8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
General Description
Benefits and Features
The MAX14752/MAX14753 are 8-to-1 and dual 4-to-1
high-voltage analog multiplexers. Both devices feature
60Ω (typ) on-resistance with 0.03Ω (typ) on-resistance
flatness. These low on-resistance multiplexers conduct
equally well in either direction. Flexible logic levels for
the channel-select interface are defined by the EN input.
The MAX14752 is a 8-to-1 multiplexer and MAX14753 is
a dual 4-to-1 multiplexer. Both devices operate with
dual supplies of ±10V to ±36V, or a single supply of
+20V to +72V.
• Supply Range Accommodates Wide Voltage
The MAX14752/MAX14753 are available in a 16-pin
TSSOP package and are pin compatible with the industry-standard DG408/DG409. Both the MAX14752/
MAX14753 are specified over the extended -40°C to
+85°C operating temperature range.
Applications
• Wide ±36V (max) Bipolar Power Supply
• High +72V (max) Single Power Supply
• Asymmetric Bipolar Power Supply Operation
• Low Leakage Current and RON Improves System
Accuracy
• Low On-Resistance 60Ω (typ)
• 0.03Ω (typ) RON Flatness Over Common-Mode
Voltage Range
• 20nA Low-Input, On-Leakage Current (max)
• Low 25µA IDD Supply Current in Disable Mode
Saves Power
• Easy to Upgrade with Pin-Compatible, IndustryStandard DG408/DG409
Ordering Information
Applications
PART
TEMP RANGE
PIN-PACKAGE
MAX14752EUE+
-40°C to +85°C
16 TSSOP
MAX14753EUE+
-40°C to +85°C
16 TSSOP
Programmable-Logic Controllers
Environment Control Systems
ATE Systems
+Denotes a lead(Pb)-free/RoHS-compliant package.
Medical Monitoring Systems
Pin Configurations appear at end of data sheet.
Functional Diagrams
MAX14752
MAX14753
VSS
VDD
VSS
VDD
IN0
INA0
IN1
INA1
IN2
INA2
IN3
OUTA
INA3
OUT
IN4
INB0
IN5
INB1
IN6
INB2
IN7
INB3
OUTB
CONTROL
S0
19-4255; Rev 5; 5/15
S1
S2
CONTROL
EN
GND
S1
S0
EN
GND
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Absolute Maximum Ratings
VDD to VSS .............................................................-0.3V to +72V
GND to VSS ..............................................................-0.3V to VDD
EN, S0, S1, S2 to GND .................................................................
..............................-0.3V to the lesser of (+12V and VDD + 0.3V)
IN_, INA_, INB_, OUT, OUTA, OUTB to VSS ......................................
...........-2V to (VDD - VSS + 2V) or 100mA (whichever occurs first)
Continuous Current into IN_, INA_,
INB_, OUT, OUTA, OUTB .............................................100mA
Continuous Power Dissipation (TA = +70°C)
16-Pin TSSOP (derate 11.1mW/°C above +70°C) ......890mW
Junction-to-Ambient Thermal Resistance (θJA) (Note 1)
16-Pin TSSOP ..............................................................90°C/W
Junction-to-Case Thermal Resistance (θJC) (Note 1)
16-Pin TSSOP ..............................................................27°C/W
Maximum Operating Temperature Range .........-40°C to +125°C
Junction Temperature ..................................................... +150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC Electrical Characteristics–Dual Supplies
