0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX13172ECAI+T

MAX13172ECAI+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    SSOP28

  • 描述:

    IC TRANSCEIVER FULL 4/4 28SSOP

  • 数据手册
  • 价格&库存
MAX13172ECAI+T 数据手册
19-3900; Rev 1; 8/11 KIT ATION EVALU E L B AVAILA +5V Multiprotocol, Software-Selectable Clock Transceiver Features The MAX13172E is a four-driver/four-receiver multiprotocol transceiver that operates from a single +5V supply in conjunction with the MAX13170E and MAX13174E. The MAX13172E, along with the MAX13170E and the MAX13174E, form a complete software-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS423), and V.35 protocols. The MAX13172E transceiver carries serial-interface control signaling, while the MAX13170E carries the high-speed clock and data signals. Typically, the MAX13170E is terminated using the MAX13174E. The MAX13172E is available in a 5.3mm x 10.2mm, 28pin SSOP package and operates over the 0°C to +70°C commercial temperature range. o The MAX13170E/MAX13172E/MAX13174E Chipset is a Pin-for-Pin Upgrade to the MXL1544/MAX3175/ MXL1543/MXL1543B Chipset o Chipset Operates from a Single +5V Supply o Software-Selectable DCE/DTE Configurations o Supports V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423) Protocols o Flowthrough Pin Configuration o Fail-Safe Receivers While Maintaining V.11 and V.35 Compatibility o Extremely Low Maximum Shutdown Current (No-Cable Mode) o TUV-Certified NET1/NET2 and TBR1/TBR2 Compliant (Pending) o Extended ESD Protection for All Transmitter Outputs and Receivers Inputs to GND ±10kV Using the Human Body Model ±3kV Using the Contact Method Specified in IEC 61000-4-2 ±3kV Using the Air Gap Discharge Method Specified in IEC 61000-4-2 Applications Data Networking CSU/DSU Devices Data Routers Switches PCI Cards Telecommunication Equipment Ordering Information PART TEMP RANGE MAX13172ECAI+ 0°C to +70°C PIN-PACKAGE 28 SSOP +Denotes a lead(Pb)-free/RoHS-compliant package. Pin Configuration appears at end of data sheet. Typical Operating Circuit T4 LL CTS DSR R4 R3 R2 DCD R1 MAX13172E T3 DTR RTS T2 T1 RXD RXC R3 R2 TXC R1 MAX13170E T3 SCTE TXD T2 T1 MAX13174E 18 13 5 10 8 22 6 23 20 19 4 1 7 16 3 9 17 12 15 11 24 14 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) DSR B CTS A (106) CTS B LL A (141) DB-25 CONNECTOR ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX13172E General Description MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver ABSOLUTE MAXIMUM RATINGS Receiver Inputs R_IN_, T_OUT_/R_IN_ ........................................-15V to +15V R_INA to R_INB, T3OUTA/R1INA to T3OUT/R1INB.....................................................-15V to +15V Continuous Power Dissipation (TA = +70°C) 28-Pin TSSOP Single-Layer Board (derate 9.5mW/°C above +70°C) ......762mW Multi-Layer Board (derate 14.9mW/°C above +70°C)........1194mW Operating Temperature Range ................................0°C to 70°C Junction Temperature .....................................................+150°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) ................................+300°C Soldering Temperature (reflow) ......................................+260°C (All voltages referenced to GND, unless otherwise noted.) Supply Voltages VCC .......................................................................-0.3V to +6V VDD ....................................................................-0.3V to +7.1V VEE.....................................................................+0.3V to -7.1V VDD to VCC ............................................................+0.3 to +6V Logic Input Voltages M0, M1, M2, DCE/DTE, T_IN, INVERT..................-0.3V to +6V Logic Output Voltages R_OUT ....................................................-0.3V to (VCC + 0.3V) Transmitter Outputs T_OUT_, T_OUT_/R_IN_ (No-Cable Mode, V.28 only).........................................................-15V to +15V Short-Circuit Duration to GND...............................Continuous Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 1) SSOP Junction-to-Ambient Thermal Resistance (θJA)...............+67°C/W Junction-to-Case Thermal Resistance (θJC)......................