0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX19710EVCMODU+

MAX19710EVCMODU+

  • 厂商:

    MAXIM(美信)

  • 封装:

    Module

  • 描述:

    EVAL MODULE FOR MAX19710

  • 详情介绍
  • 数据手册
  • 价格&库存
MAX19710EVCMODU+ 数据手册
19-0691; Rev 1; 6/07 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Features The MAX19710–MAX19713 evaluation systems (EV systems) consist of MAX19710–MAX19713 evaluation kits (EV kits), a companion Maxim command module (CMODUSB) interface board, and software. Order the complete EV system (see the Ordering Information) for comprehensive evaluation of the MAX19710–MAX19713 using a personal computer. Order the EV kit if the command module has already been purchased with a previous Maxim EV system, or for custom use in other microcontroller-based (µC) systems. The MAX19710–MAX19713 EV kits are fully assembled and tested PCBs that contain all the components necessary to evaluate the performance of the MAX19710–MAX19713 analog front-ends (AFEs). These AFEs integrate a dual-receive analog-to-digital converter (Rx ADC), a dual-transmit digital-to-analog converter (Tx DAC), a 1.024V internal voltage reference, three low-speed serial DACs, and one low-speed serial ADC. The EV kit boards accept AC- or DCcoupled, differential or single-ended analog inputs for the Rx ADC and include circuitry that converts the Tx DAC differential output signals to singleended analog outputs. The EV kits include circuitry that generates a clock signal from an AC sine-wave input signal. The EV kits operate from a +3.0V analog power supply, a +1.8V digital power supply, a +3.0V clock power supply, and ±5V bipolar power supplies. ♦ ADC/DAC Sampling Rates from 7.5Msps to 45Msps ♦ Low-Voltage and Low-Power Operation ♦ Adjustable-Gain, Low-Speed DAC Buffers ♦ On-Board Clock-Shaping Circuitry ♦ On-Board Level-Translating I/O Drivers ♦ Assembled and Tested ♦ Downloadable Windows 98SE/2000/XP-Compatible Software The Maxim command module interface board (CMODUSB) allows a PC to use its USB port to emulate an SPI™ 3-wire interface. Windows® 98SE/2000/XPcompatible software, which can be downloaded from www.maxim-ic.com/evkitsoftware, provides a userfriendly interface to exercise the features of the MAX19710–MAX19713. The program is menu driven and offers a graphical user interface (GUI) with control buttons and a status display. SPI is a trademark of Motorola, Inc. Windows is a registered trademark of Microsoft Corp. Part Selection Table SPEED (Msps) Tx CDMA FILTERS MAX19710EVKIT+ PART 7.5 No MAX19711EVKIT+ 11 Yes MAX19712EVKIT+ 22 No MAX19713EVKIT+ 45 No Ordering Information PART TEMP RANGE* IC PACKAGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** 56 TQFNEP** MAX19710EVKIT+ MAX19710EVCMODU+ MAX19711EVKIT+ MAX19711EVCMODU+ MAX19712EVKIT+ MAX19712EVCMODU+ MAX19713EVKIT+ MAX19713EVCMODU+ SPI INTERFACE TYPE Not included CMODUSB Not included CMODUSB Not included CMODUSB Not included CMODUSB +Denotes a lead-free and RoHS-compliant EV Kit. *This limited temperature range applies to the EV kit PCB only. The MAX19710–MAX19713 IC temperature range is -40°C to +85°C. **EP = Exposed paddle. Note: The MAX19710–MAX19713 EV kit software is available online; however, the CMODUSB board is required to interface the EV kit to the computer when using the software. MAX19710–MAX19713 EV Kit Software Files PROGRAM INSTALL.EXE MAX19710.EXE, MAX19711.EXE, MAX19712.EXE, MAX19713.EXE UNINST.INI TROUBLESHOOTING_USB.PDF DESCRIPTION Installs the EV kit software Application program* Uninstalls the EV kit software USB driver installation help file *EV Kit software dependant. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluate: MAX19710–MAX19713 General Description MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Evaluate: MAX19710–MAX19713 Common Component List DESIGNATION C1–C6, C17, C21, C23, C24, C25, C28, C29, C37–C40, C45–C48, C73–C76, C78, C80, C81 28 DESCRIPTION 0.1µF ±20%, 10V X5R ceramic capacitors (0402) TDK C1005X5R1A104M C11, C31–C36 0 22pF ±5%, 50V C0G ceramic capacitors (0402) TDK C1005C0G1H220J Not installed, capacitors (0402) C12 0 Not installed, capacitor (0603) C13, C14, C82 3 C7–C10 C15, C16 C18, C19, C20, C67–C72 4 2 9 C22, C26, C27 3 C30, C41–C44, C77, C84 7 C49–C60 12 C61–C66 6 C79 1 C83 CLOCK, IA, IAN, IAP, ID, QA, QAN, QAP, QD 2 QTY 1 1000pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H102J 0.33µF ±10%, 10V X7R ceramic capacitors (0603) Murata GRM188R71C334K 1.0µF ±20%, 6.3V X5R ceramic capacitors (0402) TDK C1005X5R0J105M 0.1µF ±20%, 6.3V X5R ceramic capacitors (0201) TDK C0603X5R0J104M 2.2µF ±20%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J225M 220µF ±20%, 6.3V tantalum capacitors (C-case) AVX TPSC227M006R0250 10µF ±20%, 10V X5R ceramic capacitors (1210) TDK C3225X5R1A106M 0.01µF ±5%, 25V C0G ceramic capacitor (0603) TDK C1608C0G1E103J 0.33µF ±10%, 10V X5R ceramic capacitor (0402) Murata GRM155R61A334K 9 SMA PC mount connectors D1 1 Dual Schottky diode (SOT23) Central Semiconductor CMPD6263S Vishay BAS70-04 Diodes Inc BAS70-04 J1 1 2 x 20 right-angle female connector DESIGNATION QTY J2 1 Dual-row, 40-pin header J3 1 Dual-row, 20-pin header J4, J5, JU2 3 2-pin headers JU1 1 Jumper, dual-row, 8-pin header JU3 1 Jumper, 3-pin header R1–R4, R55, R56, R61 7 49.9Ω ±1% resistors (0603) R5–R16, R37–R42 0 Not installed, resistors (0402) R17–R20 4 24.9Ω ±1% resistors (0402) R21–R36, R43–R46, R62, R66 0 Not installed, resistors (0603) R47–R54 8 10kΩ ±1% resistors (0603) R57, R58 2 4.02kΩ ±1% resistors (0603) R59 1 6.04kΩ ±1% resistor (0603) R60 1 2.0kΩ ±1% resistor (0603) R63 1 5kΩ potentiometer, 19-turn, 3/8in RA1–RA2 2 100Ω ±5% resistor arrays (1206-16L) Panasonic EXB-2HV-101J RA3–RA6 4 51Ω ±5% resistor arrays (1206-16L) Panasonic EXB-2HV-510J T1, T2 2 1:1 RF transformers Coilcraft TTWB3010-1L TP1–TP4 4 