0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX1436EVKIT

MAX1436EVKIT

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL KIT FOR MAX1436

  • 数据手册
  • 价格&库存
MAX1436EVKIT 数据手册
19-3741; Rev 1; 8/10 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits The MAX1434/MAX1436/MAX1437/MAX1438 evaluation kits (EV kits) are fully assembled and tested circuit boards that contain all the components necessary to evaluate the performance of this family of octal 10-/12bit analog-to-digital converters (ADCs). These ADCs accept differential analog input signals. The EV kits generate these signals from user-provided singleended input sources. The EV kits’ digital outputs can be easily sampled with a user-provided high-speed logic analyzer or data-acquisition system. The EV kits also feature an on-board deserializer to simplify integration with standard logic analysis systems. The EV kits operate from 1.8V and 3.3V (plus 1.5V if the FPGA is used) power supplies and include circuitry that generates a clock signal from an AC signal provided by the user. Features o Low-Voltage and Low-Power Operation o Optional On-Board Clock-Shaping Circuitry o Serial Scalable Low-Voltage Signaling (SLVS)/Low-Voltage Differential Signaling (LVDS) Outputs o On-Board LVPECL Differential Output Drivers o On-Board Deserializer o LVDS Test Mode o Fully Assembled and Tested Part Selection Table Ordering Information BITS SPEED (Msps) PART TYPE MAX1434ECQ+D 10 50 MAX1434EVKIT EV Kit MAX1436ECQ+D 12 40 MAX1436EVKIT EV Kit MAX1437ECQ+D 12 50 MAX1437EVKIT EV Kit MAX1438ECQ+D 12 65 MAX1438EVKIT EV Kit PART NUMBER +Denotes lead(Pb)-free and RoHS compliant. D = Dry Pack. Component List DESIGNATION QTY C1–C8, C10, C11, C12, C57–C64, C81–C85, C139, C140, C147–C156 36 DESCRIPTION 0.1µF ±10%, 10V X5R ceramic capacitors (0402) TDK C1005X5R1A104K C9, C29–C44, C56, C77, C78, C80, C92, C93, C134–C137, C146 28 C13–C20, C65–C72 0 Not installed, ceramic capacitors (0603) C21–C28, C126–C133 16 39pF ±5%, 50V C0G ceramic capacitors (0402) TDK C1005C0G1H390J 1.0µF ±10%, 6.3V X5R ceramic capacitors (0402) TDK C1005X5R0J105K DESIGNATION QTY DESCRIPTION C45, C46, C47, C86–C89, C143 8 220µF ±20%, 6.3V tantalum capacitors (C-case) AVX TPSC227M006R0250 C48, C49, C50, C144 0 Not installed, capacitors (C-case) C51, C52, C53, C90, C91, C145 6 10µF ±10%, 10V X5R ceramic capacitors (1210) TDK C3225X5R1A106K C54 1 2.2µF ±20%, 6.3V X5R ceramic capacitor (0603) TDK C1608X5R0J225M C55, C157–C176 21 0.01µF ±10%, 25V X7R ceramic capacitors (0402) TDK C1005X7R1E103K C73–C76, C122–C125 0 Not installed, ceramic capacitors (0402) ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 General Description MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Component List (continued) DESIGNATION QTY C79, C138, C142 C94–C121 C141 D1 DESCRIPTION 3 10µF ±10%, 4V X5R ceramic capacitors (0603) TDK C1608X5R0G106K 28 0.1µF ±20%, 6.3V X5R ceramic capacitors (0201) TDK C0603X5R0J104M 1 1 100µF ±20%, 6.3V X5R ceramic capacitor (1210) TDK C3225X5R0J107M Dual Schottky diode (SOT23) Central Semi CMPD6263S or Diodes Inc. BAS70-04 DESIGNATION QTY DESCRIPTION R45–R50, R100–R103 10 100Ω ±1% resistors (0603) R51 1 100kΩ potentiometer, 19-turn, 3/8in R52, R53, R56 3 4.02kΩ ±1% resistors (0603) R54 1 5kΩ potentiometer, 19-turn, 3/8in R55 1 2kΩ ±1% resistor (0603) R57 1 13.0kΩ ±1% resistor (0603) R94, R95 2 4.7kΩ ±5% resistors (0603) R96, R97 2 330Ω ±5% resistors (1206) R99 1 162Ω ±1% resistor (0603) R104 1 10kΩ ±5% resistor (0603) D2, D3 2 Green surface-mount LEDs (0603) SW1 1 Momentary contact switch IN0–IN7, CLOCK 9 SMA PC-mount vertical connectors T1–T8 8 1:1 800MHz RF transformers Mini-Circuits ADT1-1WT J1–J8, JU14 9 2-pin headers J9–J13, J15 6 Dual-row, 40-pin (2 x 20) headers TP1–TP8, TP13, TP14, TP15 0 Test points, not installed J14 1 9-pin header TP9–TP12 4 PC test points (red) TP16 1 PC test point (black) U1 1 See EV kit specific component list U2 1 Single LVDS line receivers (8 SO) Maxim MAX9111ESA U3 1 Low-noise, low-distortion op amp (5 SOT23) Maxim MAX4250EUK U4 1 TinyLogic UHS dual inverter (6 SC70) Fairchild NC7WZ04P6X U5 1 Virtex II platform FPGA (256 FGBGA) Xilinx XC2V80-5FG256C or Xilinx XC2V80-5FG256I U6 1 PROM (SO-20) Xilinx XC18V01SO20C U7–U16 10 LVDS/anything-to-LVPECL translators (8 µMAX®) Maxim MAX9375EUA None 14 Shunts (JU1–JU14) None 1 PCB: MAX1434/6/7/8 EVALUATION KIT JU1–JU11, JU13 12 3-pin headers JU12 1 Dual-row, 8-pin (2 x 4) header 1 Digital logic n-channel MOSFET (SOT23) Central Semi 2N7002 N1 R1–R8, R22–R25, R62–R73 0 R9–R16, R26–R35, R77–R81, R87–R93, R98 0 R17–R21, R58–R61 9 49.9Ω ±1% resistors (0603) R36, R105–R133 30 49.9Ω ±1% resistors (0402) R37–R44, R74, R75, R76, R82–R86 16 10Ω ±1% resistors (0805) Not installed, resistors (0603) Not installed, resistors (0402) µMAX is a registered