0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX14922ATE+

MAX14922ATE+

  • 厂商:

    AD(亚德诺)

  • 封装:

    TQFN16

  • 描述:

    HIGH-SIDE SWITCH CONTROLLER

  • 数据手册
  • 价格&库存
MAX14922ATE+ 数据手册
Click here to ask about the production status of specific part numbers. MAX14922 High-Side Switch Controller with Current Limiting General Description Benefits and Features The MAX14922 is a high-side, n-channel FET controller for implementing industrial high-side switches for switching ground-connected loads. The MAX14922 device controls an external nMOS power transistor, allowing low RON high-side switch applications from a +9V to +70V supply range. ● +9V to +70V Operating Supply Range ● 5V / 50mA Integrated Linear Regulator ● -40°C to +125°C Ambient Temperature Operating Range ● 16-TQFN Package, 3mm x 3mm, 0.5mm Pin Pitch ● Robust Design Features • Ultra High-Speed Inductive Load Turn-Off by Clamping to -70V • Supply Independent Inductive Clamping • Support of Low RON FETs Having Qg (Total) = 50nC • External FET Turn-On Propagation Delay < 20µs • Active Current Limit Control During Overcurrent Fast inductive load turn-off can be achieved with use of a high-voltage TVS diode enabling up to -70V (max) voltage clamping. Ground-connected TVS diodes allow clamping of exceptionally high inductive energies. Load current is limited to a user-defined value through a sense resistor. External FET overload protection is achieved using an auto-retry timing feature, as defined by a user-selected capacitor (CBLANK at tBLANK input) or optionally using an external timing control. ● Fault Monitoring Diagnostic Features • Overcurrent Detect Output • High Supply-Voltage Indication • Flexible Supply or Load Voltage Monitor • Undervoltage Lockout • Thermal Warning and Shutdown Protection • Device Ready Indication The MAX14922 features an on-chip comparator enabling monitoring of the high-side switch output or the supply input voltage with a user-selected threshold. An integrated charge pump enables high speed switching rates when using low RON FETs in the 20kHz to 50kHz range. The MAX14922 is available in a 3mm x 3mm, 16-TQFN package. The MAX14922 device is specified over the -40ºC to +125ºC operating temperature range. Ordering Information appears at end of data sheet. Applications ● ● ● ● Industrial Digital Outputs High-Side Switches Motor Holding Brakes Relay and Solenoid Drivers Simple High-Side Switch Application SYSTEM POWER (24V) LOAD CONNECTOR RS CBYPASS TVS µC SNS IN MAX14922 FAULT MONITOR 19-100761; Rev 0; 4/20 G VDD GND LOAD S tBLANK CBLANK MAX14922 High-Side Switch Controller with Current Limiting TABLE OF CONTENTS General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simple High-Side Switch Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 16 TQFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 MAX14922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Logic Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5V Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Diagnostic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output or Supply Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 High Supply Indication (OV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Overcurrent Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current Limit Auto-Retry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal Warning and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Maximum Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Selecting the Power nFET Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Transient EMC Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Inductive Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Operation with High Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2A / 24V Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2A / 60V Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 www.maximintegrated.com 