Test points (red) TP5 1 Test point (black) U1 1 Note: See the EV Kit-Specific Component List U2 1 16-bit buffer/driver (48-pin TSSOP) Texas Instruments SN74ALVCH16244DGGR U3 1 Dual LVDS line receiver Maxim MAX9113ESA+ (8-pin SO) U4, U5 2 400MHz ultra-low-distortion op amps Maxim MAX4108ESA+ (8-pin SO) 1 Low-noise, low-distorion, wideband, rail-to-rail op amp Maxim MAX4478AUD+ (14-pin TSSOP) U6 DESCRIPTION _______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Quad-level translator Maxim MAX3023EUD+ (14-pin TSSOP) Central Semiconductor 631-435-1110 www.centralsemi.com Shunts Coilcraft 847-639-6400 www.coilcraft.com PCB: MAX19710/1/2/3 Evaluation Kit+ Diodes Inc. 805-446-4800 www.diodes.com Murata 770-436-1300 www.murata.com Panasonic 714-373-7366 www.panasonic.com TDK Corp. 847-803-6100 www.component.tdk.com Vishay 203-268-6261 www.vishay.com U7 1 — 6 MAX19713EVCMODU (MAX19713 EV System) Component List QTY DESCRIPTION CMODUSB 1 SPI interface board MAX19713EVKIT+ 1 MAX19713 EV kit EV Kit-Specific Component List EV KIT PART NUMBER WEBSITE www.avxcorp.com DESCRIPTION PART PHONE 843-946-0238 QTY 1 SUPPLIER AVX Corp. DESIGNATION — Component Suppliers DESIGNATION DESCRIPTION MAX19713EVKIT+ Maxim MAX19713ETN+ (56pin, 7mm x 7mm Thin QFN-EP) MAX19712EVKIT+ Maxim MAX19712ETN+ (56pin, 7mm x 7mm Thin QFN-EP) U1 MAX19711EVKIT+ Maxim MAX19711ETN+ (56pin, 7mm x 7mm Thin QFN-EP) MAX19710EVKIT+ Maxim MAX19710ETN+ (56pin, 7mm x 7mm Thin QFN-EP) Quick Start Recommended Equipment • DC power supplies: Analog (VDD) Clock (CVDD) Digital (OVDD) Op-amp positive (VOP) Op-amp negative (VON) +3.0V, 100mA +3.0V, 100mA +1.8V, 100mA 5.0V, 250mA -5.0V, 250mA • Signal generator with low phase noise and low jitter for clock input signal (e.g., HP/Agilent 8662A, HP/Agilent 8644B) • Two signal generators with low phase noise for analog signal inputs (e.g., HP/Agilent 8662A, HP/Agilent 8644B) • Logic analyzer or data-acquisition system with one data pod (e.g., HP/Agilent 16500C, TLA621) Note: Indicate that you are using the MAX19710, MAX19711, MAX19712, or MAX19713 when contacting these component suppliers. • Analog bandpass filters (e.g., Allen Avionics, K&L Microwave) for input and clock signal • Two spectrum analyzers (e.g., HP/Agilent 8560E) • One digital pattern generator with one 10-bit data pod (e.g., Tektronix DG2020A) Procedure The MAX19710–MAX19713 EV kits are fully assembled and tested surface-mount boards. Follow the steps below to verify board operation. Caution: Do not turn on power supplies or enable signal/data generators until all connections are completed. Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows 98SE/2000/XP operating system. Command Module Setup (CMODUSB) 1) Visit the Maxim website (www.maxim-ic.com/evkitsoftware) to download the latest version of the EV kit software. Save the EV kit software to a temporary folder and uncompress the ZIP file. 2) Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows Start | Programs menu. 3) Place a shunt across pins 2-3 of the VDD select jumper (command module working voltage set to 3.3V). 4) Connect a USB cable from the computer’s USB port to the command module (CMODUSB) interface board. Use a standard USB A-B cable. A Building _______________________________________________________________________________________ 3 Evaluate: MAX19710–MAX19713 Common Component List (continued) Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Driver Database window appears in addition to a New Hardware Found message if this is the first time the EV kit board is connected to the PC. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the CMODUSB and reconnect it. Administrator privileges are required to install the USB device driver on Windows 2000/XP. Refer to the document TROUBLESHOOTING_USB.PDF included with the software if you have any problems. 5) Follow the directions of the Add New Hardware Wizard to install the USB device driver. Choose the Search for the best driver for your device option. Specify the location of the device driver to be C:\Program Files\MAX19713, \MAX19712, \MAX19711, or \MAX19710 (default installation directory) using the Browse button. EV Kit Setup 6) Verify that shunts are installed in the following locations: JU1 (1-2) → CS connected JU1 (3-4) → SCLK connected JU1 (5-6) → DIN connected JU1 (7-8) → DOUT connected JU2 (Installed) → Internal reference enabled JU3 (1-2) → Power U2 with OVDD 7) Connect a +3.0V, 100mA power supply to VDD. Connect the ground terminal of this supply to GND. 8) Connect a +3.0V, 100mA power supply to CVDD. Connect the ground terminal of this supply to GND. 9) Connect a +1.8V, 100mA power supply to OVDD. Connect the ground terminal of this supply to OGND. 10) Connect a +5V, 250mA power supply to VOP. Connect the ground terminal of this supply to GND. 11) Connect a -5V, 250mA power supply to VON. Connect the ground terminal of this supply to GND. 12) Carefully align the 40-pin connector of the EV kit (J1) with the 40-pin header of the CMODUSB interface board (P4). Gently press them together. 13) The MAX19710–MAX19713 support two modes of operation: a. To connect a logic analyzer to the EV kit and test the Rx ADCs, skip to step 14. b. To connect a spectrum analyzer to the EV kit and test the Tx DACs, skip to step 34. Rx ADC Setup 14) Connect the clock signal generator to the input of the clock bandpass filter. 4 15) Connect the output of the clock bandpass filter to the EV kit SMA connector labeled CLOCK. 16) Connect the first analog signal generator to the input of the desired bandpass filter. 17) Connect the output of the bandpass filter to the EV kit SMA connector labeled IA (I channel). 18) Connect the second analog signal generator to the input of the desired bandpass filter. 19) Connect the output of the bandpass filter to the EV kit SMA connector labeled QA (Q channel). 