+25°C/W Note 1: Package thermal resistances were obtained using the method described in JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VCC = 4.5V to 5.5V, TA = TMIN to TMAX. Typical values are at VCC = 5V, and TA = +25°C, V.28 mode only: VDD = +5.6V to +7.1V and VEE = -7.1V to -5.4V. Typical values are at VDD = +6.9V and VEE = -6.7V, no-cable mode: VDD = VCC and VEE = 0V, other modes: VDD = +5.15V to +5.7V and VEE = -4.84V to -4.16V. Typical value are at VDD = +5.3V and VEE = -4.5V.) (Notes 2, 3) PARAMETER VCC Operating Range SYMBOL VCC VDD Operating Range VDD VEE Operating Range VEE VCC Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitter Outputs Static) CONDITIONS ICC 2 PD TYP MAX UNITS V 4.5 5.5 V.28 mode 5.6 7.1 V.10 or V.11 mode 5.15 5.7 V.28 mode -7.1 -5.4 V.10 or V.11 mode -4.84 -4.16 CH1, CH3 = V.11, CH2 = V.10, CH4 = V.10, no load 5.5 CH1, CH3 = V.11, CH2 = V.10, CH4 = V.10, full load 95 135 CH1, CH2, CH3 = V.11, CH4 = V.10, full load 138 180 V.28 mode 3.5 9 0 10 No cable mode; M0, M1, M2, DCE/DTE, INVERT, open or at VCC (VDD = VCC and VEE = GND) Internal Power Dissipation (DCE Mode) MIN CH1, CH3 = V.11, CH2, CH4 = V.10, no load 300 V.28 mode, full load 54 _______________________________________________________________________________________ V V mA µA mW +5V Multiprotocol, Software-Selectable Clock Transceiver (VCC = 4.5V to 5.5V, TA = TMIN to TMAX. Typical values are at VCC = 5V, and TA = +25°C, V.28 mode only: VDD = +5.6V to +7.1V and VEE = -7.1V to -5.4V. Typical values are at VDD = +6.9V and VEE = -6.7V, no-cable mode: VDD = VCC and VEE = 0V, other modes: VDD = +5.15V to +5.7V and VEE = -4.84V to -4.16V. Typical value are at VDD = +5.3V and VEE = -4.5V.) (Notes 2, 3) PARAMETER VEE Supply Current SYMBOL IEE VDD Supply Current IDD Thermal-Shutdown Protection CONDITIONS MIN TYP CH1, CH3 = V.11, CH2 = V.10 or V.11, CH4 = V.10, no load 2.1 CH1, CH2, CH3 = V.11, CH4 = V.10, full load (output low) 13 MAX UNITS 30 mA CH1, CH3 = V.11, CH2, CH4 = V.10, full load (output low) 22 30 V.28 mode, no load 1 V.28 mode, full load (output low) 12 18 No cable mode (VDD = VCC and VEE = GND) 0 10 CH1, CH3 = V.11, CH2 = V.10 or V.11, CH4 = V.10, no load 0.6 CH1, CH2, CH3 = V.11, CH4 = V.10, full load (output high) 11 30 CH1, CH3 = V.11, CH2, CH4 = V.10, full load (output high) 22 30 V.28 mode, no load 2.5 V.28 mode, full load (output high) 12 10 No cable mode (VDD = VCC and VEE = GND) 0 10 µA mA THSD +145 µA °C LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN) Input High Voltage VIH Input Low Voltage VIL Logic-Input Current IIN Pullup Resistor RPUIN 0.66 x VCC V 0.33 x VCC T1IN, T2IN, T3IN, T4IN -1 M0, M1, M2, DCE/DTE, INVERT to VCC 50 100 V +1 µA 166 kΩ LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT, R4OUT) Output High Voltage VOH ISOURCE = 4mA Output Low Voltage VOL ISINK = 4mA Output Pullup Resistor Transmitter Output Leakage Current RPUY IZ 0.66 x VCC V 0.33 x VCC No cable mode (to VCC) 71.4 -0.25V < VOUT < +0.25V, VCC = 0V or no cable mode ±1 V kΩ ±5 µA +VCC V V.11 TRANSMITTER Open-Circuit Differential Output Voltage VODO Loaded Differential Output Voltage (Note 4) |VODL| Change in Magnitude of Output Differential Voltage ∆VOD Open circuit, R = 1.95kΩ, Figure 1 R = 50Ω, Figure 1 R = 50Ω, Figure 1 R = 50Ω, Figure 1 - VCC 0.5 x VODO V 2 0.2 V _______________________________________________________________________________________ 3 MAX13172E ELECTRICAL CHARACTERISTICS (continued) MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver ELECTRICAL CHARACTERISTICS (continued) (VCC = 4.5V to 5.5V, TA = TMIN to TMAX. Typical values are at VCC = 5V, and TA = +25°C, V.28 mode only: VDD = +5.6V to +7.1V and VEE = -7.1V to -5.4V. Typical values are at VDD = +6.9V and VEE = -6.7V, no-cable mode: VDD = VCC and VEE = 0V, other modes: VDD = +5.15V to +5.7V and VEE = -4.84V to -4.16V. Typical value are at VDD = +5.3V and VEE = -4.5V.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Common-Mode Output Voltage VOC R = 50Ω, Figure 1 3.0 V Change in Magnitude of Common-Mode Output Voltage ∆VOC R = 50Ω, Figure 1 0.2 V 150 mA Short-Circuit Current ISC VOUT = VGND Rise Time tR Figures 2, 5 4 10 ns Fall Time tF Figures 2, 5 6 10 ns Transmitter Input-to-Output Prop Delay tPHL, tPLH Figures 2, 5 22 ns Data Skew |tPHL-tPLH| Figures 2, 5 (Note 5) 3 ns Figures 2, 5 (Notes 5, 6) 3 ns -50 mV Output-to-Output Skew tSKEWT V.11 RECEIVER Differential Threshold Voltage VTH -7V ≤ VCM ≤ +7V Input Hysteresis ∆VTH -7V ≤ VCM ≤ +7V -200 15 Receiver Input Current IIN -10V ≤ VA,B ≤ +10V -0.66 Receiver Input Resistance RIN -10V ≤ VA,B ≤ +10V 15 Rise or Fall Time mV +0.66 mA 30 kΩ ns tR, tF Figures 2, 6 3 Receiver Input-to-Output Delay tPHL, tPLH Figures 2, 6 16 Data Skew |tPHL-tPLH| Figures 2, 6 (Note 5) 3.5 ns (Notes 5, 6) 3.5 ns Output-to-Output Skew tSKEWR 26 ns V.10 TRANSMITTER Open-Circuit Output Voltage