19-100761 Maxim Integrated | 2 MAX14922 High-Side Switch Controller with Current Limiting LIST OF FIGURES Figure 1. IN to G Propagation Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2. High Supply Shut-off Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Transient EMC Protection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 www.maximintegrated.com 19-100761 Maxim Integrated | 3 MAX14922 High-Side Switch Controller with Current Limiting Absolute Maximum Ratings VDD (Continuous) ................................................... -0.3V to +75V VDD (100μs) ........................................................... -0.3V to +85V SNS (Continuous) ...........................(VDD - 0.3V) to (VDD + 0.3V) SNS (100μs).................................................. -0.3V to (VDD + 6V) S ..................................................................... -70V to (VDD + 6V) G.......................................... (S - 0.3V) to min(S + 18, CP + 0.3V) CP.....................................................(VDD - 0.3V) to (VDD + 18V) VL ............................................................................. -0.3V to +6V IN, tBLANK, COMP.................................................... -0.3V to +6V V5, OVCURR, THW, RDY, OV ................................. -0.3V to +6V LO ................................................................. -0.3V to (VL + 0.3V) Continuous Power Dissipation (Multilayer Board) (TA = +70°C, derate 23.10mW/°C above +70°C.) .............................1847.6mW Operating Temperature Range ...........................-40°C to +125°C Junction Temperature ....................................................... +150°C Storage Temperature Range ..............................-40°C to +150°C Soldering Temperature (reflow) ........................................ +260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 16 TQFN Package Code T1633+5C Outline Number 21-0136 Land Pattern Number 90-0032 THERMAL RESISTANCE, SINGLE-LAYER BOARD Junction-to-Ambient (θJA) 68°C/W Junction-to-Case Thermal Resistance (θJC) 10°C/W THERMAL RESISTANCE, FOUR-LAYER BOARD Junction-to-Ambient (θJA) 43.3°C/W Junction-to-Case Thermal Resistance (θJC) 4°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial. Electrical Characteristics (VDD = +9V to +70V, V5 = 5.0V, VL = 2.5V to 5.5V. TA = -40°C to +125°C. Typical values are at TA = +25ºC, VDD = +24V, and VL = 5V. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 70 V 1.25 mA 9.0 V VDD Supply Operating Supply Voltage VDD Range for which the high-side switch operates normally Supply Current IDD VDD = 24V, IN = X, No Load on V5 Undervoltage-Lockout Threshold VDD_UV Undervoltage-Lockout Hysteresis VDD_UVHYST www.maximintegrated.com VDD rising, UV turns active low and G is turned low/off when VDD < VDD_UV 9 0.9 7.7 0.5 19-100761 V Maxim Integrated | 4 MAX14922 High-Side Switch Controller with Current Limiting Electrical Characteristics (continued) (VDD = +9V to +70V, V5 = 5.0V, VL = 2.5V to 5.5V. TA = -40°C to +125°C. Typical values are at TA = +25ºC, VDD = +24V, and VL = 5V. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VDD rising; OV turns on low when VDD > VDD_OV 36.5 38.5 40.5 V 5.1 V OVERVOLTAGE DETECTION (OV) Overvoltage Threshold Overvoltage-Lockout Hysteresis VDD_OV VDD_OVHYST 1 Linear Regulator (V5) Linear Regulator Output Voltage V5 V5 Short-Circuit Current Limit ICL_V5 0mA to 50mA load current on V5 (Note 2) 4.9 5 50 mA V5 Undervoltage Lockout Threshold V5_UVLO V5 Undervoltage Lockout Hysteresis V5_UVLO_HYS V5 Load regulation ΔV5_LDR VDD = 24V, 1mA ≤ ILOAD_V5 ≤ 50mA (Note 2) 0.4 1 % V5 Line Regulation ΔV5_LNR 9V ≤ VDD ≤ 70V, ILOAD_V5 = 1mA 0.1 0.5 mV/V V5 Load Capacitance V5 rising 3.8 4.2 0.4 CV5 External capacitance on V5 Logic Supply Current IVL IN = X Logic Supply Input Voltage VL 0.8 V V 1 μF Logic Supply (VL) Logic Supply Undervoltage-Lockout Threshold Logic Supply