19-0691; Rev 1; 6/07
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Features
The MAX19710–MAX19713 evaluation systems (EV
systems) consist of MAX19710–MAX19713 evaluation
kits (EV kits), a companion Maxim command module
(CMODUSB) interface board, and software. Order the
complete EV system (see the Ordering Information) for
comprehensive evaluation of the MAX19710–MAX19713
using a personal computer. Order the EV kit if the
command module has already been purchased with a
previous Maxim EV system, or for custom use in other
microcontroller-based (µC) systems.
The MAX19710–MAX19713 EV kits are fully assembled
and tested PCBs that contain all the components
necessary to evaluate the performance of the
MAX19710–MAX19713 analog front-ends (AFEs).
These AFEs integrate a dual-receive analog-to-digital
converter (Rx ADC), a dual-transmit digital-to-analog
converter (Tx DAC), a 1.024V internal voltage reference, three low-speed serial DACs, and one low-speed
serial ADC. The EV kit boards accept AC- or DCcoupled, differential or single-ended analog inputs for
the Rx ADC and include circuitry that converts the Tx
DAC differential output signals to singleended analog outputs. The EV kits include circuitry that
generates a clock signal from an AC sine-wave input
signal. The EV kits operate from a +3.0V analog power
supply, a +1.8V digital power supply, a +3.0V clock
power supply, and ±5V bipolar power supplies.
♦ ADC/DAC Sampling Rates from 7.5Msps to
45Msps
♦ Low-Voltage and Low-Power Operation
♦ Adjustable-Gain, Low-Speed DAC Buffers
♦ On-Board Clock-Shaping Circuitry
♦ On-Board Level-Translating I/O Drivers
♦ Assembled and Tested
♦ Downloadable Windows 98SE/2000/XP-Compatible
Software
The Maxim command module interface board
(CMODUSB) allows a PC to use its USB port to emulate
an SPI™ 3-wire interface. Windows® 98SE/2000/XPcompatible software, which can be downloaded from
www.maxim-ic.com/evkitsoftware, provides a userfriendly interface to exercise the features of the
MAX19710–MAX19713. The program is menu driven
and offers a graphical user interface (GUI) with control
buttons and a status display.
SPI is a trademark of Motorola, Inc.
Windows is a registered trademark of Microsoft Corp.
Part Selection Table
SPEED (Msps)
Tx CDMA FILTERS
MAX19710EVKIT+
PART
7.5
No
MAX19711EVKIT+
11
Yes
MAX19712EVKIT+
22
No
MAX19713EVKIT+
45
No
Ordering Information
PART
TEMP
RANGE*
IC
PACKAGE
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
0°C to
+70°C
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
56 TQFNEP**
MAX19710EVKIT+
MAX19710EVCMODU+
MAX19711EVKIT+
MAX19711EVCMODU+
MAX19712EVKIT+
MAX19712EVCMODU+
MAX19713EVKIT+
MAX19713EVCMODU+
SPI
INTERFACE
TYPE
Not
included
CMODUSB
Not
included
CMODUSB
Not
included
CMODUSB
Not
included
CMODUSB
+Denotes a lead-free and RoHS-compliant EV Kit.
*This limited temperature range applies to the EV kit PCB only. The
MAX19710–MAX19713 IC temperature range is -40°C to +85°C.
**EP = Exposed paddle.
Note: The MAX19710–MAX19713 EV kit software is available
online; however, the CMODUSB board is required to interface
the EV kit to the computer when using the software.
MAX19710–MAX19713 EV Kit
Software Files
PROGRAM
INSTALL.EXE
MAX19710.EXE, MAX19711.EXE,
MAX19712.EXE, MAX19713.EXE
UNINST.INI
TROUBLESHOOTING_USB.PDF
DESCRIPTION
Installs the EV kit software
Application program*
Uninstalls the EV kit software
USB driver installation
help file
*EV Kit software dependant.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
Evaluate: MAX19710–MAX19713
General Description
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Evaluate: MAX19710–MAX19713
Common Component List
DESIGNATION
C1–C6, C17, C21,
C23, C24, C25, C28,
C29, C37–C40,
C45–C48, C73–C76,
C78, C80, C81
28
DESCRIPTION
0.1µF ±20%, 10V X5R ceramic
capacitors (0402)
TDK C1005X5R1A104M
C11, C31–C36
0
22pF ±5%, 50V C0G ceramic
capacitors (0402)
TDK C1005C0G1H220J
Not installed, capacitors (0402)
C12
0
Not installed, capacitor (0603)
C13, C14, C82
3
C7–C10
C15, C16
C18, C19, C20,
C67–C72
4
2
9
C22,
C26, C27
3
C30, C41–C44,
C77, C84
7
C49–C60
12
C61–C66
6
C79
1
C83
CLOCK, IA, IAN,
IAP, ID, QA, QAN,
QAP, QD
2
QTY
1
1000pF ±5%, 50V C0G ceramic
capacitors (0603)
TDK C1608C0G1H102J
0.33µF ±10%, 10V X7R ceramic
capacitors (0603)
Murata GRM188R71C334K
1.0µF ±20%, 6.3V X5R ceramic
capacitors (0402)
TDK C1005X5R0J105M
0.1µF ±20%, 6.3V X5R ceramic
capacitors (0201)
TDK C0603X5R0J104M
2.2µF ±20%, 6.3V X5R ceramic
capacitors (0603)
TDK C1608X5R0J225M
220µF ±20%, 6.3V tantalum
capacitors (C-case)
AVX TPSC227M006R0250
10µF ±20%, 10V X5R ceramic
capacitors (1210)
TDK C3225X5R1A106M
0.01µF ±5%, 25V C0G ceramic
capacitor (0603)
TDK C1608C0G1E103J
0.33µF ±10%, 10V X5R ceramic
capacitor (0402)
Murata GRM155R61A334K
9
SMA PC mount connectors
D1
1
Dual Schottky diode (SOT23)
Central Semiconductor CMPD6263S
Vishay BAS70-04
Diodes Inc BAS70-04
J1
1
2 x 20 right-angle female connector
DESIGNATION
QTY
J2
1
Dual-row, 40-pin header
J3
1
Dual-row, 20-pin header
J4, J5, JU2
3
2-pin headers
JU1
1
Jumper, dual-row, 8-pin header
JU3
1
Jumper, 3-pin header
R1–R4, R55,
R56, R61
7
49.9Ω ±1% resistors (0603)
R5–R16, R37–R42
0
Not installed, resistors (0402)
R17–R20
4
24.9Ω ±1% resistors (0402)
R21–R36,
R43–R46, R62, R66
0
Not installed, resistors (0603)
R47–R54
8
10kΩ ±1% resistors (0603)
R57, R58
2
4.02kΩ ±1% resistors (0603)
R59
1
6.04kΩ ±1% resistor (0603)
R60
1
2.0kΩ ±1% resistor (0603)
R63
1
5kΩ potentiometer, 19-turn, 3/8in
RA1–RA2
2
100Ω ±5% resistor arrays (1206-16L)
Panasonic EXB-2HV-101J
RA3–RA6
4
51Ω ±5% resistor arrays (1206-16L)
Panasonic EXB-2HV-510J
T1, T2
2
1:1 RF transformers
Coilcraft TTWB3010-1L
TP1–TP4
4
Test points (red)
TP5
1
Test point (black)
U1
1
Note: See the EV Kit-Specific
Component List
U2
1
16-bit buffer/driver
(48-pin TSSOP)
Texas Instruments
SN74ALVCH16244DGGR
U3
1
Dual LVDS line receiver
Maxim MAX9113ESA+ (8-pin SO)
U4, U5
2
400MHz ultra-low-distortion op amps
Maxim MAX4108ESA+ (8-pin SO)
1
Low-noise, low-distorion, wideband, rail-to-rail op amp
Maxim MAX4478AUD+ (14-pin
TSSOP)
U6
DESCRIPTION
_______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Quad-level translator
Maxim MAX3023EUD+ (14-pin TSSOP)
Central
Semiconductor
631-435-1110
www.centralsemi.com
Shunts
Coilcraft
847-639-6400
www.coilcraft.com
PCB: MAX19710/1/2/3
Evaluation Kit+
Diodes Inc.