Swing (Figure 3) VO Output Voltage Swing (Figure 3) VT RL = 3.9kΩ (out high) 4 6 RL = 3.9kΩ (out low) -6 -4 RL = 450Ω (out high) 3.6 RL = 450Ω (out low) RL = 450Ω Short-Circuit Current Rise or Fall Time Transmitter Input-to-Output Delay ISC VO = VGND V -3.6 V +55 mA 0.9 x |VO| -55 tR, tF RL = 450Ω, CL =100pF (Figure 7) 2 µs tPLH, tPHL RL = 450Ω, CL =100pF (Figure 7) 1 µs V.10 RECEIVER Input Threshold Voltage VTH Input Hysteresis ∆VTH Measured on inverting input (A) 50 250 25 Receiver Input Current IIN -10V ≤ VA ≤ +10V -0.66 Receiver Input Impedance RIN -10V ≤ VA ≤ +10V 15 mV mV +0.66 mA 30 kΩ Rise or Fall Time tR, tF Figures 4, 8 3 ns Receiver Input-to-Output Delay from Low to High tPLH Figures 4, 8 55 ns Receiver Input-to-Output Delay from High to Low tPHL Figures 4, 8 109 ns |tPHL-tPLH| Figures 4, 8 60 ns Data Skew 4 _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver (VCC = 4.5V to 5.5V, TA = TMIN to TMAX. Typical values are at VCC = 5V, and TA = +25°C, V.28 mode only: VDD = +5.6V to +7.1V and VEE = -7.1V to -5.4V. Typical values are at VDD = +6.9V and VEE = -6.7V, no-cable mode: VDD = VCC and VEE = 0V, other modes: VDD = +5.15V to +5.7V and VEE = -4.84V to -4.16V. Typical value are at VDD = +5.3V and VEE = -4.5V.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V.28 TRANSMITTER Open circuit (output high) Output-Voltage Swing VOD Open circuit (output low) RL = 3kΩ Short-Circuit Current Output Slew Rate Transmitter Input-to-Output Propagation Delay Output high VDD VEE +5 Output low -6.8 |ISC| SRR/F RL = 3kΩ, CL = 2500pF, Figures 3, 9 tPHL, tPLH RL = 3kΩ, CL = 2500pF, Figures 3, 9 V +6.8 4 1 -5 85 mA 30 V/µs 2 µs 2 V 7 kΩ V.28 RECEIVER Input Threshold Low VIL Input Threshold High VIH 0.8 Input Hysteresis VHyst Input Resistance RIN Rise or Fall Time tR, tF Figures 4, 10 tPHL, tPLH Figures 4, 10 Receiver Input-to-Output Delay V 0.25 -15V ≤ VIN ≤ +15V 3 5 V 3 ns 150 ns ESD PROTECTION (T_OUT_, T_OUT_/R_OUT_, R_IN_ to GND) Contact Discharge IEC61000-4-2 ESD Protection Note 2: Note 3: Note 4: Note 5: Note 6: +3 Air Gap Discharge IEC61000-4-2 ±3 Human Body Model ±10 kV The MAX13172E is designed to operate with VDD and VEE supplied by the MAX13170E charge pump. All devices are 100% production tested at TA = +25°C, and are guaranteed by design for TA = 0°C to +70°C as specified. |VODL| is guaranteed at both 0.5 x VODO and 2V. Guaranteed by design, not production tested. Ouput-to-output skews are evaluated as a difference of propagation delays between different channels in the same condtion and for the same polarity (LH or HL). _______________________________________________________________________________________ 5 MAX13172E ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) FULL LOAD, R = 50Ω 100 50 6 4 0 0 10 100 1,000 10,000 100,000 1 10 100 0.1 1,000 10,000 100,000 1 10 100 1,000 10,000 100,000 DATA RATE (kbps) DATA RATE (kbps) V.28 MODE SUPPLY CURRENT (ICC) vs. DATA RATE V.28 MODE SUPPLY CURRENT (IDD) vs. DATA RATE V.28 MODE SUPPLY CURRENT (IEE) vs. DATA RATE DCE MODE, INVERT = 0 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 16 20 MAX13172E toc05 20 MAX13172E toc06 DATA RATE (kbps) DCE MODE, INVERT = 0 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 5 0.1 MAX13172E toc04 6 1 FULL LOAD, R = 50Ω NO LOAD, R = 1.95kΩ 4 2 FULL LOAD, R = 50Ω NO LOAD, R = 1.95kΩ NO LOAD, R = 1.95kΩ 0.1 DCE MODE, INVERT = 0 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 8 6 2 0 10 MAX13172E toc03 8 IDD (mA) ICC (mA) 150 DCE MODE, INVERT = 1 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE IEE (mA) DCE MODE, INVERT = 1 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 200 10 MAX13172E toc01 250 V.11 MODE SUPPLY CURRENT (IEE) vs. DATA RATE V.11 MODE SUPPLY CURRENT (IDD) vs. DATA RATE MAX13172E toc02 V.11 MODE SUPPLY CURRENT (ICC) vs. DATA RATE DCE MODE, INVERT = 0 ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 16 FULL LOAD (RL = 3kΩ, CL = 2500pF) AND NO LOAD 12 IEE (mA) 3 IDD (mA) ICC (mA) 4 FULL LOAD, RL = 3kΩ, CL = 2500pF 8 12 FULL LOAD, RL = 3kΩ, CL = 2500pF 8 2 0 0 0 0 50 100 150 200 250 150 200 50 100 150 200 250 V.10 RATIO OF LOADED/UNLOADED OUTPUT VOLTAGE vs. TEMPERATURE 6 -2 -3 2 DCE MODE, VDD = +5.3V, VEE = -4.5V 0 -2 RL = 450Ω VOUT- -4 20 30 40 50 TEMPERATURE (°C) 60 70 VOUT- 0.90 0.88 0.84 0.82 0.80 -10 10 0.92 0.86 RL = 3.9kΩ -8 -5 VOUT+ 0.94 -6 VOUT- -4 0.96 VOUT+ 4 DCE MODE, VDD = +5.3V, VEE = -4.5V 0.98 RATIO (V/V) OUTPUT VOLTAGE (V) DCE MODE, INVERT = 1, R = 50Ω RL = 3.9kΩ 8 1.00 MAX13172E toc08 MAX13172E toc07 10 