0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX11900GTP+T

MAX11900GTP+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN20

  • 描述:

    IC ADC 16BIT SAR 20TQFN

  • 数据手册
  • 价格&库存
MAX11900GTP+T 数据手册
Click here for production status of specific part numbers. MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC General Description Benefits and Features This ADC achieves 95.6dB SNR and -115dB THD, guarantees 16-bit resolution with no-missing codes and 0.5 LSB INL (max). ●● Highly Integrated ADC Saves Cost and Space • Internal Reference Buffer The MAX11900 is a 16-bit, 1Msps, single-channel, fully differential SAR ADC with internal reference buffers. The MAX11900 provides excellent static and dynamic performance with best-in-class power consumption that directly scales with throughput. The device has a unipolar differential ±VREF input range. Supplies include a 3.3V supply for the reference buffers, a 1.8V analog supply, a 1.8V digital supply, and a 1.5V to 3.6V digital interface supply. The MAX11900 communicates data using a SPIcompatible serial interface. The MAX11900 is offered in a 20-pin, 4mm x 4mm, TQFN package and is specified over the -40°C to +85°C operating temperature range. Applications ●● Test and Measurement ●● Automatic Test Equipment ●● High DC/AC Accuracy Improves Measurement Quality • 16-Bit Resolution with No Missing Codes • 1Msps Throughput Rates Without Pipeline Delay/ Latency • 95.6dB SNR and -115dB THD at 10kHz • 0.4 LSBRMS Transition Noise • ±0.25 LSB DNL (max) and ±0.5 LSB INL (max) ●● Wide Supply Range and Low Power Simplify PowerSupply Design • 1.8V Analog Supply • 1.5V to 3.6V Digital Supply • 6.7mW Power Consumption at 1Msps • 6.7µW Power Consumption at 1ksps • 1μA in Shutdown Mode ●● Multi-Industry Standard Serial Interface and Small Package Reduces Size • SPI/QSPI™/MICROWIRE®/DSP-Compatible Serial Interface • 4mm x 4mm 20-Pin TQFN Package ●● Medical Instrumentation ●● Process Control and Industrial Automation ●● Data Acquisition Systems ●● Telecommunications ●● Battery-Powered Equipment Ordering Information and Selector Guide appears at end of data sheet. Application Diagram 3.6V 3.3V 1.8V REFIN AIN+ 0 TO 3.3V 2nF C0G 10Ω 1.5 TO 3.6V MAX11900 SCLK DOUT CNVST REF REF REF GND 10µF 16-BIT 18-BIT 20-BIT 1.6Msps MAX11901 MAX11903 MAX11905 1Msps MAX11900 MAX11902 MAX11904 DIN AIN- 3.3V TO 0 MICROWIRE is a registered trademark of National Semiconductor Corporation. 16-Bit to 20-Bit SAR ADC Family REFVDD AVDD DVDD OVDD 10Ω 19-7510; Rev 1; 9/18 1.8V QSPI is a trademark of Motorola, Inc. A D GND GND 4-WIRE SPI INTERFACE MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 16-Bit to 20-Bit SAR ADC Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Conversion Result Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chip ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Single-Ended Unipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Single-Ended Bipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Layout, Grounding, and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Integral Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Offset Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Signal-to-Noise Plus Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 www.maximintegrated.com Maxim Integrated │  2 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC TABLE OF CONTENTS (continued) Effective Number of Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Spurious-Free Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Aperture Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Full-Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 LIST OF FIGURES Figure 1. Signal Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2. Simplified Model of Input Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 4. Ideal Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 5. Read During Track Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 6. Read During SAR Conversion Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 7. Split Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 8. SPI Interface Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9. DIN Timing for Register Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 10. Timing Diagram for Data Out Reading After Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 11. Mode Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 12. Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 13. Unipolar Single-Ended Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 14. Bipolar Single-Ended Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 15. Top-Layer Sample Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LIST OF TABLES Table 1. ADC Driver Amplifier Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 2. Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 3. MAX11900 External Reference Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 4. Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 5. DOUT Driver Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 www.maximintegrated.com Maxim Integrated │  3 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Absolute Maximum Ratings REFVDD, REF, REFIN, OVDD to GND...................-0.3V to +4V AVDD, DVDD to GND..............................................-0.3V to +2V DGND to AGND, REFGND...................................