805-446-4800
www.diodes.com
Murata
770-436-1300
www.murata.com
Panasonic
714-373-7366
www.panasonic.com
TDK Corp.
847-803-6100
www.component.tdk.com
Vishay
203-268-6261
www.vishay.com
U7
1
—
6
MAX19713EVCMODU
(MAX19713 EV System)
Component List
QTY
DESCRIPTION
CMODUSB
1
SPI interface board
MAX19713EVKIT+
1
MAX19713 EV kit
EV Kit-Specific Component List
EV KIT PART
NUMBER
WEBSITE
www.avxcorp.com
DESCRIPTION
PART
PHONE
843-946-0238
QTY
1
SUPPLIER
AVX Corp.
DESIGNATION
—
Component Suppliers
DESIGNATION
DESCRIPTION
MAX19713EVKIT+
Maxim MAX19713ETN+ (56pin, 7mm x 7mm Thin QFN-EP)
MAX19712EVKIT+
Maxim MAX19712ETN+ (56pin, 7mm x 7mm Thin QFN-EP)
U1
MAX19711EVKIT+
Maxim MAX19711ETN+ (56pin, 7mm x 7mm Thin QFN-EP)
MAX19710EVKIT+
Maxim MAX19710ETN+ (56pin, 7mm x 7mm Thin QFN-EP)
Quick Start
Recommended Equipment
• DC power supplies:
Analog (VDD)
Clock (CVDD)
Digital (OVDD)
Op-amp positive (VOP)
Op-amp negative (VON)
+3.0V, 100mA
+3.0V, 100mA
+1.8V, 100mA
5.0V, 250mA
-5.0V, 250mA
• Signal generator with low phase noise and low jitter
for clock input signal (e.g., HP/Agilent 8662A,
HP/Agilent 8644B)
• Two signal generators with low phase noise for analog signal inputs (e.g., HP/Agilent 8662A, HP/Agilent
8644B)
• Logic analyzer or data-acquisition system with one
data pod (e.g., HP/Agilent 16500C, TLA621)
Note: Indicate that you are using the MAX19710, MAX19711,
MAX19712, or MAX19713 when contacting these component
suppliers.
• Analog bandpass filters (e.g., Allen Avionics, K&L
Microwave) for input and clock signal
• Two spectrum analyzers (e.g., HP/Agilent 8560E)
• One digital pattern generator with one 10-bit data
pod (e.g., Tektronix DG2020A)
Procedure
The MAX19710–MAX19713 EV kits are fully assembled
and tested surface-mount boards. Follow the steps below
to verify board operation. Caution: Do not turn on
power supplies or enable signal/data generators until
all connections are completed.
Note: In the following sections, software-related items
are identified by bolding. Text in bold refers to items
directly from the EV kit software. Text in bold and
underlined refers to items from the Windows
98SE/2000/XP operating system.
Command Module Setup (CMODUSB)
1) Visit the Maxim website (www.maxim-ic.com/evkitsoftware) to download the latest version of the EV
kit software. Save the EV kit software to a temporary
folder and uncompress the ZIP file.
2) Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary
folder. The program files are copied and icons are
created in the Windows Start | Programs menu.
3) Place a shunt across pins 2-3 of the VDD select
jumper (command module working voltage set
to 3.3V).
4) Connect a USB cable from the computer’s USB
port to the command module (CMODUSB) interface
board. Use a standard USB A-B cable. A Building
_______________________________________________________________________________________
3
Evaluate: MAX19710–MAX19713
Common Component List
(continued)
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Driver Database window appears in addition to a
New Hardware Found message if this is the first
time the EV kit board is connected to the PC. If you
do not see a window that is similar to the one
described above after 30 seconds, remove the USB
cable from the CMODUSB and reconnect it.
Administrator privileges are required to install the
USB device driver on Windows 2000/XP. Refer to
the document TROUBLESHOOTING_USB.PDF
included with the software if you have any problems.
5) Follow the directions of the Add New Hardware
Wizard to install the USB device driver. Choose the
Search for the best driver for your device option.
Specify the location of the device driver to be
C:\Program Files\MAX19713, \MAX19712,
\MAX19711, or \MAX19710 (default installation
directory) using the Browse button.
EV Kit Setup
6) Verify that shunts are installed in the following locations:
JU1 (1-2) → CS connected
JU1 (3-4) → SCLK connected
JU1 (5-6) → DIN connected
JU1 (7-8) → DOUT connected
JU2 (Installed) → Internal reference enabled
JU3 (1-2) → Power U2 with OVDD
7) Connect a +3.0V, 100mA power supply to VDD.
Connect the ground terminal of this supply to GND.
8) Connect a +3.0V, 100mA power supply to CVDD.
Connect the ground terminal of this supply to GND.
9) Connect a +1.8V, 100mA power supply to OVDD.
Connect the ground terminal of this supply to OGND.
10) Connect a +5V, 250mA power supply to VOP.
Connect the ground terminal of this supply to GND.
11) Connect a -5V, 250mA power supply to VON.
Connect the ground terminal of this supply to GND.
12) Carefully align the 40-pin connector of the EV kit
(J1) with the 40-pin header of the CMODUSB interface board (P4). Gently press them together.
13) The MAX19710–MAX19713 support two modes of
operation:
a. To connect a logic analyzer to the EV kit and
test the Rx ADCs, skip to step 14.
b. To connect a spectrum analyzer to the EV kit
and test the Tx DACs, skip to step 34.
Rx ADC Setup
14) Connect the clock signal generator to the input of
the clock bandpass filter.
4
15) Connect the output of the clock bandpass filter to
the EV kit SMA connector labeled CLOCK.
16) Connect the first analog signal generator to the
input of the desired bandpass filter.
17) Connect the output of the bandpass filter to the EV
kit SMA connector labeled IA (I channel).
18) Connect the second analog signal generator to the
input of the desired bandpass filter.
19) Connect the output of the bandpass filter to the EV
kit SMA connector labeled QA (Q channel).
20) Ensure that all signal generators are phase-locked to a
common reference frequency for coherent sampling.
21) Connect the logic analyzer to J2. Use the bit labels
(AD_) located next to header J2 for proper bit alignment or see the Digital Data Bit Locations section
for header connections.
22) Set the logic analyzer to capture 10-bit CMOS data
on the falling edge for the I channel or the rising
edge for the Q channel.
23) Turn on the -5V power supply.
24) Turn on all remaining power supplies.
25) Enable the signal generators.
26) Set the clock signal generator to output a 45MHz
signal. The amplitude of the generator should
be sufficient to produce a +16dBm signal at the SMA
input of the EV kit. Insertion losses due to the
series-connected filter (step 14) and the interconnecting cables decrease the amount of power
seen at the EV kit input. Account for these losses
when setting the signal generator amplitude.
27) Set the analog input signal generators to output the
desired frequency. The amplitude of the generator
should produce a signal that is no larger than
+5dBm, as measured at the SMA input of the EV kit.
Insertion losses, due to the series-connected filters
(steps 17 and 19) and the interconnecting cables,
decrease the amount of power seen at the EV kit
input. Account for these losses when setting the
signal generator amplitude.
