU S_CMD, S_DATA3: 0 (Card Input) VIH VIH VIL VIL tODLY(Min) tODLY(Max) S_CMD, S_DATA3: 0 (Card Output) Remarks Min VOH VOH VOL VOL Default-Speed mode Document Number: 001-98708 Rev. *E Page 160 of 190 S6E2G Series Notes: − The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is the Host. − For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual Main Part (002-04856). High-speed Mode  Clock CLK (All values are referred to VIH and VIL) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Clock frequency Data Transfer mode fPP S_CLK Clock low time tWL S_CLK Clock high time tWH S_CLK Clock rise time tTLH Clock fall time tTHL Conditions Value Remarks Min Max 0 45 MHz 7 - ns 7 - ns S_CLK - 3 ns S_CLK - 3 ns CCARD ≤ 10 pF (1 card)  Card Inputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Pin Name Input set-up time tISU S_CMD, S_DATA3: 0 Input hold time tIH S_CMD, S_DATA3: 0 Conditions CCARD ≤ 10 pF (1 card) Value Remarks Min Max 6 - ns 2 - ns  Card Outputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Pin Name Conditions tODLY S_CMD, S_DATA3: 0 Output hold time tOH Total system capacitance for each line* CL Output delay time during data transfer mode Value Remarks Min Max CL ≤ 40 pF (1 card) 0 14 ns S_CMD, S_DATA3: 0 CL ≥ 15 pF (1 card) 2.5 - ns - 1 card - 40 pF *: In order to satisfy severe timing, host shall drive only one card. Document Number: 001-98708 Rev. *E Page 161 of 190 S6E2G Series tWH tWL S_CLK (SD Clock) 50%VCC VIH VIH VIL VIL tTLH tTHL tIH tISU S_CMD, S_DATA3: 0 (Card Input) VIH VIH VIL VIL tOH(Min) tODLY(Max) S_CMD, S_DATA3: 0 (Card Output) VIH 50%VCC VOH VOH VOL VOL High-speed mode Notes: − The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is the Host. − For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual Main Part (002-04856). 12.4.17 ETM/ HTM Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Data hold TRACECLK frequency Symbol Pin Name tETMH TRACECLK, TRACED[15: 0] 1/tTRACE TRACECLK TRACECLK clock cycle tTRACE Conditions Value Min Max VCC ≥ 4.5 V 2 9 VCC <4.5 V 2 15 Unit Remarks ns VCC ≥ 4.5 V 50 MHz VCC <4.5 V 32 MHz VCC ≥ 4.5 V 20 - ns VCC <4.5 V 31.25 - ns Note: − When the external load capacitance CL = 30 pF. Document Number: 001-98708 Rev. *E Page 162 of 190 S6E2G Series HCLK TRACECLK TRACED[15: 0] Document Number: 001-98708 Rev. *E Page 163 of 190 S6E2G Series 12.4.18 JTAG Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name TMS, TDI setup time tJTAGS TCK, TMS, TDI TMS, TDI hold time tJTAGH TCK, TMS, TDI tJTAGD TCK, TDO TDO delay time Conditions Value Unit Min Max 15 - ns 15 - ns VCC ≥ 4.5 V - 25 VCC <4.5 V - 45 Remarks VCC ≥ 4.5 V VCC <4.5 V VCC ≥ 4.5 V VCC <4.5 V ns Note: − When the external load capacitance CL = 30 pF. TCK TMS/TDI TDO Document Number: 001-98708 Rev. *E Page 164 of 190 S6E2G Series 12.4.19 Ethernet-MAC Timing RMII Transmission (100 Mbps/10 Mbps) (ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V*1, VSS = 0V, CL = 25 pF) Parameter Symbol Pin Name Conditions Reference clock cycle time*2 tREFCYC E_RXCK_REFCK Reference clock High-pulse-width duty cycle tREFCYCH Reference clock Low-pulse-width duty cycle REFCK ↑ → Transmitted data delay time Value Unit Min Max 20 ns (typical) - - ns E_RXCK_REFCK tREFCYCH/tREFCYC 35 65 % tREFCYCL E_RXCK_REFCK tREFCYCL/tREFCYC 35 65 % tRMIITX E_TX03, E_RX02, E_TX01, E_TX00, E_TXEN - - 12 ns *1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current. *2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device specifications. tREFCYC E_RXCK_REFCK VIHS