0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX16141AAAF/VY+

MAX16141AAAF/VY+

  • 厂商:

    AD(亚德诺)

  • 封装:

    WQFN16_EP

  • 描述:

    MAX16141AAAF/VY+

  • 详情介绍
  • 数据手册
  • 价格&库存
MAX16141AAAF/VY+ 数据手册
EVALUATION KIT AVAILABLE Click here to ask an associate for production status of specific part numbers. MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker General Description Applications The MAX16141/MAX16141A ideal diode controllers provide system protection against a variety of system faults, such as reverse current, reverse voltage, overcurrent, input overvoltage/undervoltage, and overtemperature conditions. The wide operating voltage range of 3.5V to 36V, combined with 5μA (typ) of shutdown current, make the MAX16141/MAX16141A ideal for automotive applications. An integrated charge pump drives the gate of the back-toback external nFETs 9V (typ) above the source connection, minimizing power loss between the source and the load. ● ● ● ● ● A fast-acting comparator allows the MAX16141/ MAX16141A to block reverse-current flow within 1μs (max) of the input falling below the output voltage. An external current-sense resistor between RS and OUT provides overload monitoring capability. Two input pins, OVSET and UVSET, provide set points to protect against input overvoltage and undervoltage events using a simple resistive-divider. During startup, the MAX16141/MAX16141A monitor the voltage drop across the external nFETs (VIN - VOUT) and the load current for overcurrent fault to ensure VOUT is greater than 0.9 x VIN. Once the startup event is complete, the MAX16141/MAX16141A are ready to protect against systems faults. During normal operation, some systems experience brownouts or short interruptions of power. To ensure smooth system recovery from these interruptions, the MAX16141/MAX16141A include a secondary power input (VCC) to keep critical circuits alive. When the main input power recovers, the MAX16141/MAX16141A enable the gate in fast mode (70μs, max) to charge the output capacitor. Both devices feature a low-power mode that is enabled with a logic input. In low-power mode the devices allow limited current flow from source to the load. For the MAX16141, the low-power mode is enabled using an active-low logic input, SLEEP. For the MAX16141A, the lowpower mode is activated using an active-high logic input (SLEEP). Automotive Power Systems Network/Telecom Power Systems RAID Systems Servers PoE Systems Benefits and Features ● Wide Voltage Range • 3.5V to 36V Operating Voltage Range • -36V to +60V Input Protection Voltage Range ● Eliminates Discrete Diode Power Dissipation ● 5μA (typ) Shutdown Mode Current Reduces Battery Drain ● Sleep Mode Provides up to 400μA Load Current ● TERM Switch Reduces Power Consumption ● Isolates Failed Supply from Load • Bidirectional Current Blocking on Open • Bidirectional Voltage Blocking on Open ● Current Protection • Factory-Adjustable Overcurrent Trip Thresholds • Factory-Adjustable Reverse-Current Trip Thresholds ● Resistor Adjustable Overvoltage and Undervoltage Trip Thresholds ● Automotive Qualified • Operates down to +3.5V, Riding out Cold-Crank Conditions • -40°C to +125°C Operating Temperature Range ● N-Channel MOSFET Gate Driver of VIN + 9V ● Fault Output • UVLO, OVLO, Overcurrent, Reverse-Current, Battery Reversal, and Thermal Shutdown • AEC-Q100 Qualified MAX16141AAF/V+T Additional features include an internal switch that isolates the monitoring from the UVSET and OVSET resistive network in shutdown mode to help minimize system power loss. The MAX16141/MAX16141A are available in a 4mm x 4mm x 0.75mm, 16-pin TQFN package and operate over the automotive temperature range of -40°C to +125°C. Ordering Information appears at end of data sheet. 19-100342; Rev 9; 4/22 © 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved. MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Typical Application Circuit Q1 VIN RSENSE Q2 VOUT COUT 0.1µF 100Ω IN GATE SRC RS OUT D1 10kΩ VCC 0.33µF µC FAULT SHDN TERM MAX16141/ MAX16141A SLEEP/ SLEEP R1 UVSET GRC OVSET GFC R2 R3 www.analog.com 10kΩ GND 10kΩ Analog Devices | 2 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 16-TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 16-TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overvoltage/Undervoltage Threshold Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Ideal Diode Reverse-Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reverse-Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal Shutdown Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 GATE Ramp-Up Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 GATE Ramp-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Gate Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 TERM Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FAULT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Auto-Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Setting Overvoltage/Undervoltage Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reverse-Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Ovecurrent Threshold Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Short Power Interruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Gate Rise Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 MOSFET Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 MOSFET Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 www.analog.com Analog Devices | 3 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker TABLE OF CONTENTS (CONTINUED) Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Typical Automotive Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 www.analog.com Analog Devices | 4 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker LIST OF FIGURES Figure 1. Sleep Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 2. UVSET and OVSET Threshold Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 3. Reverse-Voltage Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 4. Recommended Reverse-Voltage Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 5. Short Power Interruption and Recover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 6. Gate Voltage Slow to Fast-Mode Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 7. Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 www.analog.com Analog Devices | 5 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Absolute Maximum Ratings VIN to GND .............................................................. -36V to +60V VCC, SHDN, FAULT, RS OUT to GND ................. -0.3V to +60V RS, OUT to GND .................................................... -0.3V to +60V VIN to VCC, VIN to SHDN, VIN to TERM ................. -45V to +60V SRC, GATE to GND ................................................ -36V to +50V SRC to GATE, RS to OUT....................................... -36V to +36V VIN to VOUT ............................................................. -60V to +60V TERM to VCC ............................................................ -60V to +1V SLEEP, OVSET, UVSET, GRC, GFC, to GND ........ -0.3V to +6V Continuous Sink/Source Current (all pins except FAULT) .±20mA FAULT Continuous Sink/Source Current .............................±5mA Continuous Power Dissipation (TQFN 16-Pin  derate 25mW/°C above +70°C.) ...........................................................  to 2000mW Operating Temperature Range ...........................-40°C to +125°C Junction Temperature ....................................................... +150°C Storage Temperature Range ..............................-60°C to +150°C Lead Temperature (soldering 10s).................................... +300°C Soldering Temperature (reflow) ........................................ +260ºC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 16-TQFN Package Code T1644+4A Outline Number 21-0139 Land Pattern Number 90-0070 THERMAL RESISTANCE, SINGLE-LAYER BOARD Junction to Ambient (θJA) 59.30°C/W Junction to Case (θJC) 6°C/W THERMAL RESISTANCE, FOUR-LAYER BOARD Junction to Ambient (θJA) 40 Junction to Case (θJC) 6 16-TQFN Package Code T1644Y+4 Outline Number 21-100267 Land Pattern Number 90-0070 THERMAL RESISTANCE, FOUR-LAYER BOARD Junction to Ambient (θJA) 40°C/W Junction to Case (θJC) 6°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial. Electrical Characteristics (VIN = 12V, CGATE-SRC = 7nF, CVCC = 0.33μF, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All specs are subject to change.) PARAMETER Input Voltage Range www.analog.com SYMBOL CONDITIONS VIN and VCC Operating range MIN 3.5 TYP MAX UNITS 36 V Analog Devices | 6 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Electrical Characteristics (continued) (VIN = 12V, CGATE-SRC = 7nF, CVCC = 0.33μF, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All specs are subject to change.) PARAMETER SYMBOL Input Protection Voltage Range VIN CONDITIONS MIN TYP -36 MAX UNITS +60 V INPUT SUPPLY CURRENT Input Supply Current Sleep Mode Supply Current IIN ISLEEP VSHDN = high, VIN = VSRC = VOUT = 12V 2.0 3.8 VSHDN = high, VIN = VSRC = VOUT = 36V 2.1 4.0 VSHDN = low, VIN = 12V 5 10 VSHDN = low, VIN = 36V 6 15 Internal PFET on, charge pump off 10 15 μA 1 SRC Input Current ISRC VIN = 12V, SHDN = high Undervoltage Lockout UVLO VIN rising OVSET/UVSET Input Current OVSET/UVSET Threshold VIN rising 0.485 0.5 mA μA 2 mA 3.3 V 1.5 μA 0.515 V OVSET Threshold Hysteresis VOV_HYS MAX16141AAF, MAX16141AAAF, MAX16141ADF/V, MAX16141BAF/V 0.05 x VOV_TH V UVSET Threshold Hysteresis VUV_HYS MAX16141AAF, MAX16141AAAF, MAX16141ADF/V, MAX16141BAF/V 0.2 x VUV_TH V TERM On-Resistance Startup Response Time RTERM 0.7 kΩ 450 μs OVSET to GATE Prop Delay VOVSET rising from (VTH_OV - 100mV) to (VTH_OV + 100mV) 10 μs UVSET to GATE Prop Delay VUVSET falling from (VUV_TH + 100mV) to (VUV_TH - 100mV) 20 μs VOVSET rising from (VOV_TH - 100mV) to (VOV_TH + 100mV) 0.3 μs OVSET to FAULT Prop Delay tSU 1.3 tOV GATE OUTPUT VOLTAGE GATE Output Voltage High Above VSRC VGS GATE Charge Pump Current IGATE SHDN, SLEEP LogicHigh Input Voltage VIH SHDN, SLEEP LogicLow Input Voltage VIL SHDN Input Pulse Width SHDN Input Pulldown Current www.analog.com tPW_SHDN ISPD VIN = VSRC = VOUT = 3.5V, IGATE = -1μA 5 VIN = VSRC = VOUT = 12V, IGATE = -1μA VIN = VSRC = VOUT = 24V, IGATE = -1µA VIN = VSRC = VOUT = 36V, IGATE = -1µA 6.3 8 8 9 11 7 8.5 11 6.25 8 11 VIN = VGATE = VSRC = 12V 1200 V μA 1.4 V 0.4 6 V μs 0.1 1.2 μA Analog Devices | 7 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Electrical Characteristics (continued) (VIN = 12V, CGATE-SRC = 7nF, CVCC = 0.33μF, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All specs are subject to change.) PARAMETER FAULT Ouput Voltage Low FAULT Leakage Current OUT Input Resistance SYMBOL VOL IIL CONDITIONS MIN TYP FAULT sinking 1mA VFAULT = 12V MAX UNITS 0.4 V 0.5 ROUT 4 μA MΩ REVERSE-CURRENT THRESHOLD Reverse-Current Threshold Voltage VREV Reverse CurrentBlocking Response Time tREV Fast Reverse Recovery Turn-On Time (Note 2) tREV_FAST VIN < VOUT (MAX16141AAF, MAX16141AAAF, MAX16141BAF/V) 7 10 14 VIN < VOUT (MAX16141ADF/V) 30 40 