28) Start the MAX19710–MAX19713 program by opening its icon in the Start menu.
29) Normal device operation can be verified by the Status:
Interface Board Operational text in the Interface box
of the program.
30) Select the Maxim device that you are using from the
Device combo box.
31) Click the POR Reset button on the EV kit software
GUI.
32) Enable the logic analyzer.
33) Capture data using the logic analyzer.
_______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
34) Connect the clock signal generator to the input of
the clock bandpass filter.
35) Connect the output of the clock bandpass filter to
the EV kit SMA connector labeled CLOCK.
36) Connect the output of the clock signal generator to
the data generator synchronization input.
37) Connect the first spectrum analyzer to the EV kit
SMA connector labeled QD (Q channel).
38) Connect the second spectrum analyzer to the EV kit
SMA connector labeled ID (I channel).
39) Connect the data generator to J3. Use the bit labels
(DA_) located next to header J3 for proper bit alignment, or see the Digital Data Bit Locations section
for header connections.
40) Turn on the -5V power supply.
41) Turn on all remaining power supplies.
42) Enable the signal generator.
43) Set the clock signal generator to output a 45MHz
signal. The amplitude of the generator should be
sufficient to produce a +16dBm signal at the SMA
input of the EV kit. Insertion losses, due to the
series-connected filter (step 34) and the interconnecting cables, decrease the amount of power
seen at the EV kit input. Account for these losses
when setting the signal generator amplitude.
44) Load the desired test pattern into the data generator.
Data clocked on the rising edge of the clock is transmitted to the Q channel. Data clocked on the falling
edge of the clock is transmitted to the I channel.
45) Start the MAX19710–MAX19713 program by opening its icon in the Start menu.
46) Normal device operation can be verified by the
Status: Interface Board Operational text in the
Interface box.
47) Select the Maxim device that you are using in the
Device combo box.
48) Click the POR Reset button on the EV kit software
GUI.
49) Enable the data generator.
50) Enable the spectrum analyzers.
51) Analyze the data on the EV kit outputs (QD and ID)
with the spectrum analyzers.
User-Interface Panel
The user interface (Figure 1) is easy to operate; use the
mouse, or a combination of the Tab and arrow keys to
manipulate the software. Each of the buttons correspond to bits in the command and configuration bytes
of the Maxim IC. By selecting them, the correct SPI
write operation is generated to update the internal registers of the MAX19710–MAX19713.
The software divides EV kit functions into logical
blocks. The Interface box indicates the Device, the
Register Address Sent, the Data Sent/Received for
the last write operation, and the SPI Clock Frequency.
This data is used to confirm proper device operation.
Adjust the SPI Clock Frequency through the combo
box. Use the Device combo box to select the proper
AFE and features.
The controls for the Tx DAC, Auxiliary DACs, and
Auxiliary ADC are accessed through tab sheets.
Device Control is accessed at the right-hand side of
the main window. Return the EV kit to its power-on-reset
state by selecting the POR Reset button.
The MAX19710–MAX19713 EV kit software features
additional functions to simplify operation. Automatic
Diagnostics probes the command module board to
make sure a connection exists between the PC and the
command module.
Figure 1. MAX19713 EV Kit Software Main Window
_______________________________________________________________________________________
5
Evaluate: MAX19710–MAX19713
Detailed Description of Software
Tx DAC Setup
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Device Control
Configure the operating mode of the device through the
intuitive controls in the Device Control box. Select a
mode, as outlined in the MAX19710, MAX19711,
MAX19712, MAX19713 data sheets, using the
Operating Mode control. For a detailed description of
the MAX19710–MAX19713 operating modes and their
specific names, refer to Table 4 in the MAX19710,
MAX19711, MAX19712, and MAX19713 data sheets.
The MAX19710–MAX19713 feature an 8-bit SPI signaling
mode to increase communications speed. Check the Use
Enable-8 Signaling checkbox to use this mode. Refer to
the MAX19710, MAX19711, MAX19712, and MAX19713
data sheets for more details on Enable-8 signaling.
Tx DAC Control
Adjust the Common Mode Voltage and the DAC Full
Scale voltage by selecting the desired option from the
pulldown box. Note that the DAC Full Scale control is
only available when using the MAX19711. The DAC fullscale output of the MAX19710, MAX19712, and
MAX19713 is fixed. Refer to the respective data sheet for
more details.
The DAC I-Offset and Q-Offset voltages can be adjusted in 800µV increments by adjusting the appropriate
slider in the Tx DAC Offset Control box. The
MAX19711 allows for two adjustable full-scale ranges
of 820mVP-P (yields 800µV increments), and a full-scale
range of 1.0V P-P (yields 980µV increments). The
MAX19710/MAX19712/MAX19713 only allow one fullscale range of 800mVP-P, which yields 780µV increments. Alternatively, a value (specified in millivolts) can
be directly entered in the boxes below each slider. If no
value has been entered, 0.800/0.980 is used. The software automatically rounds the number to the nearest
800µV/980µV increment and sends the proper data to
the MAX19710–MAX19713.
Auxiliary DAC Control
Access the MAX19710–MAX19713 auxiliary DACs
through the Auxiliary DACs tab of the EV kit software
(Figure 2). Set the output voltage of the desired auxiliary
DAC by adjusting the Aux-DAC 1, Aux-DAC 2, or AuxDAC 3 sliders. Enter a number in the edit box below the
slider for precise adjustments. Enable each DAC by
setting the checkbox below the slider.
Figure 2. MAX19713 EV Kit Software Auxiliary DAC Control
6
_______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Simple SPI Commands
There are two methods for communicating with the
AFEs: through the normal GUI panel, or through the SPI
commands available by selecting the 3-Wire Interface
Diagnostic item from the Options pulldown menu. A
window is displayed that executes an SPI read/write
operation.
The SPI (3-Wire Interface) dialog box accepts numeric
data in hexadecimal format. Hexadecimal numbers
should be prefixed by a $ or 0x. Data entered in the
Figure 3. MAX19713 EV Kit Software Auxiliary ADC Control
Data bytes to be written: edit box is sent to the
device. Eight-bit hexadecimal numbers should be
comma delimited. Data appearing in the Data bytes
received: box is data read from the device.
Selecting the Send Now button in Figure 4 transmits
the hexadecimal numbers 0x55 and 0xAA. 0x00 and
0x00 are the received values from the device. For a
detailed description of SPI communications, refer to the
MAX19710, MAX19711, MAX19712, and MAX19713
data sheets.
Detailed Description of Hardware
The MAX19710–MAX19713 EV kits are fully assembled
and tested PCBs that contain all the components necessary to evaluate the performance of the MAX19710,
MAX19711, MAX19712, or MAX19713 AFEs.
The AFE’s receive ADCs (Rx ADCs) accept differential
input signals; however, on-board transformers (T1, T2)
convert a user’s single-ended source output to the
required differential signal. The input signals of the
MAX19710–MAX19713 are measured using a differential
oscilloscope probe at headers J4 and J5. A buffer/driver
(U2) buffers the parallel ADC digital output signals. The
digital ADC data is accessible at header J2.
The AFE’s transmit DACs (Tx DACs) are buffered with
on-board ultra-low-distortion, split-supply op amps.
The EV kits are designed as four-layer PCBs to optimize
the performance of the MAX19710–MAX19713.
Figure 4. MAX19713 EV Kit Software 3-Wire Interface
Diagnostics
_______________________________________________________________________________________
7
Evaluate: MAX19710–MAX19713
Auxiliary ADC Controls
Access the MAX19710–MAX19713 auxiliary ADC through
the Auxiliary ADC tab (Figure 3) of the EV kit software.
Although these AFEs feature only one 10-bit, low-speed
ADC, they can multiplex four voltages onto their input.