MAX13172E toc09 V.10 OUTPUT VOLTAGE vs. TEMPERATURE 2 0 0 250 V.11 LOADED DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE 3 -1 100 DATA RATE (kbps) VOUT+ 0 50 DATA RATE (kbps) 4 1 0 DATA RATE (kbps) 5 6 4 4 1 DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V) MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver 0 10 20 30 40 50 TEMPERATURE (°C) 60 70 0 10 20 30 40 50 TEMPERATURE (°C) _______________________________________________________________________________________ 60 70 +5V Multiprotocol, Software-Selectable Clock Transceiver V.11 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE DCE MODE, R = 3kΩ, VDD = +6.9V, VEE = -6.7V 2 0 -2 -4 VOUT- 200 4 3 R1IN_ 100 0 R2IN_, R3IN_ -100 -200 2 1 0 -1 -2 -300 -3 -8 -400 -4 -10 -500 -6 20 30 40 50 60 -5 0 5 10 -15 -10 -5 0 5 10 15 TEMPERATURE (°C) INPUT VOLTAGE (V) INPUT VOLTAGE (V) V.28 SLEW RATE vs. LOAD CAPACITANCE V.10 TEANSMITTER RISE/FALL TIME vs. LOAD CAPACITANCE LOOPBACK SCOPE SHOT PHOTO V.11 MODE (UNLOADED) RL = 3kΩ 30 2.0 20 SRF SRR 10 MAX13172E toc15 VDD = +5.3V, VEE = -4.5V 1.6 RISE/FALL TIME (µs) 25 15 -5 -10 70 MAX13172E toc14 35 10 MAX13172E toc13 0 SLEW RATE (V/µs) 5 INPUT CURRENT (mA) 4 DTE MODE 300 INPUT CURRENT (µA) OUTPUT VOLTAGE (V) VOUT+ 400 MAX13172E toc11 8 6 500 MAX13172E toc10 10 V.28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE MAX13172E toc12 V.28 LOADED OUTPUT VOLTAGE vs. TEMPERATURE TIN 5V/div TOUT/RIN 5V/div ROUT 5V/div FALL 1.2 RISE 0.8 0.4 5 0 0 0 500 1K 1.5K 2K 2.5K 3K 3.5K 4K 4.5K 5K 0 100 200 300 400 500 600 700 800 900 1,000 LOAD CAPACITANCE (pF) 10ns/div LOAD CAPACITANCE (pF) LOOPBACK SCOPE SHOT PHOTO V.28 MODE (LOADED) LOOPBACK SCOPE SHOT PHOTO V.10 MODE (LOADED) MAX13172E toc16 MAX13172E toc17 RL = 3kΩ, CL = 2500pF TIN 5V/div TIN 5V/div RL = 3.9kΩ TOUT/RIN 5V/div TOUT/RIN ROUT 5V/div ROUT 1µs/div MAX13172E Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) RL = 450Ω 5V/div 5V/div 4µs/div _______________________________________________________________________________________ 7 +5V Multiprotocol, Software-Selectable Clock Transceiver MAX13172E Pin Description PIN FUNCTION 1 VCC Device Supply Voltage. Bypass VCC with a 1µF capacitor-to-ground as close as possible to the device. 2 VDD Positive Supply Voltage Input. VDD is generated by the MAX13170E. Bypass VDD with a 1µF capacitor to ground. 3 T1IN Transmitter 1 Logic Input 4 T2IN Transmitter 2 Logic Input 5 T3IN Transmitter 3 Logic Input 6 R1OUT Receiver 1 Logic Output 7 R2OUT Receiver 2 Logic Output 8 R3OUT Receiver 3 Logic Output 9 T4IN Transmitter 4 Logic input 10 R4OUT Receiver 4 Logic Output 11 M0 Mode Select 0 Input. Internally pullup to VCC. 12 M1 Mode Select 1 Input. Internally pullup to VCC. 13 M2 Mode Select 2 Input. Internally pullup to VCC. 14 DCE/DTE 15 INVERT 16 T4OUTA/ R4INA 17 R3INB Receiver 3 Noninverting Input 18 R3INA Receiver 3 Inverting Input 19 R2INB Receiver 2 Noninverting Input 20 R2INA Receiver 2 Inverting Input 21 T3OUTB/ R1INB Transmitter 3 Noninverting Output/Receiver 1 Noninverting Input 22 T3OUTA/ R1INA Transmitter 3 Inverting Output/Receiver 1 Inverting Input 23 T2OUTB Transmitter 2 Noninverting Output DCE/DTE Input. Internally pullup to VCC. Logic level high selects DCE interface. T4/R4 Select Input. Internally pullup to VCC. INVERT reverses the action of DCE/DTE for Channel 4. Transmitter 4 Inverting Output/Receiver 4 Inverting Input 24 T2OUTA Transmitter 2 Inverting Output 25 T1OUTB Transmitter 1 Noninverting Output 26 T1OUTA Transmitter 1 Inverting Output 27 GND Ground VEE Negative Supply Input. VEE is generated by the MAX13170E. Bypass VEE with a 1µF capacitor to ground. 28 8 NAME _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver T A R VOD VO RL VOC R Figure 3. V.10/V.28 Transmitter Test Circuit Figure 1. V.11 DC Test Circuit 100pF T CL B B T A R R 100Ω A A 15pF 15pF 100pF Figure 2. V.11 AC Test Circuit Detailed Description The MAX13172E is a four-driver/four-receiver, multiprotocol transceiver that operates from a single +5V supply. The charge pump operates from the MAX13170E. The MAX13172E along with the MAX13170E and MAX13174E, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423), and V.35 protocols. The MAX13172E usually carries the control signals. The MAX13170E carries the high-speed clock and data signals, and the MAX13174E provides termination for the clock and data signals. The MAX13172E features an ultra-low supply current no-cable mode, fail-safe operation, and thermal-shut- Figure 4. V.10/V.28 Receiver Test Circuit down circuitry. Thermal