20) Ensure that all signal generators are phase-locked to a common reference frequency for coherent sampling. 21) Connect the logic analyzer to J2. Use the bit labels (AD_) located next to header J2 for proper bit alignment or see the Digital Data Bit Locations section for header connections. 22) Set the logic analyzer to capture 10-bit CMOS data on the falling edge for the I channel or the rising edge for the Q channel. 23) Turn on the -5V power supply. 24) Turn on all remaining power supplies. 25) Enable the signal generators. 26) Set the clock signal generator to output a 45MHz signal. The amplitude of the generator should be sufficient to produce a +16dBm signal at the SMA input of the EV kit. Insertion losses due to the series-connected filter (step 14) and the interconnecting cables decrease the amount of power seen at the EV kit input. Account for these losses when setting the signal generator amplitude. 27) Set the analog input signal generators to output the desired frequency. The amplitude of the generator should produce a signal that is no larger than +5dBm, as measured at the SMA input of the EV kit. Insertion losses, due to the series-connected filters (steps 17 and 19) and the interconnecting cables, decrease the amount of power seen at the EV kit input. Account for these losses when setting the signal generator amplitude. 28) Start the MAX19710–MAX19713 program by opening its icon in the Start menu. 29) Normal device operation can be verified by the Status: Interface Board Operational text in the Interface box of the program. 30) Select the Maxim device that you are using from the Device combo box. 31) Click the POR Reset button on the EV kit software GUI. 32) Enable the logic analyzer. 33) Capture data using the logic analyzer. _______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems 34) Connect the clock signal generator to the input of the clock bandpass filter. 35) Connect the output of the clock bandpass filter to the EV kit SMA connector labeled CLOCK. 36) Connect the output of the clock signal generator to the data generator synchronization input. 37) Connect the first spectrum analyzer to the EV kit SMA connector labeled QD (Q channel). 38) Connect the second spectrum analyzer to the EV kit SMA connector labeled ID (I channel). 39) Connect the data generator to J3. Use the bit labels (DA_) located next to header J3 for proper bit alignment, or see the Digital Data Bit Locations section for header connections. 40) Turn on the -5V power supply. 41) Turn on all remaining power supplies. 42) Enable the signal generator. 43) Set the clock signal generator to output a 45MHz signal. The amplitude of the generator should be sufficient to produce a +16dBm signal at the SMA input of the EV kit. Insertion losses, due to the series-connected filter (step 34) and the interconnecting cables, decrease the amount of power seen at the EV kit input. Account for these losses when setting the signal generator amplitude. 44) Load the desired test pattern into the data generator. Data clocked on the rising edge of the clock is transmitted to the Q channel. Data clocked on the falling edge of the clock is transmitted to the I channel. 45) Start the MAX19710–MAX19713 program by opening its icon in the Start menu. 46) Normal device operation can be verified by the Status: Interface Board Operational text in the Interface box. 47) Select the Maxim device that you are using in the Device combo box. 48) Click the POR Reset button on the EV kit software GUI. 49) Enable the data generator. 50) Enable the spectrum analyzers. 51) Analyze the data on the EV kit outputs (QD and ID) with the spectrum analyzers. User-Interface Panel The user interface (Figure 1) is easy to operate; use the mouse, or a combination of the Tab and arrow keys to manipulate the software. Each of the buttons correspond to bits in the command and configuration bytes of the Maxim IC. By selecting them, the correct SPI write operation is generated to update the internal registers of the MAX19710–MAX19713. The software divides EV kit functions into logical blocks. The Interface box indicates the Device, the Register Address Sent, the Data Sent/Received for the last write operation, and the SPI Clock Frequency. This data is used to confirm proper device operation. Adjust the SPI Clock Frequency through the combo box. Use the Device combo box to select the proper AFE and features. The controls for the Tx DAC, Auxiliary DACs, and Auxiliary ADC are accessed through tab sheets. Device Control is accessed at the right-hand side of the main window. Return the EV kit to its power-on-reset state by selecting the POR Reset button. The MAX19710–MAX19713 EV kit software features additional functions to simplify operation. Automatic Diagnostics probes the command module board to make sure a connection exists between the PC and the command module. Figure 1. MAX19713 EV Kit Software Main Window _______________________________________________________________________________________ 5 Evaluate: MAX19710–MAX19713 Detailed Description of Software Tx DAC Setup Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Device Control Configure the operating mode of the device through the intuitive controls in the Device Control box. Select a mode, as outlined in the MAX19710, MAX19711, MAX19712, MAX19713 data sheets, using the Operating Mode control. For a detailed description of the MAX19710–MAX19713 operating modes and their specific names, refer to Table 4 in the MAX19710, MAX19711, MAX19712, and MAX19713 data sheets. The MAX19710–MAX19713 feature an 8-bit SPI signaling mode to increase communications speed. Check the Use Enable-8 Signaling checkbox to use this mode. Refer to the MAX19710, MAX19711, MAX19712, and MAX19713 