(VDD = +35V, VSS = -35V, VGND = 0V, VEN = +3.3V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
POWER SUPPLY
VDD Supply Voltage Range
VDD
+10
+36
V
VSS Supply Voltage Range
VSS
-10
-36
V
VDD Supply Current
VSS Supply Current
IDD(OFF)
VEN = VS_ = 0V, VIN_ = VINA_= VINB_ = +20V
12
25
IDD(ON)
VEN = +5V, VS_ = 0V or VEN, VIN_ = VINA_=
VINB_ = +20V
270
600
ISS(OFF)
VEN = VS_ = 0V, VIN_ = VINA_= VINB_ = +20V
11
25
ISS(ON)
VEN = +5V, VS_ = 0V or VEN, VIN_ = VINA_=
VINB_ = +20V
260
600
µA
µA
ANALOG MUX
Analog Signal Range
Current Through Multiplexer
On-Resistance
VIN_, VINA_,
VINB_, VOUT,
VOUTA, VOUTB
IIN_, IINA_,
IINB_
RON
On-Resistance Matching
Between Channels
ΔRON
On-Resistance Flatness
RFLAT_(ON)
Output On-Leakage Current
www.maximintegrated.com
IOUT(ON)
VIN_, VINA_, VINB_ = ±20V
VSS
VDD
V
-5
+5
mA
130
Ω
IIN_, IINA_, IINB_ = 5mA; VIN_, VINA_, VINB_,
VOUT, VOUTA, VOUTB = ±20V, Figure 1
60
IIN_, IINA_, IINB_ = 5mA, VIN_, VINA_, VINB_ =
±20V, 0V
0.5
Ω
IIN_, IINA_, IINB_ = 5mA, VIN_, VINA_, VINB_,
VOUT, VOUTA, VOUTB = ±20V
0.03
Ω
MAX14752: VOUT, VOUTA, VOUTB = ±20V,
VIN_, VINA_, VINB_ = unconnected, Figure 2
-20
+20
MAX14753: VOUT, VOUTA, VOUTB = ±20V,
VIN_, VINA_, VINB_ = unconnected, Figure 2
-10
+10
nA
Maxim Integrated | 2
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
DC Electrical Characteristics–Dual Supplies (continued)
(VDD = +35V, VSS = -35V, VGND = 0V, VEN = +3.3V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
Output Off-Leakage Current
Input Off-Leakage Current
SYMBOL
IOUT(OFF)
IIN(OFF)
CONDITIONS
MIN
TYP
MAX
UNITS
MAX14752: VOUT, VOUTA, VOUTB = ±20V,
VIN_, VINA_, VINB_ = -20V, Figure 3
-20
+20
MAX14753: VOUT, VOUTA, VOUTB = ±40V,
VIN_, VINA_, VINB_ = -40V, Figure 3
-10
+10
VOUT, VOUTA, VOUTB = ±20V, VIN_, VINA_,
VINB_ = ±20V, Figure 3
-5
+5
nA
0.8
V
11
V
0.4
mA
0.25 x
VEN
V
nA
LOGIC (EN, S0, S1, S2)
EN Input Voltage Low
EN Input Voltage High
EN, S_ Input Voltage Range
EN Input Current
VEN_IL
VEN_IH
2.1
V
VEN, VS_
IEN_IH(DC)
S0, S1, S2 Input Voltage Low
VIL
S0, S1, S2 Input Voltage High
VIH
VEN = +11V, VS0 = VS1 = VS2 = (0.25 x VEN)
or (0.75 x VEN)
0.75 x
VEN
V
DYNAMIC CHARACTERISTICS
Enable Turn-On Time
tON
VIN0, VINA0 = ±10V, RL = 10kΩ, Figure 4
1
25
µs
Enable Turn-Off Time
tOFF
VIN0, VINA0 = ±10V, RL = 10kΩ, Figure 4
0.8
2
µs
tTRANS
VIN0, VINA0 = ±10V, RL = 10kΩ, Figure 5
10
µs
10
µs
Transition Time
Break-Before-Make Time Delay
tBBM
VIN_, VINA_, VINB_ = ±10V, RL = 10kΩ,
Figure 6
Frequency Response
BW
RS = 50Ω, RL = 1kΩ, Figure 7
Off-Isolation
VISO
VIN_, VINA_, VINB_ = 1VRMS, f = 100kHz,
RL = 50Ω, CL = 15pF, Figure 8
65
dB
Crosstalk
VCT
RS = RL = 50Ω, Figure 9
62
dB
0.0014
%
200
pC
Total Harmonic Distortion Plus
Noise
Charge Injection
www.maximintegrated.com
THD+N
Q
RS = RL = 1kΩ, f = 20Hz to 20kHz
VIN_, VINA_, VINB_ = GND, CL = 1nF,
Figure 10
20
MHz
Maxim Integrated | 3
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
DC Electrical Characteristics–Single Supply
(VDD = +70V, VSS = VGND = 0V, VEN = +3.3V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)
