0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX20303BEWN+T

MAX20303BEWN+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFBGA56

  • 描述:

    IC BATT CHG MGMT PWR 56WLP

  • 数据手册
  • 价格&库存
MAX20303BEWN+T 数据手册
EVALUATION KIT AVAILABLE Click here to ask about production status of specific part numbers. MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems General Description The MAX20303 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple bucks, boost, buck-boost, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is specifically suited for 1µA (typ) to extend battery life in always-on applications. The MAX20303 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger. The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements. Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. The device is configurable through an I2C interface that allows for programming various functions and reading device status, including the ability to read temperature and supply voltages with the integrated ADC. This device is available in a 56-bump, 0.5mm pitch 3.71mm x 4.21mm, wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range. Applications ●● Wearable Devices ●● IoT Ordering Information appears at end of data sheet. 19-8738; Rev 11; 11/20 Benefits and Features ●● Extend Battery Use Time Between Battery Charging • 2 x Micro-IQ Buck Regulators ( tILIM_BLANK) www.maximintegrated.com -5.5 SFOUT LDO is turned off above this threshold ILIM 7.5 V 7.8 V 200 VCHGIN - VSYS TP-HYS ILIM_MAX 7.2 +28 ILimMax = 0/1, device specific (see Table 192) 30 145 mV 290 mV 275 mV 450/1000 mA ILimCnt = 000 50 ILimCnt = 001 90 ILimCnt = 010 150 ILimCnt = 011 200 ILimCnt = 100 300 ILimCnt = 101 400 ILimCnt = 110 450 ILimCnt = 111 1000 mA Maxim Integrated │  16 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER Input Current Limit Blanking Time SYMBOL tILIM_BLANK CONDITIONS MIN TYP ILimBlank = 00 0.003 ILimBlank = 01 0.5 ILimBlank = 10 1 ILimBlank = 11 10 VBAT_ REG + 0.14 VBAT_ REG + 0.2 SYS Regulation Voltage VSYS_REG SYS Regulation Voltage Dropout VCHGIN-SYS 40 CHGIN to SYS OnResistance RCHGIN-SYS 0.37 ILIM_SFT 1 Input Current Soft-Start Time MAX UNITS ms VBAT_ REG + 0.26 V mV 0.66 Ω ms 50 60 70 Thermal Shutdown Temperature TCHGIN_SHDN Future option 80 °C 90 100 110 Thermal Shutdown Timeout TCHGIN_SHDN_ TO MAX20303A,B,C,D 120 TShdnTmo = 01 0.5 TShdnTmo = 10 1 TShdnTmo = 11 5 VBAT = 4.2V, IBAT = 300mA 80 s BATTERY CHARGER BAT to SYS On Resistance RBAT-SYS Thermal Regulation Temperature TCHG_LIM 140 TCHGIN_ SHDN - 3 mΩ °C ­­­BAT-to-SYS Switch On Threshold VBAT-SYS_ON SYS falling 10 22 35 mV BAT-to-SYS Switch Off Threshold VBAT-SYS_OFF SYS rising -3 -1.5 0 mV SYS-BAT Charge Current Reduction Threshold VSYS-BAT_LIM Measured as VSYS - VBAT, SysMinVlt = 000, VBAT > 3.6V www.maximintegrated.com 100 mV Maxim Integrated │  17 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER Minimum SYS Voltage Charger Current Soft-Start Time SYMBOL VSYS_LIM CONDITIONS VBAT < 3.4V MIN SysMinVlt = 000 3.6 SysMinVlt = 001 3.7 SysMinVlt = 010 3.8 SysMinVlt = 011 3.9 SysMinVlt = 100 4.0 SysMinVlt = 101 4.1 SysMinVlt = 110 4.2 SysMinVlt = 111 4.3 tCHG_SOFT Precharge Threshold Precharge Threshold Hysteresis IPCHG VBAT_PCHG MAX IPChg = 01 UNITS V 1 IPChg = 00 Precharge Current TYP ms 5 9 IPChg = 10 10 11 20 IPChg = 11 30 VPChg = 000 2.1 VPChg = 001 2.25 VPChg = 010 2.4 VPChg = 011 2.55 VPChg = 100 2.7 VPChg = 101 2.85 VPChg = 110 3 VPChg = 111 3.15 VBAT_PCHG_ HYS %IFCHG V 90 mV SET Current Gain Factor KSET 2000 A/A SET Regulation Voltage VSET 1 V BAT Charge Current Set Range IFCHG www.maximintegrated.com RSET = 400kΩ RSET = 40kΩ RSET = 4kΩ 5 45 50 55 mA 500 Maxim Integrated │  18 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN BatReg = 0000 4.05 BatReg = 0001 4.10 BatReg = 0010 Battery Regulation Voltage Battery Recharge Threshold Maximum Precharge Time Maximum Fast Charge Time VBAT_REG VBAT_RECHG tPCHG tFCHG ICHG_DONE Timer Accuracy tCHG_ACC Timer Extend Threshold (1/2 Fast Charge Current Comparator) tCHG_EXT www.maximintegrated.com MAX 4.179 4.20 4.221 BatReg = 0011 4.158 4.20 4.242 BatReg = 0100 4.25 BatReg = 0101 4.30 BatReg = 0110 4.35 BatReg = 0111 4.40 BatReg = 1000 4.45 BatReg = 1001 4.50 BatReg = 1010 4.55 BatReg = 1011 4.60 BatReChg = 00 70 BatReChg = 01 120 BatReChg = 10 170 BatReChg = 11 220 PChgTmr = 00 30 PChgTmr = 01 60 PChgTmr = 10 120 PChgTmr = 11 240 FChgTmr = 00 75 FChgTmr = 01 150 FChgTmr = 10 300 FChgTmr = 11 600 ChgDone = 01 V mV min min 5 8.5 10 ChgDone = 10 20 ChgDone = 11 30 -10 See Figure 5 UNITS 4.15 BatReg = 0011, TA = 25°C ChgDone = 00 Charge Done Qualification TYP 11.5 10 50 %IFCHG % %IFCHG Maxim Integrated │  19 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL Timer Suspend Threshold (1/5 Fast Charge Current Comparator) tCHG_SUS THM Percentage Sensing Worst Case Accuracy VADC_THM_ ACC CONDITIONS MIN See Figure 5 TYP MAX 20 UNITS %IFCHG see ADC section VTHM = (5 to 95)%VDIG Cool/Cold Threshold Hysteresis Falling, LSB = 0.39%VDIG 0 to 31 LSB Warm/Hot Threshold Hysteresis Rising, LSB = 0.39%VDIG 0 to 31 LSB Battery Regulation Voltage Reduction Due to Battery Pack Temperature Fast Charge Current Reduction Due to Battery Pack Temperature VBAT_REG_ RED IFCHG_FACT BAT UVLO Threshold VBAT_UVLO BAT UVLO Threshold Hysteresis VBAT_UVLO_ www.maximintegrated.com HYS Cold/Cool/Room/Warm/ HotBatReg = 00 BatReg – 150mV Cold/Cool/Room/Warm/ HotBatReg = 01 BatReg – 100mV Cold/Cool/Room/Warm/ HotBatReg = 10 BatReg – 50mV Cold/Cool/Room/Warm/ HotBatReg = 11 BatReg Cold/Cool/Room/Warm/ HotFChg = 000 IFCHG x 0.2 Cold/Cool/Room/Warm/ HotFChg = 001 IFCHG x 0.3 Cold/Cool/Room/Warm/ HotFChg = 010 IFCHG x 0.4 Cold/Cool/Room/Warm/ HotFChg = 011 IFCHG x 0.5 Cold/Cool/Room/Warm/ HotFChg = 100 IFCHG x 0.6 Cold/Cool/Room/Warm/ HotFChg = 101 IFCHG x 0.7 Cold/Cool/Room/Warm/ HotFChg = 110 IFCHG x 0.8 Cold/Cool/Room/Warm/ HotFChg = 111 IFCHG 1.9 2.05 50 V mA 2.2 V mV Maxim Integrated │  20 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS BUCK1 Input Voltage Range VBK1IN Input voltage = VSYS 2.7 5.5 V Output Voltage Range VBK1OUT 25mV step resolution 0.8 2.375 V Output Voltage UVLO VUVLO_BK1 0.65 V 1.3 µA Quiescent Supply Current IQ_BK1 Dropout Quiescent Supply Current IQ_DO_BK1 Shutdown Supply Current with Active Discharge Enabled ISD_BK1 IBK1OUT = 0, VSYS = +3.7V, VBK1OUT = +1.2V 0.8 IBK1OUT = 0, VSYS – VBK1OUT ≤ +0.1V 250 µA Buck 1 disabled, Buck1ActDsc = 1 60 µA Output Average Voltage Accuracy ACC_BK1 IBK1OUT = 1mA Peak-to-Peak Ripple VRPP_BK1 Buck1ISet = 0100 (100mA), CBK1OUT_EFF = 2.2µF, IBK1OUT = 1mA Peak Current Set Range IPSET_BK1 25mA step resolution. The accuracy of codes below 50mA is limited by tON_MIN_BK1 Load Regulation Error VLOAD_REG_ Line Regulation Error VLINE_REG_ BK1 BK1 -3.2 +2.9 10 0 mV 375 -3 % VBK1OUT = +1.2V, VSYS from +2.7V to +5.5V 2 mV IBK1_MAX VSYS = +3.7V, Buck1VSet = 0x10 (+1.2V), Buck1ISet = 1000 (200mA), Buck1IAdptEn = 1, load regulation error = -5% BK1OUT Pulldown Current IPD_BK1_E Buck 1 Enabled 100 BK1OUT Pulldown Resistance with Buck Disabled IPD_BK1_D Buck 1 Disabled, VSYS = +3.6V, Buck1VSet = 0x10 (+1.2V) 12 RP_ON_BK1 Buck1FETScale = 0 0.35 0.49 RP_ON_BK1_FS Buck1FETScale = 1 0.7 0.98 RN_ON_BK1 Buck1FETScale = 0 0.25 0.4 RN_ON_BK1_FS Buck1FETScale = 1 0.5 0.7 7 12 NMOS On-Resistance Freewheeling OnResistance www.maximintegrated.com RON_BK1_ FRWHL mA Buck1ISet = 0110 (150mA), Buck1IAdptEn = 1, IBK1OUT = 300mA Maximum Operative Output Current PMOS On-Resistance % VSYS = +3.7V, Buck1VSet = 0x10 (+1.2V) 220 mA 200 nA MΩ Ω Ω Ω Maxim Integrated │  21 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL Minimum tON tON_MIN_BK1 Maximum Duty Cycle D_MAX_BK1 Switching Frequency CONDITIONS MIN TYP MAX UNITS 60 90 ns Buck1IAdptEn = 1 95 % FREQ_BK1 Load regulation error = -5% 3 MHz Average Current During Short-Circuit to GND ISHRT_BK1 Buck1ISet = 0110 (150mA), Buck1IAdptEn = 1, VBK1OUT = 0V 100 mA BK1LX Leakage Current ILK_BK1LX Buck 1 disabled Active Discharge Current IACTD_BK1 VBK1OUT = +1.2V Passive Discharge Resistance RPSV_BK1 Full Turn-On Time tON_BK1 8 Time from enable to full current capability Buck1VSet = 0x10 (+1.2V), IBK1OUT = 10mA, Buck1ISet = 0111 (175mA), Inductor: Murata DFE201610E-2R2M 19 1 µA 35 mA 10 kΩ 58 ms 88.5 % Efficiency EFFIC_BK1 BK1LX Rising/Falling Slew Rate SLW_BK1 Buck1LowEMI = 0 2 SLW_BK1_L Buck1LowEMI = 1 0.5 Thermal Shutdown Threshold TSHDN_BK1 V/ns 140 °C BUCK2 Input Voltage Range VBK2IN Input voltage = VSYS 2.7 5.5 V Output Voltage Range VBK2OUT 50mV step resolution 0.8 3.95 V Output Voltage UVLO VUVLO_BK2 0.65 V 1.4 µA IBK2OUT = 0mA, VSYS = +3.7V, Buck2VSet = 0x08 (+1.2V) 0.9 IQ_DO_BK2 IBK2OUT = 0mA, VSYS – VBK2OUT ≤ +0.1V 250 µA ISD_BK2 Buck 2 disabled, Buck2ActDsc = 1 60 µA Output Average Voltage Accuracy ACC_BK2 IBK2OUT = 1mA, Buck2VSet ≤ 0x34 (+3.4V) Peak-to-Peak Ripple VRPP_BK2 Buck2ISet = 0100 (100mA), CBK2OUT_EFF = 2.2µF, IBK2OUT = 1mA Peak Current Set Range IPSET_BK2 25mA step resolution. The accuracy of codes below 50mA is limited by tON_MIN_BK2 Quiescent Supply Current IQ_BK2 Dropout Quiescent Supply Current Shutdown Supply Current with Active Discharge Enabled www.maximintegrated.com -3.2 +2.9 10 0 % mV 375 mA Maxim Integrated │  22 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL Load Regulation Error VLOAD_REG_ Line Regulation Error VLINE_REG_ BK2 BK2 CONDITIONS MIN TYP MAX UNITS Buck2ISet = 0110 (150mA), Buck2IAdptEn = 1, IBK2OUT = 300mA -3 % VBK2OUT = +1.2V, VSYS from +2.7V to +5.5V 2 mV Maximum Operative Output Current IBK2_MAX VSYS = +3.7V, Buck2VSet = 0x08 (+1.2V), Buck2ISet = 1000 (200mA), Buck2IAdptEn = 1, load regulation error = -5% BK2OUT Pulldown Current IPD_BK2_E Buck 2 enabled BK2OUT Pulldown Resistance with Buck Disabled IPD_BK2_D Buck 2 disabled, VSYS = +3.6V, Buck2VSet = 0x10 (+1.2V) RP_ON_BK2 Buck2FETScale = 0 0.35 0.49 RP_ON_BK2_FS Buck2FETScale = 1 0.7 0.98 RN_ON_BK2 Buck2FETScale = 0 0.25 0.4 RN_ON_BK2_FS Buck2FETScale = 1 0.5 0.7 7 12 Ω 60 90 ns PMOS On-Resistance NMOS On-Resistance Freewheeling On-Resistance RON_BK2_ FRWHL 220 mA 200 400 8 VSYS = +3.7V, Buck2VSet = 0x08 (+1.2V) nA MΩ Ω Ω Minimum tON tON_MIN_BK2 Maximum Duty Cycle D_MAX_BK2 Buck2IAdptEn = 1 95 % Switching Frequency FREQ_BK2 Load regulation error = -5% 3 MHz Average Current During Short-Circuit to GND ISHRT_BK2 Buck2ISet = 0110 (150mA), Buck2IAdptEn = 1, VBK2OUT = 0V 100 mA BK2LX Leakage Current ILK_BK2LX Buck 2 disabled Active Discharge Current IACTD_BK2 VBK2OUT = +1.2V Passive Discharge Resistance RPSV_BK2 Full Turn-On Time tON_BUCK2 Efficiency EFFIC_BK2 Time from enable to full current capability Buck2VSet = 0x08 (+1.2V), IBK2OUT = 10mA, Buck2ISet = 0111 (175mA), Inductor: Murata DFE201610E-2R2M 8 19 µA 35 mA 10 kΩ 58 ms 88.5 % BK2LX Rising/Falling Slew Rate SLW_BK2 Buck2LowEMI = 0 2 SLW_BK2_L Buck2LowEMI = 1 0.5 Thermal Shutdown Threshold TSHDN_BK2 www.maximintegrated.com 1 140 V/ns °C Maxim Integrated │  23 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2.7 5.5 V 5 20 V -2.2 -1.6 V 2.4 9 HVBOOST Input Voltage Range VBSTIN Output Voltage Range VBSTOUT Output Voltage UVLO VBSTOUT_ Quiescent Supply Current Output Average Voltage Accuracy UVLO IQ_BST Input voltage = VSYS 250mV step resolution VBSTOUT - VSYS IBSTOUT = 0mA, VSYS = +3.7V, BstVSet = 0x00 (+5V), TA = 25°C IBSTOUT = 1mA, HVOUT < 13V Peak-to-Peak Ripple VRPP_BST BstISet = 0x0A (350mA), BstVSet = 0x1C (+12V), CBSTOUT_EFF = 10µF, L = 4.7µH, IBSTOUT = 1mA Peak Current Set Range IPSET_BST 25mA step resolution VLOAD_REG_ DC Line Regulation Error VLINE_REG_ BST BST µA IBSTOUT = 0mA, VSYS = +3.7V, BstVSet = 0x00 (+5V) ACC_BST DC Load Regulation Error -2.7 106 -4 +2 5 100 % mV 475 mA BstVSet = 0x1C (+12V), IBSTOUT = 25mA, BstISet = 0x08 (300mA), BstIAdptEn = 1 0.3 % BstVSet = 0x06 (+6.5V), VSYS from +2.7V to +5.5V 4 mV 700 mW 10 MΩ Maximum Operative Output Power PMAX_BST BstISet = 0x08 (300mA), BstIAdptEn = 1 BSTOUT Pulldown Resistance RBSTOUT -3% Load Reg Error 300 True Shutdown PMOS On-Resistance RON_TS IBSTOUT = 100mA 0.15 0.22 Ω Boost Freewheeling NMOS On-Resistance RN_ONFRW_N IBSTOUT = 100mA 0.45 0.7 Ω RONBST_N BstFETScale = 0, IBSTOUT = 100mA 0.55 0.9 RONBST_NFS BstFETScale = 1, IBSTOUT = 100mA 1.1 1.8 0.4 0.6 V 50 80 Ω Boost NMOS OnResistance Schottky Diode Forward Voltage VBE_ SCHOTTKY Freewheeling OnResistance RONBST_ Minimum tON www.maximintegrated.com FRWHL tON_BST_MIN IBSTOUT = 100mA, VBSTHVLX VBSTOUT IBSTOUT = 100mA 0.2 65 Ω ns Maxim Integrated │  24 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL Max Switching Frequency FREQ_BST_ MX Max Peak Current Setting Extra Budget with BstIAdptEn = 1 ΔIP_MAX Short-Circuit Current Limit Difference vs. Peak Current Setting MIN TYP MAX UNITS VBSTOUT regulation error = -150mV. BstISet = 100mA, BstIAdptEn = 0. 1.7 3.5 5.5 MHz BstIAdptEn = 1, VBSTOUT regulation error = -200mV 150 250 450 mA ΔIBST_SHRT BstIAdptEn = 0 130 200 250 mA BSTHVLX Leakage Current ILK_BSTHVLX Boost disabled 1 µA BSTLVLX Leakage Current ILK_BSTLVLX Boost disabled 1 µA Passive Discharge Resistance RBSTPSV Linear BSTOUT Precharge Current Switching Precharge Inductor Current Full Turn-On Time IL_BSTOUT_ PRCH ISW_BSTOUT_ Thermal Shutdown Threshold www.maximintegrated.com 10 VBSTOUT from 0 to VSYS – 0.4V 5 12.5 kΩ 20 mA VBSTOUT from VSYS – 0.4V to final regulation voltage 13 mA Time from enable to full current capability 100 ms EFFIC_12 BstVSet = 0x1C (+12V), IBSTOUT = 20mA, BstISet = 0x08 (300mA), Inductor: Murata DFE201610E-4R7M 85 EFFIC_15 BstVSet = 0x28 (+15V), IBSTOUT = 2mA, BstISet = 0x08 (300mA), Inductor: Murata DFE201610E-4R7M 83 EFFIC_5 BstVSet = 0x00 (+5V), IBSTOUT = 10µA, BstISet = 0x02 (150mA), Inductor: Murata DFE201610E-4R7M 76 EFFIC_6P5 BstVSet = 0x06 (+6.5V), IBSTOUT = 10µA, BstISet = 0x02 (150mA), Inductor: Murata DFE201610E-4R7M 73 PRCH tON_BST Efficiency BHVLX Rising/Falling Slew Rate CONDITIONS % SLW_BST HVLX 2 V/ns TSHDN_BST 125 °C Maxim Integrated │  25 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.5 V 2.1 µA BUCK-BOOST Input Voltage Range VBBIN Input voltage = VSYS Quiescent Supply Current IQ_BB IBBOUT = 0µA, VBBOUT = +4V Maximum Output Operative Power Output Voltage Set Range Average Output Voltage Accuracy VSYS > +3V 250 VBBOUT 100mV step 2.5 5 V IBBOUT = 1mA, CBBOUT_EFF ≥ 10µF -3 3 % VSYS = +2.7V to +5.5V, IBBOUT = 10µA, BBstVSet = 0x0F (+4V), BBstISet = 0x02 (100mA) -1 +1 %/V ACC_BBOUT VLINE_REG_ Load Regulation Error VLOAD_REG_ Load Transient Oscillator Frequency Output FETs RON Passive Discharge Pulldown Resistance Active Discharge Current www.maximintegrated.com 1.3 PMAX_BBOUT Line Regulation Error Line Transient 2.7 BB BB VLINE_TRAN_ BB VLOAD_ TRAN_BB mW +0.3 BBstVSet = 0x0F (+4V), IBBOUT = 10µA to 50mA, BBstISet = 0x02 (100mA) 100 BBstVSet = 0x0F (+4V), IBBOUT = 10µA to 100mA, BBstISet = 0x02 (100mA) 310 BBstVSet = 0x0F (+4V), BBstISet = 0x02 (100mA), VSYS from +2.7V to +5V, 0.2µs rise time 15 IBBOUT = 0mA to 10mA, 200ns rise time, BBstVSet = 0x0F (+4V), BBstISet = 0x02 (100mA) 9 IBBOUT = 0mA to 100mA, 200ns rise time, VBBOUT = +4V, BBstISet = 0x02 (100mA) 31 fOSC_BB mV/A mV mV 1.8 2 RON_PBK_BB High-side PMOS Buck FET RON_NBK_BB Low-side NMOS Buck FET 0.22 0.36 RON_PBST_BB High-side PMOS Boost