Select the desired ADC Input Source in the ADC
Conversion box. Read the CODE and VOLTAGE of the
ADC by selecting the Start Conversion and Read ADC
Value button.
Other ADC features, such as ADC Averaging and
Conversion Clock Divide Ratio, are accessed
through the ADC Control box. Disable the auxiliary
ADC by checking the Shutdown Auxiliary ADC
checkbox. These AFEs can use either the Internal
2.048V reference or VDD (Internal VDD) for the auxiliary ADC reference. If VDD is used for the reference
voltage, enter the value of VDD in the box beside the
Internal VDD checkbox.
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Separate analog, digital, clock, and buffer power planes
minimize noise coupling between analog and digital signals. Analog ADC inputs and DAC outputs use 100Ω
differential microstrip transmission lines, while 50Ω
microstrip transmission lines are used for all digital outputs and the clock input. The trace lengths of the ADC
input and DAC output paths are well matched to minimize layout-dependent input-signal skew.
Power Supplies
For optimal performance, the MAX19710–MAX19713
EV kits require separate analog, digital, clock, and
buffer power supplies; however, two separate +3.0V
and +1.8V power supplies are recommended to power
the analog (VDD) and digital (OVDD) portions of the
AFEs, respectively. The clock circuitry (CVDD) is powered by a +3.0V power supply. The DAC outputs are
buffered by split-supply op amps. Power the positive
rail (VOP) with a +5V supply and the negative rail
(VON) with a -5V supply. A separate +1.8V power supply (BVCC) can be used to isolate the power source to
the buffer driver (U2). See Table 1 for the proper
jumper configurations for JU3.
Table 1. U2 Power Source (JU3)
SHUNT
POSITION
DESCRIPTION
1-2*
U2 is powered through OVDD.
2-3
U2 is powered through BVCC.
(Note: BVCC must equal OVDD.)
clock voltage supply (CVDD) is set to +3.0V. The clock
signal is available at J2-3 (CLKOUT), which can be used
to synchronize the output signal to the logic analyzer.
Measure the clock signal with an oscilloscope at TP3.
Rx ADC Inputs
Although the MAX19710–MAX19713 AFEs accept differential analog input signals, the EV kits only require a
single-ended analog input signal provided by the user.
Connect the single-ended sources to the IA SMA connector (I channel) and QA SMA connector (Q channel).
Insertion losses due to series-connected bandpass
filters and the interconnecting cables decrease the
amount of power seen at the EV kit input. Account for
these losses when setting the signal generator
amplitude. On-board transformers (T1, T2) convert the
single-ended analog input signals and generate differential analog signals at the ADC’s differential input pins.
The AFEs also accept single-ended input signals. See
the Configuring for Single-Ended ADC Operation section for details on how to modify the EV kits to support
this mode of operation.
Configuring for Single-Ended ADC Operation
The MAX19710–MAX19713 can be configured to
accept AC-coupled, single-ended signals presented at
the input. Configure the EV kit to support this mode of
operation by completing the following steps:
Clock
1) Cut open the traces at locations R11–R14.
2) Install 0Ω resistors at locations R7–R10, R15,
and R16.
3) Install 2kΩ ±1% resistors at locations R21–R24.
4) Connect the single-ended sources to the IAP
connector (I channel) and/or to the QAP SMA
connector (Q channel).
Configure the EV kit for DC-coupled, single-ended signals by removing capacitors C1 and C2, removing resistors R9 and R10, and installing 0Ω resistors at locations
R5 and R6.
An on-board clock-shaping circuit generates a clock
signal from an AC sine-wave signal applied to the
CLOCK SMA connector. The frequency of the signal
should not exceed 45MHz for the MAX19713 (see the
Part Selection Table for the maximum sampling rate of
other devices). The frequency of the sinusoidal input
signal determines the sampling frequency (fCLK) of the
AFEs. A differential line receiver (U3) processes the
input signal to generate the CMOS clock signal. The
signal’s duty cycle can be adjusted with potentiometer
R63. A clock signal with a 50% duty cycle (recommended) is achieved by adjusting R63 until 1.32V is
produced across test points TP4 and TP5 when the
By default, on-board ultra-low-distortion op amps (U4 and
U5) buffer the DAC outputs on the MAX19710–
MAX19713 EV kits. The op amps convert the differential
signal from the AFEs to a single-ended 50Ω signal.
Measure the buffered output signals at the QD SMA connector (Q channel) and the ID SMA connector
(I channel).
Measure the differential output of the AFEs at the
IDN/IDP and QDN/QDP pads. Full-scale output, offset
voltage, and common-mode voltage functions are controlled through the EV kit software.
*Default configuration.
If the OVDD current is measured at the OVDD and
OGND pads on the EV kit, a measurement error occurs
due to the extra current flowing into U2. Power U2
through BVCC for a more accurate measurement of the
OVDD current into the AFEs.
8
Tx DAC Outputs
_______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Digital Data Headers
The MAX19710–MAX19713 EV kits feature two 10-bit
parallel data buses used for full-duplex operation. The two
data buses are accessed on the EV kit through header
connectors J2 (Rx ADC bus) and J3 (Tx DAC bus).
Table 2. Reference Shunt Settings (JU2)
SHUNT POSITION
DESCRIPTION
Installed*
Internal reference mode.
External reference mode.
Apply an external reference voltage to
the REFIN pad.
Not installed
*Default configuration.
Digital Data Bit Locations
Driver U2 buffers the digital outputs of the Rx ADC. This
driver is able to drive large capacitive loads, which may
be present at the logic analyzer connection. The outputs of the buffer are connected to a 40-pin header
(J2). The 20-pin header (J3) is used to connect to the
digital input of the Tx DAC. See Table 3 for bit locations
on headers J2 and J3.
Configuring the Low-Speed DAC Buffers
The MAX19710–MAX19713 EV kits feature on-board
configurable buffers. By default, these buffers are configured for unity gain. Measure the buffered voltage at the
BDAC1, BDAC2, and BDAC3 pads. Measure the
unbuffered voltage at the DAC1, DAC2, and DAC3 pads.
Table 3. Digital Data Bit Locations
SIGNAL
LOCATION
TYPE
DESCRIPTION
AD0
J2-37
Output
Data Bit 0 (LSB)
AD1
J2-35
Output
Data Bit 1
AD2
J2-33
Output
Data Bit 2
AD3
J2-31
Output
Data Bit 3
AD4
J2-29
Output
Data Bit 4
AD5
J2-27
Output
Data Bit 5
AD6
J2-25
Output
Data Bit 6
AD7
J2-23
Output
Data Bit 7
AD8
J2-21
Output
Data Bit 8
AD9
J2-19
Output
Data Bit 9 (MSB)
CLKOUT
J2-3
Output
Incoming Clock Signal
BDOUT
J2-9
Output
Aux-ADC Digital Output
(requires R38 short)
DA0
J3-19
Input
DA1
J3-17
Input
DA2
J3-15
Input
DA3
J3-13
Input
DA4
J3-11
Input
DA5
J3-9
Input
DA6
J3-7
Input
DA7
J3-5
Input
DA8
J3-3
Input
DA9
J3-1
Input
Note: Pins 1, 5, 7, 11, 13, 15, 17, and 39 of J2 are open. All other pins are connected to OGND.