Undervoltage-Lockout Threshold Hysteresis VL_UVLO 10 VL Rising 16 μA 2.5 5.5 V 1.4 2.1 V VL_UVLO_HYS 100 T mV LOGIC I/O (IN, LO, RDY, OVCURR, THW, OV) Input Voltage High VIH Input Voltage Low VIL Input Threshold Hysteresis Input Pulldown Resistor VI_TH RPULLDOWN 0.7 x VL 0.3 x VL VL = 5.5V 0.35 IN Input 140 Output Logic High VOH LO, IOUT = -5mA Output Logic Low VOL IOUT = +5mA Output Three-State Leakage ILEAK V 200 V 260 VL - 0.2 All logic outputs, GND < V < 5V -1 VCL = (VSNS – VDD) 27 V kΩ V 0.2 V +1 µA 33 mV CURRENT SENSE (SNS) Current Limit Threshold www.maximintegrated.com VCL 19-100761 30 Maxim Integrated | 5 MAX14922 High-Side Switch Controller with Current Limiting Electrical Characteristics (continued) (VDD = +9V to +70V, V5 = 5.0V, VL = 2.5V to 5.5V. TA = -40°C to +125°C. Typical values are at TA = +25ºC, VDD = +24V, and VL = 5V. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) (Note 1) PARAMETER SYMBOL SNS Input Current ISNS Short-Circuit Current Threshold SCTH CONDITIONS VDD - 300mV ≤ VSNS ≤ VDD + 300mV MIN TYP -1 MAX UNITS +1 µA 40 mV Auto-Retry Current Limiting Timing Blanking Time Range tON_CL Settable through tBLANK capacitor, VDS < 3V 0.2 100 ms Blanking Time External Capacitance CBLANK External capacitance to obtain a blanking time between 0.2ms and 100ms 1 500 nF Blanking Time Accuracy tON_CL_ACC tON_CL versus ideal based on 100% accurate capacitor -15 +15 % ON to OFF time while in overcurrent 1.6 2.5 % VS + 11.9 VS + 14.1 V Auto-Retry Duty Cycle 2 FET CONTROL (G, S) Gate-Source OnVoltage VG_ON VDD > VDD_UV, IN = HIGH, IG = 1uA Gate Turn-On Current IG_SRC VDD > VDD_UV, IN = HIGH During external FET turn-on transition 1.5 3.5 mA Gate Turn-Off Current IG_SNK During external FET turn-off transient 1.4 3.4 mA 80 Ω Gate-Source Resistance In OFF State Gate-Source Output Voltage During Current Limiting RGS_OFF VDD > VDD_UV, IN = LOW VG_MIN_REG VDD > VDD_UV, IN = HIGH Charge Pump Output Resistance CPRES VDD > VDD_UV Charge Pump Load Current CPLOAD VDD > VDD_UV IS 0V < VS < 70V Source Input Current 32 VS + 0.2 V 12 -15 18 kΩ 300 μA +15 µA THERMAL PROTECTION Chip Thermal Shutdown TCSHDN Chip Thermal Shutdown Hysteresis TCSHDN_HYS Temperature rising T Chip Thermal Warning TCW Chip Thermal Warning Hysteresis TCW_HYST Temperature rising 150 °C 10 °C 110 °C 10 °C PROPAGATION DELAY (IN to G) Prop Delay Low To High tPDLH Delay from IN to VGS rising to VGST = 9V, CGATE = 3.3nF. See Figure 1 11 20 µs Prop Delay High To Low tPDHL Delay between IN switching low to VGS falling to 4V, CGATE = 3.3nF. See Figure 1 14 20 µs www.maximintegrated.com 19-100761 Maxim Integrated | 6 MAX14922 High-Side Switch Controller with Current Limiting Electrical Characteristics (continued) (VDD = +9V to +70V, V5 = 5.0V, VL = 2.5V to 5.5V. TA = -40°C to +125°C. Typical values are at TA = +25ºC, VDD = +24V, and VL = 5V. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2.8 V Comparator Input (COMP) Clamp Voltage ICOMP = 1mA Input Threshold High VTH_COMP 0.99 1.025 1.06 V Input Threshold Low VTL_COMP 0.93 0.975 1.01 V Input Hysteresis Input Current VHYST_COMP IIN_COMP 50 0V < VCOMP < 1.5V mV 2 uA Propagation Delay Low To High tPLH_COMP Delay from COMP rising from 0V to 1.5V to output 0.3 0.66 1.2 μs Propagation Delay High To Low tPHL_COMP Delay from COMP falling from 1.5V to 0V to output 0.4 0.67 1.3 μs DEBOUNCE TIMES Supply Undervoltage Debounce Time tVDD_UV_DB 200 µs Supply Overvoltage Debounce Time tVDD_OV_DB 200 µs ±9 kV EMC PROTECTION S to GND, IEC-61000-4-2 Contact ESD IEC Contact Discharge VESD_C ESD IEC Air Discharge VESD_A S to GND, IEC-61000-4-2 (Note 3) ±15 kV VESD All other pins. Human Body Model ±2 kV S to GND, IEC61000-4-5 with 42Ω, TVS on S (Note 3) ±2 kV ESD Surge Tolerance VSURGE (Note 3) Note 1: All units are production tested at TA = +25°C. Specifications over temperature are guaranteed by design. Note 2: A regulator with higher output load current