trademark of Maxim Integrated Products, Inc. 2 _______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits EV KIT PART NUMBER DESIGNATION MAX1434EVKIT DESCRIPTION MAX1434ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm) MAX1436EVKIT U1 MAX1437EVKIT MAX1438EVKIT MAX1436ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm) MAX1437ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm) MAX1438ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm) Component Suppliers SUPPLIER PHONE WEBSITE AVX Corporation 843-946-0238 www.avxcorp.com Central Semiconductor Corp. 631-435-1110 www.centralsemi.com Diodes Incorporated 805-446-4800 www.diodes.com Fairchild Semiconductor Corp. 888-522-5372 www.fairchildsemi..com Mini-Circuits 718-934-4500 www.minicircuits.com TDK Corp. 847-803-6100 www.component.tdk.com Note: Indicate that you are using the MAX1434, MAX1436, MAX1437, or MAX1438 when contacting these component suppliers. Quick Start Recommended Equipment • DC power supplies: Clock (CVDD) 3.3V, 100mA Analog (AVDD) 1.8V, 500mA Digital (OVDD) 1.8V, 150mA Procedure The EV kit is a fully assembled and tested surfacemount board. Follow the steps below to verify board operation. Do not turn on power supplies or enable signal generators until all connections are completed. 1) Verify that shunts are installed in the following locations: JU1 (pins 2-3) → single termination Optional Buffers (VPECL) 3.3V, 400mA Deserializer Core (VD1.5) 1.5V, 200mA Deserializer I/O (VD3.3) 3.3V, 200mA • Signal generator with low phase noise and low jitter for clock input signal (e.g., HP 8662A, HP 8644B) • Signal generator for analog signal inputs (e.g., HP 8662A, HP 8644B) • Logic analyzer or data-acquisition system (e.g., HP 16500C, TLA715) • Analog bandpass filters (e.g., Allen Avionics, K&L Microwave) for input signal and clock signal • Digital voltmeter JU2 (pins 2-3) → LVDS outputs JU3 (pins 2-3) → normal operation JU4 (pins 2-3) → ADC enabled JU7 (pins 2-3) → two’s-complement output JU8 (pins 2-3) → FPGA enabled JU9, JU10, JU11 (pins 2-3) → channels 0–3 output from FPGA JU12 (pins 3-4) → internal reference enabled JU14 (not installed) → disconnect external reference buffer 2) Verify that shunts are installed in the following locations for configuring the specific EV kit: a) JU5 (pins 1-2), JU6 (pins 2-3), JU13 (pins 2-3) → 39MHz to 50MHz clock frequency range for the MAX1434 EV kit. _______________________________________________________________________________________ 3 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Component List Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits b) JU5 (pins 1-2), JU6 (pins 2-3), JU13 (pins 2-3) → 32.5MHz to 40MHz clock frequency range for the MAX1436 EV kit. c) JU5, JU6, JU13 (pins 2-3) → 45MHz to 50MHz clock frequency range for the MAX1437 EV kit. d) JU5, JU6, JU13 (pins 2-3) → 45MHz to 65MHz clock frequency range for the MAX1438 EV kit. 3) Connect the clock signal generator to the input of the clock bandpass filter. 4) Connect the output of the clock bandpass filter to the clock SMA connector. 5) Connect the analog input signal generator to the input of the analog bandpass filter. 6) Connect the output of the analog bandpass filter to either one of the SMA connectors labeled IN0–IN7. The analog input signals can also be monitored at the 2-pin headers J1–J8. Note: All eight channels can be operated independently or simultaneously. 7) Connect the logic analyzer to either header J9 (SLVS- or LVDS-compatible signals) or J10–J13 (deserialized 3.3V CMOS-compatible signals). See the Output Bit Locations section in this document for header connections. 8) Connect the 1.8V, 500mA power supply to AVDD. Connect the ground terminal of this supply to GND. 9) Connect the 1.8V, 150mA power supply to OVDD. Connect the ground terminal of this supply to GND. 10) Connect the 3.3V, 100mA power supply to CVDD. Connect the ground terminal of this supply to GND. 11) Connect the 3.3V, 400mA power supply to VPECL. Connect the ground terminal of this supply to GND. 12) Connect the 1.5V, 200mA power supply to VD1_5. Connect the ground terminal of this supply to GND. 13) Connect the 3.3V, 200mA power supply to VD3_3. Connect the ground terminal of this supply to GND. 14) Turn on the VD3_3 power supply. 15) Turn on the VD1_5 power supply. 16) Verify that the PROGRAMMING LED (D2) and the LOCKED LED (D3) are off. 17) Turn on the remaining power supplies. 18) Enable the signal generators. Set the clock signal generator to output as specified to configuration signal, with a 2.6VP-P amplitude or higher. Set the analog input signal generators to output the desired 4 frequency with an amplitude ≤1.4VP-P. All signal generators should be phase-locked. 19) Verify that the PROGRAMMING LED (D2) is off. 20) Momentarily press switch SW1 and verify that the LOCKED LED (D3) is on. 21) Enable the logic analyzer. 