FET (VBBOUT = +4V) 0.21 0.31 RON_NBST_BB Low-side NMOS Boost FET 0.24 0.4 RON_FRWH_BB EMI improve FET between BBHVLX/ BBLVLX 8 11 BBstPasDsc = 1 10 RPDL_BB IACTDL_BB BBstActDsc = 1, VBBOUT = +1.5V 0.15 2.2 6 MHz 0.22 19 Ω kΩ 38 mA Maxim Integrated │  26 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER Turn-On Time SYMBOL tON_BB CONDITIONS MIN Time from enable to full current capability UVLO On BBOUT VBBOUT_UVLO Precharge Current IPC_BB Precharge current. VSYS = +2.7V, VBBOUT = +1.65V Pulse Mode Input Current Limit IPLS_IN BBstVSet = 0x0F (+4V), VSYS < VBBOUT – 0.5V, fSW = fOSC_BBST/10, BBstISet = 0x02 (100mA) TYP MAX 100 UNITS ms 1.65 1.75 1.9 V 6 14 24 mA 6.6 Pulse Mode Switching Period Ratio T_RATIO fOSC_BB/fSW 128 steps 10 Average Current During Short-Circuit to GND ISHRT_BB VBBOUT = 0V 0.4 Thermal Shutdown Threshold TSHDN_BB TJ rising Thermal Shutdown Hysteresis TSHDN_ HYST_BB mA 138 0.75 1.1 150 A °C 10 °C LDO1 (Typical values are at VL1IN = +1.2V, VL1OUT = +1V) Input Voltage Range VL1IN Quiescent Supply Current IQ_L1 LDO mode 1.16 2 Switch mode 0.7 2 IL1OUT = 0µA 1 2.1 IL1OUT = 0µA, Switch mode 0.35 0.7 0.015 2.5 µA 2.4 4.2 µA Output Leakage ILK_L1OUT VL1OUT = GND, LDO 1 disabled Quiescent Supply Current in Dropout IQ_L1_DRP IL1OUT = 0µA, VL1IN = +1.2V, LDO1VSet = 0x1D (+1.225V) Maximum Output Current IL1OUT_MAX Output Voltage VL1OUT Output Accuracy ACC_LDO1 Dropout Voltage VDRP_L1 50 1.95 V (VL1OUT + 0.2V) ≤ VL1IN ≤ +2V, IL1OUT = 1mA -3.4 +3.9 % 63 mV +0.5 %/V 0.013 %/mA VL1IN = +1V, LDO1VSet = 0x14 (+1V), IL1OUT = 50mA VL1IN = (VL1OUT + 0.2V) to +2V Load Regulation Error VLOAD_REG_L1 +1V ≤ VL1IN ≤ +2V , IL1OUT = 100µA to 50mA Load Transient VLOAD_TRAN_ www.maximintegrated.com L1 L1 mA 0.5 VLINE_REG_L1 VLINE_TRAN_ µA 25mV step resolution Line Regulation Error Line Transient V -0.5 0.003 VL1IN = +1V to +2V, 200ns rise time ±45 VL1IN = +1V to +2V, 1µs rise time ±25 IL1OUT = 0 to 10mA, 200ns rise time 80 IL1OUT = 0 to 50mA, 200ns rise time 130 mV mV Maxim Integrated │  27 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER Passive Discharge Resistance Active Discharge Current Switch Mode On-Resistance Turn-On Time SYMBOL MIN TYP MAX UNITS RPDL_L1 5 10 15 kΩ IACTDL_L1 7 25 55 mA RON_L1 tON_L1 Short Circuit Current Limit ISHRT_L1 Thermal Shutdown Temperature TSHDN_L1 Thermal Shutdown Temperature Hysteresis Switch mode VL1IN = +1V, IL1OUT = 50mA 1.02 VL1IN = +0.7V, IL1OUT= 1mA 2.7 Ω IL1OUT = 0mA, time from 10% to 90% of LDO1VSet 0.38 IL1OUT = 0mA, time from 10% to 90% of VL1IN, Switch mode 0.065 ms VL1IN = +1.2V, VL1OUT = 0V 165 310 405 VL1IN = +1.2V, VL1OUT = 0V, Switch mode 160 305 400 TJ rising TSHDN_ HYS_L1 10Hz to 100kHz, VL1IN = +2V Output Noise UVLO CONDITIONS VL1IN_UVLO_F VL1IN falling VL1IN_UVLO_R VL1IN rising 150 °C 20 °C VL1OUT = +1.8V 120 VL1OUT = +1V 95 VL1OUT = +0.5V 70 0.53 mA µVRMS 0.77 0.78 1 V LDO2 (Typical values at VL2IN = +3.7V, VL2OUT = +3V) Input Voltage Range VL2IN Quiescent Supply Current IQ_L2 Quiescent Supply Current in Dropout IQ_L2_DRP Maximum Output Current IL2OUT_MAX Output Voltage Output Accuracy Dropout Voltage www.maximintegrated.com VL2OUT ACC_LDO2 VDRP_L2 LDO mode 1.71 5.5 Switch mode 1.2 5.5 IL2OUT = 0µA 1 1.7 IL2OUT = 0µA, Switch mode. 0.35 0.7 IL2OUT = 0µA, VL2IN = +2.9V, LDO2VSet = 0x15 (+3V) 2.2 3.7 V µA µA VL2IN > +1.8V 100 mA 100mV step resolution 0.9 4 V (VL2OUT + 0.5V) ≤ VL2IN ≤ +5.5V, IL2OUT = 1mA -2.9 +2.9 % VL2IN = +3V, LDO2VSet = 0x16 (+3.1V), IL2OUT = 100mA 100 mV VL2IN = +1.85V, LDO2VSet = 0x0A (+1.9V), IL2OUT = 100mA 130 mV Maxim Integrated │  28 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS Line Regulation Error VLINE_REG_L2 VL2IN = (VL2OUT + 0.5V) to +5.5V Load Regulation Error VLOAD_REG_ +1.8V ≤ VL2IN ≤ +5.5V IL2OUT = 100µA to 100mA Line Transient VLINE_TRAN_ Load Transient VLOAD_TRAN_ Passive Discharge Resistance Active Discharge Current Switch Mode On-Resistance Turn-On Time L2 L2 L2 0.002 VL2IN = +4V to +5V, 200ns rise time ±35 VL2IN = +4V to +5V, 1µs rise time ±25 IL2OUT = 0mA to 10mA, 200ns rise time 100 IL2OUT = 0mA to 100mA, 200ns rise time 200 UNITS +0.38 %/V 0.005 %/mA mV mV 10 15 kΩ IACTDL_L2 8 22 40 mA RON_L2 tON_L2 Thermal Shutdown Temperature TSHDN_L2 Switch mode VL2IN = +2.7V, IL2OUT = 100mA 0.7 VL2IN = +1.8V, IL2OUT = 50mA 1 VL2IN = +1.2V, IL2OUT = 5mA 2.3 IL2OUT = 0mA, time from 10% to 90% of LDO2VSet 1.5 IL2OUT = 0mA, time from 10% to 90% of VL2IN. Switch mode 0.26 VL2IN = +2.7V, VL2OUT = 0V 225 360 555 VL2IN = +2.7V, VL2OUT = 0V, Switch mode 210 350 540 TJ rising 10Hz to 100kHz, VL2IN = +5V VL2IN_UVLO VL2IN falling VL2IN rising Ω ms TSHDN_HYS_L2 Output Noise www.maximintegrated.com -0.38 MAX 5 ISHRT_L2 UVLO TYP RPDL_L2 Short Circuit Current Limit Thermal Shutdown Temperature Hysteresis MIN 150 °C 20 °C VL2OUT = +3.3V 150 VL2OUT = +2.5V 125 VL2OUT = +1.2V 90 VL2OUT = +0.9V 80 1.05 mA µVRMS 1.35 1.36 1.69 V Maxim Integrated │  29 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.5 V CHARGE PUMP Input Voltage Quiescent Supply Current CPOUT Output Voltage Output Accuracy Maximum Operative Output Current Efficiency VCPIN IQ_CP_5V Input voltage = VSYS 2.7 2 3.5 ICPOUT = 0µA, CPVSet = 0 (+6.6V) 2.2 4.3 VCPOUT CPVSet = 0, ICPOUT = 10µA, VSYS > +3.3V 6.6 CPVSet = 1, ICPOUT = 10µA 5 ACC_CP ICPOUT < 120µA, VSYS > +3.3V IQ_CP_6.6V ICPOUT_MAX EFF_CP Max Charge Pump Frequency FREQ_CP Passive Discharge Resistance RPSV_CP ICPOUT = 0µA, CPVSet = 1 (+5V) VSYS > +3.3V, -5% load regulation error V -3 +3 250 CPVSet = 0 (+6.6V), IOUT = 10µA, VSYS = +3.7V % µA 79 88 µA % 100 110 10 kHz kΩ HAPTIC DRIVER Input Voltage VHD_IN Input voltage = VSYS Quiescent Current IHD_Q VDRP/VDRN = 0 to VSYS H-Bridge PWM Output Frequency H-Bridge PWM Output Duty Cycle Resolution H-Bridge Output Impedance in Off State H-Bridge Output Leakage in High-Z State fHD_PWM_OUT DHD_PWM_ OUT RHD_OFF 2.6 5.5 1300 22.5 µA 25 27.5 %VSYS HptOffImp = 1 15 kΩ HptOffImp = 0 RHD_ON_LS Ω During back EMF detection, VDRP/VDRN = 0 to VSYS -1 RHD_ON_HS High-side PMOS switch on, 300mA load 0.04 RHD_ON_LS Low-side NMOS switch on, 300mA load 0.04 0.18 0.5 H-Bridge Overcurrent Protection Threshold IHD_OC_THR Rising current through high-side or low-side 600 1000 1500 H-Bridge Overcurrent Protection Hysteresis IHD_OC_HYS www.maximintegrated.com kHz VSYS/ 128 7 bits IHD_LK_OUT H-Bridge On-Resistance V +1 0.18 µA 0.5 Ω 130 mA mA Maxim Integrated │  30 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER H-Bridge Thermal Shutdown Temperature Threshold H-Bridge Thermal Shutdown Temperature Hysteresis PWM Input Frequency LRA Resonance Frequency Tracking Range Startup Latency SYMBOL THD_SHDN_ THR CONDITIONS MIN Rising temperature THD_SHDN_ HYS fHD_INPWM fHD_LRA tHD_START See Haptic Driver section TYP MAX UNITS 150 °C 25 °C 10 250 kHz 120 305 Hz ms Time from command to vibration response. See Haptic Driver section 10 12 20 V All LEDs on, VSYS = 3.7V 245 370 µA LED CURRENT SINKS Maximum Input Voltage Quiescent Current Current Sink Setting Range LED Current Accuracy LED Dropout Voltage Leakage in Shutdown Open-LED Detection Threshold www.maximintegrated.com VIN_LED_MAX IQ_LED LEDIStep = 00 (0.6mA steps) ILED_RNG ACC_LED VLED_DROP ILK_LED VLED_DET 0.6 15 1 25 LEDIStep = 10 (1.2mA steps) 1.2 30 ILED_ = 13mA, TA = +25°C, VLED_ = +0.7V to +20V -2 +2 ILED_ = 13mA, VLED_ = +0.7V to +20V -4 +4 ILED_ = 0.6mA to 30mA, VLED_ = +0.7V to +20V, TA = 25°C -5 +5 % ILED_ = 0.6mA to 30mA, VLED_ = +0.7V to +20V -6 +6 % LEDIStep = 01 (1mA steps) ILED_SET = 5mA, ILED_= 0.9 x 5mA 110 160 ILED_SET = 25mA, ILED_ = 0.9 x 25mA 145 215 ILED_SET = 30mA, ILED_ = 0.9 x 30mA 175 270 VLED_ = +20V LED_ enabled, LEDIStep = 00, falling edge 61 92 mA % mV 0.1 µA 140 mV Maxim Integrated │  31 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V FUEL GUAGE Supply Voltage VCELL Fuel-Gauge SOC Reset (VRESET Register) VRST (Note 3) 2.5 4.5 Configuration range, in 40mV steps 2.28 3.48 Trimmed at 3V 2.85 3.0 3.15 0.5 2 Hibernate mode, reset comparator disabled (VRESET.Dis = 1) 3 5 Hibernate mode, reset comparator enabled (VRESET.Dis = 0) 4 6 IDD1 Active mode 23 40 tERR Active, hibernate modes (Note 4) Sleep mode Supply Current Time Base Accuracy IDD0 AD Sample Period Voltage Error VERR Votlage-Measurement Resolution V µA -3.5 Active mode Hibernate mode +3.5 250 45 % ms s VCELL = 3.6V, TA = +25°C (Note 5) -9 +6 TA = -20°C to +70°C -23 +20 1.25 mV/cell mV/cell BAT-to-Cell On-Resistance RON_ISO VBAT = 3.7V 15 30 Ω Bus Low-Detection Timeout tSLEEP (Notes 6, 7) 2.125 SDA, SCL, MPC_, PFN_ Input Leakage Current ILK_IO Input pullup/pulldown resistances disabled, input voltage from 0 to +5.5V SDA, SCL, MPC_ Input Logic-High VIO_IH SDA, SCL, MPC_ Input Logic-Low VIO_IL PFN_ Input Logic-High VPFN_IH (Note 2) 0.7 x VCCINT V PFN_ Input Logic-Low VPFN_IL (Note 2) 0.3 x VCCINT V MPC_, PFN_ Input Pullup Resistance RIO_UP Pullup resistance to VCCINT (Note 2) 170 kΩ MPC_, PFN_ Input Pulldown Resistance RIO_PD 170 kΩ MPC_ Output Logic-High VIO_OH s DIGITAL www.maximintegrated.com -1 +1 1.4 V 0.5 IOH = 1mA, MPC_ configured as pushpull output, pullup voltage is VBK2OUT VBK2OU T – 0.4 µA V V Maxim Integrated │  32 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Electrical Characteristics (continued) (VBAT = +3.7V, TA = -20°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C. CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 10µF, CBK2OUT_EFF = 10µF, CL1IN = 1µF, CL2IN = 1µF, CL1OUT = 1µF, CL2OUT = 1µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH). (Note 1) PARAMETER SDA, RST, INT, MPC_, PFN_ Output Logic-Low SYMBOL VIO_OL CONDITIONS MIN TYP IOL = 4mA MAX UNITS 0.4 V 0.4 µA 400 kHz SDA, SCL Bus LowDetection Current IPD SCL Clock Frequency fSCL 0 Bus Free Time Between a STOP and START Condition tBUF 1.3 µs tHD_STA 0.6 µs Low Period of SCL Clock tLOW 1.3 µs High Period of SCL Clock Setup Time for a Repeated START Condition Data Hold Time tHIGH 0.6 µs tSU_STA 0.6 µs tHD_DAT 0 Data Setup Time tSU_DAT 100 µs Setup Time for a STOP Condition tSU_STO 0.6 µs tSP 50 ns START Condition (repeated) Hold Time Spike Pulse Widths Suppressed by Input Filter VSDA = VSCL = +0.4V 0.2 0.9 µs Note 1: All devices are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. Note 2: VCCINT is an internal voltage supply generated from either VBAT or VCAP. The source is determined by the following: IF [(VCHGIN > VCHGIN_DET AND VCAP > VCAP_OK) OR VCAP > (VBAT + VTHSWOVER)] THEN VCCINT = VCAP ELSE VCCINT = VBAT Where VTHSWOVER = [0-300]mV Note 3: All voltages are referenced to GND. Note 4: Test performed on unmounted/unsoldered parts. Note 5: The voltage is trimmed and verified with16x averaging. Note 6: Fuel Gauge enters shutdown mode after SCL < VIL and SDA < VIL for longer than tSLEEP. Note 7: Guaranteed by design. www.maximintegrated.com Maxim Integrated │  33 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. 1 OFF MODE, LDO2 ON OFF MODE 2.7 3.2 VBAT (V) 0 4.2 VBAT_REG vs. TEMPERATURE 4.3 OFF MODE 30 -40 -15 10 35 TEMPERATURE (°C) 60 0 85 toc04 -40 -15 10 35 TEMPERATURE (°C) IBAT/VBAT vs. TIME 6 VCHGIN = 5V VBAT = 2.7V PRE CHARGE 10 2 3.7 VBAT = 3.7V FAST CHARGE 40 20 4 toc05 VBAT (V) VBAT_REG (V) 60 3 1 60 ISYS vs. VCHGIN 5 85 toc06 100 VBAT = 2.7V 4.5 90 4 80 3.5 70 EFFICIENCY (%) VSYS (V) 10 35 TEMPERATURE (°C) 3 2.5 2 60 50 30 1 20 0.5 10 2 3 www.maximintegrated.com 4 5 VCHGIN (V) 6 7 8 30 0 50 20 10 100 150 200 TIME (minutes) BUCK1 EFFICIENCY vs. LOAD VBAT = 3.3V Buck1ISet = 175mA 0 250 toc07 VBAT = 4.2V Buck1ISet = 200mA VBAT = 3.7V Buck1ISet = 175mA 40 1.5 0 40 150mAhr BATTERY VPChg = 3.15V IPChg = 5% IFChg VCHGIN = 5V RSET = 40.2kΩ 4.15 -15 50 IBAT 2 -40 100 70 4 0 85 80 4.25 4.1 60 90 VBAT 5 4.2 toc03 RSET = 40kΩ 50 OFF MODE, LDO2 ON 6 2 0 8 ICHG vs. TEMPERATURE 60 BUCKS ON ON MODE, REGULATORS OFF 10 ON MODE, REGULATORS OFF BUCKS ON 3 12 IBAT (µA) IBAT (µA) 4 toc02 BUCKS, L1IN = B1OUT, L2IN = BAT 14 BUCKS ON, L1IN = B1OUT, L2IN = BAT 5 IBAT vs. TEMPERATURE 16 IBAT (mA) 6 toc01 ICHG (mA) IBAT vs. VBAT 7 Buck1VSet = 1.2V 0 0.001 0.1 IBK1OUT (mA) 10 1000 Maxim Integrated │  34 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics (continued) VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. BUCK1 EFFICIENCY vs Buck1ISet[3:0] SETTING 90 89 1.2 VBK1OUT (V) EFFICIENCY (%) 87 86 85 84 83 VBAT = 4.2V 1.19 VBAT = 3.7V 1.18 1.17 VBAT = 3.3V 1.16 82 81 1.15 80 1.14 50 100 150 200 250 300 Buck1ISet (mA) 350 400 BUCK1 SWITCHING FREQUENCY vs. LOAD ADAPTIVE PEAK CURRENT ENABLED toc10 3 3.5 0 FREQUENCY (MHz) 1.5 VBAT = 3.3V VBAT = 3.7V VBAT = 4.2V 0.5 100 200 IBK1OUT (mA) 300 400 BUCK1 SWITCHING FREQUENCY vs. LOAD ADPATIVE PEAK CURRENT DISABLED Buck1VSet = 1.2V Buck1IAdptEn = 0 3 2 1 Buck1VSet = 1.2V Buck1IAdptEn = 1 2.5 toc11 Buck1VSet = 1.2V Buck1IAdptEn = 1 2.5 FREQUENCY (MHz) toc09 1.21 88 0 BUCK1 LOAD REGULATION 1.22 toc08 Buck1VSet = 1.2V IBK1OUT = 10mA VBAT = 3.3V VBAT = 4.2V 2 VBAT = 3.7V 1.5 1 0.5 0 100 200 IBK1OUT (mA) 300 BUCK1 LOAD TRANSIENT 0 400 toc12 100 Buck1VSet = 1.2V 90 VBK1OUT 0 50 VBACKUP IBK1OUT 50mA/div 150 BUCK2 EFFICIENCY vs. LOAD toc13 VBAT = 4.2V Buck2ISet = 225mA 70 EFFICIENCY (%) 10mV/div (ACCOUPLED) VINSIDE 100 Buck2VSet = 1.8V 80 VOUTN IBK1OUT (mA) 60 50 40 30 20 VBAT = 3.7V Buck2ISet = 175mA VBAT = 3.3V Buck2ISet = 200mA 10 10ms/div www.maximintegrated.com 0 0.001 0.1 IBK2OUT (mA) 10 1000 Maxim Integrated │  35 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics (continued) VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. BUCK2 EFFICIENCY vs Buck2ISet[3:0] SETTING 94 92 VBAT = 4.2V VBK2OUT (V) EFFICIENCY (%) 1.8 88 86 VBAT = 3.3V 1.74 82 50 100 150 200 250 300 Buck2ISet (mA) 350 1.72 400 BUCK2 SWITCHING FREQUENCY vs. LOAD ADAPTIVE PEAK CURRENT ENABLED Buck2VSet = 1.8V 0 100 200 IBK2OUT (mA) Buck2VSet = 1.8V Buck2IAdptEn = 0 3.5 FREQUENCY (MHz) VBAT = 3.3V 1 VBAT = 4.2V VBAT = 3.7V 400 BUCK2 SWITCHING FREQUENCY vs. LOAD ADAPTIVE PEAK CURRENT DISABLED VBAT = 4.2V 3 1.5 300 toc17 4 toc16 Buck2VSet = 1.8V Buck2IAdptEn = 1 2 FREQUENCY (MHz) VBAT = 3.7V 1.78 1.76 84 2.5 toc15 1.82 90 80 BUCK2 LOAD REGULATION 1.84 toc14 Buck2VSet = 1.8V IBK2OUT = 10mA 2.5 VBAT = 3.7V 2 1.5 VBAT = 3.3V 1 0.5 0.5 0 0 100 200 IBK2OUT (mA) 300 BUCK2 LOAD TRANSIENT 0 400 toc18 100 Buck2VSet = 1.8V 90 VBK2OUT 0 50 IBK2OUT (mA) 100 150 BOOST EFFICIENCY vs. LOAD toc19 VBAT = 4.2V BstISet = 275mA 80 10mV/div (ACCOUPLED) VINSIDE VBACKUP EFFICIENCY (%) VOUTN 70 60 VBAT = 3.3V BstISet = 275mA VBAT = 3.7V BstISet = 250mA 50 40 30 IBK2OUT 50mA/div 20 10 10ms/div www.maximintegrated.com BoostVSet = 12V 0 0.001 0.01 0.1 1 IBSTOUT (mA) 10 100 Maxim Integrated │  36 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics (continued) VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. BOOST EFFICIENCY vs. VBSTOUT 88 toc20 87 85 BstISet (mA) EFFICIENCY (%) 86 84 83 82 81 80 IBSTOUT = 10mA BstISet = OPTIMAL (SEE TOC21) 5 10 VBSTOUT (V) 15 20 BOOST LOADREGULATION 12.5 toc22 FREQUENCY (MHz) VBSTOUT (V) 10 12.5 15 VBSTOUT (V) 17.5 20 toc23 VSYS = 4.2V 1.2 VSYS = 3.7V 10.5 10 20 40 60 IBSTOUT (mA) 80 0.8 VSYS = 3.3V 0.6 VSYS = 3.7V 0.2 BstVSet = 12V 0 1 0.4 VSYS = 3.3V 9.5 100 0 BstVSet = 12V BstIAdptEn = 1 0 20 BOOST SWITCHING FREQUENCY vs. LOAD ADAPTIVE PEAK CURRENT DISABLED toc24 VSYS = 4.2V 2.5 FREQUENCY (MHz) 7.5 1.4 11 40 60 IBSTOUT (mA) VSYS = 3.3V toc25 50mV/div (ACCOUPLED) VBACKUP VSYS = 3.7V 1 100 Bst2VSet = 12V VINSIDE 1.5 80 BOOST LOADTRANSIENT OUTN VVBSTOUT 2 20mA/div 0.5 0 5 1.6 11.5 3 IBSTOUT = 10mA LBSTOUT = Murata DFE201610E-4R7M BOOST SWITCHING FREQUENCY vs. LOAD ADAPTIVE PEAK CURRENT ENABLED VSYS = 4.2V 12 9 475 450 425 400 375 350 325 300 275 250 225 200 175 150 125 100 OPTIMAL BstISEt[3:0] SETTING vs. VBSTOUT LBSTOUT = 4.7µHMurata DFE201610E-4R7M IBSTOUT = 10mA toc21 IBSTOUT BstVSet = 12V BstIAdptEn = 0 0 20 www.maximintegrated.com 40 60 IBSTOUT (mA) 80 100 10ms/div Maxim Integrated │  37 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics (continued) VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. BUCK-BOOST EFFICIENCY vs. LOAD BUCK-BOOST EFFICIENCY vs. SYS VOLTAGE 90 95 toc26 VSYS = 3.7V 90 85 70 VSYS = 4.2V 60 EFFICIENCY (%) EFFICIENCY (%) 80 VSYS = 3.3V 50 40 30 75 70 65 60 10 55 BBst2VSet = 4V 0 0.001 0.01 0.1 1 IBBOUT (mA) 10 BUCK-BOOST LOAD TRANSIENT 50 100 toc28 2.7 3.7 VSYS (V) 4.7 5.7 CHARGE PUMP EFFICIENCY vs. LOAD 5V SETTING toc29 70 50mV/div (ACCOUPLED) VINSIDE VBACKUP 50mA/div 60 EFFICIENCY (%) VOUTN 50 VSYS = 3.3V VSYS = 3.7V 40 VSYS = 4.2V 30 20 IBBSTOUT 10 BBstVSet = 4V 0 20ms/div CHARGE PUMP EFFICIENCY vs. LOAD 6.6V SETTING 100 BBstVSet = 4V IBBOUT = 10mA 80 VBBSTOUT toc30 CPVSet = 5V 0 1.01 80 70 50 100 150 ICPOUT (µA) 200 LDO1 LOAD REGULATION 1.015 90 VSYS = 3.3V 250 toc31 VSYS = 3.7V 1.005 60 VSYS = 3.3V VL1OUT (V) EFFICIENCY (%) 80 20 VSYS = 3.7V 50 40 VSYS = 4.2V 1 VSYS = 4.2V 0.995 30 20 0.99 10 0 toc27 100 CPVSet = 6.6V 0 50 www.maximintegrated.com 100 150 ICPOUT (µA) 200 250 0.985 LDO1VSet = 1V 0 20 40 60 IL1OUT (mA) 80 100 Maxim Integrated │  38 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Operating Characteristics (continued) VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT_EFF = 15µF, CBK2OUT_EFF = 10µF, CL1IN = 22µF, CL2IN = 22µF, CL1OUT_EFF = 15µF, CL2OUT_EFF = 10µF, CCPP = 27nF, CBSTOUT_EFF = 10µF, CBBOUT_EFF = 10µF, LBK1 = 2.2µH, LBK2 = 2.2µH, LBSTOUT = 4.7µH, LBBOUT = 4.7µH, TA = +25°C, unless otherwise noted. LDO1 LOAD TRANSIENT toc32 LDO2 LOAD REGULATION 3.015 LDO1VSet = 1V toc33 LDO2VSet = 3V 3.01 50mV/div (ACCOUPLED) VINSIDE VBACKUP 3.005 VL2OUT (mA) VL1OUT VOUTN VSYS = 3.7V VSYS = 3.3V 3 2.995 50mA/div IL1OUT 2.99 2.985 20ms/div LDO2 LOAD TRANSIENT VSYS = 4.2V 0 20 80 100 TIME TORESONANCE LOCK vs. INITIAL GUESS ERROR (ESTIMATED BY VIBRATION AMPLITUDE) toc34 toc35 800 LDO2VSet = 3V LRA = Samsung DMJBRN1030BK 700 50mV/div (ACCOUPLED) VINSIDE VBACKUP 50mA/div EmfSkipCyc = 0x01, WidLpGain = 0x04 600 TIME TO LOCK (ms) VL2OUT VOUTN IL2OUT 40 60 IL2OUT (mA) 500 EmfSkipCyc = 0x00, WidLpGain = 0x02 EmfSkipCyc = 0x00, WidLpGain = 0x03 400 300 200 100 0 20ms/div -25 -15 -5 5 15 INITIAL GUESS ERROR (%) 25 HAPTIC DRIVER LRA SELF TUNING IniGss CLOSE TO RESONANT FREQUENCY HAPTIC DRIVER LRA SELF TUNING ERROR IN IniGss RESONANCE SETTING toc36 toc37 IniGss = 200Hz ERROR = -10% VIBRATION AMPLITUDE VOUTN 500mV/div (ACCOUPLED) VINSIDE FREQUENCY = 211.8Hz 2V/div 100ms/div www.maximintegrated.com OUTN ERROR = 0%VINSIDE LRA VIBRATION AMPLITUDE ERROR = 3%VBACKUP VBACKUP DRP ERROR = 3%V ERROR = 10% NarLpGain = 0x02 WidLpGain = 0x04 EmfSkipCyc = 0x01 40ms/div Maxim Integrated │  39 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Bump Configuration www.maximintegrated.com Maxim Integrated │  40 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Bump Description BUMP NAME FUNCTION A1 DRN ERM/LRA Haptic Driver Negative Output. A2 DRP ERM/LRA Haptic Driver Positive Output. A3 HDGND A4, H4 SYS A5 L2OUT A6 BK2GND A7 BK2LX B1 SCL I2C Serial Clock Input. B2 SDA I2C Serial Data Input/Open-Drain Output. B3 CPP Charge Pump Capacitor Positive Terminal. Connect 22nF (min), 33nF (max) capacitor to CPN. B4 CPN Charge Pump Capacitor Negative Terminal. Connect to 22nF (min), 33nF (max) capacitor to CPP. B5 CPOUT B6 L2IN Haptic Driver Ground. System Load Connection. Connect to the system load. Both SYS bumps should be connected on PCB through a low-impedance trace. Bypass common node with a minimum 10µF capacitor to GND. LDO Output. Bypass with 1µF capacitor to GND. Buck 2 Ground. Buck2 Regulator Switch. Connect through 2.2µH inductor to BK2OUT. Charge Pump Output. Bypass with 1µF capacitor to GND. LDO2 Input. Bypass with 1µF capacitor to GND. B7 BK2OUT C1 LED2 Buck2 Regulator Output. Bypass with 10µF capacitor to GND. Current Sink Output 2. C2 DGND Digital Ground. C3 MPC4 Multipurpose Control I/O 4. C4 MPC1 Multipurpose Control I/O 1. C5 MPC0 Multipurpose Control I/O 0. C6 CELL Fuel Gauge Voltage. Bypass with 0.1µF capacitor to GND. C7 BBOUT Buck-Boost Regulator Output. Bypass with 10µF capacitor to GND. D1 LED1 Current Sink Output 1. D2 PFN1 Configurable Power Mode Control Pin (e.g., KIN). D3 GSUB Substrate Connection. Connect to Ground. D4 VDIG Internal Reference Supply. Bypass with 1µF capacitor to GND. D5 CTG Fuel Gauge. Connect to GND. D6 QSTRT Fuel Gauge Quick Start Input. D7 BBGND Buck-Boost Ground. E1 LED0 Current Sink Output 0. E2 PFN2 Configurable Power Mode Control Pin (e.g., KOUT). E3 MON Monitor Multiplexer Output. E4 CAP Internal Reference Supply. Bypass with 1µF capacitor to GND. E5 AGND www.maximintegrated.com Analog Ground. Maxim Integrated │  41 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Bump Description (continued) BUMP NAME FUNCTION E6 ALRT E7 BBHVLX Fuel Gauge Alert Output. Buck-Boost Regulator Switch HV side. Connect through a 3.3µH or 4.7µH inductor to BBLVLX. F1 BSTOUT Boost Regulator Output. Bypass with 10µF capacitor to GND. F2 SFOUT F3 SET External Resistor For Battery Charge Current Level Setting. Do not connect any capacitance on this pin; maximum allowed capacitance (CSET < 5μs/RSET)pF. F4 TPU Battery Temperature Thermistor Measurement Pullup (Internally Connected To VDIG During Battery Temperature Thermistor Measurement). Do not exceed 1mA load on TPU. F5 THM Battery Temperature Thermistor Measurement Connection. F6 RST Reset Output. Active-Low, Open-Drain Output. F7 BBLVLX Buck-Boost Regulator Switch LV Side. Connect through a 3.3µH or 4.7µH inductor to BBHVLX. G1 BSTGND High-Voltage Boost Ground. G2 INT Interrupt Open-Drain Output. G3 MPC3 Multipurpose Control I/O 3. G4 MPC2 Multipurpose Control I/O 2. G5 L1OUT LDO1 Output. Bypass with 1µF capacitor to GND. G6 L1IN Safe Out LDO. Bypass with 1uF capacitor to GND. LDO1 Input. Bypass with 1µF capacitor to GND. G7 BK1OUT Buck1 Regulator Output. Bypass with 10µF capacitor to GND. H1 BSTHVLX Boost Regulator Switch. Connect through a 4.7µH inductor to BSTLVLX. H2 BSTLVLX Boost Regulator Switch. Connect through a 4.7µH inductor to BSTHVLX. H3 BAT H5 CHGIN H6 BK1GND H7 BK1LX Battery Connection. Connect to positive battery terminal. Bypass with a minimum 1µF capacitor to GND. +28V/-5.5V Protected Charger Input. Bypass with 1µF capacitor to GND. Buck 1 Ground. Buck1 Regulator Switch. Connect through a 2.2µH inductor to BK1OUT. Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical operating conditions taking into consideration the effects of voltage and temperature. www.maximintegrated.com Maxim Integrated │  42 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Typical Application Diagram VIO ALRT ALRT CTG QSTRT RST FUEL GAUGE POWER SWITCH CELL RST PFN 2 PFN 2 PFN 1 PFN 1 VDIG 1µF 0.1µF CAP CHGIN 1µF SET Li+ BATTERY CHARGER WITH SMART POWER SELECTOR TPU THM BAT 1µF 1µF VIO 1µF VUSB V SYS SFOUT SYS SAFE LDO HV_LDO / SW L2IN SCL SCL SDA SDA INT INT GPIO MPC 0 GPIO MPC 1 GPIO MPC 2 GPIO MPC 3 GPIO MPC 4 MON 10 µF VB1 1µF BK1LX BUCK 1 CONTROL LV_LDO / SW BK1OUT 2.2µH L1IN 10 µF V SW L1OUT 1µF VB2 BK2LX BUCK 2 MON VLDO L2OUT MONITOR MUX SAR ADC BK2OUT 2.2µH 10 µF +6.6V CPOUT CHARGE PUMP 1µF CPP CPN 27nF ERM /LRA DRP DRN HAPTIC DRIVER V SYS BOOST LED 1 LED 2 BUZZER 4.7µH BSTOUT LED 0 VBST www.maximintegrated.com BSTLVLX BSTHVLX 10 µF CURRENT SINKS BBLVLX BUCK BOOST BBHVLX 4.7µH BBOUT 10 µF Maxim Integrated │  43 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Detailed Description Power Regulation The MAX20303 features two high-efficiency, low quiescent current buck regulators, a buck-boost regulator, a highvoltage boost regulator, a charge pump, and two low quiescent current, low-dropout (LDO) linear regulators that are configurable as load switches. Additionally, a safe-output LDO is available when there is a valid voltage present at CHGIN. This SFOUT regulator’s output is configurable to 3.3V or 5V. Excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. The buck and boost regulators can operate in a fixed peak current mode for low-current applications, as well as an adaptive peak current mode to improve load regulation, extend the high-efficiency range, and minimize capacitor size when more current is required. Power Switch and Reset Control The MAX20303 features a power switch that provides the ability to execute a reset sequence or to turn off the main system power and enter Off mode to extend battery life. Shutdown and reset events are triggered by an external control through the power function (PFN) control inputs, I2C commands, or if other conditions are met. The behavior of the PFN pins is preconfigured to support one of the multiple types of wearable application cases. Table 1 describes the behavior of the PFN1 and PFN2 pins based on the PwrRstCfg[3:0] bits, while Figure 1a thru Figure 1d shows basic flow diagrams associated with each mode. Both PFN pins have a 10ms debounce period to distinguish valid inputs followed by a PwrRstCfg dependent timing to execute the PFN function. www.maximintegrated.com A soft reset sends a 10ms pulse on RST and will either leave register settings unchanged or reset them to their default values depending on the device version (see Table 192 for device settings). A hard reset on any device initiates a complete Power-On Reset sequence. The device enters Off mode on cold boot (initial battery attach, VCHGIN = 0V) in response to a power-off I2C command, a valid PFN signal based on the PwrRstCfg[3:0] setting, or in the case of a UVLO condition on SYS. When the device is in Off mode, the BAT-SYS connection is opened and all functions are disabled except for the power function controller and LDO2 (if configured as always-on). The MAX20303 will exit Off mode and turn the main power back on when there is a qualified PFN1 signal (PwrRstCfg[3:0] = 0000, 0001, 0110, 0111, 1000) or when a valid voltage is applied to CHGIN. In the powered-on state, the SYS node is enabled and other functions can be controlled through the I2C registers. When the poweron event occurs, the BAT-to-CELL switch is immediately closed and, 30ms later, the power path to SYS is enabled. This delay allows the fuel gauge to take an open cell measurement before the battery is loaded. Note that there is a relearning period to determine the state of the battery whenever the fuel gauge is disconnected. If the typical use case frequently switches the fuel gauge off and on, the user may consider permanently connecting CELL-toBAT to avoid the relearning period. Figure 2 illustrates a complete boot sequence coming out of the Off state. Maxim Integrated │  44 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems FROM POWER-ON THROUGH PFN2 (10ms DEBOUNCE) THROUGH PFN1 (10ms DEBOUNCE) SOFT RESET HOLD RST LOW SHUTDOWN HOLD RST LOW TURN OFF RESOURCES PFN2 RELEASED +10ms DELAY WAIT RESOURCES TURN-OFF TIME 20ms PASSIVE DISCHARGE OUTPUTS 10ms OFF GLOBAL PASSIVE DISCHARGE OTP THROUGH PFN1 (10ms DEBOUNCE) OR CHGIN ATTACH BOOT SEQUENCE PwrRstCfg = 0000, 0001 Figure 1a. PwrRstCfg = 0000 or 0001 www.maximintegrated.com Maxim Integrated │  45 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems ON THROUGH I2C PWR_OFF_CMD OR I2C_PWR_OFF_DELY (30ms DELAY) THROUGH PFN1 RISE/FALL (10ms DEBOUNCE) THROUGH PFN2 RISE/FALL (10ms DEBOUNCE) SHUTDOWN HOLD RST LOW TURN OFF RESOURCES HARD RESET SOFT RESET WAIT RESOURCES TURN OFF TIME 20ms 200ms DELAY 200ms DELAY PASSIVE DISCHARGE OUTPUTS HOLD RST LOW TURN OFF RESOURCES HOLD RST LOW 10ms WAIT RESOURCES TURN OFF TIME 20ms OFF GLOBAL PASSIVE DISCHARGE OTP ACTIVE DISCHARGE OUTPUTS CHGIN ATTACH 50ms BOOT SEQUENCE µC SOFTWARE RESET 10ms DELAY BOOT SEQUENCE PwrRstCfg = 0010, 0011 Figure 1b. PwrRstCfg = 0010 or 0011 www.maximintegrated.com Maxim Integrated │  46 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems ON I2C PWR _OFF_CMD OR I2C_PWR _OFF_DLY (30ms DELAY ) SHUTDOWN : HOLD RST LOW , TURN OFF RESOURCES AND ENABLE ACTIVE DISCHARGE PFN 1 HIGH (10ms DEBOUNCE ) AND CHGIN RISE /FALL (100ms DEBOUNCE ) PFN 2 HIGH (10ms DEBOUNCE ) AND CHGIN RISE /FALL (100ms DEBOUNCE ) HARD RESET PROCESS INITIATED SOFT RESET PROCESS INITIATED 15s DELAY 15s DELAY 15s EXPIRE WAIT RESOURCE TURN -OFF TIME (20ms) HOLD RST LOW , TURN RESOURCES OFF HOLD RST LOW 10ms DELAY WAIT RESOURCE TURN -OFF TIME (20ms) ACTIVE DISCHARGE OUTPUTS OFF GLOBAL PASSIVE DISCHARGE (OTP ) DISABLE ACTIVE DISCHARGE PFN 2 LOW (10ms DEBOUNCE ) ABORT SOFT RESET PFN 1 LOW (10ms DEBOUNCE ) ABORT HARD RESET 50ms µC SOFTWARE RESET CHGIN SEAL HANDLER BOOT SEQUENCE PwrRstCfg = 0100, 0101 Figure 1c. PwrRstCfg = 0100 or 0101 www.maximintegrated.com Maxim Integrated │  47 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems ON THROUGH I2C PWR_OFF_CMD OR I2C_PWR_OFF_DELY (30ms DELAY) THROUGH PFN1 LOW (10ms DEBOUNCE) FOR 12sec SHUTDOWN HOLD RST LOW TURN OFF RESOURCES SHUTDOWN TRAP PFN1 HIGH (10ms DEBOUNCE) WAIT RESOURCES TURN-OFF TIME 20ms HOLD RST LOW TURN OFF RESOURCES PASSIVE DISCHARGE OUTPUTS 10ms OFF GLOBAL PASSIVE DISCHARGE OTP VIA PFN1 LOW (10ms DEBOUNCE) OR CHGIN ATTACH BOOT SEQUENCE PwrRstCfg = 0110 Figure 1d. PwrRstCfg = 0110 www.maximintegrated.com Maxim Integrated │  48 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems ON THROUGH I2C PWR_OFF_CMD OR I2C_PWR_OFF_DELY (30ms DELAY) THROUGH PFN1 LOW (10ms DEBOUNCE) FOR 10sec SHUTDOWN HOLD RST LOW TURN OFF RESOURCES SOFT RESET HOLD RST LOW WAIT RESOURCES TURN-OFF TIME 20ms PFN1/2 RELEASE (10ms DEBOUNCE) + 10ms DELAY PASSIVE DISCHARGE OUTPUTS 10ms OFF GLOBAL PASSIVE DISCHARGE OTP THROUGH PFN 1 LOW 3s OR CHGIN ATTACH (28ms DEBOUNCE) BOOT SEQUENCE PwrRstCfg = 0111 Figure 1e. PwrRstCfg = 0111 www.maximintegrated.com Maxim Integrated │  49 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems ON THROUGH I2C PWR_OFF_CMD OR I2C_PWR_OFF_DELY (30ms DELAY) THROUGH PFN2 LOW FOR 12sec SHUTDOWN HOLD RST LOW TURN OFF RESOURCES SOFT RESET HOLD RST LOW WAIT RESOURCES TURN-OFF TIME 20ms PFN2 RELEASE (10ms DEBOUNCE) + 10ms DELAY PASSIVE DISCHARGE OUTPUTS 10ms OFF GLOBAL PASSIVE DISCHARGE IF ENABLED THROUGH PFN1 LOW FOR 3s OR CHGIN ATTACH (28ms DEBOUNCE) BOOT SEQUENCE PwrRstCfg = 1000 Figure 1f. PwrRstCfg = 1000 www.maximintegrated.com Maxim Integrated │  50 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 1. PwrRstCfg Settings PwrRstCfg PFN1* PFN2* Enable Soft-Reset Active-Low On/Off mode with 10ms debounce. Active-high On/Off control on PFN1. Logic-low on PFN2 generates 10ms pulse on RST. Note: In this mode, if PFN1 is high, PWR_OFF_CMD will cause the part to turn off, then immediately return to the ON state. 