52 0.3 1 μs 70 μs Overdrive threshold voltage = 40mV Gate rise from GND to VSRC + 3.5V, CGS = 7nF (Note 1) 100Ω from GATE to gate of the MOSFETs mV OVERCURRENT THRESHOLDS Overcurrent Threshold (Note 2) V(RS-OUT) MAX16141(A)A__ 22.5 25 MAX16141(A)B__ 45 50 55 MAX16141(A)C__ 67.5 75 82.5 MAX16141(A)D__ 90 100 110 Comparator overdrive = 40mV, response time is measured from overcurrent event to FAULT pulling low Overcurrent Response Time 27.5 0.5 mV μs Thermal Shutdown THSHDN +145 °C Thermal Shutdown Hysteresis THSHDN_HYS 15 °C VOUT rising 0.9 x VIN V VOUT falling 0.87 x VIN V Power-OK Threshold Power-OK Threshold GATE RAMP RATE CONTROL CURRENT Gate Rise Time RGRC = 10kΩ, gate rising from ground to SRC + 3.5V 10 RGRC = 20kΩ, gate rising from ground to SRC + 3.5V 20 RGRC = 40kΩ, gate rising from ground to SRC + 3.5V 40 ms GATE RAMP DOWN Gate Fall Time GATE Pulldown Current www.analog.com RGFC = 20kΩ, GATE is falling from (VSRC + 8V) to VSRC 200 RGFC = 10kΩ, GATE falling from (VSRC + 8V) to VSRC 100 Active during reverse bias detection to achieve 1μs (max) response time μs 0.280 A Analog Devices | 8 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Note 1: Tested with MOSFETs, NVD6824NL. Note 2: Guaranteed by design and bench characterization. Note 3: Specifications with minimum and maximum limits are 100% production tested at TA = +25°C and are guaranteed over the operating temperature range by design and characterization. Actual typical values may vary and are not guaranteed. www.analog.com Analog Devices | 9 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Typical Operating Characteristics (VIN = VCC = 12V, CVCC = 0.33μF, TA = -40°C to +125°C, unless otherwise noted.) www.analog.com Analog Devices | 10 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Typical Operating Characteristics (continued) (VIN = VCC = 12V, CVCC = 0.33μF, TA = -40°C to +125°C, unless otherwise noted.) www.analog.com Analog Devices | 11 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Pin Configuration Pin Configuration SLEEP (SLEEP) N.C. GFC 11 10 9 13 14 16 EP 1 2 3 GRC 7 GND 6 UVSET 5 OVSET 4 TERM GATE SHDN 15 VCC SRC MAX16141 MAX16141A IN RS 12 8 OUT FAULT TOP VIEW 16-TQFN (SLEEP) ONLY FOR THE MAX16141A Pin Descriptions PIN NAME 1 IN 2 VCC Auxiliary Power Input. VCC provides power to the MAX16141/MAX16141A during a short interruption of power at IN. Connect VCC to IN through a diode and 0.33μF bypass capacitor to ground. 3 SHDN Active-Low Shutdown Input. Drive SHDN low to drive GATE low and TERM to high-impedance state. Drive SHDN high for normal operation. 4 TERM UVSET/OVSET Voltage-Divider Termination Output. TERM is internally connected to VCC through a switch. Connect TERM to the high-side of the UVSET/OVSET resistive-divider network for undervoltage and overvoltage settings. TERM remains off during sleep mode. 5 OVSET Overvoltage Threshold Adjustment Input. Connect a resistive-divider from TERM to OVSET and GND to set the overvoltage threshold. 6 UVSET Undervoltage Threshold Adjustment Input. Connect a resistive-divider from TERM to UVSET and GND to set the undervoltage threshold. 7 GND Ground 8 GRC Gate Rise Control Input. Connect a resistor from GRC to ground to set the gate rise time. See the Electrical Characteristics table for appropriate resistor values. 9 GFC Gate Fall Control Input. A resistor from GFC to ground allows the MAX16141/MAX16141A to disable the gate slower in the event of an overvoltage fault. See the Electrical Characteristics table for appropriate resistor values. 10 N.C. No Connect. Connect to ground. www.analog.com FUNCTION Sense Input. Bypass IN with a 0.1μF ceramic capacitor to GND. Analog Devices | 12 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Pin Descriptions (continued) PIN NAME FUNCTION 11 SLEEP/SLEE P Sleep Mode input. In sleep mode, the gate drive and TERM switch are disabled. Power to the load flows through an internal low-power switch, SRC, and body diode of Q2. In the MAX16141, sleep mode input is active low (SLEEP) and in the MAX16141A, sleep mode input is active high (SLEEP). See Figure 1 for more detail. 12 FAULT Active-Low, Open-Drain Fault Output. FAULT requires a pullup resistor. Load Current/Output Voltage Sense Input. OUT is internally connected to a current-sense comparator input and a voltage comparator. During normal operation, the MAX16141/MAX16141A monitor the overcurrent conditions using a sense resistor between RS and OUT. During the reverse-voltage condition, the MAX16141/MAX16141A enter a fault mode when the voltage between OUT and IN exceeds the set threshold. For accurate overcurrent monitoring, use a Kelvin connection from RSENSE to OUT. 13 OUT 14 RS Current-Sense Positive Input. RS is internally connected to the positive input of a current-sense resistor. Connect a sense resistor between RS and OUT to set the overload threshold. For accurate overcurrent monitoring, use a Kelvin connection from RSENSE to RS. 15 SRC Source Input. Connect SRC to the common source connection of the external n-channel MOSFETs. An external zener diode between SRC and GATE protects the gates of the external MOSFETs. 