data sheets for more details on Enable-8 signaling. Tx DAC Control Adjust the Common Mode Voltage and the DAC Full Scale voltage by selecting the desired option from the pulldown box. Note that the DAC Full Scale control is only available when using the MAX19711. The DAC fullscale output of the MAX19710, MAX19712, and MAX19713 is fixed. Refer to the respective data sheet for more details. The DAC I-Offset and Q-Offset voltages can be adjusted in 800µV increments by adjusting the appropriate slider in the Tx DAC Offset Control box. The MAX19711 allows for two adjustable full-scale ranges of 820mVP-P (yields 800µV increments), and a full-scale range of 1.0V P-P (yields 980µV increments). The MAX19710/MAX19712/MAX19713 only allow one fullscale range of 800mVP-P, which yields 780µV increments. Alternatively, a value (specified in millivolts) can be directly entered in the boxes below each slider. If no value has been entered, 0.800/0.980 is used. The software automatically rounds the number to the nearest 800µV/980µV increment and sends the proper data to the MAX19710–MAX19713. Auxiliary DAC Control Access the MAX19710–MAX19713 auxiliary DACs through the Auxiliary DACs tab of the EV kit software (Figure 2). Set the output voltage of the desired auxiliary DAC by adjusting the Aux-DAC 1, Aux-DAC 2, or AuxDAC 3 sliders. Enter a number in the edit box below the slider for precise adjustments. Enable each DAC by setting the checkbox below the slider. Figure 2. MAX19713 EV Kit Software Auxiliary DAC Control 6 _______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Simple SPI Commands There are two methods for communicating with the AFEs: through the normal GUI panel, or through the SPI commands available by selecting the 3-Wire Interface Diagnostic item from the Options pulldown menu. A window is displayed that executes an SPI read/write operation. The SPI (3-Wire Interface) dialog box accepts numeric data in hexadecimal format. Hexadecimal numbers should be prefixed by a $ or 0x. Data entered in the Figure 3. MAX19713 EV Kit Software Auxiliary ADC Control Data bytes to be written: edit box is sent to the device. Eight-bit hexadecimal numbers should be comma delimited. Data appearing in the Data bytes received: box is data read from the device. Selecting the Send Now button in Figure 4 transmits the hexadecimal numbers 0x55 and 0xAA. 0x00 and 0x00 are the received values from the device. For a detailed description of SPI communications, refer to the MAX19710, MAX19711, MAX19712, and MAX19713 data sheets. Detailed Description of Hardware The MAX19710–MAX19713 EV kits are fully assembled and tested PCBs that contain all the components necessary to evaluate the performance of the MAX19710, MAX19711, MAX19712, or MAX19713 AFEs. The AFE’s receive ADCs (Rx ADCs) accept differential input signals; however, on-board transformers (T1, T2) convert a user’s single-ended source output to the required differential signal. The input signals of the MAX19710–MAX19713 are measured using a differential oscilloscope probe at headers J4 and J5. A buffer/driver (U2) buffers the parallel ADC digital output signals. The digital ADC data is accessible at header J2. The AFE’s transmit DACs (Tx DACs) are buffered with on-board ultra-low-distortion, split-supply op amps. The EV kits are designed as four-layer PCBs to optimize the performance of the MAX19710–MAX19713. Figure 4. MAX19713 EV Kit Software 3-Wire Interface Diagnostics _______________________________________________________________________________________ 7 Evaluate: MAX19710–MAX19713 Auxiliary ADC Controls Access the MAX19710–MAX19713 auxiliary ADC through the Auxiliary ADC tab (Figure 3) of the EV kit software. Although these AFEs feature only one 10-bit, low-speed ADC, they can multiplex four voltages onto their input. Select the desired ADC Input Source in the ADC Conversion box. Read the CODE and VOLTAGE of the ADC by selecting the Start Conversion and Read ADC Value button. Other ADC features, such as ADC Averaging and Conversion Clock Divide Ratio, are accessed through the ADC Control box. Disable the auxiliary ADC by checking the Shutdown Auxiliary ADC checkbox. These AFEs can use either the Internal 2.048V reference or VDD (Internal VDD) for the auxiliary ADC reference. If VDD is used for the reference voltage, enter the value of VDD in the box beside the Internal VDD checkbox. Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Separate analog, digital, clock, and buffer power planes minimize noise coupling between analog and digital signals. Analog ADC inputs and DAC outputs use 100Ω differential microstrip transmission lines, while 50Ω microstrip transmission lines are used for all digital outputs and the clock input. The trace lengths of the ADC input and DAC output paths are well matched to minimize layout-dependent input-signal skew. Power Supplies For optimal performance, the MAX19710–MAX19713 EV kits require separate analog, digital, clock, and buffer power supplies; however, two separate +3.0V and +1.8V power supplies are recommended to power the analog (VDD) and digital (OVDD) portions of the AFEs, respectively. The clock circuitry (CVDD) is powered by a +3.0V power supply. The DAC outputs are buffered by split-supply op amps. Power the positive rail (VOP) with a +5V supply and the negative rail (VON) with a -5V supply. A separate +1.8V power supply (BVCC) can be used to isolate the power source to the buffer driver (U2). See Table 1 for the proper jumper configurations for JU3. Table 1. U2 Power Source (JU3) SHUNT POSITION DESCRIPTION 1-2* U2 is powered through OVDD. 2-3 U2 is powered through BVCC. (Note: BVCC must equal OVDD.) clock voltage supply (CVDD) is set to +3.0V. The clock signal is available at J2-3 (CLKOUT), which can be used to synchronize the