0001 Disable Soft-Reset Active-Low On/Off mode with 10ms debounce. Active-low On/Off control on PFN1. Logic-low on PFN2 generates 10ms pulse on RST. Note: In this mode, if PFN1 is high, PWR_OFF_CMD will cause the part to turn off, then immediately return to the ON state. 0010 Hard-Reset Active-High Soft-Reset Active-High Always-On mode (i.e., device can only be put in Off state through PWR_OFF_ CMD). 10ms hard reset off time. 10ms soft reset pulse time. 200ms delay prior to both reset behaviors. 0011 Hard-Reset Active-Low Soft-Reset Active-Low Always-On mode (i.e., device can only be put in Off state through PWR_OFF_ CMD). 50ms Hard-Reset off time. 10ms Soft-Reset pulse time. 200ms delay prior to both reset behaviors. 0100 Hard-Reset Active-High Triggered on CHGIN Insertion Soft-Reset Active-High Triggered on CHGIN Insertion Always-On mode (i.e., device can only be put in Off state through PWR_OFF_ CMD). 50ms Hard-Reset off time. 10ms Soft-Reset pulse time. 15s delay prior to both reset behaviors. Either reset may be aborted 0101 Hard-Reset Active-Low Triggered by CHGIN Insertion Soft-Reset Active-Low Triggered on CHGIN Insertion Always-On mode (i.e., device can only be put in Off state through PWR_OFF_ CMD). 70ms Hard-Reset off time. 10ms Soft-Reset pulse time. 15s delay prior to both reset behaviors. Either reset may be aborted. 0110 KIN KOUT Off mode through specific long-press (12s) or PWR_OFF_CMD. On mode through specific short-press (400ms). 0111 KIN KOUT Off mode through PWR_OFF_CMD. On mode through specific long-press (3s) or CHGIN insertion soft reset through specific long press (10s). 1000 KIN Soft-Reset Active-Low 12s Long Press 0000 1001-1111 Notes Custom Two Button. Off mode through PWR_OFF_CMD. On mode through KIN long-press (3s) or CHGIN insertion. Soft reset through PFN2 long press (12s). RFU * See Table 193 for default PFN1 and PFN2 configurations. www.maximintegrated.com Maxim Integrated │  51 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems FROM POWER ON FUEL GAUGE: ON WAIT FOR 30ms NO VBUS PRESENT? YES CHARGER: OFF CHARGER: OFF LIMITER: ON WAIT TshdnTmo NO SYS_UVLO = 0? IF VBUS NOT PRESENT BEFORE TshdnTmo VBUS INSERTION OR PFN PRESS WAIT FOR 10ms SYS_UVLO = 0? NO YES CHG_ENA = ChgEn NO Seq BASED STARTUP SEQUENCE LIMITER: OFF YES POWER PATH: OFF CHARGER ENABLE: OFF ERROR MODE (OUTPUTS AS OFF MODE) POWER PATH: ON BATOC ON BATOC Irq Ena TshdnTmo = 0? NO SYS_UVLO = 0? YES RST SYS_UVLO Irq Ena VBUS REMOVAL ENTER IN POWER OFF LATCHED, REQUIRES EXTERNAL EVENT TO RESTART YES BATOC Irq ON SYS_UVLO Irq Figure 2. The full MAX20303 Boot Sequence www.maximintegrated.com Maxim Integrated │  52 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Power Sequencing The sequencing of the switching regulators, LDOs, and charge pump during power-on is configurable. See each regulator’s sequencing bits for details. Regulators can turn on at one of three points during the power-on process: 75ms after the power-on event, at the time the RST signal is released, or at two points in between. The two points between SYS and RST are fixed proportionally to the duration of the Power-On Reset (POR) process (tRST). The timing relationship is presented graphically in Figure 3. LDO2 can be configured to be always-on as long as SYS or BAT is present. The SYS voltage is monitored during the power-on sequence. If VSYS falls below VSYS_UVLO_F during the sequencing process with a valid voltage at CHGIN, the process repeats from the point where SYS was enabled to allow more time for the voltage to stabilize. If there is not a valid voltage at CHGIN, the device returns to the OFF state to avoid draining the battery. Power is also turned off if BAT experiences a current greater than IBAT_OC_R for more than tBAT_OC_D. Alternatively, the regulators can remain off by default and turn on with an I2C command after RST is released. Figure 3. Reset Sequence Programming www.maximintegrated.com Maxim Integrated │  53 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Current Sink In addition to several voltage regulators, the MAX20303 also includes three low-dropout linear current regulators from LED_ to GND. The sink current of each current regulator is independently programmable through its respective LED_ISet[4:0] bits in direct registers LED_ Direct (0x2D–0x2F). The current regulators can be programmed to sink 0.6mA to 30mA with configurable step sizes and are ideal for sinking current from external LEDs. The LEDIStep[1:0] bits in direct register LEDStepDirect (0x2C) control the size of the current steps for all current sinks. This step size also sets an effective limit on the sinking current as the number of steps remains constant while the step size varies. Current sinks are enabled through an I2C command, by an internal charger status signal, or by an external MPC pin allowing for LED status indicators. Note that the current sinks always draw quiescent current when tied to an MPC_ control or status signal regardless of the MPC_ or status state. System Load Switch An internal 80mΩ (typ) MOSFET connects BAT to SYS when no voltage source is available on CHGIN. When an external source is detected at CHGIN, this switch opens and SYS is powered from the input source through the input current limiter. The SYS-to-BAT switch also prevents VSYS from falling below VBAT when the system load exceeds the input current limit. If VSYS drops to VBAT due to the current limit, the BAT-SYS switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit, the battery is not charged. This is useful for handling loads that are nominally below the input current limit but have high current peaks exceeding the input current limit. During these peaks, battery energy is used, but at all other times the battery charges. Smart Power Selector The smart power selector seamlessly distributes power from the external CHGIN input to the BAT and SYS nodes. With both an external adapter and battery connected, the smart power selector basic functions are: ●● ●● ●● When the system load requirements are less than the input current limit, the battery is charged with residual power from the input. When the system load requirements exceed the input current limit, the battery supplies supplemental current to the load. When the battery is connected and there is no external power input, the system is powered from the battery. www.maximintegrated.com Input Limiter The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter’s primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power. Invalid CHGIN Voltage Protection: If CHGIN is above the overvoltage threshold, the device enters overvoltage lockout (OVL). OVL protects the MAX20303 and downstream circuitry from high-voltage stress up to +28V and down to -5.5V. During positive OVL, the internal circuit remains powered and an interrupt is sent to the host. The negative voltage protection disconnects CHGIN and the device is powered only by BAT. The charger turns off and the system load switch closes, allowing the battery to power SYS. CHGIN is also invalid if it is less than VBAT, or less than the USB undervoltage threshold. With an invalid input voltage, the BAT-SYS load switch closes and allows the battery to power SYS. CHGIN Input Current Limit: The CHGIN input current is limited to prevent input overload. The input current limit is controlled by I2C. To accommodate systems with a high in-rush current, the limiter includes a programmable blanking time during which the input current limit increases to ILIM_MAX. Thermal Limiting: In case the die temperature exceeds the normal limit (TCHG_LIM), the MAX20303 attempts to limit temperature increase by reducing the input current from CHGIN. In this condition, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit (TCHGIN_SHDN), no input current is drawn from CHGIN and the battery powers the entire system load. Adaptive Battery Charging: While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent VSYS from collapsing. When the charge current is reduced below 50% due to ILIM or TCHG_LIM limits, the timer clock operates at half speed. When the charge current is reduced below 20% due to ILIM or TCHG_LIM limits, the timer clock is paused. Fast-Charge Current Setting: The MAX20303 uses an external resistor connected from SET to GND to set the fast-charge current. The precharge and charge-termination currents are programmed as a percentage of this value by opcode 0x14. The fast-charge current resistor can be calculated as: RSET = KSET x VSET/IFChg Maxim Integrated │  54 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems where KSET has a typical value of 2000A/A and VSET has a typical value of +1V. The range of acceptable resistors for RSET is 4kΩ to 400kΩ. A capacitive load on SET can cause instability of the charger if the condition (CSET < 5μs/RSET) pF is violated. SAR ADC/Monitor MUX In order to simplify system monitoring, the MAX20303 includes a voltage monitor multiplexer (MUX). The I2C controlled MUX connects the MON pin to the scaled value of one of six voltage regulators, BAT, or SYS. A resistive divider scales the voltage to one of four ratios determined by MONRatioCfg[1:0] (opcode 0x50, Table 117). Because the MUX can only tolerate voltages up to +5.5V, VCHGIN, VCPOUT, and VBSTOUT are not available to MON. An internal ADC reads the remaining voltage rails and performs system tasks such as JEITA temperature monitoring and SYS tracking during haptic driver operations. Manual ADC measurements are initiated by writing the desired channel to ADC_Measure_Launch (opcode 0x53, Table 121) and reading the response from APDataIn0-3. The ADC can also measure the MON voltage when the MUX is enabled with a 1:1 ratio. The full-scale range of the ADC for different voltage rails is detailed in Table 2. JEITA Monitoring with Charger Control To enhance safety when charging Li+ batteries, the MAX20303 includes JEITA-compliant temperature monitoring. A resistive divider is formed on THM by attaching a pullup resistor to TPU and connecting the thermistor of a battery-pack (do not exceed 1mA load on TPU). The divider output is read by the internal ADC when JEITA monitoring is enabled and the resulting temperature measurement places the battery into one of Table 2. SAR ADC Full-Scale Voltages and Conversions VOLTAGE RAIL AVAILABLE RANGE SYS +2.6V to +5.5V MON 0V to +5.5V (Result[7:0] * 5.5)/255 THM 0% to 100% VDIG (Result[7:0] * 100)/255 CHGIN +3V to +8V (Result[7:0] * 8.25)/255 CPOUT +3V to +8V (Result[7:0] * 8.25)/255 BSTOUT +3V to +21V (Result[7:0] * 21.0)/255 Haptic Driver The MAX20303 features a versatile, integrated haptic driver. The driver allows for real time control of haptic devices through PWM or I2C as well as the ability to run haptic patterns from internal RAM. For added flexibility, the driver is capable of driving both Linear Resonant Actuator (LRA) and Eccentric Rotating Mass (ERM) actuators. PREQUAL: VBAT < VBAT_PCHG IWARMFChg IPCHG CoolChgEn T1 IHOTFChg CHARGING ICOLDFChg ColdChgEn IROOMFChg WarmChgEn T2 T3 TEMPERATURE (°C) Figure 4a. Sample JEITA Pre Charge Profile www.maximintegrated.com (Result[7:0] * 5.5)/255 five temperature zones: cold, cool, room, warm, and hot. Zone-specific temperature limits and charging behavior are fully configurable through the ChargerThermalLimits_Config_ Write (opcode 0x16, Table 69) and ChargerThermalReg_ Config_Write (opcode 0x18, Table 73) commands detailed in Table 69 and Table 73. Some example profiles are included in Figure 4. It is important to note that, because battery temperature is measured by the internal ADC, JEITA monitoring is unavailable when automatic level compensation is enabled in the haptic driver. FAST CHARGE CONSTANT CURRENT: VBAT_PCHG < VBAT < VBAT_REG ICOOLFChg CONVERSION (V) HotChgEn T4 ColdChgEn = 0 CoolChgEn T1 IPCHG IPCHG CHARGING T2 WarmChgEn HotChgEn = 0 T3 T4 TEMPERATURE (°C) Figure 4b. Sample JEITA Fast Charge Profile Maxim Integrated │  55 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems MAINTAIN: VBAT ≥ BatReg- BatReChg ColdBatReg CoolBatReg ColdEn CoolEn WarmBatReg BatReg HotBatReg CHARGING T1 WarmEn T2 T3 HotEn T4 TEMPERATURE (°C) Figure 4c. Sample JEITA Maintain Charge Profile FROM ANY STATE RESET CHARGE TIMER JEITA ENABLE CHARGING 1s CHARGE SUSPEND OR VBAT > VSYS OR ChgEn = 0 OR INPUT LIMITER OFF FRESH BATTERY V < V BAT BATREG – VBATRECHG INSERTION ChgStat = 001 ChgStat = 110 LED = 1.5s PERIOD LED = 1s PULSE ICHG = 0 JEITA DISABLE CHARGING ICHG = 0 ChgEn = 1, VBAT > VBATREG – VBATRECHG CHARGER OFF TIMER FAULT ChgStat = 000 LED = OFF ICHG = 0 ChgStat = 111 LED = 0.15s PERIOD ICHG = 0 ChgEn = 1, VBAT < VBATREG – VBATRECHG ChgEn=1, VBAT > VBATREG – VBATRECHG JEITA DISABLE CHARGING VBAT < VBATREG – VBATRECHG AND ChgAutoReSta = 1 MAINTAIN CHARGEAND VSYS < VFCHG-MTCHG RISE RESET CHARGE TIMER DONE AND VSYS > VFCHG-MTCHG RISE PREQUAL ChgStat = 010 LED = ON ICHG = IPCHG ChgStat = 110 LED = OFF ICHG = 0 VBAT < VPCHG_R RESET CHARGE TIMER * VOLTAGE MODE IS AN INTERNAL SIGNAL JEITA DISABLE CHARGING PREQUAL SUSPEND JEITA ENABLE CHARGING ChgStat = 001 LED = 1.5s PERIOD ICHG = 0 tCHG_TIMER > tPCHG VBAT>VPCHG_R RESET CHARGE TIMER PAUSE tCHG_TIMER > tMTCHG AND ChgAutoStp=1 MAINTAIN CHARGE NOTES: PAUSE CHARGE TIMER CHARGE TIMER FAST CHARGE CC FAST CHARGE CONSTANT CURRENT JEITA DISABLE CHARGING SUSPEND JEITA DISABLE CHARGING T < T2 OR T > T3 TDIE > TCHGIN_LIM ChgStat = 011 ChgStat = 001 LED = ON JEITA ENABLE CHARGING LED = 1.5s PERIOD ICHG = IFCHG** ICHG = 0 VOLTAGE MODE=0* AND VOLTAGE MODE = 1* tCHG_TIMER > tFCHG VSYS > VFCHG-MTCHG AND VSYS > VFCHG-MTCHG PAUSE RISE OR VBAT < VPCHG_R RISE CHARGE ICHG > ICHG_DONE TIMER JEITA DISABLE RESET CHARGE TIMER FAST CHARGE FAST CHARGE CV CHARGING CONSTANT VOLTAGE SUSPEND ChgStat = 101 LED = ON ICHG < ICHG_DONE ICHG < ICHG_DONE AND V > V SYS FCHG-MTCHG RISE tMTCHG AND TDIE < TCHG_LIM RESET CHARGE TIMER ChgStat = 100 LED = ON ICHG = IFCHG ChgStat = 001 JEITA ENABLE CHARGING LED = 1.5s PERIOD ICHG = 0 ** CHARGE TIMER IS SLOWED BY 50% IF ICHG T4 101 = No thermistor detected/THM high due to external pull-up 110 = NTC input disabled via ThmEn 111 = Automatic monitoring disabled because CHGIN is not present. THM can still be measured by ADC_ Measure_Launch ChgStat[2:0] Status of Charger Mode 000 = Charger off 001 = Charging suspended due to temperature (see battery charger state diagram) 010 = Pre-charge in progress 011 = Fast-charge constant current mode in progress 100 = Fast-charge constant voltage mode in progress 101 = Maintain charge in progress 110 = Maintain charger timer done 111 = Charger fault condition (see battery charger state diagram) www.maximintegrated.com Maxim Integrated │  71 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 10. Status1 Register (0x07) ADDRESS: 0x07 MODE: Read Only BIT 7 6 5 4 3 2 1 0 NAME — — ILim UsbOVP UsbOk ChgThmSd ChgThmReg ChgTmo ILim CHGIN Input Current Limit 0 = CHGIN input current below limit 1 = CHGIN input current limit active UsbOVP Status of CHGIN OVP 0 = CHGIN overvoltage not detected 1 = CHGIN overvoltage detected UsbOk Status of CHGIN Input 0 = CHGIN Input not present or outside of valid range 1 = CHGIN Input present and valid ChgThmSd Status of Thermal Shutdown 0 = Charger in normal operating mode 1 = Charger is in thermal shutdown ChgThmReg Status of Thermal Regulation 0 = Charger is functioning normally, or disabled 1 = Charger is running in thermal regulation mode due to die temperature exceeding TCHG_LIM. Charging current is being actively reduced to prevent device overheating ChgTmo Status of Time-Out Condition 0 = Charger is running normally, or disabled 1 = Charger has reached a time-out condition www.maximintegrated.com Maxim Integrated │  72 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 11. Status2 Register (0x08) ADDRESS: 0x08 MODE: Read Only BIT NAME 7 6 5 4 3 2 1 0 ThmSD BstFlt ThmBuck2 ThmBuck1 UVLOLD O2 UVLOLDO1 ThmLDO2 ThmLDO1 ThmSD 0 = Device operating normally 1 = Device in thermal shutdown BstFlt 0 = HV Boost operating normally 1 = HV Boost in fault mode due to overcurrent or thermal shutdown ThmBuck2 0 = Buck2 operating normally 1 = Buck2 in thermal shutdown ThmBuck1 0 = Buck1 operating normally 1 = Buck1 in thermal shutdown UVLOLDO2 0 = LDO2 operating normally 1 = LDO2 UVLO active UVLOLDO1 0 = LDO1 operating normally 1 = LDO1 UVLO active ThmLDO2 0 = LDO2 operating normally 1 = LDO2 in thermal shutdown ThmLDO1 0 = LDO1 operating normally 1 = LDO1 in thermal shutdown Table 12. Status3 Register (0x09) ADDRESS: 0x09 MODE: Read Only BIT NAME 7 6 5 4 3 2 1 0 — SysErr — LRALock LRAAact BBstThm SysBatLim ChgSysLim SysErr System Error Detect 0 = No system error 1 = System error detected. See SystemError (register 0x0B) LRALock 0 = Haptic driver is not active or has not yet locked onto LRA resonant frequency 1 = Haptic driver has locked onto LRA resonant frequency LRAAct 0 = LRA driver not active 1 = LRA driver active BBstThm 0 = Buck-boost converter operating normally 1 = Buck-boost converter in thermal shutdown SysBatLim 0 = Charge current is not being actively reduced to regulate SYS 1 = Charge current actively being reduced to regulate SYS collapse ChgSysLim 0 = Input current limit normal 1 = Input current limit being reduced to regulate CHGIN collapse www.maximintegrated.com Maxim Integrated │  73 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 13. SystemError Register (0x0B) ADDRESS: 0x0B MODE: Read Only BIT 7 NAME 6 5 4 3 2 1 0 SystemError[7:0] Last System Error Code: 0x00 - MA_SYSERROR_NONE: No System Error 0x02 - MA_SYSERROR_BOOT_WDT: Restart due to a watchdog event 0x03 - MA_SYSERROR_BOOT_SWRSTREQ: Restart after Hard-Reset procedure 0x04 - MA_SYSERROR_HPT_TIMEOUT: Haptic driver disabled after timeout set through HptDrvTmo[5:0] has expired SystemError[7:0] 0x10 - MA_SYSERROR_APCMD_INPROGRESS: Attempt to use an AP command before previous command completed 0x11 - MA_SYSERROR_APCMD_WRITEPROTECT: Attempt to use a write protected command or invalid password 0x12 - MA_SYSERROR_APCMD_UNKNOWN: Attempt to use an undefined command 0x13 - MA_SYSERROR_APCMD_FAIL: AP command failed to execute 0x20 - MA_SYSERROR_HPT_DRP_LOW: Haptic driver disabled due to overcurrent condition on the DRP lowside switch 0x21 - MA_SYSERROR_HPT_DRP_HIG: Haptic driver disabled due to overcurrent condition on the DRP highside switch 0x22 - MA_SYSERROR_HPT_DRN_LOW: Haptic driver disabled due to overcurrent condition on the DRN lowside switch 0x23 - MA_SYSERROR_HPT_DRN_HIG: Haptic driver disabled due to overcurrent condition on the DRN highside switch 0x24 - MA_SYSERROR_HPT_THM_ERR: Haptic driver disabled due to thermal shutdown 0x25 - MA_SYSERROR_HPT_SYS_THR_HIT: Haptic driver disabled due to SYS falling below HptSysUVLO[7:0] threshold www.maximintegrated.com Maxim Integrated │  74 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Interrupt Mask Registers Table 14. IntMask0 Register (0x0C) ADDRESS: 0x0C MODE: Read/Write BIT 7 6 NAME ThmStat IntM ChgStat IntM ThmStatIntM ThmStatIntM masks the ThmStatInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked ChgStatIntM ChgStatIntM masks the ChgStatInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked ILimIntM ILimIntM masks the ILimInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked UsbOVPIntM UsbOVPIntM masks the UsbOVPInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked UsbOkIntM UsbOkIntM masks the UsbOkInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked ChgThmSdIntM ChgThmSDIntM masks the ChgThmSDInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked ChgThmRegIntM ThmRegIntM masks the ThmRegInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked ChgTmoIntM ChgTmoIntM masks the ChgTmoInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked www.maximintegrated.com 5 4 3 2 1 0 ILimIntM UsbOVP IntM UsbOk IntM ChgThmSd IntM ChgThm RegIntM ChgTmo IntM Maxim Integrated │  75 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 15. IntMask1 Register (0x0D) ADDRESS: 0x0D MODE: Read/Write BIT NAME 7 6 5 4 3 2 1 0 ThmSd IntM BstFltIntM ThmBuck 2IntM ThmBuck 1IntM UVLOLDO 2IntM UVLOLDO 1IntM ThmLDO 2IntM ThmLDO 1IntM ThmSdIntM ThmSdIntM masks the ThmSdInt interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked BstFltIntM BstFltIntM masks the BstFltInt interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked ThmBuck2IntM ThmBuck2IntM masks the ThmBuck2Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked ThmBuck1IntM Masks the ThmBuck1Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked UVLOLDO2IntM Masks the UVLOLDO2Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked UVLOLDO1IntM Masks the UVLOLDO1Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked ThmLDO2IntM Masks the ThmLDO2Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked ThmLDO1IntM Masks the ThmLDO1Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked www.maximintegrated.com Maxim Integrated │  76 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 16. IntMask2 Register (0x0E) ADDRESS: 0x0E MODE: Read/Write BIT 7 6 5 4 3 2 1 0 NAME APCmd RespIntM SysErr IntM — LRALock IntM LRAAct IntM BBstThm IntM SysBatLim IntM ChgSys LimIntM APCmdRespIntM Masks the APCmdRespInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked SysErrIntM Masks the SysErrInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked LRALockIntM Masks the LRALockInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked LRAActIntM Masks the LRAActInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked BBstThmIntM Masks the BBstThmInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked SysBatLimIntM Masks the SysBatLimInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked ChgSysLimIntM Masks the ChgSysLimInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked www.maximintegrated.com Maxim Integrated │  77 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems AP Interface Registers Table 17. APDataOut0 Register (0x0F) ADDRESS: 0x0F MODE: Read/Write BIT 7 6 5 NAME APDataOut0[7:0] 4 3 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 APDataOut0[7:0] Data register 0 for AP write commands. Table 18. APDataOut1 Register (0x10) ADDRESS: 0x10 MODE: Read/Write BIT 7 6 5 NAME APDataOut1[7:0] 4 3 APDataOut1[7:0] Data register 1 for AP write commands. Table 19. APDataOut2 Register (0x11) ADDRESS: 0x11 MODE: Read/Write BIT 7 6 5 NAME APDataOut2[7:0] 4 3 APDataOut2[7:0] Data register 2 for AP write commands. Table 20. APDataOut3 Register (0x12) ADDRESS: 0x12 MODE: Read/Write BIT 7 6 5 NAME APDataOut3[7:0] 4 3 APDataOut3[7:0] Data register 3 for AP write commands. Table 21. APDataOut4 Register (0x13) ADDRESS: 0x13 MODE: Read/Write BIT 7 6 5 NAME APDataOut4[7:0] 4 3 APDataOut4[7:0] Data register 4 for AP write commands. www.maximintegrated.com Maxim Integrated │  78 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 22. APDataOut5 Register (0x14) ADDRESS: 0x14 MODE: Read/Write BIT 7 6 5 NAME APDataOut5[7:0] 4 3 2 1 0 1 0 1 0 1 0 2 1 0 2 1 0 APDataOut5[7:0] Data register 5 for AP write commands. Table 23. APDataOut6 Register (0x15) ADDRESS: 0x15 MODE: Read/Write BIT 7 6 5 NAME APDataOut6[7:0] 4 3 2 APDataOut6[7:0] Data register 6 for AP write commands. Table 24. APCmdOut Register (0x17) ADDRESS: 0x17 MODE: Read/Write BIT 7 6 5 NAME APCmdOut[7:0] 4 3 2 APCmdOut[7:0] Opcode command register Table 25. APResponse Register (0x18) ADDRESS: 0x18 MODE: Read Only BIT 7 6 5 NAME APResponse[7:0] 4 3 2 APResponse [7:0] AP command response register Table 26. APDataIn0 Register (0x19) ADDRESS: 0x19 MODE: Read Only BIT 7 6 5 NAME APDataIn0[7:0] 4 3 APDataIn0[7:0] Data register 0 for AP read commands. Table 27. APDataIn1 Register (0x1A) ADDRESS: 0x1A MODE: Read Only BIT 7 6 5 NAME APDataIn1[7:0] 4 3 APDataIn1[7:0] Data register 1 for AP read commands. www.maximintegrated.com Maxim Integrated │  79 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 28. APDataIn2 Register (0x1B) ADDRESS: 0x1B MODE: Read Only BIT 7 6 5 NAME APDataIn2[7:0] 4 3 2 1 0 APDataIn2[7:0] Data register 2 for AP read commands. Table 29. APDataIn3 Register (0x1C) ADDRESS: 0x1C MODE: Read Only BIT 7 6 5 NAME APDataIn3[7:0] 4 3 2 1 0 2 1 0 2 1 0 APDataIn3[7:0] Data register 3 for AP read commands. Table 30. APDataIn4 Register (0x1D) ADDRESS: 0x1D MODE: Read Only BIT 7 6 5 NAME APDataOut4[7:0] 4 3 APDataOut4[7:0] Data register 4 for AP write commands. Table 31. APDataIn5 Register (0x1E) ADDRESS: 0x1E MODE: Read Only BIT 7 6 5 NAME APDataIn5[7:0] 4 3 APDataIn5[7:0] Data register 5 for AP read commands. LDO Direct Register Table 32. LDODirect Register (0x20) ADDRESS: 0x20 MODE: Read/Write BIT 7 NAME — 6 — 5 — LDO2DirEn LDO2 Direct Enable. Valid only if LDO2En = 11 0 = LDO2 Off 1 = LDO2 On LDO1DirEn LDO1 Direct Enable Valid only if LDO1En = 11 0 = LDO1 Off 1 = LDO1 On www.maximintegrated.com 4 — 3 — 2 1 0 — LDO2Dir En LDO1Dir En Maxim Integrated │  80 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems MPC Direct Registers Table 33. MPCDirectWrite Register (0x21) ADDRESS: 0x21 MODE: Read/Write BIT 7 6 5 4 3 2 1 0 NAME — — — MPC4Write MPC3Write MPC2Write MPC1Write MPC0Write MPC4Write MPC4 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC4 low 1 = set MPC4 high MPC3Write MPC3 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC3 low 1 = set MPC3 high MPC2Write MPC2 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC2 low 1 = set MPC2 high MPC1Write MPC1 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC1 low 1 = set MPC1 high MPC0Write MPC0 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC0 low 1 = set MPC0 high Table 34. MPCDirectRead Register (0x22) ADDRESS: 0x22 MODE: Read Only BIT 7 6 5 4 3 2 1 0 NAME — — — MPC4Read MPC3Read MPC2Read MPC1Read MPC0Read MPC4Read MPC4 Direct Readback 0 = MPC4 is low 1 = MPC4 is high MPC3Read MPC3 Direct Readback 0 = MPC3 is low 1 = MPC3 is high MPC2Read MPC2 Direct Readback 0 = MPC2 is low 1 = MPC2 is high MPC1Read MPC1 Direct Readback 0 = MPC1 is low 1 = MPC1 is high MPC0Read MPC0 Direct Readback 0 = MPC0 is low 1 = MPC0 is high www.maximintegrated.com Maxim Integrated │  81 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Haptic RAM Registers Table 35. HptRAMAddr Register (0x28) ADDRESS: 0x28 MODE: Read/Write BIT 7 6 5 NAME HptRAMAdd[7:0] 4 3 2 1 0 1 0 HptRAMAdd[7:0] RAM address to which haptic pattern data in registers 0x29, 0x2A, 0x2B will be written. Table 36. HptRAMDataH Register (0x29) ADDRESS: 0x29 MODE: Read/Write BIT 7 NAME 6 nLSx[1:0] 5 4 3 AmpSign 2 Amp[6:2] Table 37. HptRAMDataM Register (0x2A) ADDRESS: 0x2A MODE: Read/Write BIT 7 NAME 6 5 4 Amp[1:0] 3 2 1 Dur[4:0] 0 Wait[4] Table 38. HptRAMDataL Register (0x2B) ADDRESS: 0x2B MODE: Read/Write BIT NAME www.maximintegrated.com 7 6 5 Wait[3:0] 4 3 2 1 0 Rpt[3:0] Maxim Integrated │  82 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems LED Direct Registers Table 39. LEDStepDirect Register (0x2C) ADDRESS: 0x2C MODE: Read/Write BIT 7 6 5 4 3 2 1 0 NAME LED2Open LED1Open LED0Open — — — LEDIStep[1:0] LED2Open LED2 Open detection (Read only) 0 = VLED2 > VLED_DET 1 = VLED2 ≤ VLED_DET or LED2 disabled LED1Open LED1 Open detection (Read only) 0 = VLED1 > VLED_DET 1 = VLED1 ≤ VLED_DET or LED1 disabled LED0Open LED0 Open detection (Read only) 0 = VLED0 > VLED_DET 1 = VLED0 ≤ VLED_DET or LED0 disabled LEDIStep[1:0] LED Direct Current Step Register 00 = 0.6mA 01 = 1.0mA 10 = 1.2mA 11 = RESERVED 4 3 2 1 Table 40. LED0Direct Register (0x2D) ADDRESS: 0x2D MODE: Read/Write BIT 7 NAME LED0En[2:0] LED0ISet[4:0] 6 5 LED0En[2:0] 0 LED0ISet[4:0] LED0 Driver Enable 000 = Off 001 = LED0 On 010 = Controlled by internal charger status signal 011 = Controlled by MPC0 100 = Controlled by MPC1 101 = Controlled by MPC2 110 = Controlled by MPC3 111 = Controlled by MPC4 LED0 Direct Step Count LED0 current in mA is given by (LED0ISet[4:0] + 1) x LEDIStep[1:0] 0x00 = 0.6mA/1.0mA/1.2mA 0x01 = 1.2mA/2.0mA/2.4mA … 0x18 = 15mA/25mA/30mA www.maximintegrated.com Maxim Integrated │  83 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 41. LED1Direct Register (0x2E) ADDRESS: 0x2E MODE: Read/Write BIT 7 NAME LED1En[2:0] LED1ISet[4:0] 6 5 4 3 LED1En[2:0] 2 1 0 1 0 LED1ISet[4:0] LED1 Driver Enable 000 = Off 001 = LED1 On 010 = Controlled by internal charger status signal 011 = Controlled by MPC0 100 = Controlled by MPC1 101 = Controlled by MPC2 110 = Controlled by MPC3 111 = Controlled by MPC4 LED1 Direct Step Count LED1 current in mA is given by (LED1ISet[4:0] + 1) x LEDIStep[1:0] 0x00 = 0.6mA/1.0mA/1.2mA 0x01 = 1.2mA/2.0mA/2.4mA … 0x18 = 15mA/25mA/30mA Table 42. LED2Direct Register (0x2F) ADDRESS: 0x2F MODE: Read/Write BIT 7 NAME LED2En[2:0] LED2ISet[4:0] 6 5 4 LED2En[2:0] 3 2 LED2ISet[4:0] LED2 Driver Enable 000 = Off 001 = LED2 On 010 = Controlled by internal charger status signal 011 = Controlled by MPC0 100 = Controlled by MPC1 101 = Controlled by MPC2 110 = Controlled by MPC3 111 = Controlled by MPC4 LED2 Direct Step Count LED2 current in mA is given by (LED2ISet[4:0] + 1) x LEDIStep[1:0] 0x00 = 0.6mA/1.0mA/1.2mA 0x01 = 1.2mA/2.0mA/2.4mA … 0x18 = 15mA/25mA/30mA www.maximintegrated.com Maxim Integrated │  84 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Haptic Direct Registers Table 43. HptDirect0 Register (0x30) ADDRESS: 0x30 MODE: Read/Write BIT 7 6 5 4 3 2 1 0 NAME — — — — — HptOffImp HptThmProt Dis HptOCPr otDis HptOffImp Haptic Driver Output Off State Impedance 0 = When haptic driver is disabled, outputs are strongly shorted to GND through low-side driver FETs. 1 = When haptic driver is disabled, outputs are shorted to GND with 15kΩ pull-down. HptThmProtDis Haptic Driver Thermal Protection Disable If HptThmProtDis = 0 and the haptic driver shuts down due to an over temperature condition, SystemError[7:0] = 0x24 is issued and HptLock = 1. See Opcode 0xA8 for restarting the haptic driver 0 = Thermal protection enabled. Haptic driver will shut down if TJ ≥ 150°C (typ) 1 = Thermal protection disabled. HptOCProtDis Haptic Driver Overcurrent Protection Disable If HptOCProtDis = 0 and the haptic driver shuts down due to an overcurrent condition, SystemError[7:0] will equal to one of four codes (0x20-0x23) is issued and HptLock = 1. See Opcode 0xA8 for restarting the haptic driver 0 = Overcurrent protection enabled. Haptic driver will shut down if current exceeds 1A (typ) 1 = Overcurrent protection disabled. www.maximintegrated.com Maxim Integrated │  85 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 44. HptDirect1 Register (0x31) ADDRESS: 0x31 MODE: Read/Write BIT NAME 7 6 5 HptExtTrig HptRamEn HptDrvEn 4 3 2 1 0 HptDrvMode[4:0] HptExtTrig Haptic driver external trigger pattern for ETRG and RAMHPI driver mode (HptDrvMode = 01100, 10010, respectively). 