22) Collect data using the logic analyzer. Detailed Description of Hardware The EV kit is a fully assembled and tested circuit board that contains all the components necessary to evaluate the performance of the MAX1438, MAX1437, MAX1436, or MAX1434. The ADCs accept differential input signals; however, on-board transformers (T1–T8) convert the singleended signals applied to the IN0–IN7 SMA connectors, to the required differential signal. The input signals of the ADC can be measured using a differential oscilloscope probe at headers J1–J8. Output level translators (U7–U16) buffer and convert the SLVS or LVDS output signals of the ADC to higher voltage LVPECL signals, which can be captured by a wide variety of logic analyzers. The SLVS/LVDS output signals are accessible at header J9 and the LVPECL output signals are accessible at header J15. The EV kit PC board is designed as a six-layer board to optimize performance of the ADC. Separate analog, digital, clock, and buffer power planes minimize noise coupling between analog and digital signals. 50Ω coplanar transmission lines are used for analog and clock inputs. 100Ω differential coplanar transmission lines are used for all digital LVDS outputs. All differential outputs are terminated with 100Ω termination resistors between the true and complementary digital outputs. The trace lengths of the 100Ω differential SLVS/LVDS lines are matched to within a few thousands of an inch to minimize layout-dependent data skew. Power Supplies For best performance, the EV kit requires separate analog, digital, clock, and buffer power supplies. Two 1.8V power supplies are used to power the analog (AVDD) and digital (OVDD) portion of the ADC. The clock circuitry (CVDD) is powered by a 3.3V power supply. A separate 3.3V power supply (VPECL) is used to power the output buffers (U7–U16) of the EV kit. 1.5V (VD1_5) and 3.3V (VD3_3) power supplies are required to power the deserializer circuit. _______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Table 2. MAX1434 PLL Jumper Settings (JU5, JU6, JU13) Table 1. Power-Down Jumper Settings (JU4) 2-3* AVDD GND EV KIT FUNCTION ADC disabled ADC enabled *Default configuration: JU4 (2-3). Clock By default, the user-provided AC-coupled clock signal applied to the EV kit CLOCK SMA connector is buffered on board with two inverters (U4). In this mode, diode D1 limits the amplitude of the clock signal. Overdriving the clock input can increase the slew rate of the differential signal, thereby reducing clock jitter. The frequency of the signal should not exceed the maximum sampling rate of the ADC. The sinusoidal input signal frequency (fCLK) determines the sampling rate of the ADC. The clock signal applied to the ADC can be observed at test point TP10. Optional Clock-Shaping Circuit The EV kit also features an optional on-board clockshaping circuit that generates a clock signal with variable duty cycle from the AC-coupled sine-wave signal applied to the CLOCK SMA connector. The MAX9111 differential line receiver (U2) processes the clock input signal and generates the required CMOS clock signal. To use this circuitry, cut the trace on the printed circuit (PC) board at R78 and install 0Ω resistors at R35 and R77. The signal’s duty cycle can be adjusted with potentiometer R54. With a 3.3V clock supply voltage (CVDD), a clock signal with a 50% duty cycle (recommended) can be achieved by adjusting R54 until a voltage of 1.32V is produced across test points TP12 and TP16. SHUNT POSITION 1-2 POWER-DOWN CONNECTIONS JU13 (PLL1) JU6 (PLL2) JU5 (PLL3) MIN MAX 2-3 2-3 2-3 2-3* 2-3* 1-2* 39.0 Unused 50.0 2-3 1-2 2-3 27.0 39.0 2-3 1-2 1-2 19.5 27.0 1-2 2-3 2-3 13.5 19.5 1-2 2-3 1-2 9.8 13.5 1-2 1-2 2-3 6.8 9.8 1-2 1-2 1-2 4.8 6.8 *Default configuration: JU5, JU6 (2-3), JU13 (1-2). Table 3. MAX1436 PLL Jumper Settings (JU5, JU6, JU13) CLOCK INPUT RANGE (MHz) JUMPER JU13 (PLL1) SHUNT POSITION SHUNT POSITION CLOCK INPUT RANGE (MHz) JUMPER JU6 (PLL2) JU5 (PLL3) MIN MAX 2-3 2-3 2-3 2-3* 2-3* 1-2* 32.5 Unused 40.0 2-3 1-2 2-3 22.5 32.5 2-3 1-2 1-2 16.3 22.5 1-2 2-3 2-3 11.3 16.3 1-2 2-3 1-2 8.1 11.3 1-2 1-2 2-3 5.6 8.1 1-2 1-2 1-2 4.0 5.6 *Default configuration: JU5, JU6 (2-3), JU13 (1-2). PLL Frequency Mode Selection When driving the EV kit with clock signals lower than the maximum specified sampling rate of the ADC, the phased-locked-loop (PLL) circuit of the ADC must be set accordingly. Refer to the PLL Inputs (PLL0–PLL3) section in the ADC data sheet for further details about the operation of the internal PLL. Jumpers JU5, JU6, and JU13 control the PLL mode of the ADC. See Tables 2, 3, 4, or 5 for shunt positions. Configure jumpers JU5, JU6, and JU13 accordingly and ensure that the clock signal frequency falls