shutdown protects the transmitter and receiver outputs against excessive power dissipation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state. The state of the mode-select inputs M0, M1, and M2 determines which serial-interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers are configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic-high, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic-low, driver T3 disabled and receiver R1 is activated. The INVERT input state changes the DCE/DTE functionality regarding T4 and R4 only. M0, M1, M2, INVERT, and DCE/DTE are internally pulled up to V CC to ensure logic-high if left unconnected. _______________________________________________________________________________________ 9 MAX13172E Test Circuits MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver Switching Time Waveforms VCC TIN_ f = 1MHz: tr, tf ≤ 1ns VCC/2 0 VCC/2 tPHL tPLH V0 A-B 50% -V0 90% 90% 10% 50% 10% tF tR Figure 5. V.11 Transmitter Propogation Delays +1V f = 1MHz: tr, tf ≤ 1ns 0 A -B INPUT 0 -1V tPLH tPHL V0H 90% VCC/2 R V0L OUTPUT 10% 90% VCC/2 10% tF tR Figure 6. V.11 Receiver Propagation Delays VCC TIN_ 0 V0H tR, tF ≤ 10ns VCC/2 VCC/2 tPHL tPLH 90% 90% 0 0 A 10% 10% -V0L tR tF Figure 7. V.10 Transmitter Propagation Delays VIH A VIL tR, tF ≤ 10ns 0 tPLH tPHL V0H R V0L 0 90% VCC/2 10% tF 90% 10% VCC/2 tR Figure 8. V.10 Receiver Propogation Delays 10 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver VCC TIN_ 0 tR, tF ≤ 10ns VCC/2 VCC/2 tPHL V0H tPLH 3V 3V 0 0 A -3V -3V -V0L SRF = 6/tF tF tR SRR = 6/tR Figure 9. V.28 Transmitter Propagation Delays (2.0V) VIH A (-0.3V) VIL tR, tF ≤ 10ns 1.3V 1.3V tPLH tPHL V0H R V0L 90% VCC/2 90% 10% 10% VCC/2 tR tF Figure 10. V.28 Receiver Propogation Delays Table 1. Mode Select Table M2 M1 M0 DCE/ DTE INVERT T1 T2 T3 R1 R2 R3 T4 R4 Not Used (Default V.11) 0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 RS-530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10 RS-530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 PROTOCOL V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 RS-449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.28/RS-232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 No Cable 1 1 1 0 0 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z RS-530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z RS-530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z RS-449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.28/RS-232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z No Cable 1 1 1 0 1 Z Z Z Z Z Z Z Z ______________________________________________________________________________________ 11 MAX13172E Switching Time Waveforms (continued) MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver Table 1. Mode Select Table (continued) PROTOCOL Not Used (Default V.11) RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A M2 M1 M0 DCE/ DTE INVERT T1 T2 T3 R1 R2 R3 T4 R4 0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z Z Z Z Z Z Z Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.10 V.10 V.28 V.10 V.28 Z Z Z Z Z Z Z Z 0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10 RS-530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 RS-449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.28/RS-232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 No Cable 1 1 1 1 1 Z Z Z Z Z Z Z Z The MAX13172E’s mode can be selected through software control of the M0, M1, M2, INVERT, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left unconnected will be internally pulled up to VCC - logic-high). If the M0, M1, and M2 mode inputs are all unconnected, the MAX13172E will enter no-cable mode. Fail-Safe The MAX13172E guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all the drivers disabled. The V.11 receivers threshold is set between -200mV and -50mV to guarantee fail-safe operation. If the differential receiver input voltage (B - A) is ≥ -50mV, ROUT is logic-high. In the case of a terminated bus with all transmitters disabled, the receiver’s differential input voltage is pulled to 0 by the termination. With the receiver thresholds of the MAX13172E, this results in ROUT logic-high. The V.10 receiver threshold is set between +50mV and +250mV. If the V.10 receiver input voltage is less than or equal to +50mV, ROUT is logic-high. The V.28 receiver threshold is set between 0.8V and 2.0V. If the receiver input voltage is less than or equal to 0.8V, ROUT is logic-high. In the case of a terminated bus with transmitters disabled, the receiver’s input voltage is pulled to 0 by the termination. 