creates high power dissipation. A 50mA output load current is only feasible by limiting the ambient temperature (TA) or supply voltage VDD. Note 3: Surge and ESD tolerances are tested with TVS protections on VDD to GND and on S to GND. The maximum voltages are limited to ±85V by the TVS limit. A 200V tolerant transistor is connected between SNS, S, and G. www.maximintegrated.com 19-100761 Maxim Integrated | 7 MAX14922 High-Side Switch Controller with Current Limiting IN tPD_LH tPD_HL VGST VGS VGS = 4V Figure 1. IN to G Propagation Times www.maximintegrated.com 19-100761 Maxim Integrated | 8 MAX14922 High-Side Switch Controller with Current Limiting Typical Operating Characteristics (VDD = 24V, VL = 5V, TA = 25°C, unless otherwise noted. ) www.maximintegrated.com 19-100761 Maxim Integrated | 9 MAX14922 High-Side Switch Controller with Current Limiting Typical Operating Characteristics (continued) (VDD = 24V, VL = 5V, TA = 25°C, unless otherwise noted. ) www.maximintegrated.com 19-100761 Maxim Integrated | 10 MAX14922 High-Side Switch Controller with Current Limiting Typical Operating Characteristics (continued) (VDD = 24V, VL = 5V, TA = 25°C, unless otherwise noted. ) www.maximintegrated.com 19-100761 Maxim Integrated | 11 MAX14922 High-Side Switch Controller with Current Limiting Pin Configuration G tBLANK OV THW MAX14922 12 11 10 9 TOP VIEW 14 VDD 15 CP 16 MAX14922 EP + GND 1 2 3 4 LO SNS VL 13 V5 S 8 OVCURR 7 COMP 6 IN 5 RDY TQFN-EP 3mm x 3mm Pin Description PIN NAME FUNCTION TYPE POWER SUPPLY Ground Ground/ Supply Return V5 Linear Regulator Output, 5V. Connect a 1µF bypass capacitor to GND. Supply 3 VL Logic Supply Input. Connect supply between 2.5V and 5.5V to VL. Connect a 100nF bypass capacitor to GND. Supply 15 VDD Supply Voltage, Nominally 24V. Bypass VDD to GND using a 10µF capacitor. Supply CP Charge-Pump Tank Capacitor. Connect a 1µF/16V capacitor between CP and VDD. Supply SNS Sense Input. Connect a current sense resistor between SNS and VDD to define the maximum load current. Sense is a high-impedance analog voltage input. HV Input 1 GND 2 16 CURRENT SENSE 14 FET DRIVE 12 G Gate Drive Output. Connect to G to the gate of the nMOS power FET. S Source Input. Connect to Source terminal of the nMOS power FET. This is a highimpedance input. Connect a 1nF capacitor to GND for improved EMC. HV Input 6 IN Switch Control Input. Drive IN high to close the HS switch; drive IN low to open the HS switch. Logic Input 7 COMP Comparator Input. Generates the LO output Analog Input tBLANK Blanking Time Input. Connect a capacitor between tBLANK and GND to set the overcurrent auto-retry blanking time. Connect tBLANK to GND to disable auto-retry current limiting. See the Detailed Description section for details. Analog Input 13 HV Output CONTROL 11 www.maximintegrated.com 19-100761 Maxim Integrated | 12 MAX14922 High-Side Switch Controller with Current Limiting Pin Description (continued) PIN NAME FUNCTION TYPE DIAGNOSTIC OUTPUTS 4 LO Output Voltage Monitor, Push-Pull. LO is low when the COMP voltage is higher than the threshold voltage. LO is high when the COMP input voltage is lower than the threshold voltage. Logic Output 5 RDY Ready Open-Drain Logic Output. RDY turns output low when, for any reason, the output keeps the external FET off. Connect a pullup resistor, if used. Logic Output 8 OVCURR Overcurrent Open-Drain Logic Output. OVCURR turns output low when the highside switch is in current limit. If used, connect a pullup resistor to use OVRCURR. Logic Output 9 THW Thermal Warning Open-Drain Output. The output is asserted low when the temperature of the chip is higher than the thermal warning voltage. Connect an external pullup resistor if used. Logic Output 10 OV Overvoltage Open-Drain Logic Output. The OV turns on output low when VDD voltage rises above the OV threshold of 39V typ. Connect a pullup resistor, if used. Logic Output EP Exposed Pad. Connect