0 = No pattern triggered. 1 = Vibration triggered HptRamEn Haptic RAM Block Enable 0 = RAM disabled. 1 = RAM enabled. HptDrvEn Haptic Driver Enable In all modes, the haptic driver must be enabled at the same time or before providing the desired mode in HptDrvMod[4:0]. The HptDrvEn bit must remain set during the vibration. Once vibration finishes, HptDrvMod[4:0] must be set to “00000” before the haptic driver may be disabled via HptDrvEn = 0 for power savings. 0 = Haptic driver block disabled. 1 = Haptic driver block enabled. HptDrvMode [4:0] Haptic Driver Mode Selection 00000 = Disable haptic driver 00001 = Enable PPWM0 mode and provide amplitude based on PWM duty cycle on MPC0 00010 = Enable PPWM1 mode and provide amplitude based on PWM duty cycle on MPC1 00011 = Enable PPWM2 mode and provide amplitude based on PWM duty cycle on MPC2 00100 = Enable PPWM3 mode and provide amplitude based on PWM duty cycle on MPC3 00101 = Enable PPWM4 mode and provide amplitude based on PWM duty cycle on MPC4 00110 = Enable RTI2C mode and provide current output amplitude based on the contents of HptRTI2CAmp(0x32) 00111 = Enable ETRG0 mode. Provide a pulse on MPC0 to start vibration (See “ETRG Mode” section for details) 01000 = Enable ETRG1 mode. Provide a pulse on MPC1 to start vibration (See “ETRG Mode” section for details) 01001 = Enable ETRG2 mode. Provide a pulse on MPC2 to start vibration (See “ETRG Mode” section for details) 01010 = Enable ETRG3 mode. Provide a pulse on MPC3 to start vibration (See “ETRG Mode” section for details) 01011 = Enable ETRG4 mode. Provide a pulse on MPC4 to start vibration (See “ETRG Mode” section for details) 01100 = Enable ETRGI mode via I2C. Set HptExtTrg(0x31[7]) bit to start vibration (See “ETRG Mode” section for details) 01101 = Enable RAMHP0 mode. Provide a pulse on MPC0 to start vibration (See “RAMHP Mode” section for details) 01110 = Enable RAMHP1 mode. Provide a pulse on MPC1 to start vibration (See “RAMHP Mode” section for details) 01111 = Enable RAMHP2 mode. Provide a pulse on MPC2 to start vibration (See “RAMHP Mode” section for details) 10000 = Enable RAMHP3 mode. Provide a pulse on MPC3 to start vibration (See “RAMHP Mode” section for details) 10001 = Enable RAMHP4 mode. Provide a pulse on MPC4 to start vibration (See “RAMHP Mode” section for details) 10010 = Enable RAMHPI mode via I2C. Set HptExtTrg(0x31[7]) bit to start vibration (See “RAMHP Mode” section for details) www.maximintegrated.com Maxim Integrated │  86 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 45. HptRTI2CAmp Register (0x32) ADDRESS: 0x32 MODE: Read/Write BIT 7 6 5 4 3 2 NAME HptRTI2C Sign HptRTI2CSign Sign of haptic pattern amplitude in RTI2C mode (HptDrvMode = 00110) HptRTI2Camp [6:0] Amplitude of haptic pattern in RTI2C mode (HptDrvMode = 00110). LSB = VSYS/128 1 0 1 0 HptRTI2CAmp[6:0] Table 46. HptPatRAMAddr Register (0x33) ADDRESS: 0x33 MODE: Read/Write BIT 7 NAME HptPatRAMAddr [7:0] 6 5 4 3 2 HptPatRAMAddr[7:0] Address of first sample in vibration pattern to be run in RAMHP_ mode (HptDrvMode = 01101, 01111, 10000, 10001, 10010) www.maximintegrated.com Maxim Integrated │  87 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems AP Command Register Descriptions GPIO Config Commands Table 47. 0x01 – GPIO_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x01) 0 0 0 0 0 0 0 1 APDataOut0 — — — GPIO0Cmd GPIO0OD GPIO0HiZB GPIO0Res GPIO0Pup APDataOut1 — — — GPIO1Cmd GPIO1OD GPIO1HiZB GPIO1Res GPIO1Pup APDataOut2 — — — GPIO2Cmd GPIO2OD GPIO2HiZB GPIO2Res GPIO2Pup APDataOut3 — — — GPIO3Cmd GPIO3OD GPIO3HiZB GPIO3Res GPIO3Pup APDataOut4 — — — GPIO4Cmd GPIO4OD GPIO4HiZB GPIO4Res GPIO4Pup GPIO_Cmd GPIO Output Control Valid only if GPIO_ is configured as output (GPIO_HiZB = 1) 0 = MPC_ output controlled by AP command 1 = MPC_ output controlled by I2C direct register GPIO_OD GPIO Output Configuration Valid only if GPIO_ is configured as output (GPIO_HiZB = 1) 0 = MPC_ is push-pull connected to BK2OUT 1 = MPC_ is open drain GPIO_HiZB GPIO Direction 0 = MPC_ is Hi-Z. Input buffer enabled 1 = MPC_ is not Hi-Z. Output buffer enabled GPIO_Res GPIO Resistor Presence Valid only if GPIO_ is configured as input (GPIO_HiZB = 0) 0 = Resistor not connected to MPC_ 1 = Resistor connected to MPC_ GPIO_Pup GPIO Resistor Configuration Valid only if there is a resistor on GPIO_ (GPIO_Res = 1) 0 = Pulldown connected to MPC_ 1 = Pullup to VCCINT connected MCP_ www.maximintegrated.com Maxim Integrated │  88 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 48. GPIO_Config_Write Response BIT APResponse (0x01) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 0 0 1 Table 49. 0x02 – GPIO_Config_Read MODE BIT APCmdOut (0x02) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 0 1 0 Table 50. GPIO_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x02) 0 0 0 0 0 0 1 0 APDataIn0 — — — GPIO0Cmd GPIO0OD GPIO0HiZB GPIO0Res GPIO0Pup APDataIn1 — — — GPIO1Cmd GPIO1OD GPIO1HiZB GPIO1Res GPIO1Pup APDataIn2 — — — GPIO2Cmd GPIO2OD GPIO2HiZB GPIO2Res GPIO2Pup APDataIn3 — — — GPIO3Cmd GPIO3OD GPIO3HiZB GPIO3Res GPIO3Pup APDataIn4 — — — GPIO4Cmd GPIO4OD GPIO4HiZB GPIO4Res GPIO4Pup Table 51. 0x03 – GPIO_Control_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x03) 0 0 0 0 0 0 1 1 APDataOut0 — — — GPIO4Out GPIO3Out GPIO2Out GPIO1Out GPIO0Out GPIO_Out Valid only if GPIO_ is configured as output driven by AP Command (GPIO_Cmd = 0) 0 = Set GPIO_ LOW 1 = Set GPIO_ HIGH (if GPIO_OD = 0)/Hi-Z (if GPIO_OD = 1) www.maximintegrated.com Maxim Integrated │  89 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 52. GPIO_Control_Write Response BIT APResponse (0x03) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 0 1 1 Table 53. 0x04 – GPIO_Control_Read MODE Read BIT APCmdOut (0x04) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 0 0 Table 54. GPIO_Control_Read Response MODE Write BIT APResponse (0x04) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 0 0 APDataIn0 — — — GPIO4Out GPIO3Out GPIO2Out GPIO1Out GPIO0Out APDataIn1 — — — GPIO4Stat GPIO3Stat GPIO2Stat GPIO1Stat GPIO0Stat GPIO_Stat GPIO State 0 = GPIO_ LOW 1 = GPIO_ HIGH (if GPIO_Od = 0) / Hi-Z (if GPIO_Od = 1) Table 55. 0x06 – MPC_Config_Write MODE Write BIT APCmdOut (0x06) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 1 0 APDataOut0 MPC0 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataOut1 MPC1 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataOut2 MPC2 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataOut3 MPC3 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataOut4 MPC4 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn Shaded fields are defaulted to 1 if the corresponding resources contain the following OTP setting: XXXSeq = 111 (controlled by XXXEn after 100% of Boot/POR Process Delay Control) XXXEn = 10 (MPC registers control) www.maximintegrated.com Maxim Integrated │  90 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 55. 0x06 – MPC_Config_Write (continued) BBstMPCEn Buck-Boost Enable Configuration Effective only when BBstSeq = 111 and BBstEn = 10 0 = MPC_ has no effect on Buck-boost 1 = Buck-boost enabled when MPC_ is high SFOUTMPCEn SFOUT LDO Enable Configuration Effective only when SFOUTEn = 10 0 = MPC_ has no effect on SFOUT LDO 1 = SFOUT LDO enabled when CHGIN is present and MPC_ is high CPMPCEn Charge Pump Enable Configuration Effective only when CPSeq = 111 and CPEn = 10 0 = MPC_ has no effect on Charge Pump 1 = Charge Pump enabled when MPC_ is high LDO2MPCEn LDO2 Enable Configuration Effective only when LDO2Seq = 111 and LDO2En = 10 0 = MPC_ has no effect on LDO2 1 = LDO2 enabled when MPC_ is high LDO1MPCEn LDO1 Enable Configuration Effective only when LDO1Seq = 111 and LDO1En = 10 0 = MPC_ has no effect on LDO1 1 = LDO1 enabled when MPC_ is high Buck2MPCEn Buck2 Enable Configuration Effective only when Buck2Seq = 111 and Buck2En = 10 0 = MPC_ has no effect on Buck2 1 = Buck2 enabled when MPC_ is high Buck1MPCEn Buck1 Enable Configuration Effective only when Buck1Seq = 111 and Buck1En = 10 0 = MPC_ has no effect on Buck1 1 = Buck1 enabled when MPC_ is high BstMPCEn Boost Enable Configuration Effective only when BstSeq = 111 and BstEn = 10 0 = MPC_ has no effect on Boost 1 = Boost enabled when MPC_ is high www.maximintegrated.com Maxim Integrated │  91 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 56. MPC_Config_Write Response BIT APResponse (0x06) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 1 0 Table 57. 0x07 – MPC_Config_Read MODE Read BIT APCmdOut (0x07) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 1 1 Table 58. MPC_Config_Read Response BIT APResponse (0x07) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 1 1 1 APDataIn0 MPC0 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataIn1 MPC1 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataIn2 MPC2 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataIn3 MPC3 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn APDataIn4 MPC4 BBstMPC En SFOUTM PCEn CPMP CEn LDO2MP CEn LDO1MP CEn Buck2MP CEn Buck1MP CEn BstMP CEn www.maximintegrated.com Maxim Integrated │  92 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Input Current Limit Commands Note: Registers written using opcodes 0x10, 0x14, 0x16, 0x18, 0x1A, and 0x1C are reset on charger insertion. After receiving a UsbOk interrupt, wait 10ms before writing any data using these opcodes. Failure to wait 10ms may result in the data being overwritten to the default. Table 59. 0x10 – InputCurrent_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x10) 0 0 0 1 0 0 0 0 APDataOut0 — — — ILimBlank[1:0] ILimBlank [1:0] CHGIN Current Limiter Blanking Time 00 = No debounce (allow a few clock cycles for resampling) 01 = 0.5ms 10 = 1ms 11 = 10ms ILimCntl[2:0] CHGIN Programmable Input Current Limit (See EC table for details) 000 = 50mA 001 =100mA 010 = 150mA 011 = 200mA 100 = 300mA 101 = 400mA 110 = 500mA 111 = 1000mA ILimCntl[2:0] Table 60. InputCurrent_Config_Write Response BIT APResponse (0x10) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 0 0 0 Table 61. 0x11 – InputCurrent_Config_Read MODE BIT APCmdOut (0x11) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 0 0 0 www.maximintegrated.com Maxim Integrated │  93 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 62. InputCurrent_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x11) 0 0 0 1 0 0 0 0 APDataIn0 — — — ILimBlank[1:0] ILimCntl[2:0] Thermal Shutdown Configuration Commands Table 63. 0x12 – ThermalShutdown_Config_Read MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x12) 0 0 0 1 0 0 1 0 APDataOut0 — — — — — — TShdnTmo[1:0] TShdnTmo [1:0] Thermal Shutdown Retry Timeout Boot sequence only 00 = Latch-Off (See Power State diagrams (Figure 1a to Figure 1f) for restart procedure) 01 = 500ms 10 = 1s 11 = 5s Table 64. ThermalShutdown_Config_Read Response APResponse (0x12) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 0 1 0 www.maximintegrated.com Maxim Integrated │  94 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Charger Configuratoin Commands Table 65. 0x14 – Charger_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x14) 0 0 0 1 0 1 0 0 APDataOut0 — — MtChgTmr[1:0] APDataOut1 — APDataOut2 ChgAuto Stp ChgAuto Re APDataOut3 — — VPChg[2:0] BatReChg[1:0] — MtChgTmr[1:0] Maintain Charge Timer Setting 00 = 0min 01 = 15min 10 = 30min 11 = 60min FChgTmr[1:0] Fast Charge Timer Setting 00 = 75min 01 = 150min 10 = 300min 11 = 600min PChgTmr[1:0] Pre-charge Timer Setting 00 = 30min 01 = 60min 10 = 120min 11 = 240min VPChg[2:0] Precharge Voltage Threshold Setting 000 = 2.1V 001 = 2.25V 010 = 2.40V 011 = 2.55V 100 = 2.70V 101 = 2.85V 110 = 3.00V 111 = 3.15V IPChg[1:0] Precharge Current Setting 00 = 0.05 x IFChg 01 = 0.1 x IFChg 10 = 0.2 x IFChg 11 = 0.3 x IFChg www.maximintegrated.com — FChgTmr[1:0] PChgTmr[1:0] IPChg[1:0] ChgDone[1:0] BatReg[3:0] SysMinVlt[2:0] Maxim Integrated │  95 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Charger Configuratoin Commands (continued) Table 65. 0x14 – Charger_Config_Write (continued) ChgDone[1:0] Charge Done Threshold Setting 00 = 0.05 x IFChg 01 = 0.1 x IFChg 10 = 0.2 x IFChg 11 = 0.3 x IFChg ChgAutoStp Charger Auto-Stop Controls the transition from Maintain Charger to Maintain Charger Done. 0 = Auto-Stop disabled. 1 = Auto-Stop enabled. ChgAutoRe Charger Auto-Restart Control 0 = Charger remains in maintain charge done even when VBAT is less than charge restart threshold (see Charger state diagram) 1 = Charger automatically restarts when VBAT drops below charge restart threshold BatReChg[1:0] Recharge Threshold in Relation to BatReg[3:0] 00 = BatReg - 70mV 01 = BatReg - 120mV 10 = BatReg - 170mV 11 = BatReg - 220mV BatReg[3:0] Battery Regulation Voltage 0000 = 4.05V 0001 = 4.10V 0010 = 4.15V 0011 = 4.20V 0100 = 4.25V 0101 = 4.30V 0110 = 4.35V 0111 = 4.40V 1000 = 4.45V 1001 = 4.5V 1010 = 4.55V 1011 = 4.6V SysMinVlt[2:0] System Voltage Minimum Threshold 000 : 3.6V 001: 3.7V 010: 3.8V 011: 3.9V 100: 4.0V 101: 4.1V 110: 4.2V 111: 4.3V www.maximintegrated.com Maxim Integrated │  96 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 66. Charger_Config_Write Response BIT APResponse (0x14) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 0 0 Table 67. 0x15 – Charger_Config_Read MODE BIT APCmdOut (0x15) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 0 1 Table 68. Charger_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x15) 0 0 0 1 0 1 0 1 APDataIn0 — — MtChgTmr[1:0] APDataIn1 — APDataIn2 ChgAuto Stp ChgAuto Re APDataIn3 — — www.maximintegrated.com VPChg[2:0] BatReChg[1:0] — — FChgTmr[1:0] PChgTmr[1:0] IPChg[1:0] ChgDone[1:0] BatReg[3:0] SysMinVlt[2:0] Maxim Integrated │  97 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 69. 0x16 – ChargerThermalLimits_Config_Write MODE BIT APCmdOut (0x16) Write B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 1 0 APDataOut0 ColdLim[7:0] APDataOut1 CoolLim[7:0] APDataOut2 WarmLim[7:0] APDataOut3 HotLim[7:0] APDataOut4 Password[15:8] APDataOut5 Password[7:0] ColdLim[7:0] Cold Zone Boundary Defines the falling threshold voltage on THM that defines the cold charging temperature zone. 8-bit value, 1.8V full-scale voltage. CoolLim[7:0] Cool Zone Boundary Defines the falling threshold voltage on THM that defines the cool charging temperature zone. 8-bit value, 1.8V full-scale voltage. WarmLim[7:0] Warm Zone Boundary Defines the rising threshold voltage on THM that defines the cool charging temperature zone. 8-bit value, 1.8V full-scale voltage. HotLim[7:0] Hot Zone Boundary Defines the rising threshold voltage on THM that defines the hot charging temperature zone. 8-bit value, 1.8V full-scale voltage. Password[15:0] Thermal Limit Configuration Password If Write-Protect enabled, ChargerThermalLimits can be configured using the following password: 0x1E7A. If Write-Protect enabled, incorrect password will result in SystemError[7:0] = 0x11. Table 70. ChargerThermalLimits_Config_Write Response BIT B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 1 0 APResponse (0x16) Table 71. 