-0.3V to +0.3V AIN+, AIN- to GND....... -0.3V to the lower of (VREF + 0.3V) and +4V or ±130mA SCLK, DIN, DOUT, CNVST, to GND............ -0.3V to the lower of (VOVDD + 0.3V) and +4V Maximum Current into Any Pin...........................................50mA Continuous Power Dissipation (TA = +70°C) TQFN (derate 30.30mW/°C above +70°C).............2424.2mW Operating Temperature Range............................ -40°C to +85°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65°C to +150°C Lead Temperature (soldering, 10s).................................. +300°C Soldering Temperature (reflow)........................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) TQFN Junction-to-Ambient Thermal Resistance (θJA)...........33°C/W Junction-to-Case Thermal Resistance (θJC) ................ 2°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (fSAMPLE = 1Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS +VREF V VREF + 0.1 V ANALOG INPUT Input Voltage Range (Note 3) (AIN+) - (AIN-) -VREF Absolute Input Voltage Range AIN+, AIN- relative to AGND Common-Mode Input Range [(AIN+) + (AIN-)]/2 VREF/2 0.1 VREF/2 VREF/2 + 0.1 V Input Leakage Current Acquisition phase -1 0.001 +1 µA -0.1 Input Capacitance 32 pF STATIC PERFORMANCE (Note 4) Resolution N Resolution LSB 16 VREF = 3.3V No Missing Codes 16 Offset Error (Note 4) -1 Offset Temperature Coefficient Referred to REFIN reference input Gain Error Temperature Coefficient (Note 5) Referred to REFIN reference input Gain Error Referred to REF pins Gain Error Temperature Coefficient (Note 5) Referred to REF pins www.maximintegrated.com µV Bits ±0.1 +1 ±0.001 Gain Error Integral Nonlinearity Bits 100.7 INL -12 ±2 +12 ±0.02 -3 ±1 ±0.1 LSB LSB/°C +3 ±0.01 -0.5 LSB LSB/°C LSB LSB/°C +0.5 LSB Maxim Integrated │  4 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Electrical Characteristics (continued) (fSAMPLE = 1Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS Differential Nonlinearity (Note 6) DNL Analog Input CMR CMR DC Power-Supply Rejection (Note 7) PSR Power-Supply Rejection (Note 7) PSR MIN TYP MAX UNITS -0.25 ±0.1 +0.25 LSB 1 LSB/V PSR vs. AVDD 0.2 LSB/V PSR vs. REFVDD 0.3 LSB/V 0.4 LSBRMS Transition Noise EXTERNAL REFERENCE REF Voltage Input Range VREF Load Current IREF 2.5 1Msps, VREF = 3.3V REF Input Capacitance 3.3 3.6 V 600 µA 1 nF REFERENCE BUFFER REFIN Input Voltage Range VREFIN REFIN Input Current IREFIN 2.5 CEXT = 10µF on REF pin, CREFIN = 0.1µF on REFIN pin Turn-On Settling Time External Compensation Capacitor VREF < (VREFVDD - 200mV) CEXT REF pins 4.7 3 VREFVDD 200mV V 1 nA 20 ms 10 µF 95.6 dB DYNAMIC PERFORMANCE (Note 8) Dynamic Range Signal-to-Noise Ratio Internal RefBuffer, -60dBFS input SNR Internal RefBuffer, fIN = 10kHz 95 95.6 dB Signal-to-Noise Plus Distortion SINAD Internal RefBuffer, fIN = 10kHz, -0.1dBFs 95 95.6 dB Spurious-Free Dynamic Range SFDR Internal RefBuffer, fIN = 10kHz 117 dB Total Harmonic Distortion THD Internal RefBuffer, fIN = 10kHz -115 dB Total Harmonic Distortion THD Internal RefBuffer, fIN = 100kHz -110 dB Total Harmonic Distortion THD Internal RefBuffer, fIN = 250kHz -100 dB SAMPLING DYNAMICS Throughput 0 Full-Power Bandwidth Acquisition Time Aperture Delay Aperture Jitter www.maximintegrated.com 1.0 -3dB point (targeting 20MHz) 20 -0.1dB point 3 tACQ 150 Time delay from CNVST rising edge to time at which sample is taken for conversion Msps MHz ns 1 ns 3 psRMS Maxim Integrated │  5 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Electrical Characteristics (continued) (fSAMPLE = 1Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLIES Analog Supply Voltage AVDD 1.7 1.8 1.9 V Digital Supply Voltage DVDD 1.7 1.8 1.9 V Reference Buffer Supply Voltage REFVDD 2.7 3.3 3.6 V Interface Supply Voltage OVDD 1.5 3.6 V Analog Supply Current IAVDD VAVDD = 1.8V 1.75 2.3 mA Digital Supply Current IDVDD VDVDD = 1.8V 1.5 1.9 mA 3.3 3.55 mA Reference Buffer Supply Current IREFVDD VREFVDD = 3.6V, internal buffers enabled Reference Buffer Supply Current IREFVDD VREFVDD = 3.6V, internal buffers powered down 0.2 Interface Supply Current (Note 9) IOVDD VOVDD = 1.5V 0.27 VOVDD = 3.6V 1 Shutdown Current For AVDD, DVDD, REFVDD 1 µA Shutdown Current For DVDD 1 µA Power Dissipation VAVDD = 1.8V, VDVDD = 1.8V, VREFVDD = 3.3V, internal reference buffers disabled 6.7 mA mA 8.4 mW DIGITAL INPUTS (DIN, SCLK, CNVST) Input Voltage High VIH VOVDD = 1.5V to 3.6V Input Voltage Low VIL VOVDD = 1.5V to 3.6V Input Capacitance CIN Input Current IIN 0.7 x VOVDD V 0.3 x VOVDD VIN = 0V or VOVDD V 10 pF 1 µA DIGITAL OUTPUTS (DOUT) Output Voltage High VOH ISOURCE = 2mA Output Voltage Low VOL ISINK = 2mA www.maximintegrated.com VOVDD 0.4 V 0.4 V Maxim Integrated │  6 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Electrical Characteristics (continued) (fSAMPLE = 1Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 4 ns TIMING DIN to SCLK Rising Edge Setup t1 DIN to SCLK Rising Edge Hold t2 1 ns DOUT End-Of-Conversion Low Time t3 15 ns DOUT to SCLK Rising Edge Hold t4 2.5 ns DOUT to SCLK Rising Edge Setup t5 1 ns SCLK High t6 4.5 ns SCLK Period t7 10 ns SCLK Low t8 4.5 ns CNVST Rising Edge To SCLK Rising Edge t9 0 ns SCLK Rising Edge to CNVST Rising Edge t10 25 ns CNVST High t11 25 ns CNVST High to EOC t12 Conversion Period t13 100MHz SCLK 850 1000 ns ns Note 2: Limits are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design and device characterization. Note 3: See the Analog Inputs