Click here to ask about the production status of specific part numbers.
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
General Description
The
MAX12527/MAX12528/MAX12529/MAX12557/
MAX12558/MAX12559 evaluation kits (EV kits) are fully
assembled and tested circuit boards that contain all the
components necessary to evaluate the performance of
this family of 12-bit and 14-bit, dual analog-to-digital converters (ADCs). These ADCs accept differential analog
input signals. The EV kits generate these signals from
user-provided single-ended input sources. The digital
outputs produced by the ADCs can be easily sampled
with a user-provided high-speed logic analyzer or dataacquisition system. The EV kits operate from 2.0V and
3.3V power supplies.
Part Selection Table
PART
SAMPLING RATE
(Msps)
RESOLUTION
(Bits)
MAX12559ETK
96
14
MAX12558ETK
80
14
MAX12557ETK
65
14
MAX12529ETK
96
12
MAX12528ETK
80
12
MAX12527ETK
65
12
Evaluate: MAX12527/28/29/57/58/59
Features
●● Low-Voltage and Low-Power Operation
●● On-Board Clock-Shaping Circuitry Option
●● On-Board Output Drivers
●● Fully Assembled and Tested
Ordering Information
PART
TEMP RANGE*
IC PACKAGE
MAX12527EVKIT#
0°C to +70°C
68 TQFN-EP**
MAX12528EVKIT
0°C to +70°C
68 TQFN-EP**
MAX12529EVKIT
0°C to +70°C
68 TQFN-EP**
MAX12557EVKIT
0°C to +70°C
68 TQFN-EP**
MAX12558EVKIT
0°C to +70°C
68 TQFN-EP**
MAX12559EVKIT
0°C to +70°C
68 TQFN-EP**
#Denotes ROHS compliant with exemption.
*EV kit PC board temperature range only.
**EP = Exposed paddle.
Component List
DESIGNATION
QTY
C1–C4
0
Not installed (0603)
C5, C6, C11,
C13, C14, C16,
C17, C28–C32,
C45, C46,
C57–C60,
C62–C65
22
0.1μF ±20%, 10V X5R ceramic
capacitors (0402)
TDK C1005X5R1A104M
C7–C10
C12,
C21–C27
C15, C18,
C19, C20
19-3920; Rev 2; 3/21
4
8
4
DESCRIPTION
5.6pF ±0.5pF, 50V C0G ceramic
capacitors (0402)
TDK C1005C0G1H5R6D
4.7μF ±20%, 6.3V X5R ceramic
capacitors (0603)
TDK C1608X5R0J475M
0.1μF ±20%, 6.3V X5R ceramic
capacitors (0201)
TDK C0603X5R0J104M
DESIGNATION
QTY
DESCRIPTION
C33–C38,
C47, C53
8
220μF ±20%, 6.3V tantalum
capacitors (C case)
AVX TPSC227M006R0250
C39, C40, C41,
C55, C61, C66
6
10μF ±20%, 6.3V X5R ceramic
capacitors (0805)
TDK C2012X5R0J106M
C42, C43,
C44, C56
4
1.0μF ±20%, 10V X5R ceramic
capacitors (0603)
TDK C1608X5R1A105M
C51, C52
2
0.01μF ±5%, 25V C0G ceramic
capacitors (0603)
TDK C1608C0G1E103J
C67
1
1.0μF ±20%, 6.3V X5R ceramic
capacitor (0402)
TDK C1005X5R0J105M
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Component List (continued)
DESIGNATION
QTY
DESCRIPTION
D1
1
Dual Schottky diode (SOT23)
Central Semiconductor
CMPD6263S
Vishay BAS70-04
Diodes Inc. BAS70-04
J1, J2, J7
3
SMA PC mount connectors
J3, J4, J8
3
2-pin headers
J5, J6
2
Dual-row, 40-pin headers (2 x 20)
JU1–JU6
6
3-pin headers
L1–L4
4
EMI filters
Murata NFM41PC155B1E3
R1–R8,
R13–R16,
R21–R32,
R37, R40–R45
0
Not installed (0603)
R9–R12
4
75Ω ±0.5% resistors (0603)
R17–R20
4
110Ω ±0.5% resistors (0603)
R33–R36
0
Not installed (0402)
R38, R39
2
49.9Ω ±1% resistors (0603)
R46, R47
2
100Ω ±1% resistors (0603)
R48
1
10kΩ potentiometer
R49–R52
4
24.9Ω ±0.5% resistors (0402)
DESIGNATION
QTY
DESCRIPTION
RA1–RA8
8
220Ω ±5% resistor arrays
Panasonic EXB-2HV-221J
T1–T4
4
1:1 RF transformers
Mini-Circuits ADT1-1WT
T5
1
1:2 RF transformer
Coilcraft TTWB-2-B
TP1–TP6
6
Test points
U1
1
See the EV Kit Specific
Component List
U2, U3
2
Low-voltage 16-bit registers
(48-pin TSSOP)
Pericom PI74ALVTC16374 or Texas
Instruments SN74ALVCH16374DGGR
U4
1
TinyLogic ULP-A buffer (SC70-5)
Fairchild NC7SV125P5
U5
1
TinyLogic ULP-A inverter (SC70-6)
Fairchild NC7WV04P6
None
6
Shunts
None
1
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
PC board
EV Kit Specific Component List
EV KIT PART NUMBER
REFERENCE
DESIGNATOR
DESCRIPTION
MAX12527EVKIT#
Maxim MAX12527ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)
MAX12528EVKIT
Maxim MAX12528ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm
MAX12529EVKIT
MAX12557EVKIT
U1
Maxim MAX12529ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)
Maxim MAX12557ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)
MAX12558EVKIT
Maxim MAX12558ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)
MAX12559EVKIT
Maxim MAX12559ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)
www.maximintegrated.com
Maxim Integrated │ 2
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Component Suppliers
SUPPLIER
PHONE
FAX
WEBSITE
AVX
843-946-0238
843-626-3123
www.avxcorp.com
Central Semiconductor
631-435-1110
631-435-1824
www.centralsemi.com
Coilcraft
847-639-6400
847-639-1469
www.coilcraft.com
Diodes Inc.