PARAMETER
On-Resistance
OUT, OUTA, OUTB Off-Leakage
Current
SYMBOL
R ON
I OUT(OFF),
IOUTA(OFF),
IOUTB(OFF)
CONDITIONS
IIN_ = 5mA, VIN_, VOUT = +20V (MAX14752),
VINA_, VOUTA, VINB_, VOUTB = +20V
(MAX14753), Figure 1
MAX14752: V OUT = +40V, VIN_ = VINA_ =
VINB_ = +10V, Figure 3
20
MAX14753: V OUT = +40V, VIN_ = VINA_ =
VINB_ = +10V, Figure 3
-10
MAX14752, VDD = +50V,
OUT unconnected
On-Input Capacitance
CIN_ON
MAX14753, VDD = +50V,
OUTA, OUTB
unconnected
MAX14752, VDD = +50V
Off-Input Capacitance
CIN_OFF
MAX14753, VDD = +50V
MAX14752, VDD = +50V
Off-Output Capacitance
MIN
C OUT_OFF
MAX14753, VDD = +50V
TYP
MAX
60
130
UNITS
+20
nA
+10
VIN_ = 4V
43
VIN_ = 25V
26
VINA_, VINB_ =
4V
26
VINA_, VINB_ =
25V
16
VIN_ = 4V
6
VIN_ = 25V
3.7
VINA_, VINB_ =
4V
6
VINA_, VINB_ =
25V
3.7
VOUT_ = 4V
35
VOUT_ = 25V
20
VOUTA_,
VOUTB_ = 4V
19
VOUTA_,
VOUTB_ = 25V
11
pF
pF
pF
Note 2: All parameters in single-supply operation are expected to be the same as in dual-supplies operation.
Note 3: IN-OUT capacitances are negligible (< 1pF).
www.maximintegrated.com
Maxim Integrated | 4
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Test Circuits/Timing Diagrams/Truth Tables
V
VDD
VDD
1μF
1μF
VDD
VDD
MAX14752
MAX14753
MAX14752
MAX14753
IN_
INA_
INB_
OUT
OUTA
OUTB
UNCONNECTED
IN_
INA_
INB_
OUT
OUTA
OUTB
IOUT(ON)
IOUTA(ON)
IOUTB(ON)
A
VOUT
VIN
IIN
VSS
GND
VSS
GND
1μF
1μF
VSS
VSS
Figure 1. On-Resistance
Figure 2. On-Leakage Current
VDD
1μF
VDD
IIN(OFF)
IINA(OFF)
IINB(OFF)
A
MAX14752
MAX14753
IN_
INA_
INB_
OUT
OUTA
OUTB
VIN
IOUT(OFF)
IOUTA(OFF)
IOUTB(OFF)
A
VOUT
VSS
GND
1μF
VSS
Figure 3. Off-Leakage Current
www.maximintegrated.com
Maxim Integrated | 5
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Test Circuits/Timing Diagrams/Truth Tables (continued)
+35V
VDD
EN
IN0
IN1–IN7
S0
MAX14752
S1
OUT
S2
GND
50Ω
+10V
VSS
VOUT
10kΩ
tR < 20ns
tF < 20ns
+3.3V
50%
EN
-35V
0V
tON
VOUT, VOUTA
+35V
INA0
+10V
0V
INA1–INA3
INB0–INB3
S0
90%
SWITCH
OUTPUT
VDD
EN
tOFF
10%
MAX14753
S1
50Ω
OUTA
GND
VSS
VOUTA
10kΩ
-35V
Figure 4. Enable Switching Time
www.maximintegrated.com
Maxim Integrated | 6
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Test Circuits/Timing Diagrams/Truth Tables (continued)
+35V
VDD
S2
IN0
S1
50Ω
S0
MAX14752
IN7
+3.3V
+10V
IN1–IN6
OUT
EN
GND
tR < 20ns
tF < 20ns
+10V
VOUT
VSS
10kΩ
+3.3V
50%
S_
-35V
0V
VOUT, VOUTA
+35V
VDD
S1
S0
50Ω
+3.3V
90%
SWITCH
OUTPUT
INA0
INA1–INA2
INB0–INB3
+10V
INA3
+10V
0V
tTRANS
MAX14753
OUTA
EN
GND
VOUTA
VSS
10kΩ
-35V
Figure 5. Transition Time
+35V
+3.3V
VDD
EN
tR < 20ns
tF < 20ns
+3.3V
IN0–IN7
50%
S_
+10V
0V
MAX14752
S0
VOUT
S1
OUT
S2
GND
VSS
10kΩ
50Ω
80%
VOUT
SWITCH
OUTPUT
-35V
0V
tBBM
Figure 6. Break-Before-Make Interval
www.maximintegrated.com
Maxim Integrated | 7
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Test Circuits/Timing Diagrams/Truth Tables (continued)
+35V
1μF
VDD
+3.3V
NETWORK
ANALYZER
EN
VIN
IN0
MAX14752
S0
VOUT
OUT
MEAS
REF
S1
S3
VSS
GND
1μF
-35V
ON-LOSS = 20log
VOUT
VIN
Figure 7. Frequency Response
+35V
+35V
1μF
VIN
IN0
RS = 50Ω
.