16 GATE — EP www.analog.com Gate-Driver Output. Connect GATE to the gates of the external n-channel MOSFETs. GATE is the charge-pump output during normal operation. GATE is quickly pulled low during a fault condition or when SHDN is pulled low. Exposed Pad. Connect EP to a contiguous ground plane. Analog Devices | 13 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Functional Diagram GATE SRC OUT RS MAX16141/ MAX16141A SR CTRL CHARGE PUMP VCC OC COMP OSC SLEEP MODE TERM RV COMP TERM IN VREG_IN SHDN POK COMP UVLO SHDN SIGNAL SLEEP SIGNAL VREG AND BG LATCH/ AUTO-RETRY OVSET UVLO DIGITAL THERMAL SHDN FALL TIME CTRL GFC FAULT DRIVE RISE TIME CTRL GRC UVSET OTP+ TEST MODES SLEEP (SLEEP) www.analog.com FAULT GND Analog Devices | 14 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Detailed Description Device Operation The MAX16141/MAX16141A are ideal diode controllers featuring several system-level protections, such as reversecurrent, overcurrent, overvoltage, undervoltage, and overtemperature faults. The MAX16141/MAX16141A consume only 5μA (typ) in shutdown mode. During a reverse-voltage condition, VOUT > VIN, the MAX16141/MAX16141A disable the gate within 1μs (max) of VIN falling below VOUT by the factory-set threshold. An internal charge pump drives the gate 9V (typ) above the source voltage to fully turn on two external back-to-back N-channel FETs, minimizing power dissipation and voltage drop across the FETs. The MAX16141/MAX16141A monitor the load current using a sense resistor between between RS and OUT and protect against reverse current flow when VIN fall below VOUT. These devices feature gate ramp rate control to provide correct operation in a variety of situations. For example, the ramp-up during power-up can be adjusted to avoid excessive inrush current. In the case of an overvoltage fault, the ramp down rate is slow enough to avoid large inductive transients when interrupting high fault currents. On the other hand, the gate drive responds quickly to transient shorts of the input to ground, thereby preventing discharge of the load-side capacitance. When the input recovers, the gate drive ramps up quickly enough to provide power to the load before the load voltage can drop excessively. Power-Up At power-up, the MAX16141/MAX16141A enable the gate drive 450μs (tSU) after the input voltage crosses the undervoltage threshold. During power-up, the gate’s rise time is determined by value of resistor connected between GRC and GND while FAULT remains low and goes high-impedance when the output voltage is greater than 90% of VIN if no fault condition is present. Undervoltage Protection The MAX16141/MAX16141A monitor the input voltage for undervoltage fault. An external resistive divider connected between TERM, UVSET, and GND sets the undervoltage threshold. (TERM is connected to VCC through a switch when SHDN is high.) When the input voltage falls below the undervoltage threshold (VCC = VIN < VUVTH - VHYS), the MAX16141/MAX16141A pull the gate voltage low, turning off the external MOSFETs, and FAULT asserts. When the input voltage rises above the undervoltage threshold (VCC = VIN > VUVTH), GATE goes high after a 450μs startup delay (typ). Overvoltage Protection The MAX16141/MAX16141A detect overvoltage conditions using an external resistive divider connected between TERM, OVSET, and GND. (TERM is connected to VCC through a switch when SHDN is high.) When the input voltage exceeds the programmed overvoltage threshold, the MAX16141/MAX16141A pull GATE to ground and isolate the load from the source voltage. The falling ramp rate of the gate voltage is determined by the value of the resistor connected between GFC and ground. See the Electrical Characteristics table for GATE’s fall times vs. resistor values. During the overvoltage fault condition, GATE latches low and FAULT stays asserted. Overvoltage/Undervoltage Threshold Hysteresis The MAX16141/MAX16141A offer six factory-set overvoltage/undervoltage threshold hysteresis options. See Figure 7 for available options. Overcurrent Protection The MAX16141/MAX16141A detect an overcurrent fault condition using a sense resistor between RS and OUT. When the load current exceeds the factory-set threshold, the MAX16141/MAX16141A isolate the load from the input and disable GATE low with a slow falling ramp rate, as selected by the resistor value between GFC and ground. See the Electrical Characteristics table for GATE’s fall times vs. resistor values. During the overcurrent fault condition, GATE enters the 300ms (typ) auto-retry mode while FAULT stays asserted. Upon on the termination of an overcurrent fault condition, the MAX16141/MAX16141A pull the gate voltage high and allow FAULT to deassert. www.analog.com Analog Devices | 15 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker The MAX16141/MAX16141A offer four factory-set overcurrent threshold options. See Figure 7 for available options. Ideal Diode Reverse-Current Protection The MAX16141/MAX16141A detect reverse-current conditions using a comparator that monitors the differential voltage between IN and OUT. When VIN falls below VOUT by the factor-set thresholds, the MAX16141/MAX16141A disable the gate drive within 1µs (max) to minimize load discharge into the source. The gate drive is enabled once the input rises above the output voltage by 50mV. The MAX16141/MAX16141A offer four factory-set reverse-current thresholds. See Figure 7 for available options. Reverse-Voltage Protection The MAX16141/MAX16141A offer reverse-voltage protection to prevent damage to the downstream circuitry caused by battery reversal or negative transients at the input. The input voltage (IN) withstands reverse voltage down to -36V below ground. When VIN is forced below ground, an internal circuit blocks the current flow from GND to IN to protect the MAX16141/MAX16141A during negative transients events. During a reverse-voltage condition, the gate drive is disabled within 1μs (max) to isolate the