0x17 – ChargerThermalLimits_Config_Read MODE BIT Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 1 1 APCmdOut (0x17) www.maximintegrated.com Maxim Integrated │  98 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 72. ChargerThermalLimits_Config_Read Response BIT APResponse (0x17) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 0 1 1 0 APDataIn0 ColdLim[7:0] APDataIn1 CoolLim[8:0] APDataIn2 WarmLim[7:0] APDataIn3 HotLim[7:0] Table 73. 0x18 – ChargerThermalReg_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x18) 0 0 0 1 1 0 0 0 APDataOut0 ColdChgEn — — ColdBatReg[1:0] ColdFChg[2:0] APDataOut1 CoolChgEn — — CoolBatReg[1:0] CoolFChg[2:0] APDataOut2 — — — RoomBatReg[1:0] RoomFChg[2:0] APDataOut3 WarmChgEn — — WarmBatReg[1:0] WarmFChg[2:0] APDataOut4 HotChgEn — — HotBatReg[1:0] HotFChg[2:0] APDataOut5 Password[15:8] APDataOut6 Password[7:0] ColdChgEn Cold Zone Charger Control Determines if charger is enabled for cold temperature zone. 0 = Charging disabled in cold temperature zone. 1 = Charging enabled in cold temperature zone. ColdBatReg [1:0] Cold Zone Battery Regulation Voltage Sets modified BatReg[3:0] in the cold temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg ColdFChg [2:0] Cold Zone Fast Charge Current Scaling Sets modified fast charge in the cold temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg www.maximintegrated.com Maxim Integrated │  99 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 73. 0x18 – ChargerThermalReg_Config_Write (continued) CoolChgEn Cool Zone Charger Control Determines if charger is enabled for cool temperature zone. 0 = Charging disabled in cool temperature zone. 1 = Charging enabled in cool temperature zone. CoolBatReg [1:0] Cool Zone Battery Regulation Voltage Sets modified BatReg[3:0] in the cool temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg CoolFChg [2:0] Cool Zone Fast Charge Current Scaling Sets modified fast charge in the cool temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg RoomBat Reg[4:3] Room Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the room temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg RoomFChg [2:0] Room Zone Fast Charge Current Scaling Sets the modified fast charge in the room temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg WarmChg En Warm Zone Charger Control Determines if charger is enabled for warm temperature zone. 0 = Charging disabled in warm temperature zone. 1 = Charging enabled in warm temperature zone. www.maximintegrated.com Maxim Integrated │  100 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 73. 0x18 – ChargerThermalReg_Config_Write (continued) WarmBat Reg[1:0] Warm Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the warm temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg WarmFChg [2:0] Warm Zone Fast Charge Current Scaling Sets the modified fast charge in the warm temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg HotChgEn Hot Zone Charger Control Determines if charger is enabled for hot temperature zone. 0 = Charging disabled in hot temperature zone. 1 = Charging enabled in hot temperature zone. HotBatReg [1:0] Hot Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the hot temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg HotFChg [2:0] Hot Zone Fast Charge Current Scaling Sets the modified fast charge in the hot temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg Password [15:0] Charger Thermal Limit Configuration Password If Write protect enabled, ChargerThermalLimits can be configured using the following password: 0x1E7A If Write Protect enabled, incorrect password will result in System Error 0x11. www.maximintegrated.com Maxim Integrated │  101 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 74. ChargerThermalReg_Config_Write Response BIT APResponse (0x18) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 0 0 0 Table 75. 0x19 – ChargerThermalReg_Config_Read MODE BIT APCmdOut (0x19) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 0 0 1 Table 76. ChargerThermalReg_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 0 0 1 APDataIn0 ColdChgEn — — ColdBatReg[1:0] ColdFChg[2:0] APDataIn1 CoolChgEn — — CoolBatReg[1:0] CoolFChg[2:0] APDataIn2 — — — RoomBatReg[1:0] RoomFChg[2:0] APDataIn3 WarmChgEn — — WarmBatReg[1:0] WarmFChg[2:0] APDataIn4 HotChgEn — — HotBatReg[1:0] HotFChg[2:0] APResponse (0x19) Table 77. 0x1A – Charger_ControlWrite MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x1A) 0 0 0 1 1 0 1 0 APDataOut0 — — — — — — ThmEn ChgEn ThmEn On/Off Control for Thermal Monitor 0 = Thermal monitor disabled 1 = Thermal monitor enabled ChgEn On/Off Control for Charger (does not affect SYS node). 0 = Charger disabled 1 = Charger enabled Table 78. Charger_ControlWrite Response BIT APResponse (0x1A) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 0 1 0 www.maximintegrated.com Maxim Integrated │  102 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 79. 0x1B – Charger_ControlRead MODE BIT APCmdOut (0x1B) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 0 1 1 Table 80. Charger_Control_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x1B) 0 0 0 1 1 0 1 1 APDataIn0 — — — — — — ThmEn ChgEn Table 81. 0x1C – Charger_ JEITAHyst_ControlWrite MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x1C) 0 0 0 1 1 1 0 0 APDataOut0 JEITAHys En — — JEITAHys En JEITAHys Lvl JEITAHysLvl JEITA Hysteresist Control 0 = Hysteresis disabled. 1 = Hysteresis enabled. Amplitude of JEITA Hysteresis (LSB = 0.39%VDIG) 00001 = 0.39%VDIG 00010 = 0.78%VDIG … 11111 = 12.09%VDIG Table 82. Charger_JEITAHyst_ControlWrite Response BIT APResponse (0x1C) B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 1 0 0 Table 83. Charger_JEITAHyst_ControlRead MODE BIT APCmdOut (0x1D) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 1 0 1 Table 84. Charger_JEITAHyst_ControlRead Response BIT APResponse (0x1D) APDataIn0 B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 1 1 1 0 1 JEITAHysEn — — www.maximintegrated.com JEITAHysLvl Maxim Integrated │  103 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Boost Configuration Commands Table 85. 0x30 – Bst_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x30) 0 0 1 1 0 0 0 0 APDataOut0 — — — — — — APDataOut1 — — — — BstPsvDsc BstIAdptEn APDataOut2 — — — — APDataOut3 — — BstEn[1:0] BstFastStrt BstFetScale BstISet[3:0] BstVSet[5:0] BstEn[1:0] Boost Enable Configuration (effective only when BstSeq = 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED BstPsvDsc Boost Passive Discharge Control 0 = Boost output will be discharged only when entering Off and Hard-Reset modes. 1 = Boost output will be discharged only when entering Off and Hard-Reset modes and when BstEn is set to 000. BstIAdptEn Boost Adaptive Peak Current Control 0 = Inductor peak current fixed at the programmed value by means of BstISet 1 = Inductor peak current automatically increased to provide better load regulation BstFastStrt Boost Fast Start Time 0 = Time to full current capability during Startup =100ms 1 = Time to full current capability during Startup = 50ms. Precharge with 2x current BstFetScale Boost FET Scaling 0 = No FET scaling 1 = Active boost FET size scaled down by half to optimize efficiency for low inductor peak current settings BstISet[3:0] Boost Nominal inductor Peak Current Setting 25mA step resolution 0000 = 100mA 0001 = 125mA 0010 = 150mA …. 1111 = 475mA BstVSet[5:0] Boost Output Voltage Setting Linear scale from 5V to 20V in 250mV increments 000000 = 5V 000001 = 5.25V … 111011 = 19.75V 111011 = 20V >111100 = Reserved www.maximintegrated.com Maxim Integrated │  104 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 86. Bst_Config_Write Response BIT APResponse (0x30) B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 0 0 0 0 Table 87. 0x31 – Bst_Config_Read MODE BIT APCmdOut (0x31) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 0 0 0 1 Table 88. Bst_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x31) 0 0 1 1 0 0 0 1 APDataIn0 — — — — — — APDataIn1 — — — — BstPsvDsc BstIAdptEn APDataIn2 — — — — APDataIn3 RESERVED — APDataIn4 — — BstSeq[2:0] BstEn[1:0] BstFastStrt BstFetScale BstISet[3:0] BstVSet[5:0] — — — BstSeq[2:0] Boost Enable Configuration (Read only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by Bst1En after 100% of Boot/POR Process Delay Control www.maximintegrated.com Maxim Integrated │  105 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Buck Configuration Commands Table 89. 0x35 – Buck1_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x35) 0 0 1 1 0 1 0 1 APDataOut0 — Buck1Psv Dsc Buck1Sft Strt Buck1Act Dsc Buck1Low EMI Buck1IAdpt En Buck1Fet Scale — APDataOut1 — — APDataOut2 — — Buck1IZCSet[1:0] APDataOut3 — — — Buck1VSet[5:0] — Buck1ISet[3:0] — — Buck1Psv Dsc Buck1 Passive Discharge Control 0 = Buck1 passively discharged only in Hard-Reset 1 = Buck1 passively discharged in Hard-Reset or Enable Low Buck1Sft Strt Buck1 Soft Start Time Buck1 has reduced current capability during soft-start 0 = 50ms 1 = 25ms Buck1Act DSC Buck1 Active Discharge Control 0 = Buck1 actively discharged only in Hard-Reset 1 = Buck1 actively discharged in Hard-Reset or Enable Low Buck1Low EMI Buck1 Low EMI Mode 0 = Normal operation 1 = Increase rise/fall time on BLX by 3x Buck1IAdpt En Buck1 Adaptive Peak Current Mode 0 = Inductor peak current fixed at the programmed value by means of Buck1ISet 1 = Inductor peak current automatically increased to provide better load regulation Buck1FET Scale Buck1 Force FET Scaling Reduce the FET size by factor 2. Use it to optimize the efficiency for Buck1Iset 3V Buck1ISet [3:0] Buck1 Inductor current Peak Current Setting 25mA step 0000 = 0mA 0001 = 25mA 1111 = 375mA Buck1En [1:0] Buck1 Enable Configuration (effective only when Buck1Seq == 111) 00 = Disabled: BK1OUT not actively discharged unless Hard-Reset/Shutdown/Off mode 01 = Enabled 10 = Controlled by MPC_ (See MPC_Config_Write) 11 = RESERVED Table 90. Buck1_Config_Write Response BIT APResponse (0x35) B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 0 1 0 1 Table 91. 0x36 – Buck1_Config_Read MODE BIT APCmdOut (0x36) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 0 1 1 0 www.maximintegrated.com Maxim Integrated │  107 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 92. Buck1_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x36) 0 0 1 1 0 1 1 0 APDataIn0 — Buck1Psv Dsc Buck1 SftStrt Buck1Act Dsc Buck1Low EMI Buck1En Fmax Buck1Fet Scale — APDataIn1 — — APDataIn2 — — Buck1IZCSet[1:0] APDataIn3 — — — — — APDataIn4 — — — — — Buck1Seq [2:0] Buck1VSet[5:0] Buck1ISet[3:0] — Buck1En[1:0] Buck1Seq[2:0] Buck1 Enable Configuration (Read only) 000 = Disabled 001 = Reserved 010 = Enabled at 0% of Boot/ POR Process Delay Control 011 = Enabled at 25% of Boot/ POR Process Delay Control 100 = Enabled at 50% of Boot/ POR Process Delay Control 101 = Reserved 110 = Reserved 111 = Controlled by Buck1En [1:0] after 100% of Boot/POR Process Delay Control Table 93. 0x37 – Buck1_DVSConfig_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x37) 0 0 1 1 0 1 1 1 APDataOut0 — — Buck1VSet[5:0] APDataOut1 — — Buck1AlternateVSet[5:0] APDataOut2 — — MPC1 MPC0 — MPC4 MPC3 MPC2 Buck1VSet [5:0] Buck1 Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck1 after a positive edge on MPC_. 0.8V to 2.375V, Linear Scale, 25mV increments 000000 = 0.8V 000001 = 0.825V … 111111 = 2.375V Buck1Altern ateVSet[5:0] Buck1 Alternate Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck1 upon writing this command or after a negative edge on MPC_. 0.8V to 2.375V, Linear Scale, 25mV increments 000000 = 0.8V 000001 = 0.825V … 111111 = 2.375V MPC_ This selects the MPC pin used for alternate voltage function. If an MPC is used for dynamic voltage scaling, all other functions of that MPC are disabled. MPC works on edge, so the static value of MPC does not matter. www.maximintegrated.com Maxim Integrated │  108 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 94. Buck1_DVSConfig_Write Response BIT APResponse (0x37) B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 0 1 1 1 Table 95. 0x3A – Buck2_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x3A) 0 0 1 1 1 0 1 0 APDataOut0 — Buck2Psv Dsc Buck2Sft Strt Buck2Act Dsc Buck2Low EMI Buck2IAdpt En Buck2Fet Scale — APDataOut1 — — APDataOut2 — — Buck2IZCSet[1:0] APDataOut3 — — — Buck2VSet[5:0] — Buck2ISet[3:0] — — Buck2Psv DSC Buck2 Passive Discharge Control 0 = Buck2 passively discharged only in Hard-Reset 1 = Buck2 passively discharged in Hard-Reset or Enable Low Buck2SftStrt Buck2 Soft Start Time Buck2 has reduced current capability during soft-start 0 = 50ms 1 = 25ms Buck2Act DSC Buck2 Active Discharge Control 0 = Buck2 actively discharged only in Hard-Reset 1 = Buck2 actively discharged in Hard-Reset or Enable Low Buck2Low EMI Buck2 Low EMI Mode 0 = Normal operation 1 = Increase rise/fall time on BLX by 3x Buck2IAdpt En Buck2 Adaptive Peak Current Mode 0 = Inductor peak current fixed at the programmed value by means of Buck1ISet 1 = Inductor peak current automatically increased to provide better load regulation Buck2FET Scale Buck2 Force FET Scaling Reduce the FET size by factor 2. Use it to optimize the efficiency for Buck1Iset 3V Buck2ISet [3:0] Buck2 Inductor Current Peak Current Setting 25mA step 0000 = 0mA 0001 = 25mA 1111 = 375mA Buck2En[1:0] Buck2 Enable Configuration (effective only when Buck2Seq == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = Reserved Table 96. Buck2_Config_Write Response BIT APResponse (0x3B) B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 1 0 1 0 Table 97. 0x3B – Buck2_Config_Read MODE BIT APCmdOut (0x3B) Read B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 1 0 1 1 www.maximintegrated.com Maxim Integrated │  110 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 98. Buck2_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x3B) 0 0 1 1 1 0 1 1 APDataIn0 — Buck2Psv Dsc Buck2Sft Strt Buck2Act Dsc Buck2Low EMI Buck2IAdpt En Buck2Fet Scale — APDataIn1 — — APDataIn2 — — Buck2IZCSet[1:0] APDataIn3 — — — — — APDataIn4 — — — — — Buck2Seq [2:0] Buck2VSet[5:0] Buck2ISet[3:0] — Buck2En[1:0] Buck2Seq[2:0] Buck2 Enable Configuration (Read Only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/ POR Process Delay Control 011 = Enabled at 25% of Boot/ POR Process Delay Control 100 = Enabled at 50% of Boot/ POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by Buck2En [1:0] after 100% of Boot/POR Process Delay Control Table 99. 0x3C – Buck2_DVSConfig_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x3C) 0 0 1 1 1 1 0 0 APDataOut0 — — Buck2VSet[5:0] APDataOut1 — — Buck2AlternateVSet[5:0] APDataOut2 — — MPC1 MPC0 — MPC4 MPC3 MPC2 Buck2VSet [5:0] Buck2 Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck2 after a positive edge on MPC_. 0.8V to 3.95V, Linear Scale, 50mV increments 000000 = 0.8V 000001 = 0.85V … 111111 = 3.95V Buck2Altern ateVSet[5:0] Buck2 Alternate Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck2 upon writing this command or after a negative edge on MPC_. 