section. Note 4: See the Definitions section at the end of the data sheet. Note 5: See the Definitions section at the end of the data sheet. Error contribution from the external reference not included. Note 6: Parameter is guaranteed by design. Note 7: Defined as the change in positive full-scale code transition caused by a ±5% variation in the supply voltage. Note 8: Sine wave input, fIN = 10kHz, AIN = -0.5dB below full scale. Note 9: CLOAD = 10pF on DOUT. fCONV = 1Msps. All data is read out. www.maximintegrated.com Maxim Integrated │  7 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Typical Operating Characteristics (VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) toc1 INL vs. TEMPERATURE MIN DNL (LSB) 0.3 0.2 0.1 0.1 DNL (LSB) 0.2 0.0 -0.1 0.0 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.5 -0.5 -40 -25 -10 5 20 35 50 TEMPERATURE 65 80 95 110 MAX INL (LSB) 0.4 -40 0.1 DNL (LSB) 0.2 0.0 -0.1 50 65 80 95 110 125 -0.2 -0.3 -0.4 -0.4 -0.5 1.85 1.90 VREFVDD = 3.6V VREF = 3.3V MIN DNL (LSB) 0.0 -0.3 www.maximintegrated.com 35 -0.1 -0.2 VAVDD (V) 20 MAX DNL (LSB) 0.4 0.1 1.80 5 toc6 0.5 0.2 1.75 -10 DNL vs. AVDD SUPPLY VOLTAGE toc5 0.3 1.70 -25 TEMPERATURE (oC) VREFVDD = 3.6V VREF = 3.3V MIN INL (LSB) 0.3 125 (oC) INL vs. AVDD SUPPLY VOLTAGE 0.5 INL (LSB) MAX DNL (LSB) 0.4 MIN INL (LSB) 0.3 toc4 0.5 MAX INL (LSB) 0.4 INL (LSB) DNL vs. TEMPERATURE toc3 0.5 -0.5 1.70 1.75 1.80 1.85 1.90 VAVDD (V) Maxim Integrated │  8 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Typical Operating Characteristics (continued) (VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) DNL vs. REFVDD SUPPLY VOLTAGE INL vs. REFVDD SUPPLY VOLTAGE 0.5 0.1 DNL (LSB) INL (LSB) 0.2 0.1 0.0 -0.1 0.0 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.5 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 VAVDD = 1.8V VREF = 2.5V MIN DNL (LSB) 0.3 0.2 2.7 MAX DNL (LSB) 0.4 VREF = 2.5V MIN INL (LSB) 0.3 toc8 0.5 VAVDD = 1.8V MAX INL (LSB) 0.4 toc7 -0.5 3.6 2.7 2.8 2.9 3.0 VREFVDD (V) 1.5 toc9 GAIN ERROR (LSB) 3.6 VREF = 3.3V VREFVDD = 3.6V Gain Error (LSB) 1.0 ERROR (LSB) ERROR (LSB) 3.5 toc10 Offset Error (LSB) 1.5 1.0 0.5 0.0 0.5 0.0 -0.5 -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -40 -25 -10 5 20 35 50 65 80 95 110 -2.0 125 1.7 1.75 1.8 OFFSET AND GAIN ERROR vs. REFVDD VOLTAGE 1.9 Offset Error (LSB) OUTPUT NOISE HISTOGRAM toc11 2.0 1.5 1.85 VAVDD (V) TEMPERATURE (°C) VREF = 2.5V VAVDD = 1.8V Gain Error (LSB) toc12 320000 STDEV = 0.18 LSB 280000 NUMBER OF OCCURRENCES 1.0 OFFSET ERROR (LSB) 3.4 2.0 VREF = 3.3V VREFVDD = 3.6V OFFEST ERROR (LSB) 3.3 OFFSET AND GAIN ERROR vs. AVDD SUPPLY VOLTAGE OFFSET AND GAIN ERROR vs. TEMPERATURE 2.0 3.1 3.2 VREFVDD (V) 0.5 0.0 -0.5 -1.0 240000 200000 160000 120000 80000 40000 -1.5 3.5 3.6 32776.0 3.4 32775.5 VREFVDD (V) 3.3 32775.0 3.2 32774.5 3.1 32774.0 3 32773.5 2.9 32773.0 2.8 32772.5 2.7 32772.0 0 -2.0 OUTPUT CODE (DECIMAL) www.maximintegrated.com Maxim Integrated │  9 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Typical Operating Characteristics (continued) (VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) OUTPUT NOISE HISTOGRAM 4 SAMPLES AVERAGE 320000 toc13 OUTPUT NOISE HISTOGRAM 16 SAMPLES AVERAGE 240000 STDEV = 0.09 LSB 200000 240000 NUMBER OF OCCURRENCES NUMBER OF OCCURRENCES 280000 200000 160000 120000 80000 40000 160000 120000 80000 40000 OUTPUT CODE (DECIMAL) SNR AND SINAD vs. TEMPERATURE SFDR AND THD vs. TEMPERATURE toc17 100 -THD 133 131 97 129 SFDR AND THD (dB) 98 96 95 94 93 SFDR 127 125 123 121 92 119 91 117 90 toc18 135 SNR SINAD 99 SNR AND SINAD (dB) 32776.0 32775.5 32775.0 32774.5 32774.0 32773.5 32773.0 32772.5 32772.0 0 32776.0 32775.5 OUTPUT CODE (DECIMAL) 32775.0 32774.5 32774.0 32773.5 32773.0 32772.5 32772.0 0 toc14 STDEV = 0.05 LSB 115 -40 -25 -10 5 20 35 50 65 TEMPERATURE (°C) www.maximintegrated.com 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Maxim Integrated │  10 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Typical Operating Characteristics (continued) (VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) SNR AND SINAD vs. REFERENCE VOLTAGE 98 THD AND SFDR vs. REFERENCE VOLTAGE toc19 SINAD SNR 97 SFDR AND THD (dB) SNR AND SINAD (dB) 96 95 94 93 92 128 SFDR 126 -THD 124 122 120 118 116 114 91 112 90 110 2.0 2.2 2.4 2.6 2.8 VREF (V) 3.0 3.2 3.4 3.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 VREF (V) SHUTDOWN CURRENT vs. TEMPERATURE CURRENT vs. TEMPERATURE 5.0 toc21 IOVDD IREFVDD (BUFFER OFF) IREFVDD IDVDD IAVDD 4.0 3.5 toc22 30 IAVDD IOVDD 25 SHUTDOWN CURRENT (µA) 4.5 CURRENT (mA) toc20 130 3.0 2.5 2.0 1.5 1.0 IREFVDD IDVDD 20 15 10 5 0.5 0 0.0 -40 -25 -10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 -25 -10 5 20 35 50 65 80 95 110 125 toc23 IDVDD IOVDD IAVDD 2.0 CURRENT (mA) -40 TEMPERATURE (°C) CURRENT vs. SAMPLING RATE 2.5 125 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 800 900 1000 SAMPLING RATE (ksps) www.maximintegrated.com Maxim Integrated │  11 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Pin Configuration REFGND 4 AIN- 19 18 17 16 MAX11900 *EP 5 8 9 10 OVDD DOUT DGND AIN+ 7 AGND 6 15 DGND 14 DIN 13 CNVST 12 SCLK 11 3 REFVDD REFGND AGND 2 AGND REF AVDD 1 20 + REF REFIN TOP VIEW DVDD TQFN 4mm × 4mm *EXPOSED PAD IS GROUND. IT MUST BE SOLDERED TO PCB. Pin Description PIN NAME I/O FUNCTION Reference. REF is a bypass pin for the reference either driven by the internal reference buffers or the external reference directly. Bypass these pins with 10µF capacitors to REFGND. 