load from the source. Note: GATE is internally connected to SRC through a 15MΩ resistor. Connecting GATE to lower input impedance nodes forms a resistive divider between IN, GATE, and GND and keeps the external FETs on. Thermal Shutdown Protection The MAX16141/MAX16141A include thermal shutdown protection that turns off the external MOSFETs if the internal die temperature exceeds +145°C (TJ). By ensuring good thermal coupling between the MOSFETs and the MAX16141/ MAX16141A, the thermal shutdown can turn off the MOSFETs if they overheat. When the junction temperature exceeds TJ = +145°C (typ), the internal thermal sensor signals the shutdown logic, pulling the GATE voltage low and allowing the device to cool. The MAX16141/MAX16141A isolate the load from the input by pulling the gate to ground with a slow falling ramp rate to prevent transient overshoots beyond the input protection voltage and assert FAULT. When TJ drops by 15°C (typ), GATE goes high with a slow rising ramp rate and the MOSFETs turn back on. Do not exceed the absolute maximum junction-temperature rating of TJ = +150°C. GATE Ramp-Up Control To ensure proper power-up, the MAX16141/MAX16141A offer three different gate rise times set with a resistor connected from GRC to GND. See the Electrical Characteristics table for more detail. The gate’s controlled rise time ensures softstart with limited inrush current and is active during power-up, when exiting shutdown, recovering from undervoltage, overvoltage, and thermal faults. Note: The values in the Electrical Characteristics table are determined based on a 7nF gate-to-source capacitance. Depending on the gate-to-source capacitance, the rise time of the gate will be different. GATE Ramp-Down Control The MAX16141/MAX16141A control the gate fall time using a resistor from GFC to ground. See the Electrical Characteristics table for allowed resistor values. The gate’s fall-time control remains active during overvoltage, overcurrent, and thermal shutdown faults. Sleep Mode Sleep mode is a low-power mode that allows the MAX16141/MAX16141A to deliver power to the load using an internal low power MOSFET. In sleep mode, the MAX16141/MAX16141A deliver up to 400μA of current to the load while consuming only 10μA (typ). Load currents higher than 400μA force the MAX16141/MAX16141A to go into constant current mode and cause the output voltage to droop. During sleep mode, the charge pump and TERM switch are disabled. The load current flows through the internal MOSFET, SRC, and body diode of Q2. See Figure 1 for more detail. The MAX16141 features an active-low logic input (SLEEP), and the MAX16141A features an active-high logic input (SLEEP). www.analog.com Analog Devices | 16 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker VIN Q1 Q2 ISLEEP LOAD IN GATE pFET SRC OUT CHARGE PUMP MAX16141/ MAX16141A SLEEP (SLEEP) GND Figure 1. Sleep Mode Operation Note: In sleep mode, the drain of the pFET is internally clamped to 18V. Increasing the input voltage above 18V increases the sleep mode current of the device. See the Typical Operating Characteristics section for more detail. Gate Charge Pump An internal charge pump generates the GATE-to-SRC voltage to enhance the external MOSFETs. After the input voltage exceeds the input undervoltage threshold, the charge pump turns on after a 450µs startup (tSU) delay. During the reverse-voltage fault condition, GATE is disabled with a 280mA (typ) pulldown current. Upon recovery from reverse voltage, if the VCC voltage is below the undervoltage threshold, the gate drive is enabled and its ramp rate is determined by the resistor value between GRC and ground. If upon reverse-voltage recovery the VCC voltage is above the undervoltage threshold, the charge pump sources 1200μA (typ) to enable the gate drive in fast mode. Allowing the gate voltage to ramp up in fast mode helps minimize output voltage droop after reverse-voltage or short battery voltage interruptions. TERM Connection The TERM connection has an internal switch to VCC. In shutdown (SHDN = low), this switch is open. By connecting the voltage threshold resistive divider to TERM instead of directly to VCC, power dissipation in the resistive divider can be eliminated and the supply current in shutdown mode reduced. During shutdown mode, the (VCC - VTERM) can be as high as 60V, but (VTERM - VCC) must be limited to < 1V due to a parasitic diode. FAULT Output FAULT is an open-drain output that indicates fault conditions. During startup, FAULT is initially low and goes highimpedance when VOUT is greater than 90% of VIN if no fault conditions are present. FAULT asserts low during shutdown www.analog.com Analog Devices | 17 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker mode, reverse-current, overcurrent, overvoltage, thermal shutdown, or undervoltage faults, or when VOUT falls below 90% of VIN. Auto-Retry The MAX16141/MAX16141A enter auto-retry mode of 300ms (typ) during overcurrent, output short-circuit, and thermal shutdown faults. In auto-retry mode, the gate drive is enabled every 300ms (typ) to check if the fault condition is removed. If the fault is present, the gate pulls low after a short duration of 20ms (typ). If the fault condition is removed, the gate pulls high and the MAX16141/MAX16141A resume normal operation. During fault conditions, FAULT asserts low and deasserts once the fault conditions are removed. www.analog.com Analog Devices | 18 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Applications Information Setting Overvoltage/Undervoltage Threshold