between the minimum and maximum limits listed in Table 2 through Table 5. _______________________________________________________________________________________________________ 5 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Power-Down Jumper JU4 controls the power-management feature of data converter U1. See Table 1 for jumper JU4 shunt positions. Table 4. MAX1437 PLL Jumper Settings (JU5, JU6, JU13) CLOCK INPUT RANGE (MHz) SHUNT POSITION JUMPER JU13 (PLL1) JU6 (PLL2) JU5 (PLL3) 2-3* 2-3* 2-3* 45.0 50.0 2-3 2-3 1-2 32.5 45.0 2-3 1-2 2-3 22.5 32.5 2-3 1-2 1-2 16.3 22.5 1-2 2-3 2-3 11.3 16.3 1-2 2-3 1-2 8.1 11.3 1-2 1-2 2-3 5.6 8.1 1-2 1-2 1-2 4.0 5.6 MIN MAX Table 6. Reference Jumper Settings (JU12) SHUNT POSITION Table 5. MAX1438 PLL Jumper Settings (JU5, JU6, JU13) CLOCK INPUT RANGE (MHz) JUMPER JU13 (PLL1) JU6 (PLL2) JU5 (PLL3) MIN MAX 2-3* 2-3* 2-3* 45.0 65.0 2-3 2-3 1-2 32.5 45.0 2-3 1-2 2-3 22.5 32.5 2-3 1-2 1-2 16.3 22.5 1-2 2-3 2-3 11.3 16.3 1-2 2-3 1-2 8.1 11.3 1-2 1-2 2-3 5.6 8.1 1-2 1-2 1-2 4.0 5.6 *Default configuration: JU5, JU6, JU13 (2-3). REFADJ PIN CONNECTION EV KIT FUNCTION 1-2 Connected to AVDD Internal reference disabled. Apply an external reference voltage at the REFIO pad. Verify that a shunt is installed on jumper JU14. 3-4* Connected to GND Internal reference enabled. Verify that a shunt is not installed on jumper JU14. 5-6** Connected to REFIO through R57 and R51 Increase full-scale range by adjusting potentiometer R51. 7-8** Connected to GND through R57 and R51 Compensate for gain errors by adjusting potentiometer R51. *Default configuration: JU5, JU6, JU13 (2-3). SHUNT POSITION Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits *Default configuration: JU12 (3-4). **Refer to the Full-Scale Range Adjustments using the Internal Reference section in the MAX1434, MAX1436, MAX1437, or MAX1438 IC data sheet. ence. Use the 2 x 4 header JU12 to configure the desired reference mode. See Table 6 for the appropriate shunt settings. Output Signal The ADC features eight serial LVDS-compatible digital outputs. Each output transmits the converted analog input signals of channels 0 through 7. Two additional outputs (CLKOUT and FRAME) are provided for data synchronization. Refer to the MAX1434, MAX1436, MAX1437, or MAX1438 data sheet for more details. Output Format The digital output coding can be chosen to be two’s complement or straight offset binary by configuring jumper JU7. See Table 7 for the appropriate jumper configuration. Input Signal Although the ADC accepts differential analog input signals, the EV kit only requires a single-ended analog input signal with an amplitude of less than 1.4VP-P provided by the user. On-board transformers (T1–T8) convert the single-ended analog input signal and generate differential analog signals at the ADCs’ differential input pins. Connect the single-ended analog input signals to SMA connectors IN0–IN7 for channel 0 to channel 7, respectively. Reference Voltage The EV kit can be configured to use the ADC’s 1.24V internal reference, or a stable, low-noise, external refer6 Table 7. Output Format Jumper Settings (JU7) SHUNT POSITION T/B PIN CONNECTION DESCRIPTION 1-2 AVDD Straight Offset Binary Selected. Digital output in straight offset binary format. 2-3* GND Two’s Complement Selected. Digital output in two’scomplement format. *Default configuration: JU7 (2-3). _______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Table 8. Double-Termination Jumper Settings (JU1) SHUNT POSITION DT PIN CONNECTION EV KIT FUNCTION 1-2 AVDD Double Termination Selected. Outputs are double-terminated. 2-3* GND Single Termination Selected. Outputs are single-terminated. *Default configuration: JU1 (2-3). SLVS/LVDS Outputs The ADC is capable of generating SLVS or LVDS signals at its outputs. Jumper JU2 controls this feature of the ADC. See Table 9 for shunt positions. Regardless of which output signal type is selected, the output buffers (U7–U16) will convert the data to LVPECL logic levels. When operating in SLVS output mode, JU1 must be configured for double-termination (shunt across pins 1 and 2). Table 9. SLVS/LVDS Jumper Settings (JU7) SHUNT POSITION SLVS/LVDS PIN CONNECTION 1-2 AVDD SLVS 2-3* GND LVDS ADC OUTPUT *Default configuration: JU7 (2-3). LVDS Test Pattern To debug signal integrity problems, the ADC can generate a factory-set test pattern on all of the output channels. Jumper JU3 controls this feature. See Table 10 for the appropriate shunt positions. The test pattern for the MAX1436, MAX1437, and MAX1438 is 0000 1011 1101. The test pattern for the MAX1434 is 00 0101 1101 (MSB to LSB). Table 10. LVDS Test Pattern Jumper Settings (JU3) SHUNT POSITION LVDSTEST PIN CONNECTION EV KIT FUNCTION 1-2 AVDD Test pattern transmitted, LSB first, on all SLVS/LVDS outputs 2-3* GND Normal