VIHS VILS tREFCYCH E_TX03 E_TX02 E_TX01 E_TX00 E_TXEN tREFCYCL VOH VOL tRMIITX Document Number: 001-98708 Rev. *E Page 165 of 190 S6E2G Series RMII Receiving (100 Mbps/10 Mbps) (ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF) Parameter Symbol Pin Name Conditions Reference clock cycle time* tREFCYC E_RXCK_REFCK Reference clock High-pulse-width duty cycle tREFCYCH Reference clock Low-pulse-width duty cycle Value Unit Min Max 20 ns (typical) - - ns E_RXCK_REFCK tREFCYCH/tREFCYC 35 65 % tREFCYCL E_RXCK_REFCK tREFCYCL/tREFCYC 35 65 % Received data → REFCK↑ Setup time tRMIIRXS E_RX03, E_RX02, E_RX01, E_RX00, E_RXDV - 4 - ns REFCK ↑ → Received data Hold time tRMIIRXH E_RX03, E_RX02, E_RX01, E_RX00, E_RXDV - 2 - ns *: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device specifications. tREFCYC E_RXCK_REFCK VIHS tREFCYCH E_RX03 E_RX02 E_RX01 E_RX00 E_RXDV VIHS VIHS VILS VILS tRMIIRXS Document Number: 001-98708 Rev. *E VIHS VILS tREFCYCL tRMIIRXH Page 166 of 190 S6E2G Series Management Interface (ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF) Parameter Symbol Pin Name Conditions Management clock cycle time* tMDCYC E_MDC Management clock High pulse width duty cycle tMDCYCH Management clock Low pulse width duty cycle Value Unit Min Max - 400 - ns E_MDC tMDCYCH/tMDCYC 35 65 % tMDCYCL E_MDC tMDCYCL/tMDCYC 35 65 % MDC ↓ → MDIO Delay time tMDO E_MDIO - - 60 ns MDIO → MDC ↑ Setup time tMDIS E_MDIO - 20 - ns MDC ↑ → MDIO Hold time tMDIH E_MDIO - 0 - ns *: The clock time should be set to a value greater than the minimum value by setting the Ethernet-MAC setting register. tMDCYC E_MDC (output) VOL VOH tMDCYCH E_MDIO (input) VIHS VIHS VIHS VILS VILS VILS VILS tMDIS tMDIH tMDIH tMDO tMDO Document Number: 001-98708 Rev. *E tMDCYCL VIHS tMDIS E_MDIO (output) VOH VOL VOH VOH VOL VOL Page 167 of 190 S6E2G Series MII Transmission (100 Mbps/10 Mbps) (ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V*1, VSS = 0V, CL = 25 pF) Parameter Transmission clock Cycle time*2 Symbol tTXCYC Pin Name Conditions E_TCK Value Unit Min Max 100 Mbps 40 ns (typical) - - ns 100 Mbps 400 ns (typical) - - ns Transmission clock High-pulse-width duty cycle tTXCYCH E_TCK tTXCYCH/tTXCYC 35 65 % Transmission clock Low-pulse-width duty cycle tTXCYCL E_TCK tTXCYCL/tTXCYC 35 65 % tMIITX E_TX03, E_TX02, E_TX01, E_TX00, E_TXEN - - 24 ns TXCK ↑ → Transmitted data delay time 1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current. 2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the PHY-device specifications. tTXCYC E_TCK VIHS VIHS VILS tTXCYCH E_TX03 E_TX02 E_TX01 E_TX00 E_TXEN tTXCYCL VOH VOL tMIITX Document Number: 001-98708 Rev. *E Page 168 of 190 S6E2G Series MII Receiving (100 Mbps/10 Mbps) (ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF) Parameter Receiving clock cycle time* Symbol Pin Name tRXCYC Conditions E_RXCK_REFCK Value Unit Min Max 100 Mbps 40 ns (typical) - - ns 100 Mbps 400 ns (typical) - - ns Receiving clock High pulse width duty cycle tRXCYCH E_RXCK_REFCK tRXCYCH/tRXCYC 35 65 % Receiving clock Low pulse width duty cycle tRXCYCL E_RXCK_REFCK tRXCYCL/tRXCYC 35 65 % Received data → REFCK ↑Setup time tMIIRXS E_RX03, E_RX02, E_RX01, E_RX00, E_RXDV - 5 - ns REFCK ↑ → Received data Hold time tMIIRXH E_RX03, E_RX02, E_RX01, E_RX00, E_RXDV - 2 - ns *: The receiving clock 100Mbps is fixed to 25MHz or 2.5MHz in the MII specifications. The clock accuracy should meet the PHY-device specifications. tRXCYC E_RXCK_REFCK VIHS tRXCYCH E_RX03 E_RX02 E_RX01 E_RX00 E_RXDV VIHS