The MAX16141/MAX16141A feature window-detection threshold comparators. The noninverting input of the undervoltage comparator shares the same reference voltage connected to the inverting input of the overvoltage comparator. This configuration allows using three-resistor network to set both undervoltage and overvoltage thresholds. The top of the resistive divider network connects to TERM. See Figure 2. When the input voltage falls outside the set window threshold, the gate voltage is disabled and the n-channel MOSFETs are turned off. Use the following equations to set the thresholds: [ RTOTAL VUVTH = (VTH − VTH_HYS) R2 + R3 [ VOVTH = (VTH) RTOTAL R3 ] ] where VUVTH and VOVTH are the undervoltage and overvoltage thresholds respectively, RTOTAL = R1 + R2 + R3 + RTERM, VTH is the 0.5V OVSET and UVSET threshold, and the VTH_HYS is the hysteresis, RTERM is the TERM onresistance whose typical value is 0.7kΩ. Use the following steps to determine values for R1, R2, and R3: 1. Choose a value for RTOTAL: the sum of R1, R2, R3, and RTERM. 2. Calculate R3 based on RTOTAL and the desired overvoltage threshold point, VOVTH: R3 = ( VTH × RTOTAL VOVTH ) 3. Calculate R2 based on RTOTAL, R3, and the desired undervoltage threshold point, VUVTH: R2 = ( (VTH − VTH_HYS) × RTOTAL VUVTH ) − R3 4. Calculate R1 based on RTOTAL, R2, R3, and RTERM: R1 = RTOTAL − R2 − R3 − RTERM www.analog.com Analog Devices | 19 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Q1 VIN RSENSE Q2 COUT CIN IN D1 VOUT GATE SRC RS OUT VCC CVCC SHDN TERM MAX16141/ MAX16141A R1 UVSET R2 OVSET GND R3 Figure 2. UVSET and OVSET Threshold Setting The MAX16141/MAX16141A offer factory-set threshold hysteresis for undervoltage and overvoltage threshold settings. See Figure 7 for available options. Reverse-Voltage Protection Traditionally, discrete diodes have been used to block reverse current flow and prevent output capacitor discharge. However, for high-current applications, ideal diode controllers (FET-based solutions) are more appealing due to their low power dissipation. But, unlike a discrete diode that blocks reverse current instantaneously, a typical ideal diode controller reacts much more slowly. To prevent heavy discharge of the load-side capacitor in the case of a fault that shorts the input to ground, the MAX16141/MAX16141A disable the gate drive within 1µs (max) of detection of the reverse-voltage condition. See Figure 3. www.analog.com Analog Devices | 20 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker (VOUT - VIN) = VREV – 40mV VIN VOUT ILOAD 0A IREV VGATE 1µs (MAX) 0V Figure 3. Reverse-Voltage Fault Automotive circuits generally require supply voltage protection from various transients that occur in automotive systems. Some of these transients extend beyond the MAX16141/MAX16141A protection range. To protect against these transients, automotive systems generally use external TVSs. Figure 4 shows the recommended circuit for the MAX16141/ MAX16141A. www.analog.com Analog Devices | 21 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Q1 VIN RSENSE Q2 VOUT COUT CIN IN GATE SRC RS OUT D1 VCC TVS1 CVCC FAULT D3 SHDN TERM MAX16141/ MAX16141A SLEEP/ SLEEP TVS2 UVSET OVSET GRC GFC GND D2 Figure 4. Recommended Reverse-Voltage Protection Circuit Ovecurrent Threshold Setting Use the following formula to set the overcurrent threshold: IOC = V(RS-OUT)/RSENSE where V(RS-OUT) is the overcurrent threshold voltage in volts, and RSENSE is the resistor in ohms connected between RS and OUT. Short Power Interruptions In an automotive environment, systems usually experience brief power interruptions where the main supply is shorted to ground. The power interruption may last for several seconds and the only source of power to system load is the output capacitance. To ensure fast recovery, an auxiliary input (VCC) helps keep the MAX16141/MAX16141A in standby mode for 100µs (typ). When the main supply input (IN) recovers, the MAX16141/MAX16141A initiate a fast recovery mode that allows the gate to reach its peak voltage within 70μs (max). See Figure 5 for more detail. Therefore, brief power supply interruptions will not affect operation of the load, as long as the load-side capacitance is sufficiently large to power the load during the interruption. www.analog.com Analog Devices | 22 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker VOUT > VIN VIN VOUT VIN > VOUT VGS = VSRC + 3.5V 100µs VGS 1µs (MAX) 70µs (TYP) Figure 5. Short Power Interruption and Recover Since VCC provides power to the MAX16141 when the main supply is shorted to ground, a low-leakage diode such as CMPD4150 from VIN to VCC and a bulk capacitance is required to keep the MAX16141/MAX16141A in standby mode. See the Typical Application Circuit for proper connection. The size of the bulk capacitance is dictated by the expected duration of the power interruption and supply current of the MAX16141/MAX16141A. Below is a simple bulk capacitance calculation for 100μs power interruption and 1V drop in VCC voltage. CVCC = (ICC × 100 × 10 − 6) ∆ VCC where CVCC is the bulk capacitance at VCC, ICC is the supply current in amperes, and ∆VCC is the desired droop in VCC in volts. (3 × 10 − 3(A) × 100 × 10 − 6(s)) ≃ 0.33μF 1V Note: If the input voltage sags slowly and the output follows, the differential voltage between the input and output may always be less than factory-set threshold. In this case, the reverse-current fault may not occur. Instead, an undervoltage fault may eventually be detected; causing the gate drive to be disabled. Gate Rise Time