output signal to the logic analyzer. Measure the clock signal with an oscilloscope at TP3. Rx ADC Inputs Although the MAX19710–MAX19713 AFEs accept differential analog input signals, the EV kits only require a single-ended analog input signal provided by the user. Connect the single-ended sources to the IA SMA connector (I channel) and QA SMA connector (Q channel). Insertion losses due to series-connected bandpass filters and the interconnecting cables decrease the amount of power seen at the EV kit input. Account for these losses when setting the signal generator amplitude. On-board transformers (T1, T2) convert the single-ended analog input signals and generate differential analog signals at the ADC’s differential input pins. The AFEs also accept single-ended input signals. See the Configuring for Single-Ended ADC Operation section for details on how to modify the EV kits to support this mode of operation. Configuring for Single-Ended ADC Operation The MAX19710–MAX19713 can be configured to accept AC-coupled, single-ended signals presented at the input. Configure the EV kit to support this mode of operation by completing the following steps: Clock 1) Cut open the traces at locations R11–R14. 2) Install 0Ω resistors at locations R7–R10, R15, and R16. 3) Install 2kΩ ±1% resistors at locations R21–R24. 4) Connect the single-ended sources to the IAP connector (I channel) and/or to the QAP SMA connector (Q channel). Configure the EV kit for DC-coupled, single-ended signals by removing capacitors C1 and C2, removing resistors R9 and R10, and installing 0Ω resistors at locations R5 and R6. An on-board clock-shaping circuit generates a clock signal from an AC sine-wave signal applied to the CLOCK SMA connector. The frequency of the signal should not exceed 45MHz for the MAX19713 (see the Part Selection Table for the maximum sampling rate of other devices). The frequency of the sinusoidal input signal determines the sampling frequency (fCLK) of the AFEs. A differential line receiver (U3) processes the input signal to generate the CMOS clock signal. The signal’s duty cycle can be adjusted with potentiometer R63. A clock signal with a 50% duty cycle (recommended) is achieved by adjusting R63 until 1.32V is produced across test points TP4 and TP5 when the By default, on-board ultra-low-distortion op amps (U4 and U5) buffer the DAC outputs on the MAX19710– MAX19713 EV kits. The op amps convert the differential signal from the AFEs to a single-ended 50Ω signal. Measure the buffered output signals at the QD SMA connector (Q channel) and the ID SMA connector (I channel). Measure the differential output of the AFEs at the IDN/IDP and QDN/QDP pads. Full-scale output, offset voltage, and common-mode voltage functions are controlled through the EV kit software. *Default configuration. If the OVDD current is measured at the OVDD and OGND pads on the EV kit, a measurement error occurs due to the extra current flowing into U2. Power U2 through BVCC for a more accurate measurement of the OVDD current into the AFEs. 8 Tx DAC Outputs _______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Digital Data Headers The MAX19710–MAX19713 EV kits feature two 10-bit parallel data buses used for full-duplex operation. The two data buses are accessed on the EV kit through header connectors J2 (Rx ADC bus) and J3 (Tx DAC bus). Table 2. Reference Shunt Settings (JU2) SHUNT POSITION DESCRIPTION Installed* Internal reference mode. External reference mode. Apply an external reference voltage to the REFIN pad. Not installed *Default configuration. Digital Data Bit Locations Driver U2 buffers the digital outputs of the Rx ADC. This driver is able to drive large capacitive loads, which may be present at the logic analyzer connection. The outputs of the buffer are connected to a 40-pin header (J2). The 20-pin header (J3) is used to connect to the digital input of the Tx DAC. See Table 3 for bit locations on headers J2 and J3. Configuring the Low-Speed DAC Buffers The MAX19710–MAX19713 EV kits feature on-board configurable buffers. By default, these buffers are configured for unity gain. Measure the buffered voltage at the BDAC1, BDAC2, and BDAC3 pads. Measure the unbuffered voltage at the DAC1, DAC2, and DAC3 pads. Table 3. Digital Data Bit Locations SIGNAL LOCATION TYPE DESCRIPTION AD0 J2-37 Output Data Bit 0 (LSB) AD1 J2-35 Output Data Bit 1 AD2 J2-33 Output Data Bit 2 AD3 J2-31 Output Data Bit 3 AD4 J2-29 Output Data Bit 4 AD5 J2-27 Output Data Bit 5 AD6 J2-25 Output Data Bit 6 AD7 J2-23 Output Data Bit 7 AD8 J2-21 Output Data Bit 8 AD9 J2-19 Output Data Bit 9 (MSB) CLKOUT J2-3 Output Incoming Clock Signal BDOUT J2-9 Output Aux-ADC Digital Output (requires R38 short) DA0 J3-19 Input DA1 J3-17 Input DA2 J3-15 Input DA3 J3-13 Input DA4 J3-11 Input DA5 J3-9 Input DA6 J3-7 Input DA7 J3-5 Input DA8 J3-3 Input DA9 J3-1 Input Note: Pins 1, 5, 7, 11, 13, 15, 17, and 39 of J2 are open. All other pins are connected to OGND. Data Bit 0 (LSB) Data Bit 1 Data Bit 2 Data Bit 3 Data Bit 4 Data Bit 5 Data Bit 6 Data Bit 7 Data Bit 8 Data Bit 9 (MSB) _______________________________________________________________________________________ 9 Evaluate: MAX19710–MAX19713 Reference The MAX19710–MAX19713 feature two reference operation modes. The EV kits can be configured to use either the internal (1.024V) reference or an external user-supplied reference applied at the REFIN pad. The AFEs generate the REFP and REFN voltages from the selected reference voltage (refer to the MAX19710, MAX19711, MAX19712, and MAX19713 data sheets for more details). Measure the REFP and REFN voltages at TP1 and TP2, respectively. Jumper JU2 controls the reference mode. See Table 2 for jumper configurations. Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Configure the on-board buffers for a positive (noninverting) gain by performing the following steps: 1) Cut open the trace at locations R31, R33, and R35. 2) Select a value of 10kΩ for resistors R32, R34, and R36. 3) Calculate resistors R31, R33, and R35 using the equations below. 4) Install R31, R33, and R35 in their respective locations: ⎡ BDAC1 ⎤ R31 = R32 x ⎢ − 1⎥ ⎣ DAC1 ⎦ ⎡ BDAC2 ⎤ R33 = R34 x ⎢ − 1⎥ ⎣ DAC2 ⎦ ⎡ BDAC3 ⎤ R35 = R36 x ⎢ − 1⎥ ⎣ DAC3 ⎦ where: Disconnect the buffers from the AFEs by cutting the trace at locations R28, R29, and R30. Connect the lowspeed DAC loads to the DAC1, DAC2, and DAC3 pads on the EV kit. If the load capacitance is between 5pF and 15pF, cut the trace and install 10kΩ resistors at locations R25, R26, and R27. Resistors are not required if the load is less than 5pF. Using an Alternative SPI Interface The EV kits provide pads and jumpers that allow an alternative SPI interface to be used. Connect the interface to the CS, SCLK, DIN, DOUT, and OGND pads. Ensure that the SPI voltages are compatible with all of the AFE’s working voltages. Refer to the individual MAX19710, MAX19711, MAX19712, and MAX19713 data sheets for suitable SPI interface voltages. Remove the shunts from jumper JU1. See Table 4 for jumper configurations. Table 4. Alternative SPI Interface (JU1) SHUNT POSITION 3-4* 5-6* BDAC _ = Desired noninverting gain of buffer DAC _ R32 = R34 = R36 = 10kΩ Driving Unbuffered Loads The low-speed buffers (U6) on the EV kits are optional and, if desired, can be disconnected from the DAC outputs of the AFEs. 10 DESCRIPTION 1-2* Normal Operation. Four shunts are installed across pins 1-2, 3-4, 5-6, and 7-8. 7-8* Not installed Alternative SPI Interface. No shunts are installed on JU1, connect the SPI signals to the CS, SCLK, DIN, DOUT, and OGND pads. *Default configuration. ______________________________________________________________________________________ J1 MISO MOSI SCLKH CSH VR1 I/OVCC2 I/OVCC1 12 VCC T2 J1-22 J1-21 J1-20 J1-19 J1-18 J1-17 J1-16 J1-27 J1-28 J1-29 J1-30 J1-31 J1-32 J1-33 J1-40 J1-23 J1-26 J1-24 EN 2 1 7 6 J1-15 J1-14 J1-13 J1-12 J1-11 J1-10 J1-9 J1-6 J1-5 OVDD R24 OPEN EN 8 I/OVL4 4 5 6 R23 OPEN I/OVL3 5 I/OVL2 I/OVL1 3 VL GND 11 J1-39 N.C. 4 I/OVCC4 MAX3023 U7 VR2 3 2 1 4 3 6 5 T1 2 1 DVDD C19 1.0μF J1-25 9 10 I/OV 3 CC 13 TP2 VMOD C20 1.0μF DIN SCLK CS R22 OPEN R21 OPEN C2 R2 0.1μF 49.9Ω 1% TP1 R6 OPEN C4 0.1μF R4 49.9Ω 1% DOUT 14 C3 0.1μF R3 49.9Ω 1% C1 0.1μF J1-34 OGND DIN SCLK CS DOUT QAP QA QAN IAN R1 49.9Ω 1% IA JU1 JU1-8 JU1-7 JU1-6 JU1-5 JU1-4 JU1-3 MOSI SCLKH CSH MISO J1-37 J1-38 J1-35 VMOD DIN SCLK 1 6 10 9 4 3 55 COM 5 GND 7 GND 12 GND 40 GND 50 GND 23 DGND 36 DIN 37 SCLK 38 CS C82 1000pF DOUT REFN REFP CLK QAP QAN IAN IAP 2 8 11 39 41 47 51 VDD 54 REFIN 56 C11 OPEN J5 J4 C17 0.1μF VR2 C8 22pF C10 22pF C9 22pF VMOD C83 0.33μF VR1 C7 22pF C12 OPEN C18 1.0μF CS C14 1000pF C13 1000pF R10 OPEN CLK COM R18 24.9Ω 1% J1-36 J1-8 J1-7 J1-4 J1-3 J1-2 J1-1 R19 24.9Ω 1% COM R20 R16 24.9Ω OPEN 1% JU1-2 JU1-1 COM R9 OPEN R17 24.9Ω 1% R15 OPEN COM JU2 REFIN VDD C16 0.33μF C15 0.33μF R12 SHORT R8 OPEN C6 0.1μF R14 SHORT R13 SHORT C5 0.1μF R11 SHORT R7 OPEN MAX19710 U1 VDD VDD VDD VDD VDD VDD VDD R5 OPEN 24 ADC2 ADC1 DAC3 DAC2 DAC1 DOUT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 IDN IDP QDN QDP DVDD OVDD 13 14 15 16 17 18 19 20 21 22 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 42 43 44 45 46 35 25 26 27 28 29 30 31 32 33 34 48 C32 OPEN 49 52 C31 OPEN 53 GND ADC_IN2 ADC_IN1 R27 SHORT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 C36 OPEN C34 OPEN C35 OPEN C33 OPEN R30 SHORT DAC3 R38 OPEN R37 SHORT R42 OPEN R40 OPEN R41 OPEN R39 OPEN U6-D R35 SHORT MAX4478 R36 OPEN 13 12 DOUT1 DOUT C40 0.1μF IDN IDP C38 0.1μF C39 0.1μF QDN QDP C37 0.1μF 14 R26 SHORT R46 OPEN R50 10kΩ 1% R44 OPEN R48 10kΩ 1% R45 OPEN R49 10kΩ 1% R43 OPEN R47 10kΩ 1% BDAC3 R29 SHORT DAC2 R52 10kΩ 1% R51 10kΩ 1% R54 10kΩ 1% R53 10kΩ 1% 4 8 4 MAX4478 U6-A 4 VOP 6 5 11 1 C21 0.1μF VON MAX4108 U5 7 6 VON VOP 5 R25 SHORT C44 2.2μF C48 0.1μF 3 2 C46 8 0.1μF 2 C42 2.2μF C43 2.2μF U4 7 VOP C22 0.1μF MAX4108 R33 R34 SHORT OPEN 2 3 3 2 C47 0.1μF C45 0.1μF C41 2.2μF C84 2.2μF VDD BDAC2 R28 SHORT DAC1 R56 49.9Ω 1% VON GND VOP R55 49.9Ω 1% C23 0.1μF MAX4478 U6-B C51 220μF 6.3V C49 220μF 6.3V U6-C MAX4478 UNUSED AMPLIFIER 10 9 8 C55 220μF 6.3V 7 C52 220μF 6.3V C62 10μF BDAC1 C56 220μF 6.3V C64 10μF C63 10μF C27 0.1μF C61 10μF C54 220μF 6.3V C29 0.1μF C26 0.1μF C50 220μF 6.3V OVDD C53 220μF 6.3V C30 2.2μF C25 0.1μF R31 R32 SHORT OPEN 6 5 DGND DVDD GND VDD ID QD C24 0.1μF DVDD VDD C68 1.0μF C67 1.0μF C70 1.0μF C69 1.0μF VOP C28 0.1μF VON Evaluate: MAX19710–MAX19713 IAP MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 5a. MAX19710 EV Kit Schematic (Sheet 1 of 2) ______________________________________________________________________________________ 11 Figure 5b. MAX19711 EV Kit Schematic (Sheet 1 of 2) J1 MISO MOSI SCLKH CSH VR1 I/OVCC2 I/OVCC1 12 VCC T2 J1-22 J1-21 J1-20 J1-19 J1-18 J1-17 J1-16 J1-27 J1-28 J1-29 J1-30 J1-31 J1-32 J1-33 J1-40 J1-23 J1-26 J1-24 EN 2 1 7 6 ______________________________________________________________________________________ J1-15 J1-14 J1-13 J1-12 J1-11 J1-10 J1-9 J1-6 J1-5 OVDD R24 OPEN EN 8 I/OVL4 4 5 6 R23 OPEN I/OVL3 5 I/OVL2 I/OVL1 3 VL GND 11 J1-39 N.C. 4 I/OVCC4 MAX3023 U7 VR2 3 2 1 4 3 6 5 T1 2 1 DVDD C19 1.0μF J1-25 9 10 I/OV 3 CC 13 TP2 VMOD C20 1.0μF DIN SCLK CS R22 OPEN R21 OPEN C2 R2 0.1μF 49.9Ω 1% TP1 R6 OPEN C4 0.1μF R4 49.9Ω 1% DOUT 14 C3 0.1μF R3 49.9Ω 1% C1 0.1μF J1-34 OGND DIN SCLK CS DOUT QAP QA QAN IAN R1 49.9Ω 1% IA JU1 JU1-8 JU1-7 JU1-6 JU1-5 JU1-4 JU1-3 MOSI SCLKH CSH MISO J1-37 J1-38 J1-35 VMOD DIN SCLK 1 6 10 9 4 3 55 COM 5 GND 7 GND 12 GND 40 GND 50 GND 23 DGND 36 DIN 37 SCLK 38 CS C82 1000pF DOUT REFN REFP CLK QAP QAN IAN IAP 2 8 11 39 41 47 51 VDD 