Data Bit 0 (LSB)
Data Bit 1
Data Bit 2
Data Bit 3
Data Bit 4
Data Bit 5
Data Bit 6
Data Bit 7
Data Bit 8
Data Bit 9 (MSB)
_______________________________________________________________________________________
9
Evaluate: MAX19710–MAX19713
Reference
The MAX19710–MAX19713 feature two reference operation modes. The EV kits can be configured to use
either the internal (1.024V) reference or an external
user-supplied reference applied at the REFIN pad. The
AFEs generate the REFP and REFN voltages from the
selected reference voltage (refer to the MAX19710,
MAX19711, MAX19712, and MAX19713 data sheets for
more details). Measure the REFP and REFN voltages at
TP1 and TP2, respectively. Jumper JU2 controls the reference mode. See Table 2 for jumper configurations.
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Configure the on-board buffers for a positive (noninverting)
gain by performing the following steps:
1) Cut open the trace at locations R31, R33, and R35.
2) Select a value of 10kΩ for resistors R32, R34, and
R36.
3) Calculate resistors R31, R33, and R35 using the
equations below.
4) Install R31, R33, and R35 in their respective locations:
⎡ BDAC1 ⎤
R31 = R32 x ⎢
− 1⎥
⎣ DAC1
⎦
⎡ BDAC2 ⎤
R33 = R34 x ⎢
− 1⎥
⎣ DAC2
⎦
⎡ BDAC3 ⎤
R35 = R36 x ⎢
− 1⎥
⎣ DAC3
⎦
where:
Disconnect the buffers from the AFEs by cutting the
trace at locations R28, R29, and R30. Connect the lowspeed DAC loads to the DAC1, DAC2, and DAC3 pads
on the EV kit. If the load capacitance is between 5pF
and 15pF, cut the trace and install 10kΩ resistors at
locations R25, R26, and R27. Resistors are not required
if the load is less than 5pF.
Using an Alternative SPI Interface
The EV kits provide pads and jumpers that allow an
alternative SPI interface to be used. Connect the interface to the CS, SCLK, DIN, DOUT, and OGND pads.
Ensure that the SPI voltages are compatible with all of
the AFE’s working voltages. Refer to the individual
MAX19710, MAX19711, MAX19712, and MAX19713
data sheets for suitable SPI interface voltages. Remove
the shunts from jumper JU1. See Table 4 for jumper
configurations.
Table 4. Alternative SPI Interface (JU1)
SHUNT POSITION
3-4*
5-6*
BDAC _
= Desired noninverting gain of buffer
DAC _
R32 = R34 = R36 = 10kΩ
Driving Unbuffered Loads
The low-speed buffers (U6) on the EV kits are optional and,
if desired, can be disconnected from the DAC outputs of
the AFEs.
10
DESCRIPTION
1-2*
Normal Operation.
Four shunts are installed across
pins 1-2, 3-4, 5-6, and 7-8.
7-8*
Not installed
Alternative SPI Interface.
No shunts are installed on JU1, connect
the SPI signals to the CS, SCLK, DIN,
DOUT, and OGND pads.
*Default configuration.
______________________________________________________________________________________
J1
MISO
MOSI
SCLKH
CSH
VR1
I/OVCC2
I/OVCC1
12
VCC
T2
J1-22
J1-21
J1-20
J1-19
J1-18
J1-17
J1-16
J1-27
J1-28
J1-29
J1-30
J1-31
J1-32
J1-33
J1-40
J1-23
J1-26
J1-24
EN
2
1
7
6
J1-15
J1-14
J1-13
J1-12
J1-11
J1-10
J1-9
J1-6
J1-5
OVDD
R24
OPEN
EN 8
I/OVL4
4
5
6
R23
OPEN
I/OVL3 5
I/OVL2
I/OVL1
3
VL
GND
11
J1-39
N.C.
4
I/OVCC4
MAX3023
U7
VR2
3
2
1
4
3
6
5
T1
2
1
DVDD
C19
1.0μF
J1-25
9
10 I/OV 3
CC
13
TP2
VMOD
C20
1.0μF
DIN
SCLK
CS
R22
OPEN
R21
OPEN
C2
R2
0.1μF
49.9Ω
1%
TP1
R6
OPEN
C4
0.1μF
R4
49.9Ω
1%
DOUT
14
C3
0.1μF
R3
49.9Ω
1%
C1
0.1μF
J1-34
OGND
DIN
SCLK
CS
DOUT
QAP
QA
QAN
IAN
R1
49.9Ω
1%
IA
JU1
JU1-8 JU1-7
JU1-6 JU1-5
JU1-4 JU1-3
MOSI
SCLKH
CSH
MISO
J1-37
J1-38
J1-35
VMOD
DIN
SCLK
1
6
10
9
4
3
55 COM
5
GND
7
GND
12 GND
40
GND
50 GND
23
DGND
36 DIN
37 SCLK
38 CS
C82
1000pF
DOUT
REFN
REFP
CLK
QAP
QAN
IAN
IAP
2 8 11 39 41 47 51
VDD
54 REFIN
56
C11
OPEN
J5
J4
C17
0.1μF
VR2
C8
22pF
C10
22pF
C9
22pF
VMOD
C83
0.33μF
VR1
C7
22pF
C12
OPEN
C18
1.0μF
CS
C14
1000pF
C13
1000pF
R10
OPEN
CLK
COM
R18
24.9Ω
1%
J1-36
J1-8
J1-7
J1-4
J1-3
J1-2
J1-1
R19
24.9Ω
1%
COM
R20
R16 24.9Ω
OPEN 1%
JU1-2 JU1-1
COM
R9
OPEN
R17
24.9Ω
1%
R15
OPEN
COM
JU2
REFIN
VDD
C16
0.33μF
C15
0.33μF
R12
SHORT
R8
OPEN
C6
0.1μF
R14
SHORT
R13
SHORT
C5
0.1μF
R11
SHORT
R7
OPEN
MAX19710
U1
VDD
VDD
VDD
VDD
VDD
VDD
VDD
R5
OPEN
24
ADC2
ADC1
DAC3
DAC2
DAC1
DOUT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
IDN
IDP
QDN
QDP
DVDD
OVDD
13 14 15 16 17 18 19 20 21 22
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
42
43
44
45
46
35
25
26
27
28
29
30
31
32
33
34
48
C32
OPEN
49
52
C31
OPEN
53
GND
ADC_IN2
ADC_IN1
R27
SHORT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
C36
OPEN
C34
OPEN
C35
OPEN
C33
OPEN
R30
SHORT
DAC3
R38
OPEN
R37
SHORT
R42
OPEN
R40
OPEN
R41
OPEN
R39
OPEN
U6-D
R35
SHORT
MAX4478
R36
OPEN
13
12
DOUT1
DOUT
C40
0.1μF
IDN
IDP
C38
0.1μF
C39
0.1μF
QDN
QDP
C37
0.1μF
14
R26
SHORT
R46
OPEN
R50
10kΩ
1%
R44
OPEN
R48
10kΩ
1%
R45
OPEN
R49
10kΩ
1%
R43
OPEN
R47
10kΩ
1%
BDAC3
R29
SHORT
DAC2
R52
10kΩ
1%
R51
10kΩ
1%
R54
10kΩ
1%
R53
10kΩ
1%
4
8
4
MAX4478
U6-A
4
VOP
6
5
11
1
C21
0.1μF
VON
MAX4108
U5
7
6
VON
VOP
5
R25
SHORT
C44
2.2μF
C48
0.1μF
3
2
C46
8
0.1μF 2
C42
2.2μF
C43
2.2μF
U4
7
VOP
C22
0.1μF
MAX4108
R33
R34 SHORT
OPEN
2
3
3
2
C47
0.1μF
C45
0.1μF
C41
2.2μF
C84
2.2μF
VDD
BDAC2
R28
SHORT
DAC1
R56
49.9Ω
1%
VON
GND
VOP
R55
49.9Ω
1%
C23
0.1μF
MAX4478
U6-B
C51
220μF
6.3V
C49
220μF
6.3V
U6-C
MAX4478
UNUSED AMPLIFIER
10
9
8
C55
220μF
6.3V
7
C52
220μF
6.3V
C62
10μF
BDAC1
C56
220μF
6.3V
C64
10μF
C63
10μF
C27
0.1μF
C61
10μF
C54
220μF
6.3V
C29
0.1μF
C26
0.1μF
C50
220μF
6.3V
OVDD
C53
220μF
6.3V
C30
2.2μF
C25
0.1μF
R31
R32 SHORT
OPEN
6
5
DGND
DVDD
GND
VDD
ID
QD
C24
0.1μF
DVDD
VDD
C68
1.0μF
C67
1.0μF
C70
1.0μF
C69
1.0μF
VOP
C28
0.1μF
VON
Evaluate: MAX19710–MAX19713
IAP
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 5a. MAX19710 EV Kit Schematic (Sheet 1 of 2)
______________________________________________________________________________________
11
Figure 5b. MAX19711 EV Kit Schematic (Sheet 1 of 2)
J1
MISO
MOSI
SCLKH
CSH
VR1
I/OVCC2
I/OVCC1
12
VCC
T2
J1-22
J1-21
J1-20
J1-19
J1-18
J1-17
J1-16
J1-27
J1-28
J1-29
J1-30
J1-31
J1-32
J1-33
J1-40
J1-23
J1-26
J1-24
EN
2
1
7
6
______________________________________________________________________________________
J1-15
J1-14
J1-13
J1-12
J1-11
J1-10
J1-9
J1-6
J1-5
OVDD
R24
OPEN
EN 8
I/OVL4
4
5
6
R23
OPEN
I/OVL3 5
I/OVL2
I/OVL1
3
VL
GND
11
J1-39
N.C.