Control The gate rise time control connection, GRC, allows the MAX16141/MAX16141A to control the gate ramp-up rate with respect SRC. The gate rise time specifications in the Electrical Characteristics table are based on a 7nF gate-to-source capacitance. If the combined gate-to-source capacitance of the MOSFETs is higher than 7nF, the gate voltage might not reach its final nominal voltage within the internal timer selected by RGRC. As a result, upon the expiration of the internal timer, the internal charge pump increases its drive current (fast mode) to force the gate voltage to its final nominal voltage. See Figure 6 for more detail. This sudden jump in the gate voltage could cause a high dV/dt across the output capacitor and result in huge inrush current. To avoid this scenario, increase the gate rise time using a different RGRC, as specified in the Electrical Characteristics table. www.analog.com Analog Devices | 23 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker UVSET THRESHOLD VIN VOUT GATE DRIVE SWITCHES TO FAST MODE AFTER EXPIRATION OF GATE RISE TIME SET BY THE GRC RESISTOR. VGATE GATE RISE TIME > tGRC Figure 6. Gate Voltage Slow to Fast-Mode Transition MOSFET Selection MOSFET selection is critical to design a proper protection circuit. Several factors must be considered: the gate capacitance, the drain-to-source voltage rating, the on-resistance (RDS(ON)), the peak power dissipation capability, and the average power dissipation limit. In general, both MOSFETs should have the same part number. For size-constrained applications, a dual MOSFET can conserve board area. Select the drain-to-source voltage so that the MOSFETs can handle the highest voltage that might be applied to the circuit. Gate capacitance is not as critical, but it does determine the maximum turn-on and turn-off time. MOSFETs with more gate capacitance tend to respond more slowly. MOSFET Power Dissipation The RDS(ON) must be low enough to limit the MOSFET power dissipation during normal operation. Power dissipation (per MOSFET) during normal operation can be calculated using this formula: P = I2LOAD × RDS(ON) where P is the power dissipated in each MOSFET, and ILOAD is the average load current. During a fault condition in switch mode, the MOSFETs turn off and do not dissipate power. Since limiter mode can involve high switching currents when the GATE is turning on at the start of a limiting cycle (especially when the output capacitance is high), it is important to ensure the circuit does not violate the peak power rating of the MOSFETs. Check the pulse power ratings in the MOSFET data sheet. www.analog.com Analog Devices | 24 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Selector Guide MAX16141(A)__ __ __ SUFFIX OVERCURRENT THRESHOLD A 25mV B 50mV C 75mV D 100mV SUFFIX REVERSE VOLTAGE THRESHOLD SUFFIX A 10mV A 2.5/5 B 20mV B 2.5/10 C 30mV C 2.5/20 D 40mV D 5/5 E 5/10 F 5/20 OVSET/UVSET THRESHOLD HYS (%) Figure 7. Selector Guide www.analog.com Analog Devices | 25 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Typical Application Circuit Typical Automotive Application Circuit 3.5V TO 36V Q1 FILTER RSENSE Q2 VOUT COUT CIN 100Ω IN D1 GATE SRC RS OUT RPU VCC CVCC FAULT CAN CTRL SHDN TERM MAX16141/ MAX16141A µC SLEEP/ SLEEP R1 UVSET GRC OVSET GFC R2 10kΩ GND 10kΩ R3 Ordering Information PART NUMBER TEMP RANGE PIN-PACKAGE PACKAGE CODE MAX16141AAF+T -40°C to +125°C 16 TQFN T1644+4A MAX16141AAF/V+T -40°C to +125°C 16 TQFN T1644+4A MAX16141AAAA/VY+T -40°C to +125°C 16 TQFN T1644Y+4 MAX16141AAAF/VY+T -40°C to +125°C 16 TQFN T1644Y+4 MAX16141ADF/V+T -40°C to +125°C 16 TQFN T1644+4A MAX16141BAF/V+T -40°C to +125°C 16 TQFN T1644+4A MAX16141AADA/VY+T* -40°C to +125°C 16 TQFN T1644Y+4 + Denotes a lead(Pb)-free/RoHS-compliant package. T Denotes tape-and-reel. /V denotes automotive qualified parts. * Future product—contact factory for availability. Note: See Figure 7 for overcurrent, reverse-current, overvoltage, and undervoltage hysteresis options. Contact factory for availability of variants not listed in the Ordering Information table (10k units minimum order quantity). www.analog.com Analog Devices | 26 MAX16141/ MAX16141A 3.5V to 36V Ideal Diode Controllers with Voltage and Current Circuit Breaker Revision History REVISION NUMBER REVISION DATE PAGES CHANGED 0 6/18 Initial release 1 7/18 Updated Electrical Characteristics table, Detailed Description section, Ordering Information table, and Applications Information section 6, 12, 14, 16, 19 2 12/18 Updated Benefits and Features, Simplified Block Diagram, Package Information, Functional Diagram, and Reverse-Voltage Protection 1–3, 11, 13 3 2/19 Added MAX16141A to data sheet 4 6/19 Updated Benefits and Features, Typical Operating Characteristics, Pin Configuration, Functional Diagram, Detailed Description, and Ordering Information 5 11/19 Updated Electrical Characteristics table and Ordering Information 6 4/21 Updated General Description, Benefits and Features, Typical Application Circuit, Electrical Characteristics table, Pin Descriptions, Detailed Description, Applications Information, Selector Guide, and Ordering Information 7 8/21 Updated Applications Information 8 1/22 Updated Absolute Maximum Ratings, Electrical Characteristics table, and Ordering Information table 9 4/22 Removed MOSFET Gate Protection section DESCRIPTION — 1–19 1, 9, 11, 13–15, 19 4, 19 1, 2, 4, 5, 9–23 16 3–5, 23 21 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. w w w . a n a l o g . c o m Analog Devices | 27
MAX16141AAAF/VY+
物料型号:MAX16141/MAX16141A