operation *Default configuration: JU3 (2-3). Output Bit Locations The digital outputs of the ADC are connected to the 40pin header J9. All PC board trace lengths are matched to minimize data skew and improve the overall dynamic performance of the device. Additionally, 10 drivers (U7–U16) buffer and level-translate the digital outputs to LVPECL-compatible signals. The drivers increase the differential voltage swing, and are capable of driving large capacitive loads, which may be present at the logic analyzer connection. The outputs of the buffers are connected with 40-pin header J15. See Table 11 for bit locations of headers J9 and J15. Table 11. Output Bit Locations UNBUFFERED BUFFERED DESCRIPTION (LVDS or SLVS) (LVPECL) SIGNAL CH0 CH1 CH2 CH3 CLKOUT FRAME CH4 CH5 CH6 CH7 P J9-1 J15-1 N J9-2 J15-2 P J9-5 J15-5 N J9-6 J15-6 P J9-9 J15-9 N J9-10 J15-10 P J9-13 J15-13 N J9-14 J15-14 P J9-17 J15-17 N J9-18 J15-18 P J9-21 J15-21 N J9-22 J15-22 P J9-25 J15-25 N J9-26 J15-26 P J9-29 J15-29 N J9-30 J15-30 P J9-33 J15-33 N J9-34 J15-34 P J9-37 J15-37 N J9-38 J15-38 Channel 0 Channel 1 Channel 2 Channel 3 Clock Frame Channel 4 Channel 5 Channel 6 Channel 7 P = True (+). N = Complementary (-). _______________________________________________________________________________________ 7 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Double-Termination Settings The ADC features trimmed, internal 100Ω termination resistors between the positive (true) and negative (complementary) line of each output (D0–D7, CLKOUT, and FRAME). The EV kit circuit also features 100Ω termination resistors located at the far end of each differential output pair. Activating the internal termination helps eliminate unwanted reflections on the signal traces. Use jumper JU1 to activate either single or double-termination. See Table 8 for appropriate shunt positions that select the termination architecture. Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits On-Board Deserializer Deserializer Output Enabled The EV kit features an on-board deserializer that converts the serial outputs of the ADC to a parallel data stream. The deserializer uses a delay-locked loop (DLL) to synchronize itself with the incoming serial data stream. After every change in ADC clock frequency, reset this DLL by pressing switch SW1. If the LOCKED LED D3 is not lit, the serial data stream is not synchronized and the outputs of the deserializer are not valid. Channel 0 through channel 7 data is captured on headers J10–J13. Only four channels can be captured at one time on the EV kit. Configure jumpers JU9, JU10, and JU11 to select the location of the channels. See Table 12 for jumper JU9, JU10, JU11 configuration. See Table 13 for bit locations. Jumper JU8 controls the output enabled of the deserializer. See Table 14 for jumper JU8 configuration. Table 14. Deserializer Output Enables (JU8) SHUNT POSITION EV KIT FUNCTION 1-2 Deserializer output disabled 2-3* Deserializer output enabled *Default configuration: JU8 (2-3). Table 12. Output Channel Locations (JU9, JU10, JU11) JU9 (S2) JU10 (S1) JU11 (S0) SHUNT SHUNT SHUNT POSITION POSITION POSITION J10 J11 J12 J13 2-3 2-3 2-3 CH0 CH1 CH2 CH3 2-3 2-3 1-2 CH4 CH5 CH6 CH7 2-3 1-2 2-3 CH0 CH4 CH1 CH5 2-3 1-2 1-2 CH0 CH6 CH1 CH7 1-2 2-3 2-3 CH2 CH4 CH3 CH5 1-2 2-3 1-2 CH2 CH6 CH3 CH7 Table 13. Output Bit Locations (J10–J13) BIT POSITION CLK J10-38 J11-38 J12-38 J13-38 D11 J10-26 J11-26 J12-26 J13-26 D10 J10-24 J11-24 J12-24 J13-24 D9 J10-22 J11-22 J12-22 J13-22 D8 J10-20 J11-20 J12-20 J13-20 D7 J10-18 J11-18 J12-18 J13-18 D6 J10-16 J11-16 J12-16 J13-16 D5 J10-14 J11-14 J12-14 J13-14 D4 J10-12 J11-12 J12-12 J13-12 D3 J10-10 J11-10 J12-10 J13-10 D2 J10-8 J11-8 J12-8 J13-8 D1 J10-6 J11-6 J12-6 J13-6 D0 J10-4 J11-4 J12-4 J13-4 Note: Odd numbered pins are connected to ground. Remaining pins are no connects. 8 _______________________________________________________________________________________ Figure 1. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—ADC (Sheet 1 of 6) _______________________________________________________________________________________ IN7 IN6 IN5 IN4 IN3 IN2 IN1 R61 49.9Ω 1% R60 49.9Ω 1% R59 49.9Ω 1% R58 49.9Ω 1% R20 49.9Ω 1% R19 49.9Ω 1% R18 49.9Ω 1% R65 SHORT C60 0.1µF R64 SHORT C59 0.1µF R63 SHORT C58 0.1µF R62 SHORT C57 0.1µF R25 SHORT C4 0.1µF R24 SHORT C3 0.1µF R23 SHORT C2 0.1µF R22 SHORT 2 4 3 6 5 T8 4 3 1 2 6 5 T7 4 1 2 3 6 5 T6 4 1 2 3 6 5 T5 4 1 2 3 6 5 1 4 3 T4 2 6 5 T3 4 3 1 2 5 6 3 T2 4 5 1 2 R73 SHORT C64 TP8 0.1µF R72 SHORT R71 SHORT C63 TP7 0.1µF R70 SHORT R69 SHORT C62 TP6 0.1µF R68 SHORT R67 SHORT C61 TP5 0.1µF R66 SHORT R8 SHORT C8 TP4 0.1µF R7 SHORT R6 SHORT C7 TP3 0.1µF R5 SHORT R4 SHORT C6 TP2 0.1µF R3 SHORT R2 SHORT C72 SHORT C71 SHORT C70 SHORT C69 SHORT C68 SHORT C67 SHORT C66 SHORT C65 SHORT C20 SHORT