805-446-4800
805-446-4850
www.diodes.com
Fairchild
888-522-5372
—
Murata
770-436-1300
770-436-3030
www.murata.com
Panasonic
714-373-7366
714-737-7323
www.panasonic.com
Pericom
800-435-2336
408-435-1100
www.pericom.com
TDK
847-803-6100
847-390-4405
www.component.tdk.com
Texas Instruments
972-644-5580
214-480-7800
www.ti.com
www.fairchildsemi.com
Note: Indicate that you are using the MAX12527, MAX12528, MAX12529, MAX12557, MAX12558, and MAX12559 when contacting
these component suppliers.
Quick Start
Recommended Equipment
●● DC power supplies:
Analog (VDD)
3.3V, 500mA
Digital (OVDD)
2.0V, 50mA
Buffers (VLOGIC)
2.0V, 100mA
●● Signal generator with low phase noise and low jitter for
clock input signal (e.g., HP/Agilent 8644B)
●● Two signal generators with low phase noise for
analog signal inputs (e.g., HP/Agilent 8644B)
●● Logic analyzer or data-acquisition system (e.g., HP/
Agilent 16500C)
●● Narrow-band analog bandpass filters (e.g., Allen
Avionics, K&L Microwave) for input signals and clock
signal
●● Digital multimeter
Procedure
The EV kit is a fully assembled and tested printed circuit
(PC) board. Follow the steps below to verify board operation. Do not turn on power supplies or enable signal
generators until all connections are completed.
1) Verify that shunts are installed in the following locations:
JU1 (2-3) Independent reference mode
JU2 (2-3) ADC active (not in power-down mode)
JU3 (2-3) Outputs in two’s-complement format
JU4 (1-2) Differential clock input
JU5 (2-3) No clock division
JU6 (2-3) No clock division
www.maximintegrated.com
2) Connect the clock signal generator to the input of the
clock bandpass filter.
3) Connect the output of the clock bandpass filter to the
SMA connector labeled J7.
4) Connect the analog input signal generators to the
inputs of the desired analog bandpass filters. For best
results, connect the bandpass filter directly to the
SMA connector and forego any cables in between.
5) Connect the output of the analog bandpass filters to
the SMA connectors labeled J1 and J2. The analog
input signals can be monitored at J3 and J4. Eliminate cables between bandpass filter outputs and
SMA connectors. If cables must be used, they should
be as short as possible. Add a 3dB to 6dB attenuator between bandpass filter and SMA connectors to
control undesired distortion components induced by
the signal generator.
6) Connect the logic analyzer to headers J5 and J6 to
collect digitized data from channels A and B. See
the Output Bit Locations section in this document for
header connections.
7) Connect a 3.3V, 500mA power supply to VDD and
connect its ground terminal to the GND pad.
8) Connect a 2.0V, 50mA power supply to OVDD and
connect its ground terminal to the GND pad.
9) Connect a 2.0V, 100mA power supply to VLOGIC and
connect its ground terminal to the GND pad.
10) Short the VCLK pad to the corresponding GND pad.
Note: The VCLK supply is only required when the
data converter is operating in single-ended clock
mode. See the Configuring the EV Kit for SingleEnded Clock Operation section in this document for
further details.
Maxim Integrated │ 3
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
11) Turn on all the power supplies.
12) Enable the signal generators.
13) Set the clock signal generator to the desired clock
frequency. See the Part Selection Table for the appropriate frequency settings for each EV kit. The amplitude of the generator should be sufficient to produce
a 16dBm signal at the SMA input of the EV kit. Insertion losses due to the series-connected filter (step 2)
and the interconnecting cables decrease the amount
of power seen at the EV kit input. Account for these
losses when setting the signal generator amplitude.
14) Set the analog input signal generators to output the
desired test frequency. The amplitude of the generator should produce a signal that is no larger than
7.5dBm as measured at the SMA input of the EV kit.
Insertion losses due to the series-connected filter
(step 5) and the interconnecting cables decrease the
amount of power seen at the EV kit input. Account for
these losses when setting the signal generator amplitude. Also account for the attenuation from the 3dB to
6dB attenuator.
15) All signal generators should be phase-locked to each
other.
16) Enable the logic analyzer.
Evaluate: MAX12527/28/29/57/58/59
Power Supplies
For best performance, the EV kits require separate
analog, digital, clock, and buffer power-supply sources.