4
I/OVCC4
MAX3023
U7
VR2
3
2
1
4
3
6
5
T1
2
1
DVDD
C19
1.0μF
J1-25
9
10 I/OV 3
CC
13
TP2
VMOD
C20
1.0μF
DIN
SCLK
CS
R22
OPEN
R21
OPEN
C2
R2
0.1μF
49.9Ω
1%
TP1
R6
OPEN
C4
0.1μF
R4
49.9Ω
1%
DOUT
14
C3
0.1μF
R3
49.9Ω
1%
C1
0.1μF
J1-34
OGND
DIN
SCLK
CS
DOUT
QAP
QA
QAN
IAN
R1
49.9Ω
1%
IA
JU1
JU1-8 JU1-7
JU1-6 JU1-5
JU1-4 JU1-3
MOSI
SCLKH
CSH
MISO
J1-37
J1-38
J1-35
VMOD
DIN
SCLK
1
6
10
9
4
3
55 COM
5
GND
7
GND
12 GND
40
GND
50 GND
23
DGND
36 DIN
37 SCLK
38 CS
C82
1000pF
DOUT
REFN
REFP
CLK
QAP
QAN
IAN
IAP
2 8 11 39 41 47 51
VDD
54 REFIN
56
C11
OPEN
J5
J4
C17
0.1μF
VR2
C8
22pF
C10
22pF
C9
22pF
VMOD
C83
0.33μF
VR1
C7
22pF
C12
OPEN
C18
1.0μF
CS
C14
1000pF
C13
1000pF
R10
OPEN
CLK
COM
R18
24.9Ω
1%
J1-36
J1-8
J1-7
J1-4
J1-3
J1-2
J1-1
R19
24.9Ω
1%
COM
R20
R16 24.9Ω
OPEN 1%
JU1-2 JU1-1
COM
R9
OPEN
R17
24.9Ω
1%
R15
OPEN
COM
JU2
REFIN
VDD
C16
0.33μF
C15
0.33μF
R12
SHORT
R8
OPEN
C6
0.1μF
R14
SHORT
R13
SHORT
C5
0.1μF
R11
SHORT
R7
OPEN
MAX19711
U1
VDD
VDD
VDD
VDD
VDD
VDD
VDD
R5
OPEN
24
ADC2
ADC1
DAC3
DAC2
DAC1
DOUT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
IDN
IDP
QDN
QDP
DVDD
OVDD
13 14 15 16 17 18 19 20 21 22
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
12
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
IAP
42
43
44
45
46
35
25
26
27
28
29
30
31
32
33
34
48
C32
OPEN
49
52
C31
OPEN
53
GND
ADC_IN2
ADC_IN1
R27
SHORT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
C36
OPEN
C34
OPEN
C35
OPEN
C33
OPEN
R30
SHORT
DAC3
R38
OPEN
R37
SHORT
R42
OPEN
R40
OPEN
R41
OPEN
R39
OPEN
U6-D
R35
SHORT
MAX4478
R36
OPEN
13
12
DOUT1
DOUT
C40
0.1μF
IDN
IDP
C38
0.1μF
C39
0.1μF
QDN
QDP
C37
0.1μF
14
R26
SHORT
R46
OPEN
R50
10kΩ
1%
R44
OPEN
R48
10kΩ
1%
R45
OPEN
R49
10kΩ
1%
R43
OPEN
R47
10kΩ
1%
BDAC3
R29
SHORT
DAC2
R52
10kΩ
1%
R51
10kΩ
1%
R54
10kΩ
1%
R53
10kΩ
1%
4
8
4
MAX4478
U6-A
4
VOP
6
5
11
1
C21
0.1μF
VON
MAX4108
U5
7
6
VON
VOP
5
R25
SHORT
C44
2.2μF
C48
0.1μF
3
2
C46
8
0.1μF 2
C42
2.2μF
C43
2.2μF
U4
7
VOP
C22
0.1μF
MAX4108
R33
R34 SHORT
OPEN
2
3
3
2
C47
0.1μF
C45
0.1μF
C41
2.2μF
C84
2.2μF
VDD
BDAC2
R28
SHORT
DAC1
R56
49.9Ω
1%
VON
GND
VOP
R55
49.9Ω
1%
C23
0.1μF
MAX4478
U6-B
C51
220μF
6.3V
C49
220μF
6.3V
U6-C
MAX4478
UNUSED AMPLIFIER
10
9
8
C55
220μF
6.3V
7
C52
220μF
6.3V
C62
10μF
BDAC1
C56
220μF
6.3V
C64
10μF
C63
10μF
C27
0.1μF
C61
10μF
C54
220μF
6.3V
C29
0.1μF
C26
0.1μF
C50
220μF
6.3V
OVDD
C53
220μF
6.3V
C30
2.2μF
C25
0.1μF
R31
R32 SHORT
OPEN
6
5
DGND
DVDD
GND
VDD
ID
QD
C24
0.1μF
DVDD
VDD
C68
1.0μF
C67
1.0μF
C70
1.0μF
C69
1.0μF
VOP
C28
0.1μF
VON
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
J1
MISO
MOSI
SCLKH
CSH
VR1
I/OVCC2
I/OVCC1
12
VCC
T2
J1-22
J1-21
J1-20
J1-19
J1-18
J1-17
J1-16
J1-27
J1-28
J1-29
J1-30
J1-31
J1-32
J1-33
J1-40
J1-23
J1-26
J1-24
EN
2
1
7
6
J1-15
J1-14
J1-13
J1-12
J1-11
J1-10
J1-9
J1-6
J1-5
OVDD
R24
OPEN
EN 8
I/OVL4
4
5
6
R23
OPEN
I/OVL3 5
I/OVL2
I/OVL1
3
VL
GND
11
J1-39
N.C.