.
.
VIN
VDD
IN0
IN7
S0
S1
OUT
RL = 1kΩ
EN
1μF
OFF ISOLATION = 20log
Figure 8. Off-Isolation
www.maximintegrated.com
IN7
VOUT
MAX14752
S2
GND
VDD
IN1
.
.
.
CL = 15pF
RS = 50Ω
1μF
EN
+3.3V
OUT
VOUT
MAX14752
S0
S1
RL = 1kΩ
S2
VSS
VSS
GND
-35V
10nF
VOUT
VIN
CROSSTALK = 20log
-35V
VOUT
VIN
Figure 9. Crosstalk
Maxim Integrated | 8
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Test Circuits/Timing Diagrams/Truth Tables (continued)
+35V
VDD
IN_
+3.3V
EN
CHANNEL
SELECT
ON
VEN
OFF
ON
0V
S0
OUT
S1
VOUT
MAX14752
S2
VOUT
ΔVOUT
CL = 1nF
GND
0V
VSS
ΔVOUT IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER
ERROR Q WHEN THE CHANNEL TURNS OFF.
-35V
Q = CL x ΔVOUT
Figure 10. Charge Injection
Table 1. MAX14752 Truth Table
Table 2. MAX14753 Truth Table
EN
OUT
S1
S0
X
0
All off
X
0
1
IN0
0
0
1
1
IN1
0
1
0
1
0
1
1
1
1
0
0
1
IN4
1
0
1
1
IN5
1
1
0
1
IN6
1
1
1
1
IN7
S2
S1
S0
X
X
0
0
0
www.maximintegrated.com
EN
OUTA
OUTB
X
0
All off
All off
0
1
INA0
INB0
0
1
1
INA1
INB1
IN2
1
0
1
INA2
INB2
IN3
1
1
1
INA3
INB3
Maxim Integrated | 9
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
58
120
±30V
50
80
60
TA = +25°C
40
TA = -40°C
5
5
15
25
35
-25
-15
VOUT (V)
TA = +125°C
LEAKAGE CURRENT (nA)
VDD = +70V
VSS = 0V
100
TA = +85°C
80
TA = +25°C
60
5
15
25
35
0
10
20
30
VDD = +35V
VSS = -35V
10
40
50
60
70
VOUT (V)
OFF-LEAKAGE vs. TEMPERATURE
ON-LEAKAGE vs. TEMPERATURE
100
MAX14752/3 toc04
120
5
VOUT (V)
ON-RESISTANCE vs. VOUT AND TEMPERATUR
(SINGLE SUPPLY)
140
+70V
54
50
-35
100
1
IOUT(ON)
0.1
VDD = +35V
VSS = -35V
10
LEAKAGE CURRENT (nA)
-15
MAX14752/3 toc05
-25
56
52
20
-35
+40V
MAX14752/3 toc06
±10V
TA = +85°C
RON (Ω)
RON (Ω)
RON (Ω)
54
52
RON (Ω)
+20V
58
100
56
±20V
VDD = +35V
VSS = -35V
TA = +125°C
±35V
60
MAX14752/3 toc02
140
MAX14752/3 toc01
60
ON-RESISTANCE vs. VOUT
(SINGLE SUPPLY)
ON-RESISTANCE vs. VOUT AND TEMPERATUR
(DUAL SUPPLIES)
MAX14752/3 toc03
ON-RESISTANCE
vs. VOUT (DUAL SUPPLIES)
IOUT(OFF)
1
IIN(OFF)
0.1
TA = -40°C
40
0
0.01
0.01
-35 -25 -15
5
5
15
25
35
-30 -20 -10
0
10
20
30
-40 -25 -10 5 20 35 50 65 80 95 110 125
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
TEMPERATURE (°C)
VOUT (V)
SUPPLY CURRENT vs. TEMPERATURE
VDD = +35V
VSS = -35V
400
340
330
EN INPUT CURRENT vs. VS_
50
VDD = +35V
VSS = -35V
VEN = +3.3V
MAX14752/3 toc09
MAX14752/3 toc07
350
MAX14752/3 toc08
CHARGE INJECTION vs. TEMPERATURE
500
VDD = +35V
VSS = -35V
40
320
200
310
300
IEN (μA)
ICC, IEE (μA)
Q (pC)
300
ICC
290
30
20
280
100
270
10
IEE
260
0
250
0
-40 -25 -10 5 20 35 50 65 80 95 110 125