Individual 3.3V and 2.0V power supplies are recommended to power the analog (VDD) and digital (OVDD) portions
of the converter. A separate 2.0V power supply (VLOGIC)
is used to power the output buffers (U2, U3) of the EV kit.
The on-board clock circuitry (VCLK) is powered by a 3.3V
power supply. The VCLK supply is only required when the
ADC is operating in single-ended clock mode. See the
Configuring the EV Kit for Single-Ended Clock Operation
section for further details.
Converter Power-Down
The MAX12527, MAX12528, MAX12529, MAX12557,
MAX12558, and MAX12559 each feature an active-high
global device power-down pin. Jumper JU2 controls this
feature. See Table 1 for shunt positions.
Table 1. Power-Down Shunt Settings (JU2)
SHUNT
POSITION
PD PIN
1-2
OVDD
2-3*
GND
DESCRIPTION
ADC powered down
ADC active (normal operation)
17) Collect data using the logic analyzer.
*Default configuration: JU2 (2-3).
Detailed Description
Clock
The EV kit is a fully assembled and tested circuit board
that contains all the components necessary to evaluate the performance of the MAX12527, MAX12528,
MAX12529, MAX12557, MAX12558, or MAX12559.
Additionally, the data converter allows for either differential or single-ended signals to drive the clock inputs.
The
MAX12527/MAX12528/MAX12529/MAX12557/
MAX12558/MAX12559 EV kits support both methods.
The ADCs accept differential input signals; however, onboard transformers (T1–T4) convert a readily available
single-ended source output to the required differential signal. The input signals of the ADC can be measured using
a differential oscilloscope probe at headers J3 and J4.
In single-ended operation, the clock signal is applied to
the ADC through a buffer (U5). In differential mode, an onboard transformer converts a user-provided single-ended
analog input and generates a differential analog signal,
which is then applied to the ADC’s input pins.
Output drivers (U2 and U3) buffer the output signals of
the data converter. The digital outputs of the EV kit are
accessible at headers J5 and J6.
Jumper JU4 controls the ADC clock input. See Table 2 for
jumper configuration.
The EV kits are designed as a four-layer PC board to
optimize the performance of this family of ADCs. Separate
analog, digital, clock, and buffer power planes minimize
noise coupling between analog and digital signals. 100Ω
differential microstrip transmission lines are used for
analog and clock inputs. 50Ω microstrip transmission
lines are used for all digital outputs. The trace lengths of
the 100Ω differential input lines are matched to within a
few thousandths of an inch to minimize layout-dependent
input-signal skew.
www.maximintegrated.com
Table 2. Clock Selection Shunt Settings (JU4)
SHUNT
POSITION
DIFFCLK/
SECLK PIN
1-2*
OVDD
2-3
GND
DESCRIPTION
Differential clock mode.
Single-ended clock mode.
See the Configuring the EV Kit
for Single-Ended Clock Operation
section for further details.
*Default configuration: JU4 (1-2).
Maxim Integrated │ 4
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Configuring the EV Kits for
Single-Ended Clock Operation
To configure the MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559 EV kits for singleended clock operation, the following modifications must
be made to the clock circuit:
1) Cut the trace at locations R41, R43, and R44.
2) Install 0Ω resistors at locations R40, R42, and R45.
3) Install a 49.9Ω ±1% resistor at location R37.
4) Connect a 3.3V power supply to VCLK (needs to
be capable of sourcing up to 10mA output current).
Connect the ground terminal of this supply to GND.
In single-ended clock configuration, potentiometer R48
can be utilized to control the duty cycle of the clock input
signal. Measure the clock input at J8 and adjust R48 until
the desired duty cycle is achieved.
Clock-Divider Control
The MAX12527, MAX12528, MAX12529, MAX12557,
MAX12558, and MAX12559 each feature internal divideby-2/divide-by-4 clock-divider circuitry (DIV2, DIV4).
Jumpers JU5 and JU6 control this circuitry. Refer to
the individual ADC data sheets for a detailed explanation of the internal clock divider. See Table 3 for jumper
configuration.
Table 3. Clock-Divider Shunt Settings
(JU5, JU6)
SHUNT
POSITION
PD PIN
DESCRIPTION
JU5
JU6
DIV2
DIV4
2-3*
2-3*
GND
GND
Normal clock mode
1-2
2-3
OVDD
GND
Divide-by-2 clock mode (DIV2)
2-3
1-2
GND
1-2
1-2
OVDD Divide-by-4 clock mode (DIV4)
OVDD OVDD INVALID
*Default configuration: JU5 (2-3), JU6 (2-3).
Input Signal
Although this family of ADCs accepts differential analog
input signals, the EV kit only requires single-ended analog
input signals, with amplitudes less than 7.5dBm. Insertion
losses due to a series-connected filter and the interconnecting cables decrease the amount of power seen at
the EV kit input. Account for these losses when setting
the signal generator amplitude. On-board transformers
(T1–T4) convert the single-ended analog input signals
and generate the recommended differential analog signals at the ADCs’ differential input pins.
www.maximintegrated.com
Evaluate: MAX12527/28/29/57/58/59
Optimizing the Analog Input Network for
Different Input Frequencies
The EV kits are designed for excellent AC performance
across a broad 3MHz to 400MHz input frequency range.