VIHS VILS VILS tMIIRXS Document Number: 001-98708 Rev. *E VIHS VILS tRXCYCL tMIIRXH Page 169 of 190 S6E2G Series 12.4.20 I2S Timing (Multi-function Serial Interface) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions fI2SCK MI2SCKx tICYC MI2SCKx ∆ MI2SCKx I2SCK↓ → I2SWS delay time tSWDT MI2SCKx, MI2SWSx I2SCK↓ → I2SDO delay time tSDDT MI2SCKx, MI2SDOx I2SDI → I2SCK ↑ setup time tDSST I2SCK ↑ → I2SDI hold time tSDHT I2SCK max frequency *1 I2S clock cycle time *1 I2S clock Duty cycle I2SCK falling time tF I2SCK rising time tR MI2SCKx, MI2SDIx MI2SCKx Value Unit Min Max - - 6.144 MHz - 4 tCYCP2 - % 45 55 % - -20 +20 ns - -20 +20 ns - 36 - ns - 0 - ns - - 5 ns - - 5 ns Remarks *1: I2S clock should meet the multiple of PCLK(tICYC) and the frequency less than fI2SCK meantime. Note: − See Chapter 1-6: I2S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04856) for the details. VIH VIH MI2SCK VIL VIL tF tR tSWDT, tSDDT MI2SWS and MI2SDO VOH VOL tDSST tSDHT VIH VIH VIL VIL MI2SDI Document Number: 001-98708 Rev. *E Page 170 of 190 S6E2G Series 12.5 12-bit A/D Converter Electrical Characteristics for the A/D Converter (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V) Parameter Symbol Pin Name Resolution - Integral nonlinearity Value Unit Min Typ Max - - - 12 bit - - - - ± 4.5 LSB Differential nonlinearity - - - - ± 2.5 LSB Zero transition voltage VZT Anxx - ±2 ±7 Full-scale transition voltage VFST Anxx - AVRH ± 2 AVRH ± 7 - - - Total error Conversion time - - Sampling time *2 tS - Compare clock cycle*3 State transition time to operation permission Power supply current (analog + digital) Reference power supply current (AVRH) tCCK - tSTT - - AVCC - AVRH AVRH LSB = 2.7 V to 5.5 V Offset calibration LSB when used ±3 ±8 LSB *1 - - μs 0.15 - 0.3 10 μs - 25 - 1000 50 - 1000 - - 1.0 μs - 0.69 0.92 mA A/D 1 unit operation - 1.3 22 μA When A/D stop - 1.1 1.97 mA A/D 1 unit operation AVRH = 5.5 V - 0.3 6.3 μA When A/D stop 12.05 pF 0.5 ns Analog input capacity CAIN - - - Analog input resistance RAIN - - - Interchannel disparity - - - - 4 LSB Analog port input leak current - Anxx - - 5 μA Analog input voltage Anxx AVSS - AVRH V - AVSS - AVCC V 4.5 - AVCC 2.7 - AVCC AVSS - AVSS Reference voltage - 1.2 AVRH AVRL Remarks 1.8 kΩ V AVCC ≥ 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V Tcck <50 ns Tcck ≥ 50 ns V 1: The conversion time is the value of sampling time (tS) + compare time (tC). The condition of the minimum conversion time is when the value of Ts = 150 ns and Tc = 350 ns (AVCC ≥ 4.5V). Ensure that it satisfies the value of sampling time (tS) and compare clock cycle (tCCK). For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog Macro Part (002-04860). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information about the APB bus number to which the A/D converter is connected, see 1. S6E2G Series Block Diagram in this data sheet. The sampling clock and compare clock are set at base clock (HCLK). 2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1). 3: The compare time (tC) is the value of (Equation 2). Document Number: 001-98708 Rev. *E Page 171 of 190 S6E2G Series ANxx Analog input pin Rext Comparator R AIN Rin Analog signal source Cin CAIN (Equation 1) tS ≥ (RAIN + Rext) × CAIN × 9 tS: Sampling time RAIN: Input resistance of A/D = 1.2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V Input resistance of A/D = 1.8 kΩ at 2.7 V ≤ AVCC < 4.5 V CAIN: Input capacity of A/D = 12.05 pF at 2.7 V ≤ AVCC ≤ 5.5 V Rext: Output impedance of external circuit (Equation 2) tC = tCCK × 14 tC: Compare time tCCK: Compare clock cycle Document Number: 001-98708 Rev. *E Page 172 of 190 S6E2G Series Definition of 12-bit A/D Converter Terms  Resolution: Analog variation that is recognized by an A/D converter.  