12 ESD Protection As with all Maxim devices, a minimum of ±2kV-to-GND ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13172E have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±10kV without damage (HBM). The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, the MAX13172E keeps working without latchup or damage. ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13172E are characterized for protection to the following limits: • • • ±10kV using the Human Body Model ±3kV using the Contact Method specified in IEC 61000-4-2 ±3kV using the Air Gap Discharge Method specified in IEC 61000-4-2 ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver CHARGE-CURRENT LIMIT RESISTOR HIGHVOLTAGE DC SOURCE Cs 100pF RD 1500Ω RC 50MΩ TO 100MΩ DISCHARGE RESISTANCE CHARGE-CURRENT LIMIT RESISTOR DEVICE UNDER TEST STORAGE CAPACITOR Figure 11a. Human Body ESD Test Model IP 100% 90% Cs 150pF RD 330Ω DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST Figure 11c. IEC 61000-4-2 ESD Test Model I 100% 90% PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) IPEAK Ir HIGHVOLTAGE DC SOURCE MAX13172E RC 1MΩ AMPS 36.8% 10% 0 10% 0 tRL TIME tDL CURRENT WAVEFORM tr = 0.7ns TO 1ns t 30ns 60ns Figure 11b. Human Body Current Waveform Figure 11d. IEC 61000-4-2 ESD Generator Current Waveform Human Body Model Figure 11a shows the Human Body Model, and Figure 11b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5kΩ resistor. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 11c shows the IEC 61000-4-2 model, and Figure 11d shows the current waveform for the IEC 61000-4-2 ESD Contact Discharge test. IEC 61000-4-2 The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13172E helps equipment designs meet IEC 61000-4-2, without the need for additional ESD-protection components. ______________________________________________________________________________________ 13 MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver Applications Information Cable-Selectable Configuration Application A cable-selectable, multiprotocol DTE/DCE interface is shown in Figure 12. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial-interface mode, the appropriate combination of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MAX13170E. The serial-interface protocol of the MAX13172E is now selected based on the cable that is connected to the DB-25 interface. V.10 (RS-423) Interface The V.10 interface (Figure 13) is an unbalanced singleended interface capable of driving a 450Ω load. The V.10 driver generates a minimum VO voltage of ±4V across A’ and C’ when unloaded and a minimum voltage of 0.9  V O when loaded with 450Ω. The V.10 receiver has a single-ended input and does not reject common-mode differences between C and C’. The V.10 receiver input trip threshold is defined between +250mV and -250mV with input impedance characteristic shown in Figure 14. The MAX13172E V.10 mode receiver has a threshold between +50mV and +250mV. To ensure that the receiver has proper fail-safe operation see the Fail-Safe section. To aid in rejecting system noise, the MAX13172E V.10 receiver has a typical hysteresis of 25mV. Switch S3 in Figures 16a and 16b is open in V.10 mode to disable the V.28 5kΩ termination at the receiver input. Switch S2 is closed and switch S1 is open to internally ground the receiver B input. V.11 (RS-422) Interface As shown in Figure 15, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates a minimum of ±2V between nodes A and B when 100Ω minimum resistance is presented at the load. The V.11 receiver is sensitive to differential signals of ±200mV at receiver inputs A’ and B’. The V.11 receiver input must comply with the impedance curve of Figure 14 and reject common-mode signals developed across the cable (referenced from C to C’ in Figure 15) of up to ±7V. The MAX13172E V.11 mode receiver has a differential threshold between -50mV and -200mV. To ensure that the receiver has proper fail-safe operation; see the FailSafe section. To aid in rejecting system noise, the MAX13172E V.11 receiver has a typical hysteresis of 15mV. Switch S3 in Figure 17 is open in V.11 mode to 14 disable the V.28 5kΩ termination at the inverting receiver input. Because the control signals are slow (60kbps), 100Ω termination resistance is generally not required for the MAX13172E. The receiver inputs must also be compliant with the impedance curve shown in Figure 14. V.28 (RS-232) Interface The V.28 interface is an unbalanced