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
TEMPERATURE (°C)
www.maximintegrated.com
0
1
2
3
4
5
VS_ (V)
Maxim Integrated | 10
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
-40
-60
-80
-40
-60
-80
-100
-100
0.1
1
10
100
0.01
0.1
1
10
100
FREQUENCY (MHz)
FREQUENCY (MHz)
ON-LOSS vs. FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. FREQUENCY
0.005
MAX14752/3 toc12
0
-10
-30
VDD = +35V
VSS = -35V
0.004
THD+N (%)
-20
MAX14752/3 toc13
0.01
ON-LOSS (dB)
VDD = +35V
VSS = -35V
-20
OFF-ISOLATION (dB)
-20
CROSSTALK (dB)
OFF-ISOLATION vs. FREQUENCY
0
MAX14752/3 toc10
VDD = +35V
VSS = -35V
MAX14752/3 toc11
CROSSTALK vs. FREQUENCY
0
0.003
0.002
0.001
-40
VDD = +35V
VSS = -35V
-50
0.01
0.1
0
1
FREQUENCY (MHz)
www.maximintegrated.com
10
100
0.01
0.1
1
10
100
FREQUENCY (MHz)
Maxim Integrated | 11
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
MAX14752 Pin Description (Single 8-to-1 Mux)
PIN
NAME
FUNCTION
1
S0
Mux Input Select
2
EN
Mux Enable. Drive EN high to enable the device. The EN high voltage defines input logic voltage level for
S0, S1, and S2.
3
VSS
Negative Supply Voltage. Bypass VSS to GND with a 1µF ceramic capacitor.
4
IN0
Bidirectional Analog Input
5
IN1
Bidirectional Analog Input
6
IN2
Bidirectional Analog Input
7
IN3
Bidirectional Analog Input
8
OUT
Bidirectional Analog Output
9
IN7
Bidirectional Analog Input
10
IN6
Bidirectional Analog Input
11
IN5
Bidirectional Analog Input
12
IN4
Bidirectional Analog Input
13
VDD
Positive Supply Voltage. Bypass VDD to GND with a 1µF ceramic capacitor.
14
GND
Ground. Connect GND to VSS for single supply. Bypass GND to VSS with a 1µF ceramic capacitor for dual
supply.
15
S2
Mux Input Select
16
S1
Mux Input Select
MAX14753 Pin Description (Dual 4-to-1 Mux)
PIN
NAME
1
S0
Mux Input Select
2
EN
Mux Enable. Drive EN high to enable the device. The EN high voltage defines input logic voltage level for
S0 and S1.
3
VSS
Negative Supply Voltage. Bypass VSS to GND with a 1µF ceramic capacitor.
4
INA0
Bidirectional Analog Input
5
INA1
Bidirectional Analog Input
6
INA2
Bidirectional Analog Input
7
INA3
Bidirectional Analog Input
8
OUTA
Bidirectional Analog Output
9
OUTB
Bidirectional Analog Output
10
INB3
Bidirectional Analog Input
11
INB2
Bidirectional Analog Input
12
INB1
Bidirectional Analog Input
13
INB0
Bidirectional Analog Input
14
VDD
Positive Supply Voltage. Bypass VDD to GND with a 1µF ceramic capacitor.
15
GND
Ground. Connect GND to VSS for single supply. Bypass GND to VSS with a 1µF ceramic capacitor for dual
supply.