Integral nonlinearity: Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.  Differential nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD Differential nonlinearity Actual conversion characteristics Ideal characteristics 0x002 0x001 0xN Ideal characteristics VNT Actual conversion characteristics AVRH AVss AVRH Analog input Integral nonlinearity of digital output N = Differential nonlinearity of digital output N = 1LSB = N: VZT: VFST: VNT: (Actually-measured value) (Actually-measured value) 0x(N-2) VZT (Actually-measured value) AVss V(N+1)T 0x(N-1) Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 001-98708 Rev. *E Page 173 of 190 S6E2G Series  Total error: A difference between actual value and theoretical value. The overall error includes zero-transition voltage, full-scale transition voltage and linearity error. Total error 0xFFF VFST’=1.5LSB’ 0xFFE Actual conversion characteristics Digital output 0xFFD {1LSB’ x (N-1) + 0.5 LSB’} 0x004 VNT (Actually-measured value) 0x003 Actual conversion characteristics 0x002 Ideal characterisics 0x001 VZT’=0.5LSB’ AVRL AVRH Analog input Total error of digital output N = 1 LSB’ (ideal value) = VNT – {1 LSB’ X (N-1) + 0.5 LSB’} 1 LSB’ AVRH – AVRL 4096 VZT’ (ideal value) = AVRL + 0.5 LSB’ [V] VFST’ (ideal value) = AVRH - 1.5 LSB’ [V] [LSB] [V] VNT’: A voltage for causing transition of digital output from (N-1) to N Document Number: 001-98708 Rev. *E Page 174 of 190 S6E2G Series 12.6 USB Characteristics (VCC = AVCC = 2.7V to 5.5V, USBVCC0 = USBVCC1 = 3.0V to 3.6V, VSS = AVSS = 0V) Parameter Symbol Input H level voltage Conditions Value Min Max Unit Remarks VIH - 2.0 USBVCC + 0.3 V *1 VIL - VSS - 0.3 0.8 V *1 VDI - 0.2 - V *2 Different common mode range VCM - 0.8 2.5 V *2 Output H level voltage VOH External pull-down resistance = 15 kΩ 2.8 3.6 V *3 Output L level voltage VOL External pull-up resistance = 1.5 kΩ 0.0 0.3 V *3 Crossover voltage VCRS - 1.3 2.0 V *4 Rise time tFR Full-Speed 4 20 ns *5 Fall time tFF Full-Speed 4 20 ns *5 Rise/fall time matching tFRFM Full-Speed 90 111.11 % *5 Output impedance ZDRV Full-Speed 28 44 Ω *6 Rise time tLR Low-Speed 75 300 ns *7 Fall time tLF Low-Speed 75 300 ns *7 Rise/fall time matching tLRFM Low-Speed 80 125 % *7 Input L level voltage Input characteristics Differential input sensitivity Output characteristics Pin Name UDP0/ UDM0, UDP1/ UDM1 1: The switching threshold voltage of the single-end-receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V, VIH (Min) = 2.0 V (TTL input standard). There is some hysteresis applied to lower noise sensitivity. 2: Use differential-receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Minimum differential input sensitivity [V] Above voltage range is the common mode input voltage range. Common mode input voltage [V] Document Number: 001-98708 Rev. *E Page 175 of 190 S6E2G Series 3: The output drive capability of the driver is below 0.3 V at low state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 1.5 kΩ load) at high state (VOH). 