single-ended interface (Figure 13). The V.28 generator provides a minimum of ±5V across the 3kΩ load impedance between A’ and C’. The V.28 receiver has a single-ended input. The MAX13172E V.28 mode receiver has a threshold between +0.8V and +2.0V. To aid in rejecting system noise, the MAX13172E V.28 receiver has a typical hysteresis of 0.25V. Switch S3 in Figures 18a and 18b is closed in V.28 mode to enable the 5kΩ V.28 termination at the receiver inputs. No-Cable Mode The MAX13172E will enter no-cable mode when the mode-select pins are left unconnected or connected high (M0 = M1 = M2 = 1). In this mode, the multiprotocol drivers and receivers are disabled and the supply current is less than 10µA. The receiver outputs enter a high-impedance state in no-cable mode, which allows these output lines to be shared with other receiver outputs (the receiver outputs have an internal pullup resistor to pull the outputs high if not driven). Also, in no-cable mode, the transmitter outputs enter a highimpedance state, so these output lines can be shared with other devices. DTE vs. DCE Operation Figure 19 shows a port with one DB-25 connector that can be configured for either DTE or DCE operation. The configuration requires separate cables for proper signal routing in DTE or DCE operation. Figures 20 and 21 illustrates a DCE or DTE controller-selectable interface. The DCE/DTE and INVERT inputs switch the port’s mode of operation (Table 1). The MAX13170E and MAX13172E can be connected for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with an appropriate gender connector or a port with a connector that can be configured for DTE or DCE operation by rerouting the signals to the MAX13170E and MAX13172E using a dedicated DTE cable or dedicated DCE cable. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 20. Figure 21 illustrates a dedicated DTE port using a DB-25 male connector. ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver MAX13172E C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 VCC 5V MAX13174E 14 27 26 CHARGE PUMP 2 4 25 C4 4.7µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 T2 7 R1 9 DTE_RXC/DCE_SCTE R2 10 DTE_RXD/DCE_TXD VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B DCE RXD A RXD B RXC A RXC B 20 19 15 12 TXC A TXC B 18 17 16 15 17 9 T3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 T1 21 M0 1 C1 1µF LATCH C2 1µF DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 VCC R3 3 16 7 MAX13170E M0 12 M1 13 M2 14 DCE/DTE TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 NC 1 SHIELD DB-25 CONNECTOR C9 1µF VCC 1 C10 1µF 2 3 DTE_RTS/DCE_CTS 4 DTE_DTR/DCE_DSR 5 6 DTE_DCD/DCE_DCD 7 DTE_DSR/DCE_DTR 8 DTE_CTS/DCE_RTS 10 9 28 VCC VEE VDD GND T1 T2 27 25 DCE/DTE 21 M1 18 M0 4 RTS A CTS A 19 RTS B CTS B 20 DTR A DSR A 23 DTR B DSR B 26 25 24 23 T3 R1 R2 R3 R4 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 22 21 20 19 18 17 DCD A DCD B DTR A DTR B RTS A RTS B 16 T4 MAX13172E M0 12 M1 13 M2 14 15 DCE/DTE INVERT 11 NC C11 1µF CABLE WIRING FOR MODE SELECTION PIN 18 PIN 7 V.35 RS-449. V.36 N.C. PIN 7 RS-232 MODE CABLE WIRING FOR DTE/DCE SELECTION PIN 21 PIN 7 MODE PIN 25 PIN 7 DTE PIN 7 N.C. DCE N.C. Figure 12. Cable-Selectable Multiprotocol DTE/DCE Port ______________________________________________________________________________________ 15 MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver UNBALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A A′ C C′ RECEIVER Figure 13. Typical V.10/V.28 Interface IZ GENERATOR 3.25mA -3V -10V 100Ω MIN -3.25mA Figure 14. Receiver Input Impedance Curve A′ B′ C′ A MAX13172E R5 55kΩ R8 5kΩ B C Figure 15. Typical V.11 Interface A′ A MAX13172E R5 55kΩ R8 5kΩ R6 11kΩ LOAD CABLE RECEIVER TERMINATION A′ A VZ +10V +3V BALANCED INTERCONNECTING CABLE RECEIVER S3 R6 11kΩ RECEIVER S3 + 1.4V R7 11kΩ B′ R4 55kΩ B S1 S2 C′ GND Figure 16a. V.10 Internal Resistance Network for Receivers 1, 2, and 3 16 C′ GND Figure 16b. V.10 Internal Resistance Network for Receiver 4 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver A A′ R8 5kΩ A MAX13172E R5 55kΩ R6 11kΩ RECEIVER S3 + 1.4V 1.4V R7 11kΩ R4 55kΩ B R7 11kΩ S1 B′ S2 C′ R4 55kΩ B S1 S2 C′ GND GND Figure 17. V.11 Internal Resistance Networks A′ RECEIVER S3 + B′ MAX13172E R5 55kΩ R8 5kΩ R6 11kΩ MAX13172E A′ Figure 18a. V.28 Internal Resistance Network for Receiver 1, 2, and 3 A MAX13172E R5 55kΩ R8 5kΩ R6 11kΩ RECEIVER S3 C′ GND Figure 18b. V.28 Internal Resistance Network for Receiver 4 ______________________________________________________________________________________ 