exposed pad to GND. EXPOSED PAD — www.maximintegrated.com 19-100761 Ground/ Supply Return Maxim Integrated | 13 MAX14922 High-Side Switch Controller with Current Limiting Functional Diagram Functional Block Diagram VL VDD SNS V5 CP GND MAX14922 +5V LINEAR REGULATOR LOGICSUPPLY INPUT CURRENT SENSE OV RDY OVCURR THW LO CHARGE PUMP SUPPLY MONITOR CURRENTMONITOR LOGIC CURRENTLIMIT CONTROL TEMPERATURE CONTROL GATE DRIVE AND PROTECTION G 1.0V INTERNAL BIAS S COMP www.maximintegrated.com tBLANK IN 19-100761 Maxim Integrated | 14 MAX14922 High-Side Switch Controller with Current Limiting Detailed Description The MAX14922 is a high-side n-channel FET controller for implementing a high-side switch that operates as an industrial digital output. The MAX14922 is specified for operation with supplies up to 70V. The controller features accurate, active current limiting with current defined by the RS sense resistor connected between the VDD and SNS inputs. The device is used with an external low RON FET, which acts as a load switch to industrial loads. High inductive clamping voltages can be achieved by connecting an external ground-connected TVS diode to the MAX14922 S input. The device features diagnostics such as load or supply-voltage monitoring, gate output ready, high voltage-supply indication, current limiting, current limit auto-retry timing, and overcurrent indication. The MAX14922 features an internal 5V LDO supply output (V5) capable of delivering up to 50mA of output current. Logic Interface The logic interface requires a VL supply in the range of 2.5V to 5.5V. This ensures that the logic levels on all logic I/ O pins are CMOS compliant. If used, connect pullup resistors to the open-drain logic outputs. If not used, connect the open-drain logic outputs to GND. 5V Linear Regulator The integrated 5V linear regulator (V5) can supply up to 50mA load current. Note that linear regulators have high power dissipation when powered from high supply voltage. Calculate the power dissipation in the regulator as PDIS(W) = (VDD − V5) × IV5. The power dissipation might be excessive for high load currents in combination with high supply voltage resulting in self heating of the device. Verify that the MAX14922 maximum thermal ratings are not exceeded at the highest operating temperatures. When the MAX14922 enters thermal shutdown, the V5 linear regulator is automatically turned off. The regulator turns on automatically when the chip temperature drops by 10°C (typ). Inductive Loads When the load current flowing into an inductive load is abruptly stopped when the external FET is turned off, the inductance tries to draw current, which results in a high kick-back voltage. This kick-back voltage, seen on the source of the FET, needs to be limited/clamped to a voltage in the range of the Absolute Maximum Ratings, to protect the MAX14922 S input from negative voltages. Due to the S input maximum rating of -70V, a ground-connected TVS diode can be used for inductive energy clamping and absorption. Using a ground-connected TVS diode provides the additional advantage that the clamping voltage is independent of the VDD supply input voltage, and provides a means for low-power dissipation for inductive clamping by providing a fast demagnetization event. Ensure that the TVS diode can dissipate the heat during worst-case inductive load clamping at the highest ambient operating temperature. Diagnostic Features MAX14922 integrated diagnostic features enable monitoring and control of vital parameters in the application. In case of load faults, damaged FET, short-circuit conditions, and unwanted high ambient temperature, the device features logic outputs that alert the controller to force an appropriate response to ensure safety and reliability of the application. In cases when the diagnostic outputs are not required, the outputs can either be left unconnected or connected to ground. Output