4: The cross voltage of the external differential output signal (D +/D −) of USB I/O buffer is within 1.3 V to 2.0 V. VCRS specified range 5: They indicate rise time (tRISE) and fall time (tFALL) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, tR/tF ratio is regulated as within ± 10% to minimize RFI emission. D+ 90% D- 90% 10% 10% TRISE Rise time TFALL Falling time Full-speed Buffer Rs=27 TxD+ CL=50pF Rs=27 TxDCL=50pF 3-State Enable Document Number: 001-98708 Rev. *E Page 176 of 190 S6E2G Series 6: USB Full-speed connection is performed via twisted-pair cable shield with 90Ω ± 15% characteristic impedance (differential mode). USB standard defines that the output impedance of the USB driver must be in the range from 28 Ω to 44 Ω. So, a discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommended value 27 Ω) series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistance. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω (recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence.” 7: They indicate rise time (tRISE) and fall time (tFALL) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. D+ 90% D- 90% 10% 10% TRISE Rise time TFALL Falling time Note: − See Low-Speed Load (Compliance Load) for conditions of external load. Document Number: 001-98708 Rev. *E Page 177 of 190 S6E2G Series Low-Speed Load (Upstream Port Load) - Reference 1 CL=50pF to 150pF CL=50pF to 150pF Low-Speed Load (Downstream Port Load) - Reference 2 CL= 200pF to 600pF CL= 200pF to 600pF Low-Speed Load (Compliance Load) CL=200pF to 450pF CL=200pF to 450pF Document Number: 001-98708 Rev. *E Page 178 of 190 S6E2G Series 12.7 Low-Voltage Detection Characteristics 12.7.1 Low-Voltage Detection Reset Parameter Symbol Conditions Detected voltage VDL Released voltage VDH 12.7.2 Value Unit Remarks 2.64 V When voltage drops 2.69 V When voltage rises Unit Remarks Min Typ Max - 2.46 2.55 - 2.51 2.60 Interrupt of Low-Voltage Detection Parameter Symbol Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH LVD stabilization wait time tLVDW Conditions SVHI = 00111 SVHI = 00100 SVHI = 01100 SVHI = 01111 SVHI = 01110 SVHI = 01001 SVHI = 01000 SVHI = 11000 - Value Min Typ Max 2.80 2.90 3.00 V When voltage drops 2.90 3.00 3.11 V When voltage rises 2.99 3.10 3.21 V When voltage drops 3.09 3.20 3.31 V When voltage rises 3.18 3.30 3.42 V When voltage drops 3.28 3.40 3.52 V When voltage rises 3.67 3.80 3.93 V When voltage drops 3.76 3.90 4.04 V When voltage rises 3.76 3.90 4.04 V When voltage drops 3.86 4.00 4.14 V When voltage rises 4.05 4.20 4.35 V When voltage drops 4.15 4.30 4.45 V When voltage rises 4.15 4.30 4.45 V When voltage drops 4.25 4.40 4.55 V When voltage rises 4.25 4.40 4.55 V When voltage drops 4.34 4.50 4.66 V When voltage rises - - 6000×tCYCP* μs *: tCYCP indicates the APB2 bus clock cycle time. Document Number: 001-98708 Rev. *E Page 179 of 190 S6E2G Series 12.8 MainFlash Memory Write/Erase Characteristics (VCC = 2.7V to 5.5V) Parameter Value Unit Min Typ Max Large Sector - 0.7 3.7 s Small Sector - 0.3 1.1 s Half word (16-bit) Write cycles < 100 times write time Write cycles > 100 times - 12 Chip erase time* - 13.6 Sector erase time 100 200 68 Remarks Includes write time prior to internal erase μs Not including system-level overhead time s Includes write time prior to internal erase *: It indicates the chip erase time of 1MB MainFlash memory For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required. See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for the detail. Write Cycles and Data Retention Time Erase/Write Cycles (Cycle) Data Retention Time (Year) 1,000 20* 10,000 10* 100,000 5* *: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C). Document Number: 001-98708 Rev. *E Page 180 of 190 S6E2G Series 12.9 Standby Recovery