The design can be further optimized by adjusting components C7–C10 and R49–R52. See Table 4 for the
appropriate component values for specific input frequency
ranges.
Table 4. Component Selection for
Optimized AC Performance
INPUT
FREQUENCY
RANGE (MHz)
C7–C10
COMPONENT
VALUES (pF)
R49–R52
COMPONENT
VALUES (Ω)
3 to 400*
5.6
25
< 10
12 to 22
0
10 to 125
12
25 to 50
> 125
5.6 to 12
0
*Default EV kit configuration.
Reference
The MAX12527, MAX12528, MAX12529, MAX12557,
MAX12558, and MAX12559 feature numerous reference operation modes. The default EV kit configuration
connects the ADC’s internal 2.048V reference output to
the reference input. In this case, the converter generates
the REFN, REFP, and COM voltages from this input (refer
to the individual ADC’s data sheet for a more detailed
explanation).
To apply a user-supplied reference, cut the trace at
location R33 and connect the desired external reference
to the REFIN pad. Alternatively, the EV kit can be configured to use a divided internal reference value. If the
desired reference voltage is less than 2.048V, cut the
trace at location R33 and install resistors in locations R33
and R34. Calculate the resistor values from the equations
below:
=
R 34
VREF
VREFOUT
×RT
R=
33 R T − R 34
where:
VREF = desired reference voltage
VREFOUT = ADC’s internal reference voltage of 2.048V
RT = ADC’s minimum reference resistance ≈ 10kΩ
Maxim Integrated │ 5
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Shared Reference Mode
To maximize isolation between the two input channels,
the MAX12527, MAX12528, MAX12529, MAX12557,
MAX12558, and MAX12559 feature two independent
references. To improve channel matching this family of
ADCs provides a mode where both input channels share
the same reference. Jumper JU1 controls this shared
reference feature. See Table 5 for the desired jumper
configuration.
Table 5. Shared Reference Shunt
Settings (JU1)
SHUNT
POSITION
SHREF
PIN
DESCRIPTION
1-2
OVDD
Shared reference mode.
Install 0Ω resistors at locations
R35 and R36.
2-3*
GND
Independent reference mode.
Remove any component at
locations R35 and R36.
Evaluate: MAX12527/28/29/57/58/59
Table 6. Reference Test Point Connections
TEST POINT
CONNECTION
DESCRIPTION
TP1
COMA
Common-mode voltage for
channel A.
TP2
COMB
Common-mode voltage for
channel B.
TP3
REFPA
Positive voltage reference
terminal for channel A.
TP4
REFNA
Negative voltage reference
terminal for channel A.
TP5
REFPB
Positive voltage reference
terminal for channel B.
TP6
REFNB
Negative voltage reference
terminal for channel B.
Note: Refer to the respective ADC data sheet for REFP, REFN,
and COM voltage ranges.
Output Signal
1) Cut the trace at location R33.
The MAX12527, MAX12528, and MAX12529 feature two
12-bit, parallel, CMOS-compatible digital outputs that
transmit the converted analog input signals. The higherresolution MAX12557, MAX12558, and MAX12559 feature two 14-bit, parallel, CMOS-compatible digital outputs
that transmit the converted analog input signals. Each
set of 12-bit or 14-bit digital outputs also includes a clock
(CLK) bit and overrange (DORA/B) bit to accommodate
data synchronization and error detection. See the Output
Bit Locations section for more details on how to configure
these 12-bit and 14-bit converter outputs.
2) Remove resistor R34 (not installed by default).
Output Format
3) Connect the REFIN pad to GND.
Set the digital output coding to either two’s-complement
or Gray code, by configuring jumper JU3. See Table 7 for
the jumper configuration.
*Default configuration: JU1 (2-3).
Alternative Reference Mode
The MAX12527, MAX12528, MAX12529, MAX12557,
MAX12558, and MAX12559 derive their REFP, REFN,
and COM voltages from the REFIN input. To override
these derived voltages, follow the board modifications
given below.
4) Apply the desired voltages to test points TP1–TP6.
See Table 6 for a detailed description of test point connections.
Table 7. Output Format Shunt Settings (JU3)
SHUNT
POSITION
G/T Pin
1-2
OVDD
2-3*
GND
DESCRIPTION
Gray code selected.
Digital output format is Gray code.
Two’s complement selected.
Digital output format is two’s
complement.
*Default configuration: JU3 (2-3).
www.maximintegrated.com
Maxim Integrated │ 6
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Output Bit Locations
Two drivers (U2 and U3) buffer the digital outputs of the
individual ADCs. These drivers can drive large capacitive
loads, which may be present at the logic analyzer connection. The outputs of the buffers are connected to 40-pin
headers J5 and J6. See Table 8 (14-bit ADCs) and Table
9 (12-bit ADCs) for bit locations of headers J5 and J6.
Table 8. Output Bit Locations (MAX12557,
MAX12558, MAX12559—14-Bit, Dual ADCs)
SIGNAL
CHANNEL
Evaluate: MAX12527/28/29/57/58/59
Note: Silkscreen markings on the EV kit PC board indicate pin markings for the MAX12557, MAX12558, and
MAX12559. These pin markings are not valid for the
MAX12527, MAX12528, or MAX12529. Use the connections outlined in Table 9.