or Supply Voltage Monitor The integrated comparator input COMP allows monitoring of any voltage in the system, for example the VDD supply voltage or the source voltage of the external FET. The internal comparator, compares the COMP input voltage with a 1V (typ) internal reference. The inverse logic is presented on the LO logic output. Connect a resistive voltage-divider between the S or VDD input to set the threshold voltage. www.maximintegrated.com 19-100761 Maxim Integrated | 15 MAX14922 High-Side Switch Controller with Current Limiting Output Ready RDY is an open drain output that signals normal device operation when RDY is pulled passively high by a pullup resistor. The device is not ready for normal operation when the MAX14922 actively drives RDY low, signalling an application issue, regardless of the IN input logic state. The following conditions drives RDY low: 1. 2. 3. 4. Undervoltage of any of the power supplies (VDD, V5, and VL). When the device is in overcurrent for a time longer than the blanking time, i.e, a FET overload condition. Thermal shutdown. Charge pump overload: if the external FET is switched on/off at a high frequency, the voltage generated by the charge pump drops due to a high load current. In this case the output FET is forced OFF to reduced the charge pump current load, the external FET is re-enabled when the charge pump voltage is higher than 9V. High Supply Indication (OV) When the VDD supply voltage rises beyond the OV threshold (approximately +39V), the OV output goes active low. When the OV is low, the MAX14922 continues to operate normally as the device operates with VDD supply voltages of up to 70V. OV output can indicate that the supply is higher than the system is designed for. OV output can be used to turn the FET off by driving IN low. The external nMOS transistor is not turned off, remains ON even when OV is low. An external control signal or a controller can turn off the FET by forcing IN low during an overvoltage condition, or an external and gate can be used for high supply shut-off operation. SYSTEM POWER (24V) CBYPASS VCC OV VDD RS SNS MAX14922 µC GPO IN G tBLANK S GND CBLANK GND LOAD GND Figure 2. High Supply Shut-off Application Overcurrent Monitor The open drain OVCURR output transitions low when the load current exceeds the current limit set by the sense resistor (RS). Current Limiting Connect a sense resistor (RS) between VDD and SNS inputs to set the maximum current allowed in the application. The VCL current limit is calculated as ICL = R . Consider the variation of ICL due to the tolerance of VCL and RS. When the S load current exceeds the current limit, then the device actively regulates the nFET gate-source voltage to control the load www.maximintegrated.com 19-100761 Maxim Integrated | 16 MAX14922 High-Side Switch Controller with Current Limiting current. Current Limit Auto-Retry Timing During an overcurrent condition, the MAX14922 actively regulates the current during the blanking time set by the capacitor value on the tBLANK input. If the load draws overcurrent for a period longer than the blanking time, the device turns the external FET off for protection purposes. After an Off-delay equal to about 50x the blanking time, the nFET is automatically turned on again. Auto-retry On/Off cycling continues until the cause for overcurrent is removed by the user. The OVCURR logic output goes low after the detection of the overcurrent, and remains low until the overcurrent condition is removed. At the end of the blanking time, the RDY output is also asserted low to indicate that the external nFET is forced off. During an overcurrent event, internal control logic monitors and reduces the gate voltage so that the VGS is reduced. Refer to TOC21 and TOC22 in the Typical Operating Characteristics section for information on overcurrent detection (blanking time and auto-retry). The blanking time can be defined