4
I/OVCC4
MAX3023
U7
VR2
3
2
1
4
3
6
5
T1
2
1
DVDD
C19
1.0μF
J1-25
9
10 I/OV 3
CC
13
TP2
VMOD
C20
1.0μF
DIN
SCLK
CS
R22
OPEN
R21
OPEN
C2
R2
0.1μF
49.9Ω
1%
TP1
R6
OPEN
C4
0.1μF
R4
49.9Ω
1%
DOUT
14
C3
0.1μF
R3
49.9Ω
1%
C1
0.1μF
J1-34
OGND
DIN
SCLK
CS
DOUT
QAP
QA
QAN
IAN
R1
49.9Ω
1%
IA
JU1
JU1-8 JU1-7
JU1-6 JU1-5
JU1-4 JU1-3
MOSI
SCLKH
CSH
MISO
J1-37
J1-38
J1-35
VMOD
DIN
SCLK
1
6
10
9
4
3
55 COM
5
GND
7
GND
12 GND
40
GND
50 GND
23
DGND
36 DIN
37 SCLK
38 CS
C82
1000pF
DOUT
REFN
REFP
CLK
QAP
QAN
IAN
IAP
2 8 11 39 41 47 51
VDD
54 REFIN
56
C11
OPEN
J5
J4
C17
0.1μF
VR2
C8
22pF
C10
22pF
C9
22pF
VMOD
C83
0.33μF
VR1
C7
22pF
C12
OPEN
C18
1.0μF
CS
C14
1000pF
C13
1000pF
R10
OPEN
CLK
COM
R18
24.9Ω
1%
J1-36
J1-8
J1-7
J1-4
J1-3
J1-2
J1-1
R19
24.9Ω
1%
COM
R20
R16 24.9Ω
OPEN 1%
JU1-2 JU1-1
COM
R9
OPEN
R17
24.9Ω
1%
R15
OPEN
COM
JU2
REFIN
VDD
C16
0.33μF
C15
0.33μF
R12
SHORT
R8
OPEN
C6
0.1μF
R14
SHORT
R13
SHORT
C5
0.1μF
R11
SHORT
R7
OPEN
MAX19712
U1
VDD
VDD
VDD
VDD
VDD
VDD
VDD
R5
OPEN
24
ADC2
ADC1
DAC3
DAC2
DAC1
DOUT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
IDN
IDP
QDN
QDP
DVDD
OVDD
13 14 15 16 17 18 19 20 21 22
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
42
43
44
45
46
35
25
26
27
28
29
30
31
32
33
34
48
C32
OPEN
49
52
C31
OPEN
53
GND
ADC_IN2
ADC_IN1
R27
SHORT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
C36
OPEN
C34
OPEN
C35
OPEN
C33
OPEN
R30
SHORT
DAC3
R38
OPEN
R37
SHORT
R42
OPEN
R40
OPEN
R41
OPEN
R39
OPEN
U6-D
R35
SHORT
MAX4478
R36
OPEN
13
12
DOUT1
DOUT
C40
0.1μF
IDN
IDP
C38
0.1μF
C39
0.1μF
QDN
QDP
C37
0.1μF
14
R26
SHORT
R46
OPEN
R50
10kΩ
1%
R44
OPEN
R48
10kΩ
1%
R45
OPEN
R49
10kΩ
1%
R43
OPEN
R47
10kΩ
1%
BDAC3
R29
SHORT
DAC2
R52
10kΩ
1%
R51
10kΩ
1%
R54
10kΩ
1%
R53
10kΩ
1%
4
8
4
MAX4478
U6-A
4
VOP
6
5
11
1
C21
0.1μF
VON
MAX4108
U5
7
6
VON
VOP
5
R25
SHORT
C44
2.2μF
C48
0.1μF
3
2
C46
8
0.1μF 2
C42
2.2μF
C43
2.2μF
U4
7
VOP
C22
0.1μF
MAX4108
R33
R34 SHORT
OPEN
2
3
3
2
C47
0.1μF
C45
0.1μF
C41
2.2μF
C84
2.2μF
VDD
BDAC2
R28
SHORT
DAC1
R56
49.9Ω
1%
VON
GND
VOP
R55
49.9Ω
1%
C23
0.1μF
MAX4478
U6-B
C51
220μF
6.3V
C49
220μF
6.3V
U6-C
MAX4478
UNUSED AMPLIFIER
10
9
8
C55
220μF
6.3V
7
C52
220μF
6.3V
C62
10μF
BDAC1
C56
220μF
6.3V
C64
10μF
C63
10μF
C27
0.1μF
C61
10μF
C54
220μF
6.3V
C29
0.1μF
C26
0.1μF
C50
220μF
6.3V
OVDD
C53
220μF
6.3V
C30
2.2μF
C25
0.1μF
R31
R32 SHORT
OPEN
6
5
DGND
DVDD
GND
VDD
ID
QD
C24
0.1μF
DVDD
VDD
C68
1.0μF
C67
1.0μF
C70
1.0μF
C69
1.0μF
VOP
C28
0.1μF
VON
Evaluate: MAX19710–MAX19713
IAP
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 5c. MAX19712 EV Kit Schematic (Sheet 1 of 2)
______________________________________________________________________________________
13
Figure 5d. MAX19713 EV Kit Schematic (Sheet 1 of 2)
J1
MISO
MOSI
SCLKH
CSH
VR1
I/OVCC2
I/OVCC1
12
VCC
T2
J1-22
J1-21
J1-20
J1-19
J1-18
J1-17
J1-16
J1-27
J1-28
J1-29
J1-30
J1-31
J1-32
J1-33
J1-40
J1-23
J1-26
J1-24
EN
2
1
7
6
______________________________________________________________________________________
J1-15
J1-14
J1-13
J1-12
J1-11
J1-10
J1-9
J1-6
J1-5
OVDD
R24
OPEN
EN 8
I/OVL4
4
5
6
R23
OPEN
I/OVL3 5
I/OVL2
I/OVL1
3
VL
GND
11
J1-39
N.C.