54 REFIN 56 C11 OPEN J5 J4 C17 0.1μF VR2 C8 22pF C10 22pF C9 22pF VMOD C83 0.33μF VR1 C7 22pF C12 OPEN C18 1.0μF CS C14 1000pF C13 1000pF R10 OPEN CLK COM R18 24.9Ω 1% J1-36 J1-8 J1-7 J1-4 J1-3 J1-2 J1-1 R19 24.9Ω 1% COM R20 R16 24.9Ω OPEN 1% JU1-2 JU1-1 COM R9 OPEN R17 24.9Ω 1% R15 OPEN COM JU2 REFIN VDD C16 0.33μF C15 0.33μF R12 SHORT R8 OPEN C6 0.1μF R14 SHORT R13 SHORT C5 0.1μF R11 SHORT R7 OPEN MAX19711 U1 VDD VDD VDD VDD VDD VDD VDD R5 OPEN 24 ADC2 ADC1 DAC3 DAC2 DAC1 DOUT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 IDN IDP QDN QDP DVDD OVDD 13 14 15 16 17 18 19 20 21 22 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 12 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 IAP 42 43 44 45 46 35 25 26 27 28 29 30 31 32 33 34 48 C32 OPEN 49 52 C31 OPEN 53 GND ADC_IN2 ADC_IN1 R27 SHORT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 C36 OPEN C34 OPEN C35 OPEN C33 OPEN R30 SHORT DAC3 R38 OPEN R37 SHORT R42 OPEN R40 OPEN R41 OPEN R39 OPEN U6-D R35 SHORT MAX4478 R36 OPEN 13 12 DOUT1 DOUT C40 0.1μF IDN IDP C38 0.1μF C39 0.1μF QDN QDP C37 0.1μF 14 R26 SHORT R46 OPEN R50 10kΩ 1% R44 OPEN R48 10kΩ 1% R45 OPEN R49 10kΩ 1% R43 OPEN R47 10kΩ 1% BDAC3 R29 SHORT DAC2 R52 10kΩ 1% R51 10kΩ 1% R54 10kΩ 1% R53 10kΩ 1% 4 8 4 MAX4478 U6-A 4 VOP 6 5 11 1 C21 0.1μF VON MAX4108 U5 7 6 VON VOP 5 R25 SHORT C44 2.2μF C48 0.1μF 3 2 C46 8 0.1μF 2 C42 2.2μF C43 2.2μF U4 7 VOP C22 0.1μF MAX4108 R33 R34 SHORT OPEN 2 3 3 2 C47 0.1μF C45 0.1μF C41 2.2μF C84 2.2μF VDD BDAC2 R28 SHORT DAC1 R56 49.9Ω 1% VON GND VOP R55 49.9Ω 1% C23 0.1μF MAX4478 U6-B C51 220μF 6.3V C49 220μF 6.3V U6-C MAX4478 UNUSED AMPLIFIER 10 9 8 C55 220μF 6.3V 7 C52 220μF 6.3V C62 10μF BDAC1 C56 220μF 6.3V C64 10μF C63 10μF C27 0.1μF C61 10μF C54 220μF 6.3V C29 0.1μF C26 0.1μF C50 220μF 6.3V OVDD C53 220μF 6.3V C30 2.2μF C25 0.1μF R31 R32 SHORT OPEN 6 5 DGND DVDD GND VDD ID QD C24 0.1μF DVDD VDD C68 1.0μF C67 1.0μF C70 1.0μF C69 1.0μF VOP C28 0.1μF VON Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems J1 MISO MOSI SCLKH CSH VR1 I/OVCC2 I/OVCC1 12 VCC T2 J1-22 J1-21 J1-20 J1-19 J1-18 J1-17 J1-16 J1-27 J1-28 J1-29 J1-30 J1-31 J1-32 J1-33 J1-40 J1-23 J1-26 J1-24 EN 2 1 7 6 J1-15 J1-14 J1-13 J1-12 J1-11 J1-10 J1-9 J1-6 J1-5 OVDD R24 OPEN EN 8 I/OVL4 4 5 6 R23 OPEN I/OVL3 5 I/OVL2 I/OVL1 3 VL GND 11 J1-39 N.C. 4 I/OVCC4 MAX3023 U7 VR2 3 2 1 4 3 6 5 T1 2 1 DVDD C19 1.0μF J1-25 9 10 I/OV 3 CC 13 TP2 VMOD C20 1.0μF DIN SCLK CS R22 OPEN R21 OPEN C2 R2 0.1μF 49.9Ω 1% TP1 R6 OPEN C4 0.1μF R4 49.9Ω 1% DOUT 14 C3 0.1μF R3 49.9Ω 1% C1 0.1μF J1-34 OGND DIN SCLK CS DOUT QAP QA QAN IAN R1 49.9Ω 1% IA JU1 JU1-8 JU1-7 JU1-6 JU1-5 JU1-4 JU1-3 MOSI SCLKH CSH MISO J1-37 J1-38 J1-35 VMOD DIN SCLK 1 6 10 9 4 3 55 COM 5 GND 7 GND 12 GND 40 GND 50 GND 23 DGND 36 DIN 37 SCLK 38 CS C82 1000pF DOUT REFN REFP CLK QAP QAN IAN IAP 2 8 11 39 41 47 51 VDD 54 REFIN 56 C11 OPEN J5 J4 C17 0.1μF VR2 C8 22pF C10 22pF C9 22pF VMOD C83 0.33μF VR1 C7 22pF C12 OPEN C18 1.0μF CS C14 1000pF C13 1000pF R10 OPEN CLK COM R18 24.9Ω 1% J1-36 J1-8 J1-7 J1-4 J1-3 J1-2 J1-1 R19 24.9Ω 1% COM R20 R16 24.9Ω OPEN 1% JU1-2 JU1-1 COM R9 OPEN R17 24.9Ω 1% R15 OPEN COM JU2 REFIN VDD C16 0.33μF C15 0.33μF R12 SHORT R8 OPEN C6 0.1μF R14 SHORT R13 SHORT C5 0.1μF R11 SHORT R7 OPEN MAX19712 U1 VDD VDD VDD VDD VDD VDD VDD R5 OPEN 24 ADC2 ADC1 DAC3 DAC2 DAC1 DOUT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 IDN IDP QDN QDP DVDD OVDD 13 14 15 16 17 18 19 20 21 22 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 42 43 44 45 46 35 25 26 27 28 29 30 31 32 33 34 48 C32 OPEN 49 52 C31 OPEN 53 GND ADC_IN2 ADC_IN1 R27 SHORT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 C36 OPEN C34 OPEN C35 OPEN C33 OPEN R30 SHORT DAC3 R38 OPEN R37 SHORT R42 OPEN R40 OPEN R41 OPEN R39 OPEN U6-D R35 SHORT MAX4478 R36 OPEN 13 12 DOUT1 DOUT C40 0.1μF IDN IDP C38 0.1μF C39 0.1μF QDN QDP C37 0.1μF 14 R26 SHORT R46 OPEN R50 10kΩ 1% R44 OPEN R48 10kΩ 1% R45 OPEN R49 10kΩ 1% R43 OPEN R47 10kΩ 1% BDAC3 R29 SHORT DAC2 R52 10kΩ 1% R51 10kΩ 1% R54 10kΩ 1% R53 10kΩ 1% 4 8 4 MAX4478 U6-A 4 VOP 6 5 11 1 C21 0.1μF VON MAX4108 U5 7 6 VON VOP 5 R25 SHORT C44 2.2μF C48 0.1μF 3 2 C46 8 0.1μF 2 C42 2.2μF C43 2.2μF U4 7 VOP C22 0.1μF MAX4108 R33 R34 SHORT OPEN 2 3 3 2 C47 0.1μF C45 0.1μF C41 2.2μF C84 2.2μF VDD BDAC2 R28 SHORT DAC1 R56 49.9Ω 1% VON GND VOP R55 49.9Ω 1% C23 0.1μF MAX4478 U6-B C51 220μF 6.3V C49 220μF 6.3V U6-C MAX4478 UNUSED AMPLIFIER 10 9 8 C55 220μF 6.3V 7 C52 220μF 6.3V C62 10μF BDAC1 C56 220μF 6.3V C64 10μF C63 10μF C27 0.1μF C61 10μF C54 220μF 6.3V C29 0.1μF C26 0.1μF C50 220μF 6.3V OVDD C53 220μF 6.3V C30 2.2μF C25 0.1μF R31 R32 SHORT OPEN 6 5 DGND DVDD GND VDD ID QD C24 0.1μF DVDD VDD C68 1.0μF C67 1.0μF C70 1.0μF C69 1.0μF VOP C28 0.1μF VON Evaluate: MAX19710–MAX19713 IAP MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 5c. MAX19712 EV Kit Schematic (Sheet 1 of 2) ______________________________________________________________________________________ 13 Figure 5d. MAX19713 EV Kit Schematic (Sheet 1 of 2) J1 MISO MOSI SCLKH CSH VR1 I/OVCC2 I/OVCC1 12 VCC T2 J1-22 J1-21 J1-20 J1-19 J1-18 J1-17 J1-16 J1-27 J1-28 J1-29 J1-30 J1-31 J1-32 J1-33 J1-40 J1-23 J1-26 J1-24 EN 2 1 7 6 ______________________________________________________________________________________ J1-15 J1-14 J1-13 J1-12 J1-11 J1-10 J1-9 J1-6 J1-5 OVDD R24 OPEN EN 8 I/OVL4 4 5 6 R23 OPEN I/OVL3 5 I/OVL2 I/OVL1 3 VL GND 11 J1-39 N.C. 4 I/OVCC4 MAX3023 U7 VR2 3 2 1 4 3 6 5 T1 2 1 DVDD C19 1.0μF J1-25 9 10 I/OV 3 CC 13 TP2 VMOD C20 1.0μF DIN SCLK CS R22 OPEN R21 OPEN C2 R2 0.1μF 49.9Ω 1% TP1 R6 OPEN C4 0.1μF R4 49.9Ω 1% DOUT 14 C3 0.1μF R3 49.9Ω 1% C1 0.1μF J1-34 OGND DIN SCLK CS DOUT QAP QA QAN IAN R1 49.9Ω 1% IA JU1 JU1-8 JU1-7 JU1-6 JU1-5 JU1-4 JU1-3 MOSI SCLKH CSH MISO J1-37 J1-38 J1-35 VMOD DIN SCLK 1 6 10 9 4 3 55 COM 5 GND 7 GND 12 GND 40 