Table 9. Output Bit Locations (MAX12527,
MAX12528, MAX12529—12-Bit, Dual ADCs)
DESCRIPTION
SIGNAL
A
B
D0
J5-37
J6-37
Data Bit 0 (LSB)
D1
J5-35
J6-35
D2
J5-33
D3
CHANNEL
DESCRIPTION
A
B
N.C.
J5-37
J6-37
N.C.
Data Bit 1
N.C.
J5-35
J6-35
N.C.
J6-33
Data Bit 2
D0
J5-33
J6-33
Data Bit 0 (LSB)
J5-31
J6-31
Data Bit 3
D1
J5-31
J6-31
Data Bit 1
D4
J5-29
J6-29
Data Bit 4
D2
J5-29
J6-29
Data Bit 2
D5
J5-27
J6-27
Data Bit 5
D3
J5-27
J6-27
Data Bit 3
D6
J5-25
J6-25
Data Bit 6
D4
J5-25
J6-25
Data Bit 4
D7
J5-23
J6-23
Data Bit 7
D5
J5-23
J6-23
Data Bit 5
D8
J5-21
J6-21
Data Bit 8
D6
J5-21
J6-21
Data Bit 6
D9
J5-19
J6-19
Data Bit 9
D7
J5-19
J6-19
Data Bit 7
D10
J5-17
J6-17
Data Bit 10
D8
J5-17
J6-17
Data Bit 8
D11
J5-15
J6-15
Data Bit 11
D9
J5-15
J6-15
Data Bit 9
D12
J5-13
J6-13
Data Bit 12
D10
J5-13
J6-13
Data Bit 10
D13
J5-11
J6-11
Data Bit 13 (MSB)
D11
J5-11
J6-11
Data Bit 11 (MSB)
DOR
J5-9
J6-9
Over Range Bit
DOR
J5-9
J6-9
Over Range Bit
CLK
J5-3
J6-3
Clock Bit
CLK
J5-3
J6-3
Clock Bit
Note: Pins 1, 2, 5, 6, 39, and 40 of J5 and pins 1, 2, 5, 6, 7, 39,
and 40 of J6 are open. All other pins that are not listed in Table
8 are connected to GND.
www.maximintegrated.com
Note: Pins 1, 2, 5, 6, 39, and 40 of J5 and pins 1, 2, 5, 6, 7, 39,
and 40 of J6 are open. All other pins that are not listed in Table
9 are connected to GND.
Maxim Integrated │ 7
J2
J1
R3
OPEN
C2
SHORT
(PC TRACE)
R4
SHORT
(PC TRACE)
R2
SHORT
(PC TRACE)
R1
OPEN
R8
OPEN
4
3
6
2
T2
5
1
R7
OPEN
4
3
R6
OPEN
2
6
5
1
T1
C4
OPEN
C3
OPEN
REFIN
R12
75Ω
0.5%
R11
75Ω
0.5%
R10
75Ω
0.5%
R9
75Ω
0.5%
C12
4.7µF
4
3
6
4
2
6
2
R16
OPEN
T4
R15
OPEN
R14
OPEN
T3
5
1
3
5
1
R36
OPEN
R27
OPEN
R25
OPEN
C17
0.1µF
C13
0.1µF
R34
OPEN
R20
110Ω
0.5%
R19
110Ω
0.5%
R18
110Ω
0.5%
R17
110Ω
0.5%
C6
0.1µF
C16
0.1µF
C14
0.1µF
C22
4.7µF
C21
4.7µF
R28
SHORT
(PC TRACE)
R24
SHORT
(PC TRACE)
TP2
R23
SHORT
(PC TRACE)
R22
SHORT
(PC TRACE)
C5
0.1µF
R26
TP1
SHORT
(PC TRACE)
R49
24.9Ω
0.5%
R51
24.9Ω
0.5%
C9
5.6pF
JU2
OVDD
1
2
3
OVDD
JU1
TP4
CLKP
TP5
1
2
3
JU3
OVDD
TP6
TP3
C11
0.1µF
COMB
COMA
CLKN
R35
OPEN
1
2
3
C18
0.1µF
C15
0.1µF
J4
R33
SHORT
(PC TRACE)
C10
R32
5.6pF
SHORT
R52 (PC TRACE)
24.9Ω
0.5%
C20
0.1µF
COMB
J3
R31
SHORT
(PC TRACE)
C8
R30
5.6pF SHORT
R50 (PC TRACE)
24.9Ω
0.5%
C19
0.1µF
COMA
C7
5.6pF
R29
SHORT
(PC TRACE)
64
65
66
11
10
8
7
20
19
68
67
16
12
15
3
6
2
VDD
VDD
G/T
PD
SHREF
REFPB
REFNB
REFNA
REFPA
CLKP
CLKN
REFIN
REFOUT
INBP
COMB
INBN
INAN
COMA
INAP
1459
131417
OVDD
DIV2
DIV4
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DB12
DB13
DORB
DAV
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DIFFCLK/SECLK
MAX12557
MAX12558
MAX12559
U1
DA8
DA9
DA10
DA11
DA12
DA13
DORA
OVDD
23 24 25 26 61 62 63 27 43 60
VDD
GND
R21
SHORT
(PC TRACE)
VDD
GND
R13
OPEN
VDD
GND
R5
OPEN
OVDD
VDD
GND
C1
SHORT
(PC TRACE)
VDD
VDD
GND
OVDD
GND
www.maximintegrated.com
GND
18
21
22
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
JU4 1
2
3
OVDD
1
2
3
OVDD
JU5
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DB12
DB13
DORB
LATCH