4
I/OVCC4
MAX3023
U7
VR2
3
2
1
4
3
6
5
T1
2
1
DVDD
C19
1.0μF
J1-25
9
10 I/OV 3
CC
13
TP2
VMOD
C20
1.0μF
DIN
SCLK
CS
R22
OPEN
R21
OPEN
C2
R2
0.1μF
49.9Ω
1%
TP1
R6
OPEN
C4
0.1μF
R4
49.9Ω
1%
DOUT
14
C3
0.1μF
R3
49.9Ω
1%
C1
0.1μF
J1-34
OGND
DIN
SCLK
CS
DOUT
QAP
QA
QAN
IAN
R1
49.9Ω
1%
IA
JU1
JU1-8 JU1-7
JU1-6 JU1-5
JU1-4 JU1-3
MOSI
SCLKH
CSH
MISO
J1-37
J1-38
J1-35
VMOD
DIN
SCLK
1
6
10
9
4
3
55 COM
5
GND
7
GND
12 GND
40
GND
50 GND
23
DGND
36 DIN
37 SCLK
38 CS
C82
1000pF
DOUT
REFN
REFP
CLK
QAP
QAN
IAN
IAP
2 8 11 39 41 47 51
VDD
54 REFIN
56
C11
OPEN
J5
J4
C17
0.1μF
VR2
C8
22pF
C10
22pF
C9
22pF
VMOD
C83
0.33μF
VR1
C7
22pF
C12
OPEN
C18
1.0μF
CS
C14
1000pF
C13
1000pF
R10
OPEN
CLK
COM
R18
24.9Ω
1%
J1-36
J1-8
J1-7
J1-4
J1-3
J1-2
J1-1
R19
24.9Ω
1%
COM
R20
R16 24.9Ω
OPEN 1%
JU1-2 JU1-1
COM
R9
OPEN
R17
24.9Ω
1%
R15
OPEN
COM
JU2
REFIN
VDD
C16
0.33μF
C15
0.33μF
R12
SHORT
R8
OPEN
C6
0.1μF
R14
SHORT
R13
SHORT
C5
0.1μF
R11
SHORT
R7
OPEN
MAX19713
U1
VDD
VDD
VDD
VDD
VDD
VDD
VDD
R5
OPEN
24
ADC2
ADC1
DAC3
DAC2
DAC1
DOUT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
IDN
IDP
QDN
QDP
DVDD
OVDD
13 14 15 16 17 18 19 20 21 22
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
14
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
IAP
42
43
44
45
46
35
25
26
27
28
29
30
31
32
33
34
48
C32
OPEN
49
52
C31
OPEN
53
GND
ADC_IN2
ADC_IN1
R27
SHORT
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
C36
OPEN
C34
OPEN
C35
OPEN
C33
OPEN
R30
SHORT
DAC3
R38
OPEN
R37
SHORT
R42
OPEN
R40
OPEN
R41
OPEN
R39
OPEN
U6-D
R35
SHORT
MAX4478
R36
OPEN
13
12
DOUT1
DOUT
C40
0.1μF
IDN
IDP
C38
0.1μF
C39
0.1μF
QDN
QDP
C37
0.1μF
14
R26
SHORT
R46
OPEN
R50
10kΩ
1%
R44
OPEN
R48
10kΩ
1%
R45
OPEN
R49
10kΩ
1%
R43
OPEN
R47
10kΩ
1%
BDAC3
R29
SHORT
DAC2
R52
10kΩ
1%
R51
10kΩ
1%
R54
10kΩ
1%
R53
10kΩ
1%
4
8
4
MAX4478
U6-A
4
VOP
6
5
11
1
C21
0.1μF
VON
MAX4108
U5
7
6
VON
VOP
5
R25
SHORT
C44
2.2μF
C48
0.1μF
3
2
C46
8
0.1μF 2
C42
2.2μF
C43
2.2μF
U4
7
VOP
C22
0.1μF
MAX4108
R33
R34 SHORT
OPEN
2
3
3
2
C47
0.1μF
C45
0.1μF
C41
2.2μF
C84
2.2μF
VDD
BDAC2
R28
SHORT
DAC1
R56
49.9Ω
1%
VON
GND
VOP
R55
49.9Ω
1%
C23
0.1μF
MAX4478
U6-B
C51
220μF
6.3V
C49
220μF
6.3V
U6-C
MAX4478
UNUSED AMPLIFIER
10
9
8
C55
220μF
6.3V
7
C52
220μF
6.3V
C62
10μF
BDAC1
C56
220μF
6.3V
C64
10μF
C63
10μF
C27
0.1μF
C61
10μF
C54
220μF
6.3V
C29
0.1μF
C26
0.1μF
C50
220μF
6.3V
OVDD
C53
220μF
6.3V
C30
2.2μF
C25
0.1μF
R31
R32 SHORT
OPEN
6
5
DGND
DVDD
GND
VDD
ID
QD
C24
0.1μF
DVDD
VDD
C68
1.0μF
C67
1.0μF
C70
1.0μF
C69
1.0μF
VOP
C28
0.1μF
VON
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
______________________________________________________________________________________
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA8
DA7
DA9
R
GND
CVDD
1 L
2
13
12
11
10
6
7
8
9
16
15
14
2
3
4
5
9
8
1
10
7
RA6
51Ω
11
6
C60
220μF
6.3V
16
15
14
13
12
RA5
51Ω
C59
220μF
6.3V
CLKO
1
2
3
4
5
CVDD
D1
3
CLK
R66
SHORT
R62
SHORT
DGND
BVCC
C66
10μF
TP3
MAX9113
U3
C58
220μF
6.3V
J3-20
J3-19
C57
220μF
6.3V
J3-18
J3-17
J3-15
C71
1.0μF
AD0
AD1
AD2
AD3
AD4
AD5
J3-12
J3-11
J3-16
J3-10
J3-9
AD6
AD7
J3-8
J3-7
J3-14
AD8
J3-6
J3-5
J3-13
AD9
DOUT1
CLK0
C81
0.1μF
J3-4
C65
10μF
R58
4.02kΩ
1%
R59
6.04kΩ
1%
CVDD
2
C80
0.1μF
J3-3
J3
2
IN2+ 3
IN1+
TP5
TP4
J3-2
5
1
IN2- 4
IN1-
C79
0.01μF
C78
0.1μF
J3-1
OUT2
OUT1
BVCC
C72
1.0μF
6
7
8
GND
OVDD
VCC
C77
2.2μF
3
1
7
8
6
2
3
4
5
1
9
10
11
13
12
15
14
16
9
8
RA2
100Ω
10
11
6
7
16
15
14
13
12
1
2
3
4
5
RA1
100Ω
CLOCK
R61
49.9Ω
1%
R60
2kΩ
1%
R63
5kΩ
R57
4.02kΩ
1%
CVDD
VCC
VCC
42
41
40
39
38
37
36
35
46
IA2
47 IA1
48
2OE
43
IA4
44
IA3
45 GND
VCC
2A2
2A1
GND
2A3
2A4
3A1
3A2
3A4
33
3A3
34
GND
32
31
C74
0.1μF
C73
0.1μF
VCC
25
3OE
26
4A4
27
4A3
28
GND
29
4A2
30
4A1
1
JU3
2 3
19
24
7
8
9
10
11
12
13
14
15
16
18
17
1OE
IY1
IY2
1
3
2
6
IY4
5
IY3
4
GND
VCC
2Y1
2Y2
GND
2Y3
2Y4
3Y1
3Y2
GND
3Y3
3Y4
VCC
4Y1
23
4Y4
22
4Y3
21
GND
20
4Y2
4OE
BVCC
U2
SN74ALVCH16244
VCC
OVDD
VCC
C76
0.1μF
C75
0.1μF
VCC
7
8
6
2
3
4
5
1
8
7
6
1
2
3
4
5
RA4
51Ω
RA3
51Ω
9
10
11
13
12
15
14
16
9
10
11
15
14
13
12
16
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
BDOUT
CLKOUT
J2-39
J2-37
J2-35
J2-33
J2-31
J2-29
J2-27
J2-25
J2-23
J2-21
J2-19
J2-17
J2-15
J2-13
J2-11
J2-9
J2-40
J2-38
J2-36
J2-34
J2-32
J2-30
J2-28
J2-26
J2-24
J2-22
J2-20
J2-18
J2-16
J2-14
J2-12
J2-10
J2-8
J2-6
J2-7
J2-4
J2-2
J2-5
J2-1
J2-3
J2
Evaluate: MAX19710–MAX19713
CVDD
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 6. MAX19710–MAX19713 EV Kit Schematic (Sheet 2 of 2)
15
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 7. MAX19710–MAX19713 EV Kit Component Placement Guide—Component Side
16
______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Evaluate: MAX19710–MAX19713
Figure 8. MAX19710–MAX19713 EV Kit PCB Layout—Component Side
______________________________________________________________________________________
17
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 9. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 2)—Ground Planes
18
______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Evaluate: MAX19710–MAX19713
Figure 10. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 3)—Power Planes
______________________________________________________________________________________
19
Evaluate: MAX19710–MAX19713
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Figure 11. MAX19710–MAX19713 EV Kit PCB Layout—Solder Side
20
______________________________________________________________________________________
MAX19710–MAX19713 Evaluation
Kits/Evaluation Systems
Evaluate: MAX19710–MAX19713
Figure 12. MAX19710–MAX19713 EV Kit Component Placement Guide—Solder Side
___________________Revision History
Pages changed at Rev 1: 1–6, 8, 9, 11–18
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21
© 2007 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.