1, 2 REF I/O 3, 4 REFGND I Reference Ground 5 AIN- I Negative Analog Input 6 AIN+ I Positive Analog Input 7 AGND I Analog Ground 8 OVDD I Digital Interface Supply. Nominally at 1.8V. Bypass to DGND with a 10µF capacitor in parallel with a 0.1µF capacitor (10µF || 0.1µF). 9 DOUT O Digital Output Data 10 DGND I Digital Ground 11 DVDD I Digital Supply. Nominally at 1.8V. Bypass with a 10µF capacitor in parallel with a 0.1µF capacitor (10µF || 0.1µF). 12 SCLK I Serial Clock Input 13 CNVST I Conversion Start. The analog inputs (AIN+, AIN-) are sampled at the rising edge and conversion process is started. 14 DIN I Serial Data Input. DIN data is latched into the serial interface on the rising edge of SCLK. 15 DGND I Digital Ground www.maximintegrated.com Maxim Integrated │  12 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Pin Description (continued) PIN NAME I/O FUNCTION 16 REFVDD I Reference Buffer Supply. Nominally at 3V. Bypass to AGND with a 10µF capacitor in parallel with a 0.1µF capacitor (10µF || 100nF). 17, 18 AGND I Analog Ground. Bypass to AGND with a 10µF capacitor in parallel with a 0.1µF capacitor (10µF || 100nF). 19 AVDD I Analog Supply. Nominally at 1.8V. 20 REFIN I Input for the Internal Reference Buffer. Voltage must be at least 300mV lower than REFVDD voltage. If REFIN = 0V, reference buffer will be disabled. — EP — Exposed Pad. Must be connected to the same plane as AGND. Functional Diagram REFIN REFVDD REFGND REFERENCE BUFFER AVDD DVDD MAX11900 REFERENCE BUFFER REF OVDD REF DIN AIN+ SCLK INTERFACE 16-BIT ADC AIN- CNVST AGND www.maximintegrated.com DOUT DGND Maxim Integrated │  13 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Detailed Description The MAX11900 is a 16-bit, 1Msps maximum sampling rate, fully differential input, single-channel SAR ADC with SPI interface. This part features industry-leading sample rate and resolution, while consuming very low power. The MAX11900 has an integrated reference buffer to minimize board space, component count, and system cost. An internal oscillator drives the conversion and sets conversion time, easing external timing considerations. Analog Inputs Both analog inputs, AIN+ and AIN-, range from 0V to VREF. Thus, the differential input interval VDIFF = (AIN+) - (AIN-) ranges from -VREF to +VREF, and the full-scale range is: FSR = 2 x VREF The nominal resolution step width of the least significant bit (LSB) is: = LSB FSR = ,N 16 2N The differential analog input must be centered around a signal common mode of VREF/2, with a tolerance of ±100mV. The reference voltage can range from 2.5V to the reference supply, REFVDD, if an external reference buffer is used. When using the on-board reference buffer the reference voltage can range from 2.5V to 200mV below reference supply REFVDD. This will guarantee adequate headroom for the internal reference buffers. Figure 1 illustrates signal ranges for AIN+/AIN-, reference voltage VREF and reference supply voltage REFVDD. Figure 2 shows the input equivalent circuit of MAX11900. The ADC samples both inputs, AIN+ and AIN-, with a fully differential on-chip track-and-hold exhibiting no pipeline delay or latency. The MAX11900 has dedicated input clamps to protect the inputs from overranging. Diodes D1 and D2 provide ESD protection and act as a clamp for the input voltages. Diodes D1/D2 can sustain a maximum forward current of 100mA. The sampling switches connect inputs to the sampling capacitors. Figure 3 shows the timing of the digitizing cycle: Conversion frame, SAR conversion, Track and Read operations. V VREF +200mV ≤ VREFVDD IF BUFFER IS ENABLED REFVDD 200mV ≤ 3.6V VREF ≤ VREFVDD ≤ 3.6V IF BUFFER IS DISABLED VREF AIN+ 0.5 x VREF AIN0V time Figure 1. Signal Ranges www.maximintegrated.com Maxim Integrated │  14 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC REFVDD D1 RON = 260Ω AIN+ CIN = 30pF D2 VDC REFVDD D1 RON = 260Ω AINCIN = 30pF D2 Figure 2. Simplified Model of Input Sampling Circuit SAR Conversion 1/Sample Rate SAR Conversion Track Read Data Sample 1 1/Sample Rate Track Read Data Sample 2 CNVST SCLK Sample 1 DOUT MSB MSB-1 Sample 2 LSB+1 LSB Reading sample1 during track MSB MSB-1 LSB+1 LSB Reading sample 2 during track Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation www.maximintegrated.com Maxim Integrated │  15 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Input Settling capacitor, PCB parasitic capacitor), and tTRACK is the track time. During track phase (Figure 3), the sample switches are closed and the analog inputs are directly connected to the sample capacitors. The charging of the sample capacitor to the input voltage is determined by the source resistance and sampling capacitor size. The rising edge of CNVST is the sampling instant for the ADC. At this instant, the track phase ends, the sample switch opens, and the device enters into the successive approximation (SAR) conversion phase. In the conversion phase, a differential comparator compares the voltage on the sample capacitor against the CDAC value, which cycles through values between VREF/2 and VREF/216 using the successive approximation technique. The final result can be read via the SPI bus. The ADC automatically goes back into track phase at the end of SAR conversion and powers down its active circuits. That is, the ADC consumes no