by the capacitor between the tBLANK input and GND. Select a capacitor value such that the blanking time to the OFF-time duty cycle does not exceed the nMOS power transistor safe operating area (SOA) under worst-case supply voltage, temperature, load current, and output short-circuit conditions. The MAX14922 automatically reduces the blanking time duration, proportionally to the nFET VDS (the higher the VDS, the shorter the blanking time), according to the following formula: tON_CL(μs) = 2000 × CBLANK(nF) (10 + 0.9VDS) Refer to TOC17 and TOC18 for blanking-time dependence on VDS (V) and CBLANK (nF) capacitance in the Typical Operating Characteristics section. Auto-retry cycling can be disabled by shorting tBLANK to GND. In this case, the RDY output does not toggle low. A controller needs to turn off the nFET and manage the overload condition in order to protect the nFET from damage. Short-Circuit Protection A short-circuit applied at the load output would result in a high short-circuit current mainly limited by the FET RON. When the MAX14922 detects an excessively high transient load current, it turns the FET off for about 5μs and then turns the FET back on at a controlled rate so that the short-circuit load current is then determined by the sense resistor value. Refer to TOC23 in the Typical Operating Characteristics section for short-circuit detection and intervention response for the MAX14922. Thermal Warning and Shutdown The MAX14922 features integrated temperature monitoring and a protective shutdown feature. The device integrated temperature sensor signals thermal warning at 110ºC (typical). During thermal warning the THW logic output goes low indicating an overtemperature warning event. During a thermal warning event, the device is still in normal operation. When the temperature cools down by 10ºC, the THW logic output goes back high. When the device temperature rises above 150ºC, MAX14922 enters shutdown mode. Regardless of the state of the IN input, the Gate output is turned off forcing the external FET to turn off. The internal LDO generating 5V output is turned off as well. As the temperature reduces by 10ºC, the device returns to normal operation with the THW output low, and the V5 regulator output on at 5V. Maximum Switching Frequency The maximum switching FET frequency is determined by the time and ability of the internal charge pump to charge and discharge the external power FET gate capacitance. The charge pump delivers 2.5mA (typ) turn-on and turn-off currents allowing drive of low RON MOSFETs. FET parts specify their gate charge under a typical ON condition. As reference, the maximum switching frequency that the MAX14922 can switch the Si7322DN having 13nC (typ) specified total gate charge is 45kHz. Similarly, the low RON SiR622DP with 27nC (typ) specified total gate charge can be switched with 20kHz. The RDY output can be used to check if the charge pump is able to drive a FET at higher frequencies. Refer www.maximintegrated.com 19-100761 Maxim Integrated | 17 MAX14922 High-Side Switch Controller with Current Limiting to TOC19 in the Typical Operating Characteristics section for the maximum switching rate vs. gate capacitance of the external FET. www.maximintegrated.com 19-100761 Maxim Integrated | 18 MAX14922 High-Side Switch Controller with Current Limiting Applications Information Selecting the Power nFET Transistor The following lists the criteria for selecting a suitable FET for an application. ● The FET current capability must be higher than the maximum required load current. ● RON should be low enough for power dissipation considerations during maximum load current. ● The external FET drain-source breakdown voltage (VBR) or (VDSS) should be larger than the TVS clamp voltage plus the max supply VDD. ● The FET thermal package impedance must be low enough to dissipate the worst-case transient power dissipation, which usually is a