Time 12.9.1 Recovery Cause: Interrupt/WKUP The time from the interrupt occurring to the time of program operation start is shown. Recovery Count Time (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Value Symbol Sleep mode Unit Max* Typ HCLK×1 Remarks μs High-speed CR Timer mode Main Timer mode PLL Timer mode 40 80 μs Low-speed CR Timer mode 450 900 μs Sub Timer mode 896 1136 μs 316 581 μs 270 540 μs 365 667 μs without RAM retention 365 667 μs with RAM retention RTC mode Stop mode (High-speed CR/Main/PLL Run mode return) tICNT RTC mode Stop mode (Low-speed CR/sub Run mode return) Deep Standby RTC mode with RAM retention Deep Standby Stop mode with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of Standby Recovery Operation (when in External Interrupt Recovery*) Ext.INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 001-98708 Rev. *E Page 181 of 190 S6E2G Series Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*) Internal Resource INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause. Notes: − The return factor is different in each low-power consumption mode. See Chapter 6: Low Power Consumption mode and Operations of Standby modes in FM4 Family Peripheral Manual Main Part (002-04856). − The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (002-04856). Document Number: 001-98708 Rev. *E Page 182 of 190 S6E2G Series 12.9.2 Recovery Cause: Reset The time from reset release to the program operation start is shown. Recovery Count Time (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Value Unit Remarks Typ Max* Sleep mode 155 266 μs High-speed CR Timer mode Main Timer mode PLL Timer mode 155 266 μs Low-speed CR Timer mode 315 567 μs 315 567 μs 315 567 μs 336 667 μs without RAM retention 336 667 μs with RAM retention Sub Timer mode tRCNT RTC mode Stop mode Deep Standby RTC mode with RAM retention Deep Standby Stop mode with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of Standby Recovery Operation (when in INITX Recovery) INITX Internal RST RST Active Release tRCNT CPU Operation Document Number: 001-98708 Rev. *E Start Page 183 of 190 S6E2G Series Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*) Internal Resource RST Internal RST RST Active Release tRCNT CPU Operation Start *: Depending on the low-power consumption mode, the reset issue from the internal resource is not included in the recovery cause. Notes: − The return factor is different in each low power consumption mode. See Chapter 6: Low Power Consumption mode and Operations of Standby modes in “FM4 Family Peripheral Manual Main Part (002-04856). − The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (002-04856). − When the power-on reset/low-voltage detection reset, they are not included in the return factor. See 12.4.8 Power-On Reset Timing. − In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation stabilization wait time of Main PLL clock. − Internal resource reset indicates Watchdog reset and CSV reset. Document Number: 001-98708 Rev. *E Page 184 of 190 S6E2G Series 13. Ordering Information Part Number Flash RAM Crypto Package S6E2GM6H0AGV2000A 512 KB 128 KB ✓ ✓ ✓ S6E2GM8H0AGV2000A 1 MB 192 KB ✓ ✓ ✓ ✓ ✓ Plastic LQFP (0.5 mm pitch), 144 pin (LQS144) S6E2GM6HHAGV2000A 512 KB 128 KB ✓ ✓ S6E2GM8HHAGV2000A 1 MB 192 KB ✓ ✓ ✓ ✓ S6E2GM6J0AGV2000A 512 KB 128 KB ✓ ✓ ✓ S6E2GM8J0AGV2000A 1 MB 192 KB ✓ ✓ ✓ S6E2GM6JHAGV2000A 512 KB 128 KB ✓ ✓ ✓ ✓ S6E2GM8JHAGV2000A 1 MB 192 KB ✓ ✓ ✓ ✓ S6E2GK6H0AGV2000A 512 KB 128 KB  ✓ ✓ S6E2GK8H0AGV2000A 1 MB 192 KB  ✓ ✓ S6E2GK6HHAGV2000A 