static power in track mode. The conversion results will be accurate if the ADC tracks the input signal for an interval longer than the input signal’s settling time. If the signal cannot settle within the track time due to excessive source resistance, external ADC drivers are required to achieve faster settling. Since the MAX11900 has a fixed conversion time set by an internal oscillator, track time can be increased by lowering the sample rate for better settling. The settling behavior is determined by the time constant in the sampling network. The time constant depends upon the total resistance (source resistance + switch resistance) and total capacitance (sampling capacitor, external input capacitor, PCB parasitic capacitors). Modeling the input circuit with a single pole network, the time constant, RTOTAL × CLOAD, of the input should not exceed tTRACK/15, where RTOTAL is the total resistance (source resistance + switch resistance), CLOAD is the total capacitance (sampling capacitor, external input When an ADC driver is used, it is recommended to use a series resistance (typically 5Ω to 50Ω) between the amplifier and the ADC input, as shown in the Application Diagram. Below are some of the requirements for the ADC driver amplifier: 1) Fast settling time: For a multichannel multiplexed circuit the ADC driver amplifier must be able to settle with an error less than 0.5 LSB during the minimum track time when a full-scale step is applied. 2) Low noise: It is important to ensure that the ADC driver has a sufficiently low-noise density in the bandwidth of interest of the application. When the MAX11900 is used with its full bandwidth of 20MHz, it is preferable to use an amplifier with an output noise spectral density of less than 3nV/√Hz, to ensure that the overall SNR is not degraded significantly. It is recommended to insert an external RC filter at the ADC input to attenuate out-of-band input noise. 3) To take full advantage of the ADC’s excellent dynamic performance, Maxim recommends the use of an ADC driver with equal or even better THD performance. This will ensure that the ADC driver does not limit distortion performance in the signal path. Table 1 summarizes the most important features of the MAX9632 when used as an ADC driver. Input Filtering Noisy input signals should be filtered prior to the ADC driver amplifier input with an appropriate filter to minimize noise. The RC network shown in the Application Diagram is mainly designed to reduce the load transient seen by the amplifier when the ADC starts the track phase. This network also has to satisfy the settling time requirement and provides the benefit of limiting the noise bandwidth. Table 1. ADC Driver Amplifier Recommendation AMPLIFIER INPUT-NOISE DENSITY (nV/√Hz) SMALL-SIGNAL BANDWIDTH (MHz) SLEW RATE (V/µs) THD (dB) ICC (mA) COMMENTS MAX9632 1 55 30 -128 3.9mA Low noise, THD at 10kHz www.maximintegrated.com Maxim Integrated │  16 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Voltage Reference Configurations The MAX11900 features internal reference buffers, helping to reduce component count and board space. Alternatively, the user may drive the reference nodes REF with an external reference. To use the internal reference buffers, drive the REFIN pin with an external reference voltage source. It will appear on the REF pin as a buffered reference output. The internal reference buffers can be disabled by writing to a register (see the Mode Register section) or tying REFIN to 0V. Once the on-chip reference buffers are disabled, REF pins can be directly driven by external reference buffers. A simplified diagram is shown to clarify the required connections for external reference. A low-noise, low-temperature drift reference is required to achieve high system accuracy. The MAX6126 and MAX6325 are particularly well suited for use with the MAX11900. The MAX6126 and MAX6325 offer, respectively, 0.02% and 0.04% initial accuracy and 3ppm/°C and 1ppm/°C (max) temperature coefficient for high-precision applications. Maxim recommends bypassing REFIN and REF with a 2.2µF capacitor close to the ADC pins. Transfer Function Figure 4 shows the ideal transfer characteristics for the MAX11900. The default data format is two’s complement. However, offset binary format can be chosen by setting mode register BIT 1 (see the Mode Register section). Table 4 shows the codes in terms of input voltage applied. The data reported is with VREF of 3.0V, that gives a fullscale range of 6V. Table 2. Voltage Reference Configurations REFERENCE CONFIGURATION INTERNAL REFERENCE BUFFERS REFIN VREF VREFVDD Internal Reference Buffer ON 2.5V to VREFVDD - 0.2V 2.5V to VREFVDD - 0.2V 2.7V to 3.6V OFF Tie to 0V or disable through serial interface 2.5V to VREFVDD 2.5V to 3.6V External Reference Buffer Table 3. MAX11900 External Reference Recommendations PART VOUT (V) TEMPERATURE COEFFICIENT (ppm/°C, max) INITIAL ACCURACY (%) NOISE (0.1Hz TO 10Hz) (µVP-P) PACKAGE MAX6126 2.5, 3 3 0.02 1.45 µMAX-8, SO-8 MAX6325 2.5 1 0.04 1.5 SO-8 www.maximintegrated.com Maxim Integrated │  17 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC OUTPUT CODE (OFFSET BINARY) OUTPUT CODE (TWO'S COMPLEMENT) FS - 1.5 x LSB FS - 1.5 x LSB 111...111 011...111 111...110 011...110 111...101 011...101 000...010 100...010 000...001 000...000 -215 -215+1-215+2 15 15 2 -2 2 -1 2 15 VIN = (AIN+) - (AIN-) DIFFERENTIAL ANALOG INPUT (LSB) 100...001 100...000 -215 -215+1-215+2 15 15 15 2 -2 2 -1 2 VIN = (AIN+) - (AIN-) DIFFERENTIAL ANALOG INPUT (LSB) 2 x VREF 2 x VREF ZERO SCALE (ZS) VIN = -VREF FULL SCALE (FS) VIN = +VREF ZERO SCALE (ZS) VIN = -VREF FULL SCALE (FS) VIN = +VREF Figure 4. Ideal Transfer Characteristic Table 4. Transfer Characteristic DIFFERENTIAL ANALOG INPUT FULL-SCALE RANGE = 6V (V) HEXADECIMAL TWO’S COMPLEMENT HEXADECIMAL OFFSET BINARY FS - 1 LSB 2.99990845 7FFF FFFF Midscale + 1 LSB 0.00009155 0001 8001 Midscale 0.00000000 0000 8000 Midscale - 1 LSB -0.00009155 FFFF 7FFF -FS + 1 LSB -2.99990845 8001 0001 -FS -3.00000000 8000 0000 MIDCODE VALUE www.maximintegrated.com Maxim Integrated │  18 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Digital Interface The MAX11900 has three different modes to read the data: The MAX11900 has a SPI interface with CNVST controlling the sampling, and SCLK, DOUT, DIN forming the standard SPI signals. The SAR conversion begins with the rising edge of CNVST. The minimum CNVST high time is 25ns and CNVST should be brought low before DOUT goes low, which signals the completion of a SAR conversion. The DOUT goes low for 15ns, followed by the output of the MSB on the DOUT pin. The 16-bit conversion result can then be read via the SPI interface by sending 16 SCLK pulses. DOUT going low also signals the start of the track phase. The ADC stays in track phase until the next rising edge of CNVST. 1/Sample Rate SAR Conversion ●● Reading during track phase (Figure 5) ●● Reading during SAR conversion phase (Figure 6) ●● Split reading (Figure 7) When reading during track phase mode, the data is read only while the ADC is in track mode. Figure 5 shows the SPI signal for this reading mode. In the reading during SAR conversion phase mode, the data is read only in the SAR conversion phase. Figure 6 illustrates all SPI signals for this mode. Note that the data being read only during the SAR conversion phase corresponds to the previous conversion frame. 1/Sample Rate SAR Conversion Track Read Data Track Read Data Sample 2 Sample 1 CNVST SCLK Sample 1 MSB MSB-1 DOUT Sample 2 LSB+1 MSB MSB-1 LSB Reading sample1 during track LSB+1 LSB Reading sample 2 during track Figure 5. Read During Track Phase SAR Conversion Read Data 1/Sample Rate Sample 1 SAR Conversion Read Data Track 1/Sample Rate Track Sample 2 CNVST SCLK Sample 0 DOUT Sample 1 MSB MSB-1 LSB+1 LSB READING SAMPLE 0 DURING SAR CONVERSION MSB MSB-1 LSB+1 LSB READING SAMPLE 1 DURING SAR CONVERSION Figure 6. Read During SAR Conversion Phase www.maximintegrated.com Maxim Integrated │  19 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC In the split reading mode, the data is read during the track phase and the following SAR conversion phase. Figure 7 shows the descriptive timing diagram. SPI Timing Diagram At higher sampling rates, the track time may not be long enough to allow reading all 16 bits of data. In this case, the data read can be started in track mode, and then continued in the subsequent SAR conversion phase. Note that the read operation must be completed before DOUT goes low, signaling the end of the SAR conversion phase. Also note that no SCLK pulses should be applied close to the sampling edge (rising edge of CNVST), to safeguard the sampling edge from digital noise (see the Quiet Time specification t10). This split reading feature can be used to accommodate slower SPI clocks. The dashed connections are optional. SAR Conversion 1/Sample Rate Track Figure 8 shows the typical digital SPI interface connection between the MAX11900 and host processor. Figure 9 shows the timing diagram for configuration registers. Figure 10 shows the timing diagram for data output reading after conversion. Read Data SAR Conversion 1/Sample Rate Track Read Data Sample 2 Sample 1 CNVST Quiet Time SCLK Sample 1 Sample 2 MSB MSB-1 DOUT LSB+1 LSB MSB MSB-1 Reading sample 1 Figure 7. Split Read Mode MAX11900 Host Processor DIN DOUT SCLK SCLK DOUT DIN IRQ CNVST CNVST Figure 8. SPI Interface Connection www.maximintegrated.com Maxim Integrated │  20 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC t1 0.7 x OVDD SCLK t2 0.7 x OVDD DIN 0.3 x OVDD Figure 9. DIN Timing for Register Write Operations t13 t12 t11 0.7 x OVDD 0.7 x OVDD CNVST t10 SCLK t6 t9 t8 t7 0.7 x OVDD 0.7 x OVDD 0.3 x OVDD t3 DOUT t5 t4 MSB MSB-1 MSB-2 0.7 x OVDD 0.3 x OVDD Figure 10. Timing Diagram for Data Out Reading After Conversion www.maximintegrated.com Maxim Integrated │  21 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Register Write All SPI operations start with a command word. The structure of the command word is shown below. If there is no start bit, i.e. DIN is low, the part will output the conversion result and then go idle (see Figures 5, 6, and 7). The 16-bit mode register is the only register that can be written to. Figure 11 shows the waveform for a mode register write operation. BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Start 0 Adr 3 Adr 2 Adr 1 Adr 0 R/W 0 CNVST DOUT SCLK DIN ST 0 A3 A2 A1 A0 R/W 0 D15 D14 D1 D0 Figure 11. Mode Register Write Register Read A read operation is specified by setting the R/W bit high. Data will be output by the MAX11900 after the 8th rising SCLK edge. Figure 12 shows the waveform for a mode register read. CNVST D7 DOUT D6 D1 D0 SCLK DIN ST 0 A3 A2 A1 A0 R/W 0 Figure 12. Register Read www.maximintegrated.com Maxim Integrated │  22 