16
S1
www.maximintegrated.com
FUNCTION
Mux Input Select
Maxim Integrated | 12
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Detailed Description
The MAX14752/MAX14753 are 8-to-1 and dual 4-to-1
high-voltage analog multiplexers. Both devices feature
60Ω (typ) on-resistance with 0.03Ω (typ) on-resistance
flatness. These low on-resistance multiplexers conduct
equally well in either direction.
The MAX14752 is an 8-to-1 multiplexer and MAX14753
is a dual 4-to-1 multiplexer. Both devices operate with
dual supplies of ±10V to ±36V or a single supply of
+20V to +72V. Both devices can also operate with
unbalanced supplies, such as +36V and -10V. These
multiplexers support rail-to-rail input and output signals.
The control logic level is defined via the EN input. These
devices do not require power-supply sequencing.
limiting resistors such that the input currents are limited to
IIN_(max) = 100mA. The values of the current limit resistors can be calculated as the larger of RLIM+ and RLIM-.
RLIM+ =
RLIM - =
VIN_(max)–VDD
IIN_(max)
VSS – VIN_(min)
IIN_(max)
Applications Information
During an undervoltage or overvoltage condition, the
input impedance is equal to RLIM. The additional power
dissipation due to the fault currents needs to be calculated. The MAX14752/MAX14753 multiplexer operates
normally on a channel that is on during an overvoltage
or undervoltage clamping condition on a second channel that is not switched.
Current Through the Mux
Beyond-the-Rail Input
The current flowing through each on-channel of the
MAX14752/MAX14753 multiplexers must be limited to
±5mA for normal operation. If the current exceeds this
limit, an internal leakage current from that channel to
VSS appears. Larger input current does not destroy the
device if the max power dissipation is not exceeded.
Input Voltage Clamping
For applications that require input voltages beyond the
normal operating voltages, the internal input diodes to
VDD and VSS can be used to limit the input voltages. As
shown in Figure 11, series resistors can be employed at
the inputs to limit the currents flowing into the diodes during undervoltage and overvoltage conditions. Choose the
If input voltages are expected to go beyond the supply
voltages, but within the absolute maximum supply voltages of the MAX14752/MAX14753, add two diodes in
series with the supplies as shown in Figure 12.
During undervoltage and overvoltage events, the internal
diodes pull VDD/VSS supplies up/down. An advantage of
this scheme is that the input impedance is high and
currents do not flow through the MAX14752/MAX14753
during overvoltage and undervoltage events. The input
voltages must be limited to the voltages specified in the
Absolute Maximum Ratings section.
VDD
MAX14752
RLIM
RLIM
RLIM
RLIM
OUT
RLIM
RLIM
RLIM
RLIM
CONTROL
VSS
S0 S1 S2 EN GND
Figure 11. Input Overvoltage and Undervoltage Clamping
www.maximintegrated.com
Maxim Integrated | 13
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
V+
VDD
R
OUT
IN_
VIN
VSS
V-
Figure 12. Beyond-the-Rail Application
Pin Configurations
TOP VIEW
SO
1
EN
2
+
MAX14752
16 S1
SO
1
15 S2
EN
2
+
16 S1
15 GND
MAX14753
VSS
3
14 GND
VSS
3
IN0
4
13 VDD
INA0
4
13 INB0
IN1
5
12 IN4
INA1
5
12 INB1
IN2
6
11 IN5
INA2
6
11 INB2
IN3
7
10 IN6
INA3
7
10 INB3
OUT
8
9
OUTA
8
9
IN7
TSSOP
14 VDD
OUTB
TSSOP
Chip Information
Package Information
PROCESS: CMOS
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but the
drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
16 TSSOP
www.maximintegrated.com
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
U16+1
21-0066
90-0117
Maxim Integrated | 14
8-Channel/Dual 4-Channel
72V Analog Multiplexers
MAX14752/MAX14753
Revision History
PAGES
CHANGED
REVISION
NUMBER
REVISION
DATE
0
8/08
1
10/08
2
2/09
Added capacitance information to EC table
3
7/10
Deleted the “Input Capacitance” parameter from the DC Electrical Characteristics—
Dual Supplies
DESCRIPTION
Initial release
—
Changed the units from mA to μA for VDD and VSS supply current in the DC Electrical
Characteristics—Dual Supplies table
2
2, 4, 13, 14,
15, 16
3
4
4/15
Removed automotive reference
1
5
5/15
Revised Benefits and Features section
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2015 Maxim Integrated Products, Inc. | 15