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DA10
DA11
DA12
DA13
DORA
JU6 1
2
3
OVDD
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 1. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 1 of 4)
Maxim Integrated │ 8
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DA10
DA11
DA13
DA12
DORA
GND
VDD
11
10
6
7
8
9
13
12
4
5
14
15
3
2
16
9
8
1
10
7
RA2
220Ω
11
6
5
U2
PI74ALVTC16374
1Q7
1Q6
1Q5
1Q4
1Q3
1Q2
1D6
1D5
1D4
1D3
1D2
1Q1
1Q8
1D7
2Q1
2Q2
2Q3
2Q4
2Q5
1D8
1D1
1
1OE
24
2OE
47
46
44
43
41
40
38
37
30
2D5
32
2D4
33
2D3
35
2D2
36
2D1
2Q6
13
12
2Q7
2Q8
2CLK
C42
1.0µF
2D6
29
14
42
31
18
C39
10µF
7
VLOGIC
C36
220µF
6.3V
2
3
2D7
27
15
3
4
2D8
1CLK
2
26
48
16
LATCH
2
3
1
RA1
220Ω
C33
220µF
6.3V
1
L1
C34
220µF
6.3V
VCC
GND
VCC
1
VCC
OVDD
L2
VCC
GND
GND
GND
GND
GND
GND
www.maximintegrated.com
4 10 15 21 28 34 45 39
GND
GND
2
3
5
6
8
11
9
12
13
14
16
11
10
6
7
9
12
8
13
5
14
15
16
9
10
11
12
4
3
2
1
8
7
6
5
13
17
14
4
15
16
CLK
VDD
C24
4.7µF
C25
4.7µF
19
RA6
220Ω
RA5
220Ω
C23
4.7µF
C43
1.0µF
3
2
1
C29
0.1µF
LATCH
C40
10µF
20
22
23
25
C28
0.1µF
C37
220µF
6.3V
C26
4.7µF
C30
0.1µF
J5-2
J5-39
J5-37
J5-35
J5-33
J5-31
J5-29
J5-27
J5-25
J5-23
J5-21
J5-19
J5-40
J5-38
J5-36
J5-34
J5-32
J5-30
J5-28
J5-26
J5-24
J5-22
J5-20
J5-18
J5-16
J5-17
J5-14
J5-15
J5-12
J5-10
J5-8
J5-6
J5-4
J5-11
J5-13
J5-7
J5-9
J5-5
J5-3
J5-1
J5
40-PIN HEADER
C27
4.7µF
C31
0.1µF
C32
0.1µF
OVDD
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 2. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 2 of 4)
Maxim Integrated │ 9
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB12
DB11
DORB
DB13
9
7
8
13
12
11
10
9
6
7
8
5
14
4
15
3
2
16
10
1
11
6
RA4
220Ω
14
3
4
5
15
2
13
12
16
RA3
220Ω
1
C35
220µF
6.3V
2
LATCH
3
1CLK
7
18
VLOGIC
C41
10µF
31
42
U3
PI74ALVTC16374
1Q8
1Q7
1Q6
1Q5
1Q4
1Q3
1Q2
1Q1
1D7
1D6
1D5
1D4
1D3
1D2
1D1
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
4 10 15 21 28 34 45 39
A
9
10
7
3
8
11
6
5
2
12
5
6
14
15
16
13
RA8
220Ω
9
10
11
12
14
13
15
16
4
3
2
1
8
6
7
RA7
220Ω
Y 4
VCC 5
C60
0.1µF
CLK
C67
1.0µF
VLOGIC
C59
0.1µF
8
9
11
12
13
14
16
17
4
5
19
1
2
GND
3
3
C58
0.1µF
U4
NC7SV125
1 OE
2
C57
0.1µF
20
22
23
25
C44
1.0µF
2CLK
LATCH
C66
10µF
1D8
1
1OE
24
2OE
47
46
44
43
41
40
38
37
26
2D8
27
2D7
29
2D6
30
2D5
32
2D4
33
2D3
35
2D2
36
2D1
48
C38
220µF
6.3V
VCC
GND
1
VCC
VLOGIC
VCC
L3
VCC
GND
GND
GND
GND
GND
GND
www.maximintegrated.com
GND
GND
C61
10µF
C63
0.1µF
J6-8
J6-7
J6-20
J6-22
J6-24
J6-19
J6-21
J6-23
J6-39
J6-37
J6-35
J6-33
J6-31
J6-29
J6-27
J6-40
J6-38
J6-36
J6-34
J6-32
J6-30
J6-28
J6-26
J6-18
J6-17
J6-25
J6-14
J6-16
J6-13
J6-15
J6-10
J6-12
J6-5
J6-9
J6-11
J6-4
J6-6
J6-2
J6-3
J6-1
J6
40-PIN HEADER
C62
0.1µF
C64
0.1µF
C65
0.1µF
VLOGIC
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 3. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 3 of 4)
Maxim Integrated │ 10
J2
J1
R3
OPEN
C2
SHORT
(PC TRACE)
R4
SHORT
(PC TRACE)
R2
SHORT
(PC TRACE)
R1
OPEN
R8
OPEN
4
3
6
2
T2
5
1
R7
OPEN
R6
OPEN
4
3
6
2
T1
5
1
C4
OPEN
C3
OPEN
REFIN
R12
75Ω
0.5%
R11
75Ω
0.5%
R10