器件简介:这些控制器为系统提供了全面的保护措施,适用于汽车应用,工作电压范围宽,从3.5V至36V,关闭模式下的电流消耗仅为5μA(典型值)。

引脚分配:MAX16141/MAX16141A采用16引脚TQFN封装,具体的引脚功能包括输入感应(IN)、辅助电源输入(Vcc)、关闭输入(SHDN)、故障输出(FAULT)、源输入(SRC)等。

参数特性:包括3.5V至36V的宽工作电压范围、-36V至+60V的输入保护电压范围、快速响应的比较器能在1μs内阻断反向电流流动、具有过电流保护和可调节的过压/欠压阈值等。

功能详解:MAX16141/MAX16141A在启动时监测外部nFETs的电压降和负载电流,以确保VOUT大于VIN的0.9倍。在正常操作中,如果系统遇到短暂的电力中断,这些控制器包括一个次级电源输入(VCC)以保持关键电路的活力。当主输入电源恢复时,控制器会以最快模式(最大70μs)使门极导通,以充电输出电容器。

应用信息:适用于汽车电源系统、网络/电信电源系统、RAID系统等。

封装信息:MAX16141/MAX16141A提供4mm x 4mm x 0.75mm的16引脚TQFN封装,并在-40°C至+125°C的汽车温度范围内工作。
MAX16141AAAF/VY+ 价格&库存

很抱歉,暂时无法提供与“MAX16141AAAF/VY+”相匹配的价格&库存,您可以联系我们找货

免费人工找货