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Register Map FUNCTION ADDRESS R/W BITS DATA WIDTH Read or Write Mode Register 0001 1 or 0 16 Mode Register Read Conversion Result* 0010 1 16 Conversion Result Read Chip ID Reserved, Do Not Use DATA 0100 1 8 Chip ID All other — — Reserved, Do Not Use *Conversion result can also be read as shown in Figures 5, 6, and 7. Mode Register The reset state is: 0x0000. That is, the reference buffers are enabled if a valid reference voltage is applied at the REFIN pin. If external reference buffers are used, tie REFIN low and the buffers will be automatically powered down. BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Reset DD1 DD0 — — PD REF1 POR pass OTP busy OB PD REF2 — — — — — DD2 Reset: Reset the part when high. DD[2:0]: Program the driver strength on DOUT. PD REF1: Power down the first reference buffer when set. POR pass: High to indicate that POR was successful. If this bit is low, RESET should be asserted. OTP busy: High to indicate that the device is powering up. OB: Output data format is offset binary when high. two’s complement when low. PD REF2: Power down the second reference buffer when set. DD[2:0] program the driver strength on DOUT pin. Higher driver strengths are for systems that have larger capacitive loads on DOUT. The lowest driver strength that works should be chosen to save power and improve performance. The driver strength is ordered from 1 to 6. The driver strength 1 is the weakest while the driver strength 6 is the strongest. Table 5 shows the mapping between the register value D[2:0] and the correspondent driver strength. Table 5. DOUT Driver Strength DD[2:0] DRIVER STRENGTH 000 4 001 5 010 6 011 Not Valid 100 1 101 2 110 3 111 Not Valid www.maximintegrated.com Maxim Integrated │  23 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Conversion Result Register A 16-bit read-only register, can be read directly or via a command read sequence. Chip ID Register This register holds a 4-bit code that can be used to verify the silicon revision. The ID = 1001b. BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 — — — — ID3 ID2 ID1 ID0 Typical Application Circuit Real-world signals usually require conditioning before they can be digitized by an ADC. The following outlines common examples of analog signal processing circuits for shifting, gaining, attenuating, and filtering signals. Single-Ended Unipolar Input to Differential Unipolar Output The circuit in Figure 13 shows how a single-ended, unipolar signal can interface with the MAX11900. This signal conditioning circuit transforms a 0V to +VREF single-ended input signal to a fully differential output signal with a signal peak-to-peak amplitude of 2 x VREF and commonmode voltage (VREF/2). In this case, the single-ended signal source drives the high-impedance input of the first amplifier. This amplifier drives the AIN+ input of ADC and the second stage amplifier with peak-to-peak amplitude of VREF and common-mode output voltage of VREF/2. The second amplifier inverts this input signal and adds an offset to generate an inverted signal with peak-to-peak amplitude of VREF and common-mode output voltage of VREF/2, which drives the AIN- input of ADC. Single-Ended Bipolar Input to Differential Unipolar Output The MAX11900 is a differential input ADC that accepts a differential input signal with unipolar common mode. Figure 14 shows a signal conditioning circuit that transforms a -2 x VREF to +2 x VREF single-ended bipolar input signal to a fully differential output signal with amplitude peak-to-peak 2 x VREF and common-mode voltage VREF/2. The single-ended bipolar input signal drives the inverting input of the first amplifier. This amplifier inverts and adds an offset to the input signal. It also drives the AIN- input of ADC and the second stage amplifier with peak-to-peak amplitude of VREF and common-mode output voltage of VREF/2. The second amplifier is also in inverting configu- www.maximintegrated.com ration and drives the AIN+ input of the ADC. This amplifier adds an offset to generate a signal with peak-to-peak amplitude of VREF and common-mode output voltage of VREF/2. The input impedance, seen by the signal source, depends on the input resistor of the first-stage inverting amplifier. Input impedance must be chosen carefully based on the output source impedance of the signal source. Layout, Grounding, and Bypassing For best performance, use PCBs with ground planes. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital lines parallel to one another (especially clock lines), and avoid running digital lines underneath the ADC package. A single solid GND plane configuration with digital signals routed from one direction and analog signals from the other provides the best performance. Connect the GND pin on the MAX11900 to this ground plane. Keep the ground return to the power supply for this ground low impedance and as short as possible for noise-free operation. A 2nF C0G ceramic chip capacitor should be placed between AIN+ and AIN- as close as possible to the MAX11900. This capacitor reduces the voltage transient seen by the input source circuit. For best performance, connect the REF output to the ground plane with a 16V, 10µF ceramic-chip capacitor with a X5R dielectric in a 1210 or smaller case size. Ensure that all bypass capacitors are connected directly into the ground plane with an independent