75Ω
0.5%
R9
75Ω
0.5%
C12
4.7µF
4
3
6
4
2
6
2
R16
OPEN
T4
R15
OPEN
R14
OPEN
T3
5
1
3
5
1
R36
OPEN
R27
OPEN
R25
OPEN
C17
0.1µF
C13
0.1µF
R34
OPEN
R20
110Ω
0.5%
R19
110Ω
0.5%
R18
110Ω
0.5%
R17
110Ω
0.5%
C6
0.1µF
C16
0.1µF
C14
0.1µF
C22
4.7µF
C21
4.7µF
R28
SHORT
(PC TRACE)
R24
SHORT
(PC TRACE)
TP2
R23
SHORT
(PC TRACE)
R22
SHORT
(PC TRACE)
C5
0.1µF
R26
TP1
SHORT
(PC TRACE)
R21
SHORT
(PC TRACE)
R49
24.9Ω
0.5%
R51
24.9Ω
0.5%
C9
5.6pF
JU3
1
2
3
JU2
1
2
3
1
2
3
JU1
OVDD
TP5
TP3
OVDD
TP6
R35
OPEN
TP4
CLKP
CLKN
C11
0.1µF
COMB
COMA
OVDD
C18
0.1µF
C15
0.1µF
J4
R33
SHORT
(PC TRACE)
C10
R32
5.6pF
SHORT
R52 (PC TRACE)
24.9Ω
0.5%
C20
0.1µF
COMB
J3
R31
SHORT
(PC TRACE)
C8
R30
5.6pF SHORT
R50 (PC TRACE)
24.9Ω
0.5%
C19
0.1µF
COMA
C7
5.6pF
R29
SHORT
(PC TRACE)
64
65
66
11
10
8
7
20
19
68
67
16
12
15
3
6
2
VDD
VDD
G/T
PD
SHREF
REFPB
REFNB
REFNA
REFPA
CLKP
CLKN
REFIN
4
1
REFOUT
INBP
COMB
INBN
INAN
COMA
INAP
U1
MAX12527
MAX12528
MAX12529
5
OVDD
DIFFCLK/SECLK
DIV2
DIV4
N.C.
N.C.
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DORB
DAV
N.C.
N.C.
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DA10
DA11
DORA
OVDD
23 24 25 26 61 62 63 27 43 60
VDD
GND
R13
OPEN
VDD
9 13 14 17
GND
R5
OPEN
VDD
GND
C1
SHORT
(PC TRACE)
VDDOVDD
VDD
GND
VDD
GND
OVDD
GND
www.maximintegrated.com
GND
18
21
22
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
JU4 1
2
3
OVDD
1
2
3
OVDD
JU5
N.C.
N.C.
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DORB
LATCH
N.C.
N.C.
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DA10
DA11
DORA
JU6 1
2
3
OVDD
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 4. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 1 of 4)
Maxim Integrated │ 11
N.C.
N.C.
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DA11
DA10
DORA
GND
VDD
12
11
10
9
5
6
7
8
13
12
11
10
9
6
7
8
5
14
4
15
3
2
16
14
13
3
4
1
15
2
RA2
220Ω
16
1
RA1
220Ω
C33
220µF
6.3V
1
2
L1
LATCH
GND
2D8
1CLK
U2
PI74ALVTC16374
42
31
18
C39
10µF
7
VLOGIC
C36
220µF
6.3V
C42
1.0µF
1Q6
1Q5
1Q4
1Q3
1D6
1D5
1D4
1D3
1D1
1Q1
1Q2
1Q7
1D2
1Q8
1D7
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
2CLK
3
1D8
1
1OE
24
2OE
47
46
44
43
41
40
38
37
2D7
29
2D6
30
2D5
32
2D4
33
2D3
35
2D2
36
2D1
27
26
48
3
2
VCC
1
VCC
C34
220µF
6.3V
VCC
OVDD
L2
VCC
GND
GND
GND
GND
GND
GND
www.maximintegrated.com
4 10 15 21 28 34 45 39
GND
GND
12
11
10
5
6
7
8
6
5
3
2
9
13
14
15
16
9
10
11
4
3
2
1
8
7
6
12
8
9
11
12
13
14
16
5
13
17
14
4
15
16
CLK
VDD
C24
4.7µF
C25
4.7µF
3
RA6
220Ω
RA5
220Ω
C23
4.7µF
C43
1.0µF
19
2
1
C29
0.1µF
LATCH
C40
10µF
20
22
23
25
C28
0.1µF
C37
220µF
6.3V
C26
4.7µF
C30
0.1µF
J5-39
J5-37
J5-35
J5-33
J5-31
J5-29
J5-27
J5-25
J5-23
J5-21
J5-19
J5-17
J5-15
J5-11
J5-13
J5-7
J5-9
J5-5
J5-3
J5-1
J5-40
J5-38
J5-36
J5-34
J5-32
J5-30
J5-28
J5-26
J5-24
J5-22
J5-20
J5-18
J5-16
J5-14
J5-12
J5-10
J5-8
J5-6
J5-4
J5-2
J5
40-PIN HEADER
C27
4.7µF
C31
0.1µF
C32
0.1µF
OVDD
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 5. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 2 of 4)
Maxim Integrated │ 12
N.C.