C19 SHORT C18 SHORT C17 SHORT C16 SHORT C15 SHORT C14 SHORT C125 OPEN R86 10Ω 1% R85 10Ω 1% C124 OPEN R84 10Ω 1% R83 10Ω 1% C123 OPEN R82 10Ω 1% R76 10Ω 1% C122 OPEN R75 10Ω 1% R74 10Ω 1% C76 OPEN R44 10Ω 1% R43 10Ω 1% C75 OPEN R42 10Ω 1% R41 10Ω 1% C74 OPEN R40 10Ω 1% R39 10Ω 1% C73 OPEN R38 10Ω 1% C133 39pF C132 39pF C131 39pF C130 39pF C129 39pF C128 39pF C127 39pF C126 39pF C28 39pF C27 39pF C26 39pF C25 39pF C24 39pF C23 39pF C22 39pF R98 SHORT R16 OPEN R93 SHORT R92 SHORT R15 OPEN R91 SHORT R90 SHORT R14 OPEN R89 SHORT R88 SHORT R13 OPEN R87 SHORT R33 SHORT R12 OPEN R32 SHORT R31 SHORT R11 OPEN R30 SHORT R29 SHORT R10 OPEN R28 SHORT R27 SHORT R9 OPEN J8 J7 J6 J5 J4 J3 J2 J1 29 28 24 23 21 20 18 17 9 8 6 5 3 2 98 28 IN6N IN6P IN5N IN5P IN4N IN4P IN3N IN3P IN2N IN2P IN1N IN1P IN0N IN0P IN7N 29 AVDD 1 AVDD 4 AVDD AGND AVDD AGND AVDD AGND AVDD 7 10 16 19 U1 MAX1434 ADC FOR MAX1434 EVKIT MAX1436 ADC FOR MAX1436 EVKIT MAX1437 ADC FOR MAX1437 EVKIT MAX1438 ADC FOR MAX1438 EVKIT AVDD AVDD AGND 22 25 26 27 30 36 92 96 99 100 89 AGND 97 AVDD AGND C5 TP1 0.1µF AVDD AGND 6 AVDD AGND T1 AGND 1 CVDD AGND R26 SHORT OVDD AGND C21 39pF OVDD AGND C13 SHORT OVDD N.C. AGND AGND AGND AVDD C79 10µF OUT3N OUT3P OUT2N OUT2P OUT1N OUT1P OUT0N OUT0P 91 C138 10µF REFADJ REFIO CMOUT CLK DT SLVS/LVDS LVDSTEST PD PLL3 PLL2 PLL1 T/B OUT7N OUT7P OUT6N OUT6P OUT5N OUT5P OUT4N OUT4P FRAMEN FRAMEP CLKOUTN CLKOUTP C142 10µF OVDD 14 31 50 51 70 75 76 90 N.C. R1 SHORT OVDD AGND C1 0.1µF OVDD AGND R17 49.9Ω 1% OVDD 43 46 49 54 57 60 63 64 67 71 74 77 OVDD N.C. IN0 AVDD CVDD OVDD N.C. 34 OVDD N.C. 39 40 41 42 86 87 88 OVDD N.C. AVDD OVDD N.C. 94 93 95 35 32 33 80 81 82 83 84 85 44 45 47 48 52 53 55 56 58 59 61 62 65 66 68 69 72 73 78 79 R103 100Ω 1% R102 100Ω 1% R101 100Ω 1% R100 100Ω 1% R50 100Ω 1% R49 100Ω 1% R48 100Ω 1% R47 100Ω 1% R46 100Ω 1% R45 100Ω 1% REFADJ CLK DT SLVS/LVDS LVDSTEST PD PLL3 PLL2 PLL1 T/B OUT7N OUT7P OUT6N OUT6P OUT5N OUT5P OUT4N OUT4P FRAMEN FRAMEP CLKOUTN CLKOUTP OUT3N OUT3P OUT2N OUT2P OUT1N OUT1P OUT0N OUT0P C30 1.0µF C31 1.0µF C32 1.0µF C33 1.0µF C34 1.0µF C35 1.0µF C134 1.0µF C37 1.0µF C135 1.0µF C38 1.0µF C136 1.0µF C39 1.0µF C137 1.0µF C40 1.0µF C41 1.0µF C42 1.0µF C43 1.0µF T/B REFIO DT SLVS/LVDS LVDSTEST PD PLL3 PLL2 TP9 C56 1.0µF 3 3 3 3 3 3 3 3 JU1 2 JU2 2 JU3 2 JU4 2 JU5 2 JU6 2 JU13 2 JU7 2 1 1 1 1 1 1 1 1 AVDD GND VPECL GND AVDD GND OVDD GND CVDD C45 220µF 6.3V C46 220µF 6.3V C47 220µF 6.3V C143 220µF 6.3V VPECL AVDD OVDD CVDD CVDD C144 OPEN C48 OPEN C50 OPEN C49 OPEN PLACE CAPACITORS NEXT TO PINS 43, 46, 49, 54, 57, 60, 63/64, 67, 71, 74, 77 OF U1. OVDD OVDD PLL1 C9 1.0µF C29 1.0µF PLACE CAPACITORS NEXT TO PINS 11/12, 13, 15, 37/38, 39/40, 41/42, 86/87, 88 OF U1. AVDD C145 10µF C51 10µF C53 10µF C52 10µF C44 1.0µF C36 1.0µF C146 1.0µF C77 1.0µF C80 1.0µF C78 1.0µF Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 IN7P OVDD REFN 11 12 13 15 37 38 REFP R37 10Ω 1% MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits 9 10 Figure 2. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—Clock, Voltage Reference (Sheet 2 of 6) ______________________________________________________________________________________ OUT7P OUT6P OUT5P OUT4P FRAMEP CLKOUTP OUT3P OUT2P OUT1P OUT0P C140 0.1µF CVDD 5 VCC J9-39 J9-40 J9-37 J9-38 J9-35 J9-36 J9-33 J9-34 J9-31 J9-32 J9-29 J9-30 J9-27 J9-28 J9-25 J9-26 J9-23 J9-24 J9-21 J9-22 J9-19 J9-20 J9-17 J9-18 J9-15 J9-16 J9-13 J9-14 J9-11 J9-12 J9-10 J9-8 J9-9 J9-6 J9-7 J9-4 J9-3 J9-5 J9-2 2 J9-1 J9 GND 1 Y1 U4 A1 TP10 NC7WZ04 3 4 A2 Y2 6 D1 3 R57 13.0kΩ 1% 3 OUT7N OUT6N OUT5N OUT4N FRAMEN CLKOUTN OUT3N OUT2N OUT1N 1 6 7 R51 100kΩ 2 R35 OPEN 1 OUT0N TP11 CLK REFADJ 2 R CVDD L N.C. OUT 8 U2 VCC BD7P BD6P BD5P BD4P BFMP BCKP BD3P BD2P BD1P BD0P 5 GND JU12-6 JU12-5 J15-8 J15-6 J15-4 J15-2 J15-10 J15 J15-39 J15-40 J15-37 J15-38 J15-35 J15-36 J15-33 J15-34 J15-31 J15-32 J15-29 J15-30 J15-27 J15-28 J15-25 J15-26 J15-23 J15-24 J15-21 J15-22 J15-19 J15-20 J15-17 J15-18 J15-15 J15-16 J15-13 J15-14 J15-11 J15-12 J15-9 J15-7 J15-5 J15-3 J15-1 JU12-8 JU12-4 JU12-3 JU12-7 TP12 R78 SHORT C11 0.1µF JU12-2 JU12 4 2 3 1 JU12-1 N.C. IN1P N.C. IN1N C10 0.1µF C54 2.2µF MAX9111 C55 0.01µF CVDD REFADJ AVDD R55 2kΩ 1% BD7N BD6N BD5N BD4N BFMN BCKN BD3N BD2N BD1N BD0N REFIO R77 OPEN R54 5kΩ TP16 3 1 2 R52 4.02kΩ 1% CVDD C141 100µF R34 SHORT R53 4.02kΩ 1% R56 4.02kΩ 1% CVDD R99 162Ω 1% C12 0.1µF REFIN JU14 R21 49.9Ω 1% 3 2 1 CLOCK IN+ VSS OUT MAX4250 U3 VDD IN- 5 4 CVDD C139 0.1µF Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits ______________________________________________________________________________________ OUT3N OUT3P OUTON 3 2 3 2 IN IN IN IN 1 4 4 U7 8 MAX9375 GND U10 8 5 C147 0.1µF 6 7 OUT OUT 6 7 C163 0.01µF C150 0.1µF OUT OUT C157 0.01µF VPECL 5 MAX9375 VCC GND OUTOP VCC 1 VCC GND R115 49.9Ω 1% R114 