via. Bypass AVDD, DVDD, and OVDD to the ground plane with 10µF ceramic chip capacitors on each pin as close as possible to the device to minimize parasitic inductance. For best performance, bring the AVDD and DVDD power plane in from the analog interface side of the MAX11900 and the OVDD power plane from the digital interface side of the device. Figure 15 shows the top layer of a sample layout. Maxim Integrated │  24 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC 2.5V TO VREFVDD - 0.2V RS VREF 0.5 x VREF R 0V R 1.8V 1.5V TO 3.6V 1.8V REFVDD AVDD DVDD OVDD MAX11900 SCLK REFIN AIN+ DIN CS COG DOUT RS VREF 2 2.7V TO 3.6V DSP SPI INTERFACE CNVST AIN- REF A D REF REF GND GND GND + 10µF - Figure 13. Unipolar Single-Ended Input R 2.5V TO VREFVDD - 0.2V R RS R +2 x VREF 4R 0V -2 x VREF R VREF 2 + - 2.7V TO 3.6V 1.8V 1.5V TO 3.6V 1.8V REFVDD AVDD DVDD OVDD MAX11900 SCLK REFIN AIN+ DIN VREF 2 + - CS COG RS DOUT DSP SPI INTERFACE CNVST AIN- REF A D REF REF GND GND GND 4R 10µF Figure 14. Bipolar Single-Ended Input www.maximintegrated.com Maxim Integrated │  25 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Figure 15. Top-Layer Sample Layout www.maximintegrated.com Maxim Integrated │  26 MAX11900 Definitions Integral Nonlinearity Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. For these devices, this straight line is a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. Differential Nonlinearity Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. For these devices, the DNL of each digital output code is measured and the worst-case value is reported in the Electrical Characteristics table. A DNL error specification of less than ±1 LSB guarantees no missing codes. Offset Error The offset error is defined as the deviation between the actual output and ideal output measured with 0V differential analog input voltage. Gain Error 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Effective Number of Bits The effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC’s error consists of quantization noise only. With an input range equal to the full-scale range of the ADC, calculate the ENOB as follows: SINAD - 1.76 6.02 Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the power contained in the first five harmonics of the converted data to the power of the fundamental. This is expressed as: ENOB = P + P3 + P4 + P5  THD = 10 × log  2  P1   where P1 is the fundamental power and P2 through P5 is the power of the 2nd- through 5th-order harmonics. Gain error is defined as the difference between the actual output range measured and the ideal output range expected. It is measured with signal applied at the input with an amplitude close to full-scale range. Spurious-Free Dynamic Range Signal-to-Noise Ratio Aperture Delay For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the fullscale analog input power to the RMS quantization error (residual error). The ideal, theoretical minimum analogto-digital noise is caused by quantization noise error only and results directly from the ADC’s resolution (N bits): SNR = (6.02 x N + 1.76)dB In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the signal power to the noise power, which includes all spectral components not including the fundamental, the first five harmonics, and the DC offset. Spurious-free dynamic range (SFDR) is the ratio of the power of the fundamental (maximum signal component) to the power of the next-largest frequency component. Aperture delay (tAD) is the time delay from the sampling clock edge to the instant when an actual sample is taken. Aperture Jitter Aperture jitter (tAJ) is the sample-to-sample variation in aperture delay. Full-Power Bandwidth A large -0.5dBFS analog input signal is applied to an ADC, and the input frequency is swept up to the point where the amplitude of the digitized conversion result has decreased by 3dB. This point is defined as full-power input bandwidth frequency. Signal-to-Noise Plus Distortion Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency’s power to the power of all the other ADC output signals: Signal   SINAD(dB) = 10 × LOG  Noise + Distortion  www.maximintegrated.com Maxim Integrated │  27 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Selector Guide BITS SPEED (ksps) FULLY DIFFERENTIAL INPUT (MAX) (V) REFERENCE BUFFERS PACKAGE MAX11900 16 1000 ±3.6 Internal/External 4mm x 4mm TQFN-20 MAX11901 16 1600 ±3.6 Internal/External 4mm x 4mm TQFN-20 MAX11902 18 1000 ±3.6 Internal/External 4mm x 4mm TQFN-20 MAX11903 18 1600 ±3.6 Internal/External 4mm x 4mm TQFN-20 MAX11904 20 1000 ±3.6 Internal/External 4mm x 4mm TQFN-20 MAX11905 20 1600 ±3.6 Internal/External 4mm x 4mm TQFN-20 PART Package Information Ordering Information PART TEMP RANGE PIN-PACKAGE MAX11900ETP+ -40°C to +85°C 20 TQFN-EP* +Denotes lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Chip Information PROCESS: CMOS www.maximintegrated.com For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 20 TQFN-EP T2044+5 21-0139 90-0429 Maxim Integrated │  28 MAX11900 16-Bit, 1Msps, Low-Power, Fully Differential SAR ADC Revision History REVISION NUMBER REVISION DATE 0 2/15 Initial release — 1 9/18 Updated Electrical Characteristics table 7 DESCRIPTION PAGES CHANGED For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2018 Maxim Integrated Products, Inc. │  29
MAX11900GTP+T 价格&库存

很抱歉,暂时无法提供与“MAX11900GTP+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货