N.C.
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB10
DB9
DORB
DB11
9
8
13
12
11
10
9
4
6
7
8
5
14
15
3
2
16
10
7
1
11
6
RA4
220Ω
14
3
4
5
15
2
13
12
16
RA3
220Ω
1
C35
220µF
6.3V
2
LATCH
3
2CLK
7
18
VLOGIC
C41
10µF
31
42
U3
PI74ALVTC16374
1Q6
1Q5
1Q4
1Q3
1Q2
1D6
1D5
1D4
1D3
1D2
1Q1
1Q7
1D1
1Q8
1D7
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
4 10 15 21 28 34 45 39
VCC 5
10
7
3
9
11
6
5
8
12
2
13
5
14
15
16
4
RA8
220Ω
9
10
11
12
14
13
15
16
6
3
2
1
8
RA7
220Ω
Y 4
C60
0.1µF
CLK
C67
1.0µF
VLOGIC
C59
0.1µF
8
9
11
12
13
14
16
6
7
4
5
17
3
1
2
GND
19
3
C58
0.1µF
U4
NC7SV125P5
A
1 OE
2
C57
0.1µF
20
22
23
25
C44
1.0µF
2CLK
LATCH
C66
10µF
1D8
1
1OE
24
2OE
47
46
44
43
41
40
38
37
26
2D8
27
2D7
29
2D6
30
2D5
32
2D4
33
2D3
35
2D2
36
2D1
48
C38
220µF
6.3V
VCC
GND
1
VCC
VLOGIC
VCC
L3
VCC
GND
GND
GND
GND
GND
GND
www.maximintegrated.com
GND
GND
C61
10µF
C63
0.1µF
J6-20
J6-22
J6-24
J6-19
J6-21
J6-23
J6-39
J6-37
J6-35
J6-33
J6-31
J6-29
J6-27
J6-40
J6-38
J6-36
J6-34
J6-32
J6-30
J6-28
J6-26
J6-18
J6-17
J6-25
J6-14
J6-16
J6-13
J6-15
J6-10
J6-12
J6-8
J6-7
J6-9
J6-11
J6-6
J6-5
J6-2
J6-4
J6-3
J6-1
J6
40-PIN HEADER
C62
0.1µF
C64
0.1µF
C65
0.1µF
VLOGIC
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Figure 6. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 3 of 4)
Maxim Integrated │ 13
Evaluate: MAX12527/28/29/57/58/59
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
R41
SHORT
(PC TRACE)
C45
0.1µF
J7
R37
OPEN
R43
SHORT
(PC TRACE)
C51
0.01µF
CLKN
1
T5
R38
49.9Ω
1%
6
2
5
3
4
2
D1
R45
OPEN
1
J8
R39
49.9Ω
1%
3
CLKP
VCLK
R44
SHORT
(PC TRACE)
C52
0.01µF
R46
100Ω
1%
VCLK
R48
10kΩ
C46
R47
100Ω
1%
0.01µF
5
1
R40
OPEN
U5–A
U5–B
6
3
4
R42
OPEN
2
VCLK
L4
VCLK
GND
1
C53
220µF
6.3V
3
2
C47
220µF
6.3V
C55
10µF
C56
1µF
Figure 7. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 4 of 4)
www.maximintegrated.com
Maxim Integrated │ 14
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
www.maximintegrated.com
1.0”
Figure 8. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit Component Placement Guide—Component Side
www.maximintegrated.com
Maxim Integrated │ 15
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
1.0”
Figure 9. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout—Component Side
www.maximintegrated.com
Maxim Integrated │ 16
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
1.0”
Figure 10. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout (Inner Layer 2)—Ground Planes
www.maximintegrated.com
Maxim Integrated │ 17
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
1.0”
Figure 11. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout (Inner Layer 3)—Power Planes
www.maximintegrated.com
Maxim Integrated │ 18
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
1.0”
Figure 12. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout—Solder Side
www.maximintegrated.com
Maxim Integrated │ 19
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
1.0”
Figure 13. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Component Placement Guide—Solder Side
www.maximintegrated.com
Maxim Integrated │ 20
MAX12527/MAX12528/MAX12529/
MAX12557/MAX12558/MAX12559
Evaluation Kits
Evaluate: MAX12527/28/29/57/58/59
Revision History
REVISION
NUMBER
REVISION
DATE
PAGES
CHANGED
0
12/05
Initial Release
1
1/21
Updated Ordering Information, Component List, and EV Kit Specific Component
List
1–19
2
3/21
Updated Ordering Information and Component List
1, 2
DESCRIPTION
—
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2021 Maxim Integrated Products, Inc. │ 21