GND 50 GND 23 DGND 36 DIN 37 SCLK 38 CS C82 1000pF DOUT REFN REFP CLK QAP QAN IAN IAP 2 8 11 39 41 47 51 VDD 54 REFIN 56 C11 OPEN J5 J4 C17 0.1μF VR2 C8 22pF C10 22pF C9 22pF VMOD C83 0.33μF VR1 C7 22pF C12 OPEN C18 1.0μF CS C14 1000pF C13 1000pF R10 OPEN CLK COM R18 24.9Ω 1% J1-36 J1-8 J1-7 J1-4 J1-3 J1-2 J1-1 R19 24.9Ω 1% COM R20 R16 24.9Ω OPEN 1% JU1-2 JU1-1 COM R9 OPEN R17 24.9Ω 1% R15 OPEN COM JU2 REFIN VDD C16 0.33μF C15 0.33μF R12 SHORT R8 OPEN C6 0.1μF R14 SHORT R13 SHORT C5 0.1μF R11 SHORT R7 OPEN MAX19713 U1 VDD VDD VDD VDD VDD VDD VDD R5 OPEN 24 ADC2 ADC1 DAC3 DAC2 DAC1 DOUT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 IDN IDP QDN QDP DVDD OVDD 13 14 15 16 17 18 19 20 21 22 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 14 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 IAP 42 43 44 45 46 35 25 26 27 28 29 30 31 32 33 34 48 C32 OPEN 49 52 C31 OPEN 53 GND ADC_IN2 ADC_IN1 R27 SHORT DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8 DA9 C36 OPEN C34 OPEN C35 OPEN C33 OPEN R30 SHORT DAC3 R38 OPEN R37 SHORT R42 OPEN R40 OPEN R41 OPEN R39 OPEN U6-D R35 SHORT MAX4478 R36 OPEN 13 12 DOUT1 DOUT C40 0.1μF IDN IDP C38 0.1μF C39 0.1μF QDN QDP C37 0.1μF 14 R26 SHORT R46 OPEN R50 10kΩ 1% R44 OPEN R48 10kΩ 1% R45 OPEN R49 10kΩ 1% R43 OPEN R47 10kΩ 1% BDAC3 R29 SHORT DAC2 R52 10kΩ 1% R51 10kΩ 1% R54 10kΩ 1% R53 10kΩ 1% 4 8 4 MAX4478 U6-A 4 VOP 6 5 11 1 C21 0.1μF VON MAX4108 U5 7 6 VON VOP 5 R25 SHORT C44 2.2μF C48 0.1μF 3 2 C46 8 0.1μF 2 C42 2.2μF C43 2.2μF U4 7 VOP C22 0.1μF MAX4108 R33 R34 SHORT OPEN 2 3 3 2 C47 0.1μF C45 0.1μF C41 2.2μF C84 2.2μF VDD BDAC2 R28 SHORT DAC1 R56 49.9Ω 1% VON GND VOP R55 49.9Ω 1% C23 0.1μF MAX4478 U6-B C51 220μF 6.3V C49 220μF 6.3V U6-C MAX4478 UNUSED AMPLIFIER 10 9 8 C55 220μF 6.3V 7 C52 220μF 6.3V C62 10μF BDAC1 C56 220μF 6.3V C64 10μF C63 10μF C27 0.1μF C61 10μF C54 220μF 6.3V C29 0.1μF C26 0.1μF C50 220μF 6.3V OVDD C53 220μF 6.3V C30 2.2μF C25 0.1μF R31 R32 SHORT OPEN 6 5 DGND DVDD GND VDD ID QD C24 0.1μF DVDD VDD C68 1.0μF C67 1.0μF C70 1.0μF C69 1.0μF VOP C28 0.1μF VON Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems ______________________________________________________________________________________ DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA8 DA7 DA9 R GND CVDD 1 L 2 13 12 11 10 6 7 8 9 16 15 14 2 3 4 5 9 8 1 10 7 RA6 51Ω 11 6 C60 220μF 6.3V 16 15 14 13 12 RA5 51Ω C59 220μF 6.3V CLKO 1 2 3 4 5 CVDD D1 3 CLK R66 SHORT R62 SHORT DGND BVCC C66 10μF TP3 MAX9113 U3 C58 220μF 6.3V J3-20 J3-19 C57 220μF 6.3V J3-18 J3-17 J3-15 C71 1.0μF AD0 AD1 AD2 AD3 AD4 AD5 J3-12 J3-11 J3-16 J3-10 J3-9 AD6 AD7 J3-8 J3-7 J3-14 AD8 J3-6 J3-5 J3-13 AD9 DOUT1 CLK0 C81 0.1μF J3-4 C65 10μF R58 4.02kΩ 1% R59 6.04kΩ 1% CVDD 2 C80 0.1μF J3-3 J3 2 IN2+ 3 IN1+ TP5 TP4 J3-2 5 1 IN2- 4 IN1- C79 0.01μF C78 0.1μF J3-1 OUT2 OUT1 BVCC C72 1.0μF 6 7 8 GND OVDD VCC C77 2.2μF 3 1 7 8 6 2 3 4 5 1 9 10 11 13 12 15 14 16 9 8 RA2 100Ω 10 11 6 7 16 15 14 13 12 1 2 3 4 5 RA1 100Ω CLOCK R61 49.9Ω 1% R60 2kΩ 1% R63 5kΩ R57 4.02kΩ 1% CVDD VCC VCC 42 41 40 39 38 37 36 35 46 IA2 47 IA1 48 2OE 43 IA4 44 IA3 45 GND VCC 2A2 2A1 GND 2A3 2A4 3A1 3A2 3A4 33 3A3 34 GND 32 31 C74 0.1μF C73 0.1μF VCC 25 3OE 26 4A4 27 4A3 28 GND 29 4A2 30 4A1 1 JU3 2 3 19 24 7 8 9 10 11 12 13 14 15 16 18 17 1OE IY1 IY2 1 3 2 6 IY4 5 IY3 4 GND VCC 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 VCC 4Y1 23 4Y4 22 4Y3 21 GND 20 4Y2 4OE BVCC U2 SN74ALVCH16244 VCC OVDD VCC C76 0.1μF C75 0.1μF VCC 7 8 6 2 3 4 5 1 8 7 6 1 2 3 4 5 RA4 51Ω RA3 51Ω 9 10 11 13 12 15 14 16 9 10 11 15 14 13 12 16 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 BDOUT CLKOUT J2-39 J2-37 J2-35 J2-33 J2-31 J2-29 J2-27 J2-25 J2-23 J2-21 J2-19 J2-17 J2-15 J2-13 J2-11 J2-9 J2-40 J2-38 J2-36 J2-34 J2-32 J2-30 J2-28 J2-26 J2-24 J2-22 J2-20 J2-18 J2-16 J2-14 J2-12 J2-10 J2-8 J2-6 J2-7 J2-4 J2-2 J2-5 J2-1 J2-3 J2 Evaluate: MAX19710–MAX19713 CVDD MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 6. MAX19710–MAX19713 EV Kit Schematic (Sheet 2 of 2) 15 Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 7. MAX19710–MAX19713 EV Kit Component Placement Guide—Component Side 16 ______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Evaluate: MAX19710–MAX19713 Figure 8. MAX19710–MAX19713 EV Kit PCB Layout—Component Side ______________________________________________________________________________________ 17 Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 9. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 2)—Ground Planes 18 ______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Evaluate: MAX19710–MAX19713 Figure 10. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 3)—Power Planes ______________________________________________________________________________________ 19 Evaluate: MAX19710–MAX19713 MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Figure 11. MAX19710–MAX19713 EV Kit PCB Layout—Solder Side 20 ______________________________________________________________________________________ MAX19710–MAX19713 Evaluation Kits/Evaluation Systems Evaluate: MAX19710–MAX19713 Figure 12. MAX19710–MAX19713 EV Kit Component Placement Guide—Solder Side ___________________Revision History Pages changed at Rev 1: 1–6, 8, 9, 11–18 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
MAX19710EVCMODU+
物料型号包括MAX19710EVKIT+、MAX19710EVCMODU+、MAX19711EVKIT+、MAX19711EVCMODU+、MAX19712EVKIT+、MAX19712EVCMODU+、MAX19713EVKIT、MAX19713EVCMODU+。

器件简介为MAX19710–MAX19713评估套件,它们是完全组装并测试过的PCB,包含评估MAX19710–MAX19713模拟前端所需的所有组件。

引脚分配涉及多种元件,如电容、连接器、二极管、电阻、变压器、电位计、测试点和集成电路。

参数特性包括ADC/DAC采样率从7.5Msps到45Msps、低电压和低功耗操作、可调增益、低速率DAC缓冲器等。

功能详解涵盖ADC/DAC采样率、低压和低功耗操作、可调增益、低速率DAC缓冲器、板上时钟整形电路等。

应用信息包括评估MAX19710–MAX19713模拟前端的性能。

封装信息为56 TQFN-EP,且这些评估套件的IC温度范围是-40°C至+85°C。
MAX19710EVCMODU+ 价格&库存

很抱歉,暂时无法提供与“MAX19710EVCMODU+”相匹配的价格&库存,您可以联系我们找货

免费人工找货