17 MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver C6 C7 C8 100pF 100pF 100pF 3 8 11 VCC 5V 12 13 MAX13174E 14 25 C4 4.7µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 T2 7 C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 18 17 16 15 R2 10 DTE_RXD/DCE_TXD VEE 20 19 R1 9 DTE_RXC/DCE_SCTE + DCE RXD A RXD B RXC A RXC B T3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 T1 21 M0 27 26 CHARGE PUMP 2 4 LATCH C2 1µF M1 1 C1 1µF VCC DCE/DTE M2 C3 4.7µF C13 1µF 28 3 R3 3 16 7 MAX13170E M0 M1 13 M2 14 DCE/DTE TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 12 1 SHIELD DB-25 CONNECTOR C9 1µF C10 1µF DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR VCC 1 2 3 4 5 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 7 8 10 9 28 VCC VEE VDD GND T1 T2 27 C11 1µF 26 25 24 23 4 RTS A 19 RTS B 20 DTR A 23 DTR B 22 21 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 18 LLA DSR A DSR B T3 R1 R2 R3 R4 20 19 18 17 16 T4 MAX13172E M0 12 15 M1 INVERT 13 M2 14 DCE/DTE 11 INVERT DCE/DTE M2 M1 M0 Figure 19. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector 18 CTS A CTS B ______________________________________________________________________________________ DCD A DCD B DTR A DTR B RTS A RTS B LLA +5V Multiprotocol, Software-Selectable Clock Transceiver MAX13172E C6 C7 C8 100pF 100pF 100pF 3 8 VCC 5V 11 12 13 MAX13174E 14 27 26 CHARGE PUMP 2 4 25 C4 4.7µF RXD 5 RXC 6 T2 VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC 3 16 17 9 15 12 24 11 18 17 16 15 R2 10 TXD + 20 19 R1 9 SCTE 21 RXD A (104) RXD B RXC A (115) RXC B T3 8 TXC 2 C5 4.7µF 24 23 22 21 T1 7 LATCH C2 1µF M0 1 C1 1µF VCC DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 R3 2 14 7 MAX13170E M0 M1 13 M2 14 DCE/DTE TXC A (114) TXC B SCTE A (113) SCTE B TXD A (103) TXD B SGND (102) 11 12 C9 1µF C10 1µF DSR VCC 1 3 4 5 DCD DTR RTS LL SHIELD (101) DB-25 FEMALE CONNECTOR 2 CTS 1 6 7 8 10 9 28 VCC VEE VDD GND T1 T2 27 C11 1µF 26 25 24 23 5 13 6 22 22 21 8 10 20 19 18 17 20 23 4 19 16 18 CTS A (106) CTS B DSR A (107) DSR B T3 R1 R2 R3 R4 DCD A (109) DCD B DTR A (108) DTR B RTS A (105) RTS B LL A (141) T4 MAX13172E M0 12 15 M1 INVERT 13 M2 14 NC DCE/DTE 11 INVERT M2 M1 M0 Figure 20. Controller-Selectable DCE Port with DB-25 Connector ______________________________________________________________________________________ 19 MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver C6 C7 C8 100pF 100pF 100pF 3 8 11 VCC 5V 12 13 MAX13174E 14 27 26 CHARGE PUMP 2 4 25 C4 4.7µF TXD 5 SCTE 6 T1 T2 7 R1 9 RXC R2 10 RXD 21 2 C5 4.7µF VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 24 23 22 21 2 TXD A (103) 14 TXD B 24 SCTE A (113) 11 SCTE B 20 19 15 12 18 17 16 15 17 9 T3 8 TXC LATCH C2 1µF M0 1 C1 1µF VCC DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 R3 3 16 7 MAX13170E M0 12 M1 13 M2 14 DCE/DTE TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG 11 1 SHIELD DB-25 MALE CONNECTOR C9 1µF C10 1µF VCC 1 2 RTS DTR 3 4 5 DCD DSR CTS LL 6 7 8 10 9 28 VCC VEE VDD GND T1 T2 27 C11 1µF 26 25 24 23 4 RTS A (105) 19 RTS B 20 DTR A (108) 23 DTR B 22 21 20 19 18 17 8 DCD A (109) 10 DCD B 6 DSR A (107) 22 DSR B 5 CTS A (106) 13 CTS B 16 18 T3 R1 R2 R3 R4 LL A (141) T4 MAX13172E M0 12 15 M1 INVERT 13 M2 14 DCE/DTE 11 INVERT M2 M1 M0 Figure 21. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector 20 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Clock Transceiver Chip Information PROCESS: BiCMOS TOP VIEW + VCC 1 28 VEE VDD 2 27 GND T1IN 3 26 T1OUTA T2IN 4 25 T1OUTB R1OUT 6 Package Information 24 T2OUTA T3IN 5 MAX13172E 23 T2OUTB R2OUT 7 22 T3OUTA/R1INA R3OUT 8 21 T3OUTB/R1INB For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. T4IN 9 20 R2INA R4OUT 10 19 R2INB PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. M0 11 18 R3INA 28 SSOP A28+2 21-0056 90-0095 M1 12 17 R3INB M2 13 16 T4OUTA/R4INA 15 INVERT DCE/DTE 14 SSOP ______________________________________________________________________________________ 21 MAX13172E Pin Configuration MAX13172E +5V Multiprotocol, Software-Selectable Clock Transceiver Revision History REVISION NUMBER REVISION DATE 0 7/09 Initial release 1 8/11 Updated soldering temperature in Absolute Maximum Ratings, updated Fail-Safe section, updated Package Information section, and added lead-free indicator to Pin Configuration DESCRIPTION PAGES CHANGED — 2, 23, 38 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX13172ECAI+T 价格&库存

很抱歉,暂时无法提供与“MAX13172ECAI+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货