512 KB 128 KB  ✓ ✓ ✓ S6E2GK8HHAGV2000A 1 MB 192 KB  ✓ ✓ ✓ S6E2GK6J0AGV2000A 512 KB 128 KB  ✓ ✓ S6E2GK8J0AGV2000A 1 MB 192 KB  ✓ ✓ S6E2GK6JHAGV2000A 512 KB 128 KB  ✓ ✓ ✓ S6E2GK8JHAGV2000A 1 MB 192 KB  ✓ ✓ ✓ S6E2GH6H0AGV2000A 512 KB 128 KB ✓ ✓ S6E2GH8H0AGV2000A 1 MB 192 KB ✓ ✓ S6E2GH6J0AGV2000A 512 KB 128 KB ✓ ✓ S6E2GH8J0AGV2000A 1 MB 192 KB ✓ ✓ S6E2G36H0AGV2000A 512 KB 128 KB S6E2G38H0AGV2000A 1 MB 192 KB S6E2G36J0AGV2000A 512 KB 128 KB S6E2G38J0AGV2000A 1 MB 192 KB S6E2G26H0AGV2000A 512 KB 128 KB ✓ S6E2G28H0AGV2000A 1 MB 192 KB ✓ S6E2G26HHAGV2000A 512 KB 128 KB ✓ ✓ S6E2G28HHAGV2000A 1 MB 192 KB ✓ ✓ S6E2G26J0AGV2000A 512 KB 128 KB ✓ S6E2G28J0AGV2000A 1 MB 192 KB ✓ S6E2G26JHAGV2000A 512 KB 128 KB ✓ ✓ S6E2G28JHAGV2000A 1 MB 192 KB ✓ ✓ Document Number: 001-98708 Rev. *E CAN Ethernet SD Card Plastic LQFP (0.5 mm pitch), 176 pin (LQP176) Plastic LQFP (0.5 mm pitch), 144 pin (LQS144) Plastic LQFP (0.5 mm pitch), 176 pin (LQP176) Plastic LQFP (0.5 mm pitch), 144 pin (LQS144) Plastic LQFP (0.5 mm pitch), 176 pin (LQP176) Plastic LQFP (0.5 mm pitch), 144 pin (LQS144) Plastic LQFP (0.5 mm pitch), 176 pin (LQP176) Plastic LQFP (0.5 mm pitch), 144 pin (LQS144) Plastic LQFP (0.5 mm pitch), 176 pin (LQP176) Page 185 of 190 S6E2G Series 14. Package Dimensions Package Type Package Code LQFP 144 LQS144 4 D D1 10 8 4 5 7 7 5 73 10 9 73 72 D D1 108 10 9 72 E1 E 5 7 E 4 4 E1 5 7 3 3 6 14 4 37 1 14 4 37 36 1 36 BOTTOM VIEW 2 5 7 e 3 0.1 0 C A-B D 0.2 0 C A-B D b 0.0 8 TOP VIEW C A-B D 8 2 A 9 c A A' 0.0 8 C SEATING PLAN E L1 0.25 L A1 10 b SECTION A-A' SIDE VIEW SYMBOL DIM ENSIONS M IN. NOM. M AX. 1.70 A A1 0.05 b 0.17 c 0.09 0.15 0.22 0.27 0.20 D 22.00 BSC D1 20.00 BSC e 0.50 BSC E 22.00 BSC 20.00 BSC E1 L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 144 LEAD LQFP 20.0X20.0X1.7 M M LQS144 REV*A Document Number: 001-98708 Rev. *E 002-13015 *A Page 186 of 190 S6E2G Series Package Type Package Code LQFP 176 LQP176 D D1 132 4 5 7 89 133 89 88 132 133 88 E1 E 5 7 4 3 6 176 45 1 176 45 44 44 1 2 5 7 e 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.08 C A-B D 8 TOP VIEW 2 A A A' 0.08 C SIDE VIEW SYM BOL NOM . M AX. 0.05 0.15 L1 0.25 A1 10 L c b SECTION A-A' 1.70 b 0.17 c 0.09 0.22 26.00 BSC D1 24.00 BSC e 0.50 BSC E 26.00 BSC E1 0.27 0.20 D 24.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 θ SEA TIN G PLAN E DIM ENSIONS M IN. A A1 9 θ 0° 8° PACKAGE OUTLINE, 176 LEAD LQFP 24.0X24.0X1.7 M M LQP176 REV** 002-15150 ** Document Number: 001-98708 Rev. *E Page 187 of 190 S6E2G Series Document History Document Title: S6E2G Series 32-bit Arm® Cortex®-M4F, FM4 Microcontroller Document Number: 001-98708 Revision ECN Orig. of Change ** 4861788 YOHO *A 4945035 HITK *B 5122844 BOO 03/29/2016 Removed full multiplexed signal names from the Pin Assignments drawing. Consolidated the G Series of Cypress MCUs into one data sheet. Added tables to differentiate parts in 2 Product Lineup and 3 Package-Dependent Features. Added hyperlinks to 6 Pin Descriptions. Added circuit type D to 7 I/O Circuit Type and pin state types S and T to 11 Pin Status in Each CPU State. Consolidated 10 Memory Map to two pages. Expanded 13 Ordering Information. *C 5448447 YSKA 04/12/2017 Modified typo about the number (from 5 to 4) of power supplies. (Page 11) Updated “12.4.8 Power-On Reset Timing”. Changed parameter from “Power Supply rise time(tVCCR) [ms]” to “Power ramp rate(dV/dt) [mV/us]” and add some comments. (Page 107) Modified “12.4.12 CSIO(SPI) Timing”. Deleted “SPI=1, MS=0” in the titles and