49.9Ω 1% R106 49.9Ω 1% R105 49.9Ω 1% R116 49.9Ω 1% BD3N BD3P BDON R107 49.9Ω 1% BDOP C164 0.01µF C158 0.01µF CLKOUTN CLKOUTP OUT1N OUT1P 3 2 3 2 IN IN IN IN 1 1 4 4 U8 8 MAX9375 U11 8 5 OUT 6 7 C165 0.01µF C151 0.1µF OUT VPECL 5 OUT 6 7 C159 0.01µF C148 0.1µF OUT VPECL MAX9375 VCC GND VCC GND VCC GND VCC GND R118 49.9Ω 1% R117 49.9Ω 1% R109 49.9Ω 1% R108 49.9Ω 1% BCKN R119 49.9Ω 1% BCKP BD1N R110 49.9Ω 1% BD1P FRAMEP OUT2N FRAMEN C166 0.01µF C160 0.01µF OUT2P 3 2 3 2 IN IN IN IN 1 1 4 4 U9 8 MAX9375 U12 8 5 6 OUT 6 7 C167 0.01µF C152 0.1µF OUT VPECL 5 OUT 7 C161 0.01µF C149 0.1µF OUT VPECL MAX9375 VCC GND VCC R121 49.9Ω 1% R120 49.9Ω 1% R112 49.9Ω 1% R111 49.9Ω 1% R113 49.9Ω 1% BFMN R122 49.9Ω 1% BFMP BD2N BD2P C168 0.01µF C162 0.01µF Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 GND VCC GND VCC GND VCC GND VPECL MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 3. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—LVPECL Level Translators (Sheet 3 of 6) 11 OUT5N OUT5P OUT4N 3 2 3 2 IN IN IN IN 1 4 4 U13 8 MAX9375 GND U14 8 5 C153 0.1µF 6 7 OUT OUT 6 7 C171 0.01µF C154 0.1µF OUT OUT C169 0.01µF VPECL 5 MAX9375 VCC GND OUT4P VCC 1 VCC GND R130 49.9Ω 1% R129 49.9Ω 1% R124 49.9Ω 1% R123 49.9Ω 1% R125 49.9Ω 1% R131 49.9Ω 1% BD5N BD5P BD4N BD4P C172 0.01µF C170 0.01µF OUT7N OUT7P OUT6N OUT6P 3 2 3 2 IN IN IN IN 1 1 4 4 U15 8 MAX9375 U16 8 5 6 OUT 6 7 C175 0.01µF C156 0.1µF OUT VPECL 5 OUT 7 C173 0.01µF C155 0.1µF OUT VPECL MAX9375 VCC GND VCC GND VCC GND VCC GND VCC 12 GND VPECL R133 49.9Ω 1% R132 49.9Ω 1% R127 49.9Ω 1% R126 49.9Ω 1% R36 49.9Ω 1% BD7N BD7P BD6N R128 49.9Ω 1% BD6P C176 0.01µF C174 0.01µF Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 4. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—LVPECL Level Translators (Sheet 4 of 6) ______________________________________________________________________________________ ______________________________________________________________________________________ BD1N BD1P BD2N BD2P BD3N BD3P BCKN BCKP BFMN BFMP BD4N BD4P BD5N BD5P BD6N BD6P J10-2 J10-4 J10-6 J10-8 J10-10 J10-12 J10-14 J10-16 J10-18 J10-20 J10-22 J10-24 J10-26 J10-28 J10-30 J10-32 J10-34 J10-36 J10-38 J10-40 J10 B13 C13 A12 B12 A10 B10 A9 B9 B8 A8 B7 A7 B5 A5 C4 B4 M1 N1 P1 T3 T4 T7 T8 T9 T10 P16 N16 M16 C10 C11 D11 G16 U5-H LO1N_1 LO1P_1 XC2V80-6FG256C LO3N_1/VRP_1 LO3P_1/VRN_1 L94N_1 L94P_1/VREF_1 L96N_1/GCLK3P L96P_1/GLCK2S L96N_0/GLCK5P L96P_0/GLCK4S L94N_0/VREF_0 L94P_0 LO3N_0/VRP_0 LO3P_0/VRN_0 LO1N_0 LO1P_0 LO1P_2 LO1N_2 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. LO1P_7 LO1N_7 XC2V80–5FG256C CLKDES LO2N_7/VRP_7 L96P_6 L94N_6 LO2N_1 L95N_1/GCLK1P L95P_0/GCLK6S LO3P_4/D3/AVN4 LO2P_0 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. D3 J2 J3 C12 C9 C8 P12 C5 B6 A6 B11 A11 G12 F12 F15 F16 J11-1 J11-3 J11-5 J11-7 J11-9 J11-11 J11-13 J11-15 J11-17 J11-19 J11-21 J11-23 J11-25 J11-27 J11-29 J11-31 J11-33 J11-35 J11-37 J11-39 J11 D16 C16 M6 M11 N6 N11 P6 P11 R5 R6 R11 R12 T6 T11 D1 C1 BD0P BD0N BD7P BD7N J11-2 J11-4 J11-6 J118 J11-10 J11-12 J11-14 J11-16 J11-18 J11-20 J11-22 J11-24 J11-26 J11-28 J11-30 J11-32 J11-34 J11-36 J11-38 J11-40 K1 M2 N2 R4 R7 R8 R9 R10 R13 N15 M15 K16 D10 E10 E11 G2 LO2P_7/VRN_7 LO3P_2/VREF_2 LO3N_2 N.C. N.C. N.C. N.C. LO2P_2/VRN_2 LO2N_2/VRP_2 LO2P_1 L95P_1/GCLK0S L95N_O/GCLK7P N.C. N.C. N.C. N.C. U5-B XC2V80–6FG256C CLKDES L93N_6/VREF_6 L04P_6 LO2N_6/VRP_6 LO2N_5/D6 L94P_5/VREF_5 L96P_5/GCLK6P L96N_4/GCLK1S L94N_4/VREF_4 LO2P_4/D1 LO2N_3/VRP_3 LO4P_3 L93N_3/VREF_3 N.C. N.C. N.C. L93N_7 3 3 U5-A JU9 2 JU8 2 LO4N_6 LO1N_6 LO1P_6 LO1P_5/CS LO1N_5/RDWR L94N_5 L96N_5/GCLK7S L96P_4/GCLKOP L94P_4 LO1P_3 LO1N_3 LO4N_3 N.C. N.C. N.C. L93P_2/VREF_2 1 1 D2 E14 E13 P7 P10 T5 T12 D15 D14 D12 D9 D8 K12 L12 L15 L16 J12-1 J12-3 J12-5 J12-7 J12-9 J12-11 J12-13 J12-15 J12-17 J12-19 J12-21 J12-23 J12-25 J12-27 J12-29 J12-31 J12-33 J12-35 J12-37 J12-39 J12-2 J12-4 J12-6 J12-8 J12-10 J12-12 J12-14 J12-16 J12-18 J12-20 J12-22 J12-24 J12-26 J12-28 J12-30 J12-32 J12-34 J12-36 J12-38 J12-40 J12 J1 K2 L3 M4 N5 N8 N9 N12 M13 L14 K15 J16 C6 C7 D6 G3 XC2V80–6FG256C CLKDES LO2N_0 L95P_4/GCLK2P L94N_2 LO4N_2 L93N_2 L91P_2 L91N_2 L93P_7/VREF_7 LO6P_2 LO6N_2 N.C. N.C. N.C. N.C. N.C. N.C. U5-C L96N_6 L93P_6 LO6N_6 LO3P_6 LO3P_5/D5/AVN5 L95P_5/GCLK4P L95N_4/GCLK3S LO3N_4/D2/AVP4 LO3P_3 LO6N_3 L93P_3 L96N_3 N.C. N.C. N.C. L91P_7 3 JU10 2 1 VD3.3 D5 P9 H13 E15 G15 G14 G13 G1 F14 F13 N7 N10 K5 L5 L2 L1 J13-1 J13-3 J13-5 J13-7 J13-9 J13-11 J13-13 J13-15 J13-17 J13-19 J13-21 J13-23 J13-25 J13-27 J13-29 J13-31 J13-33 J13-35 J13-37 J13-39 J13-2 J13-4 J13-6 J13-8 J13-10 J13-12 J13-14 J13-16 J13-18 J13-20 J13-22 J13-24 J13-26 J13-28 J13-30 J13-32 J13-34 J13-36 J13-38 J13-40 J13 H1 H2 H3 J4 K4 L4 L13 K13 J13 H14 H15 H16 D7 E6 E7 G4 L94N_7 L95N_5/GCLK5S LO3N_5/D4/AVP5 LO2P_5/D7 LO2P_3/VRN_3 LO2P_6/VRN_6 LO3N_3/VREF_3 LO3N_6/VREF_6 L91N_3 L91N_6 L96P_3 L94N_3 N.C. N.C. N.C. N.C. U5-D XC2V80–6FG256C CLKDES L96P_7 L96N_7 L94P_7 L94P_6 L91P_6 LO6P_6 LO6P_3 L91P_3 L94P_3 L94P_2 L96N_2 L96P_2 N.C. N.C. N.C. L91N_7 3 JU11 2 1 VD3.3 H4 P8 P5 P4 N14 N3 M14 M3 K14 K3 J15 J14 G5 F5 F2 F1 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 J10-1 J10-3 J10-5 J10-7 J10-9 J10-11 J10-13 J10-15 J10-17 J10-19 J10-21 J10-23 J10-25 J10-27 J10-29 J10-31 J10-33 J10-35 J10-37 J10-39 VD3.3 VD3.3 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 5. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—Deserializer Input and Outputs (Sheet 5 of 6) 13 14 Figure 6. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—PROM and FPGA (Sheet 6 of 6) ______________________________________________________________________________________ GND VD1_5 GND VD3_3 TCK TMS GND GND GND C87 220µF 6.3V C89 220µF 6.3V D3 D2 D1 D0 D4/CF VCCO 19 7 15 2 16 1 C119 0.1µF VD3.3 E9 F9 F10 E8 F7 F8 H10 H9 H8 H7 G10 G9 G8 G7 C91 10µF C93 1.0µF C94 0.1µF VD3.3 C118 0.1µF C95 0.1µF C96 0.1µF C120 0.1µF M8 L9 L10 M9 K11 J12 J11 G11 H11 VD3.3 TDI-FPGA F11 17 CCLK D2 R96 330Ω VD3.3 PROGRAM H12 C92 1.0µF TDO 8 13 10 3 12 9 R94 4.7kΩ VD3.3 DIN F6 C14 C3 B15 B2 A16 CEO CE CLK D7 D6 OE/RESET 11 GND A1 C90 10µF GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCC VD3.3 U6 14 D5 XC18V01S020 20 GND GND C88 220µF 6.3V VD1.5 6 5 TDI VCC U5-E XC2V80-6FG256C GND C86 220µF 6.3V VD3.3 J7 J8 J9 J10 K7 K8 K9 K10 L6 L11 P3 P14 R2 R15 T1 T16 TCK TMS TDI 4 18 VD3.3 C97 0.1µF C121 0.1µF VCC0_5 VCC0_4 VCC0_4 VCC0_4 VCC0_3 VCC0_3 VCC0_3 VCC0_2 VCC0_2 VCC0_2 VCC0_1 VCC0_1 VCC0_1 VCC0_0 VCC0_0 VCC0_0 C98 0.1µF C110 0.1µF VD1.5 VCCO_5 VCCO_5 VCCO_6 VCCO_6 VCCO_6 VCCO_7 VCCO_7 VCCO_7 VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT U5-F XC2V80-6FG256C DONE R95 4.7kΩ VD3.3 L8 L7 K6 J6 J5 H5 H6 G6 C111 0.1µF C99 0.1µF N13 N4 M12 M5 E12 E5 D13 D4 VD1.5 INIT C100 0.1µF C112 0.1µF VD3.3 C101 0.1µF C113 0.1µF R81 SHORT J14-9 J14-8 J14-7 J14-6 J14-5 J14-4 J14-3 J14-2 J14-1 J14 C102 0.1µF C114 0.1µF R80 SHORT INIT TDI-FPGA TDO TMS CCLK PROGRAM DONE TCK DIN TMS TDI TDO TCK C103 0.1µF C115 0.1µF R79 SHORT VD3.3 P13 A4 C116 0.1µF M2 M1 M0 RSVD RSVD C104 0.1µF R3 P2 T2 A13 C105 0.1µF E4 F3 F4 E16 B1 B16 R1 R16 C106 0.1µF VBATT HSWAP_EN PWRDOWN N.C. N.C. LO4P_7 D3 C108 0.1µF 2 SW1 R104 10kΩ C109 0.1µF C83 0.1µF 3 1 VD3.3 3 N1 R97 330Ω VD3.3 C82 0.1µF TP13 TP14 C107 0.1µF C81 0.1µF VD3.3 A14 B3 T15 M7 1 TP15 VD3.3 M10 E1 LO3P_7/ E3 VREF_7 E2 LO4N_7 LO3N_7 LO6P_7 LO6N_7 LO4P_2 VCCAUX VCCAUX VCCAUX C117 0.1µF LO1P_4/INIT TDI TDO TMS CCLK PROG DONE TCK LO2N_4/DO/DIN VCCAUX T14 LO1N_4/BY/ DOUT A3 RSVD T13 C2 C15 B14 P15 A2 R14 A15 U5-G XC2V80-6FG256C C84 0.1µF C85 0.1µF Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Figure 7. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Component Placement Guide—Component Side ______________________________________________________________________________________ 15 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 8. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout—Component Side 16 ______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Figure 9. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 2)—Ground Planes ______________________________________________________________________________________ 17 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 10. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 3)—Power Planes 18 ______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Figure 11. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 4)—Signal Layer ______________________________________________________________________________________ 19 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 12. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 5)—Signal Layer 20 ______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Figure 13. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout—Solder Side ______________________________________________________________________________________ 21 Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits Figure 14. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Component Placement Guide—Solder Side 22 ______________________________________________________________________________________ MAX1434/MAX1436/MAX1437/MAX1438 Evaluation Kits REVISION NUMBER REVISION DATE 0 6/05 Initial release 1 8/10 Added lead-free parts to Part Selection Table and EV Kit Component List and updated Component Suppliers DESCRIPTION PAGES CHANGED — 1, 3 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23 © 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. Evaluate: MAX1434/MAX1436/MAX1437/MAX1438 Revision History
MAX1436EVKIT 价格&库存

很抱歉,暂时无法提供与“MAX1436EVKIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货