short circuit to GND or a negative voltage. Use the FET SOA curves in conjunction with blanking time as a reference. ● The total gate charge should be less than 40nC. ● The gate-source threshold voltage should be > 0.8V. ● The maximum allowable gate voltage should be greater than 16V. Examples of 100V FETs with MAX14922 are: Si7322, IPD60N10, PSMN021-100, Si4190, and STD100N10. Transient EMC Protection The MAX14922 does not have protection against Surge (IEC 6100-4-5) and high levels of ESD (IEC 61000-4-2). A TVS diode needs to be connected between the S input and GND to protect against such negative Surge and negative ESD. The same TVS diode also clamps the inductive energy during load turn-off. The transient currents caused by positive surge and/or ESD voltages applied to OUT flows through the parasitic nMOS source-drain body diode and the sense resistor into the VDD supply and/or clamping VDD TVS diode, standard nMOS power transistors, and sense resistors can tolerate the power dissipated in them during standard industrial-level transient currents of ±2kV/42Ω surge and ±9kV contact ESD. www.maximintegrated.com 19-100761 Maxim Integrated | 19 MAX14922 High-Side Switch Controller with Current Limiting OUT 24V 10µF RS SMBJ33CA 1µF CP VDD SNS G S V5 COMP VL OV RDY MAX14922 tBLANK OVCURR THW LO IN GND Figure 3. Transient EMC Protection Scheme Inductive Clamping Select a TVS power and size that can safely dissipate the energy in the inductive load during load turn-off and demagnetization under worst-case conditions. The worst case is the highest temperature operating conditions in the module enclosure with the highest load current and inductance. Operation with High Supply Voltages If the maximum VDD operating supply voltage is expected to be higher than the bipolar TVS working voltage, then a silicon diode should be put in series with the TVS. This is shown in the 2A / 60V Applications Diagram in the Typical Application Circuit. Typical Application Circuits 2A / 24V Application Circuit The following circuit illustrates a circuit for realizing a 2A high-side switch with 24V nominal, 33V maximum supply voltage and 33V inductive load clamping voltage. The high-side switch RON is (48mΩ + 12mΩ) = 60mΩ. A Zener diode, SM30T35CAY, clamps the supply at 48V in case of supply overvoltage or excursions. www.maximintegrated.com 19-100761 Maxim Integrated | 20 MAX14922 High-Side Switch Controller with Current Limiting Typical Application Circuits (continued) PRL1632-R012-F Si7322DN OUT 24V 10µF SM30T35CAY 12mΩ 1µF SMBJ33CA CP VDD SNS G S V5 RP1:RP4 = 3.3kΩ COMP VL 3.3kΩ RP2 RP1 45.3kΩ RP4 RP3 OV RDY MAX14922 tBLANK 1 nF OVCURR THW LO IN GND 2A / 60V Application Circuit The following circuit illustrates a circuit for realizing a 2A load current, 60V maximum supply high-side switch with 30V inductive load clamping voltage. The high-side switch RON is (48mΩ + 12mΩ) = 60mΩ. In case of supply overvoltage or overshoot, the SMCJ60 TVS clamps the energy. www.maximintegrated.com 19-100761 Maxim Integrated | 21 MAX14922 High-Side Switch Controller with Current Limiting Typical Application Circuits (continued) PRL1632-R012-F Si7322DN OUT 60V 10µF 12mΩ VS-2EFH01 SMCJ60 1µF SMBJ30A CP SNS VDD G S V5 MAX14922 RP1:RP2 = 3.3kΩ COMP VL RP1 45.3kΩ 1kΩ RP2 RDY OVCURR tBLANK 1 nF GND IN Ordering Information PART NUMBER TEMP. RANGE PIN PACKAGE TOP-MARKING MAX14922ATE+ -40°C to +125°C 16 TQFN-EP* APB MAX14922ATE+T -40°C to +125°C 16 TQFN-EP* APB +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. *EP = Exposed pad. www.maximintegrated.com 19-100761 Maxim Integrated | 22 MAX14922 High-Side Switch Controller with Current Limiting Revision History REVISION NUMBER REVISION DATE 0 2/20 DESCRIPTION Initial release PAGES CHANGED — For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2020 Maxim Integrated Products, Inc.
MAX14922ATE+ 价格&库存

很抱歉,暂时无法提供与“MAX14922ATE+”相匹配的价格&库存,您可以联系我们找货

免费人工找货