added MS=0,1 in the schematic (Page 128-135, 144-151) Deleted Baud rate spec for High-Speed Synchronous Serial in “12.4.12 CSIO(SPI) Timing”(Page 136-142) “Modified RTC description in “4. Product Features in Detail, Real-Time Clock(RTC)” Changed starting count value from 01 to 00. Deleted “second, or day of the week” in the Interrupt function (Page 9) Updated “14. Package dimensions” (Page 186-187) Change the name from “USB Function” to “USB Device” (Page 50) Deleted MPNs below from “13. Ordering Information” (Page 185) S6E2G26H0AGV20000, S6E2G26HHAGV20000, S6E2G26J0AGV20000, S6E2G26JHAGV20000, S6E2G28H0AGV20000, S6E2G28HHAGV20000, S6E2G28J0AGV20000, S6E2G28JHAGV20000, S6E2G36H0AGV20000, S6E2G36J0AGV20000, S6E2G38H0AGV20000, S6E2G38J0AGV20000, Document Number: 001-98708 Rev. *E Submission Date Description of Change 07/27/2015 New spec. 11/20/2015 Changed status from Preliminary to Final. Updated 4 Pin Description: Added “Note” about TAP pins. Updated 12.2 Recommended Operating Conditions: Added the "Smoothing capacitor (CS)”. Added the “Current Value” in “Maximum leak current at operating”. Updated 12.3.1 Current Rating: Updated Table 12-1 to Table 12-9: Added the “MAX” value. Updated Table 12-11: Updated 12.5 12-bit A/D Converter: Updated “Zero transition” and “Full-scale transition” value. Added “Total error”. Page 188 of 190 S6E2G Series Revision ECN Orig. of Change Submission Date Description of Change S6E2GH6H0AGV20000, S6E2GH6J0AGV20000, S6E2GH8H0AGV20000, S6E2GH8J0AGV20000, S6E2GK6H0AGV20000, S6E2GK6HHAGV20000, S6E2GK6J0AGV20000, S6E2GK6JHAGV20000, S6E2GK8H0AGV20000, S6E2GK8HHAGV20000, S6E2GK8J0AGV20000, S6E2GK8JHAGV20000, S6E2GM6H0AGV20000, S6E2GM6HHAGV20000, S6E2GM6J0AGV20000, S6E2GM6JHAGV20000, S6E2GM8H0AGV20000, S6E2GM8HHAGV20000, S6E2GM8J0AGV20000, S6E2GM8JHAGV20000 Added MPNs below to “13. Ordering Information” (Page 185) S6E2G26H0AGV2000A, S6E2G26HHAGV2000A, S6E2G26J0AGV2000A, S6E2G26JHAGV2000A, S6E2G28H0AGV2000A, S6E2G28HHAGV2000A, S6E2G28J0AGV2000A, S6E2G28JHAGV2000A, S6E2G36H0AGV2000A, S6E2G36J0AGV2000A, S6E2G38H0AGV2000A, S6E2G38J0AGV2000A, S6E2GH6H0AGV2000A, S6E2GH6J0AGV2000A, S6E2GH8H0AGV2000A, S6E2GH8J0AGV2000A, S6E2GK6H0AGV2000A, S6E2GK6HHAGV2000A, S6E2GK6J0AGV2000A, S6E2GK6JHAGV2000A, S6E2GK8H0AGV2000A, S6E2GK8HHAGV2000A, S6E2GK8J0AGV2000A, S6E2GK8JHAGV2000A, S6E2GM6H0AGV2000A, S6E2GM6HHAGV2000A, S6E2GM6J0AGV2000A, S6E2GM6JHAGV2000A, S6E2GM8H0AGV2000A, S6E2GM8HHAGV2000A, S6E2GM8J0AGV2000A, S6E2GM8JHAGV2000A Modified typo about the munber of QPRC channels(from 4ch to 2ch) (Page 1,6,10) Modified the expression of the “Built-in CR” in “2. Product Lineup” (Page 6). Updated Cypress Logo and Copyright. *D 6298066 XITO 09/03/2018 Updated to new template. Completing Sunset Review. *E 6602132 XITO 06/24/2019 Updated to new template. Completing Sunset Review. Document Number: 001-98708 Rev. *E Page 189 of 190 S6E2G Series Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. Products Arm® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing USB Controllers Wireless Connectivity PSoC® Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU Cypress Developer Community Community | Projects | Videos | Blogs | Training | Components Technical Support cypress.com/support cypress.com/touch cypress.com/usb cypress.com/wireless Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. © Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-98708 Rev. *E June 24, 2019 Page 190 of 190
S6E2GM8J0AGV2000A 价格&库存

很抱歉,暂时无法提供与“S6E2GM8J0AGV2000A”相匹配的价格&库存,您可以联系我们找货

免费人工找货