0.8V to 3.95V, Linear Scale, 50mV increments 000000 = 0.8V 000001 = 0.85V … 111111 = 3.95V MPC_ This selects the MPC pin used for alternate voltage function. If an MPC is used for dynamic voltage scaling, all other functions of that MPC are disabled. MPC works on edge, so the static value of MPC does not matter. www.maximintegrated.com Maxim Integrated │  111 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 100. Buck2_DVSConfig_Write Response BIT APResponse (0x3C) B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 1 1 1 0 0 LDO Configuration Commands Table 101. 0x40 – LDO1_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x40) 0 1 0 0 0 0 0 0 APDataOut0 — — — LDO1Pas Dsc LDO1Act Dsc LDO1Md APDataOut1 — — LDO1En[1:0] LDO1VSet[5:0] LDO1Pas Dsc LDO1 Passive Discharge Control 0 = LDO1 output will be discharged only entering Off and Hard-Reset modes. 1 = LDO1 output will be discharged only entering Off and Hard-Reset modes and when the enable is Low LDO1Act Dsc LDO1 Active Discharge Control 0 = LDO1 output will be actively discharged only in Hard-Reset mode 1 = LDO1 output will be actively discharged in Hard-Reset mode and also when its Enable goes Low LDO1Md LDO1 Mode Control When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled. 0 = Normal LDO operating mode 1 = Load switch mode. FET is either fully On or Off depending on state of LDO1En. LDO1En [1:0] LDO1 Enable Configuration (effective only when LDO1Seq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = Controlled by LDODirect register LDO1VSet [5:0] LDO1 Output Voltage Setting–Limited by input supply 0.5V to 1.95V, Linear Scale, 25mV increments 000000 = 0.5V 000001 = 0.525V … 111010 = 1.95V >111010 = Limited by input supply www.maximintegrated.com Maxim Integrated │  112 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 102. LDO1_Config_Write Response BIT APResponse (0x40) B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 0 0 0 Table 103. 0x41 – LDO1_Config_Read MODE BIT APCmdOut (0x41) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 0 0 1 Table 104. LDO1_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x41) 0 1 0 0 0 0 0 1 APDataIn0 — — — LDO1Pas Dsc LDO1Act Dsc LDO1Md APDataIn1 — — — APDataIn2 — — — LDO1Seq [2:0] LDO1En[1:0] LDO1VSet[4:0] — — LDO1Seq[2:0] LDO1 Enable Configuration (Read only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by LDO1En [1:0] after 100% of Boot/POR Process Delay Control www.maximintegrated.com Maxim Integrated │  113 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 105. 0x42 – LDO2_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x42)) 0 1 0 0 0 0 1 0 APDataOut0 — — — LDO2Pas Dsc LDO2Act Dsc LDO2Md APDataOut1 — — — LDO2En[1:0] LDO2VSet[4:0] LDO2Pas Dsc LDO2 Passive Discharge Control 0 = LDO2 output will be discharged only entering Off and Hard-Reset modes. 1 = LDO2 output will be discharged only entering Off and Hard-Reset modes and when the enable is low. LDO2Act Dsc LDO2 Active Discharge Control 0 = LDO2 output will be actively discharged only in Hard-Reset mode 1 = LDO2 output will be actively discharged in Hard-Reset mode and also when its Enable goes Low LDO2Md LDO2 Mode Control When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO2 is disabled. 0 = Normal LDO2 operating mode 1 = Load switch mode. FET is either fully On or Off depending on state of LDO2En LDO2En [1:0] LDO2 Enable Configuration (effective only when LDO2Seq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = Controlled by LDODirect register LDO2VSet [4:0] LDO2 Output Voltage Setting–Limited by input supply 0.9V to 4V, Linear Scale, 100mV increments 000000 = 0.9V 000001 = 1V … 11110 = 3.9V 11111 = 4V www.maximintegrated.com Maxim Integrated │  114 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 106. LDO2_Config_Write Response BIT APResponse (0x42) B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 0 1 0 Table 107. 0x43 – LDO2_Config_Read MODE BIT APCmdOut (0x43) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 0 1 1 Table 108. LDO2_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x43) 0 1 0 0 0 0 1 1 APDataIn0 — — — LDO2Pas Dsc LDO2Act Dsc LDO2Md APDataIn1 — — — APDataIn2 — — — — — LDO2Seq [2:0] LDO2En[1:0] LDO2VSet[4:0] LDO2Seq[2:0] LDO2 Enable Configuration (Read only) 000 = Disabled 001 = Enabled always when BAT/SYS is present 010 = Enabled at 0% of Boot/ POR Process Delay Control 011 = Enabled at 25% of Boot/ POR Process Delay Control 100 = Enabled at 50% of Boot/ POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by LDO2En [1:0] after 100% of Boot/POR Process Delay Control www.maximintegrated.com Maxim Integrated │  115 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Charge Pump Configuration Commands Table 109. 0x46 – ChargePump_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x46) 0 1 0 0 0 1 1 0 APDataOut0 — — — — — — APDataOut1 — — — — — — CPEn[1:0] Charge Pump Enable Configuration (effective only when CPSeq = 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED CPpsvDisch Charge Pump Passive Discharge Enable 0 = Disabled 1 = Enabled CPVSet 0 = 6.6V 1 = 5V CPEn[1:0] CPPscDisch CPVSet Table 110. ChargePump_Config_Write Response BIT APResponse (0x46) B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 1 1 0 Table 111. 0x47 – ChargePump_Config_Read MODE BIT APCmdOut (0x47) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 0 1 1 1 www.maximintegrated.com Maxim Integrated │  116 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 112. ChargePump_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x47) 0 1 0 0 0 1 1 1 APDataIn0 — — — — — — APDataIn1 — — — — — — APDataIn2 — — — — — CPSeq[2:0] CPEn[1:0] CPPscDisch CPVSet CPSeq[2:0] Charge Pump Enable Configuration (Read only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by CPEn after 100% of Boot/POR Process Delay Control SFOUT Configuration Commands Table 113. 0x48 – SFOUT_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x48) 0 1 0 0 1 0 0 0 APDataOut0 — — — — — SFOUTV Set SFOUTV Set SFOUT Output Voltage Setting 0 = 5V 1 = 3.3V SFOUTE n[1:0] SFOUT LDO Enable Configuration 00 = Disabled (regardless of CHGIN) 01 = Enabled when CHGIN is present 10 = Enabled when CHGIN is present and Controlled by MPC_Config_Write command 11 = RESERVED www.maximintegrated.com SFOUTEn[1:0] Maxim Integrated │  117 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 114. SFOUT_Config_Write Response BIT APResponse (0x48) B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 1 0 0 0 Table 115. 0x49 – SFOUT_Config_Read MODE BIT APCmdOut (0x49) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 0 1 0 0 1 Table 116. SFOUT_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x49) 0 1 0 0 1 0 0 1 APDataIn0 — — — — — SFOUTVSet www.maximintegrated.com SFOUTEn[1:0] Maxim Integrated │  118 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems MON Mux Configuration Commands Table 117. 0x50 – MONMux_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x50) 0 1 0 1 0 0 0 0 APDataOut0 MONEn — MONHiZ MONRatioCfg[1:0] MONCtrl[2:0] MONEn Enable Signal For MON Mux 0 = MON is not connected to any internal node and its state depends on MONHIZ 1 = MON is connected based on MONCtrl[2:0] configuration MONHiZ MON Off Mode Condition 0 = Pulled LOW by 59kΩ pulldown resistor 1 = Hi-Z MONRatio Cfg[1:0] MON Resistive Partition Selector 00 = 1:1 01 = 2:1 10 = 3:1 11 = 4:1 MONCtrl[2:0] MON Pin Source Selection (80µs BBM after any change of MONCtrl[2:0]) 000 = MON connected to a resistive partition of BAT 001 = MON connected to a resistive partition of SYS 010 = MON connected to a resistive partition of BK2OUT 011 = MON connected to a resistive partition of BK1OUT 100 = MON connected to a resistive partition of L2OUT 101 = MON connected to a resistive partition of L1OUT 110 = MON connected to a resistive partition of SFOUT 111 = MON connected to a resistive partition of BBOUT Table 118. MONMux_Config_Write Response BIT APResponse (0x51) B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 1 0 0 0 0 Table 119. 0x51 – MONMux_Config_Read MODE BIT APCmdOut (0x51) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 1 0 0 0 1 www.maximintegrated.com Maxim Integrated │  119 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 120. MONMux_Config_Read Response BIT APResponse (0x51) APDataIn0 B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 1 0 0 0 1 MONEN — MONHiZ MONRatioCfg[1:0] MONCtrl[2:0] Table 121. 0x53 – ADC_Measure_Launch MODE BIT Launch B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x53) 0 1 0 1 0 0 1 1 APDataOut0 — — ADCAvgSiz[2:0] ADCSel[2:0] ADCAvg Siz[2:0] ADC Averaging Size ADC performs 2ADCAvgSiz[2:0] consecutive averaged measurements ADCSel [2:0] ADC Channel Selection 000 = SYS 001 = MON 010 = THM 011 = CHGIN 100 = CPOUT 101 = BSTOUT 11x = RESERVED Table 122. ADC_Measure_Launch Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x53) 0 1 0 1 0 0 1 1 APDataIn0 — — — — — — ADCResult[1:0] APDataIn1 ADCMax[7:0] APDataIn2 ADCMin[7:0] APDataIn3 ADCAvg[7:0] ADCResult ADC Result Ready 00 = Success, measurement completed 01 = ADC busy 10 = ADC measurement aborted by Haptic Automatic Level Compensation engine 11 = RESERVED ADCMax[7:0] ADC Maximum Value Contains the maximum value measured by the ADC ADCMin[7:0] ADC Minimum Value Contains the minimum value measured by the ADC ADCAvg[7:0] ADC Average Value Contains the average value of 2ADCAvgSiz[2:0] ADC measurements www.maximintegrated.com Maxim Integrated │  120 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Buck-Boost Configuration Commands Table 123. 0x70 – BBst_Config_Write MODE BIT APCmdOut (0x70) Write B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 1 0 0 0 0 APDataOut0 RESERVED (Set to 0x00) APDataOut1 — — APDataOut2 — — APDataOut3 — BBstRip Red — — — BBstISet[2:0] BBstVSet[4:0] BBstAct Dsc BBstPas Dsc BBstMd BBstInd BBstEn[1:0] BBstISet [2:0] Buck-Boost Peak Current Limit Setting 000 = 0 (Minimum On-time) 001 = 50mA 010 = 100mA 011 = 150mA 100 = 200mA 101 = 250mA 110 = 300mA 111 = 350mA BBstVSet [4:0] Buck-Boost Output Voltage Setting This setting is internally latched and can change only when Buck-Boost is Disabled. 2.5V to 5.0V, Linear Scale, 100mV increments 000000 = 2.5V 000001 = 2.6V … 011001 = 5.0V >011001 = 5.0V BBstRip Red Buck-Boost Ripple Reduction Leave set to 1 BBstAct Dsc Buck-Boost Active Discharge Control 0 = Actively discharged only in Hard-Reset 1 = Actively discharged in Hard-Reset or Enable Low BBstPas Dsc Buck-Boost Passive Discharge Control 0 = Passively discharged only in Hard-Reset 1 = Passively discharged in Hard-Reset or Enable Low www.maximintegrated.com Maxim Integrated │  121 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 123. 0x70 – BBst_Config_Write (continued) BBstMd Buck-Boost EMI Reduction 0 = Damping enabled 1 = Damping disabled BBstInd Buck-Boost Inductance select 0 = Inductance is 4.7µH 1 = Inductance is 3.3µH BBstEn [1:0] Buck-Boost Enable Configuration (effective only when BBstSeq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED Table 124. BBst_Config_Write Response BIT APResponse (0x70) B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 1 0 0 0 0 Table 125. 0x71 – BBst_Config_Read MODE BIT APCmdOut (0x71) Read B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 1 0 0 0 1 Table 126. BBst_Config_Read Response BIT APResponse (0x71) B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 1 0 0 0 1 APDataIn0 ClkDiv Ena APDataIn1 — — — APDataIn2 — — — APDataIn3 — — BBstActDsc BBstPasDsc BBstMd APDataIn4 — — — — — BBstSeq [2:0] ClkDivSet[6:0] — — BBstISet[2:0] BBstVSet[4:0] BBstInd BBstEn[1:0] BBstSeq[2:0] Buck-Boost Enable Configuration (Read only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/ POR Process Delay Control 011 = Enabled at 25% of Boot/ POR Process Delay Control 100 = Enabled at 50% of Boot/ POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by BBstEn [1:0] after 100% of Boot/POR Process Delay Control www.maximintegrated.com Maxim Integrated │  122 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Haptic Configuration Commands Table 127. 0xA0 – Hpt_Config_Write0 MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xA0) 1 0 1 0 0 0 0 0 APDataOut0 — — — — EmfEn HptSel AlcMod ZccHysEn APDataOut1 IniGss[7:0] APDataOut2 ZccSlow En — — APDataOut3 — — — APDataOut4 — — WidWdw[5:0] APDataOut5 — — NarWdw[5:0] FltrCntrEn IniGss[11:8] IniDly[4:0] EmfEn Back EMF and Resonance Detection Control Can also be set using opcode 0xAD. 0 = Disabled 1 = Enabled HptSel Haptic Mode Select Can also be set using opcode 0xAD. 0 = ERM Mode 1 = LRA Mode AlcMod Automatic Level Compensation (ALC) Control Can also be set using opcode 0xAD. 0 = Disabled 1 = Enabled ZccHysEn Zero-Crossing Comparator Hysteresis Control Can also be set using opcode 0xAD 0 = Disabled 1 = Enabled (6mV typ). IniGss [11:0] Back EMF Initial Guess Can also be set using opcode 0xAE. Initial estimate for BEMF frequency = ((25.6MHz/64) / IniGss[11:0]) ZccSlowEn Zero-Crossing Comparator Slow-Down Enable Can also be set using opcode 0xBA. 0 = Zero-crossing comparator operates in normal mode. 1 = Slows down the zero-crossing comparator by 2X for stronger antialiasing filtering. www.maximintegrated.com Maxim Integrated │  123 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 127. 0xA0 – Hpt_Config_Write0 (continued) FltrCntrEn Zero-Crossing Event Capturing Filter Enable Can also be set using opcode 0xBA 0 = Zero-crossing measured using single comparator. 1 = Zero-crossing measured using an up/down counter (samples at 25.6MHz). Samples the output of the comparator for the whole duration of the enabled window (wide or narrow). The counter starts at zero (mid-code) and will end at a positive or negative code depending on whether the average zero-crossing event occurs before or after than the expected time. The closer the zero-crossing is on average to the expected time, the closer to zero code returned at the end of the window will be. Phase error (in 25.6MHz period units) can be calculated by dividing the resulting code at the end of the window by 2. The usage of the up/down counter enables filtering/noise rejection that could otherwise cause a systematic shift in the phase error detected. IniDly[4:0] Number of sine wave periods to be skipped before (re)starting BEMF measurement after: Start of vibration pattern. Change of output polarity (e.g., braking) Programmed percentage output amplitude (w.r.t. VFS) becomes again higher than EmfSkipTh[6:0] after having previously gone below it. Can also be set using Opcode 0xAF. WidWdw [5:0] Wide window duration for BEMF zero-crossing detection (LSB is (1/64) of currently imposed sinewave period). Can also be set using Opcode 0xB0 NarWdw [5:0] Narrow window duration for BEMF zero-crossing detection (LSB is (1/64) of currently imposed sinewave period). Can also be set using Opcode 0xB0 Table 128. Hpt_Config_Write0 Response BIT APResponse (0xA0) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 0 0 Table 129. 0xA1 – Hpt_Config_Read0 MODE BIT APCmdOut (0xA1) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 0 1 www.maximintegrated.com Maxim Integrated │  124 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 130. Hpt_Config_Read0 Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0xA1) 1 0 1 0 0 0 0 1 APDataIn0 — — — — EmfEn HptSel AlcMod ZccHysEn APDataIn1 IniGss[7:0] APDataIn2 ZccSlow En — — APDataIn3 — — — APDataIn4 — — WidWdw[5:0] APDataIn5 — — NarWdw[5:0] FltrCntrEn IniGss[11:8] IniDly[4:0] Table 131. 0xA2 – Hpt_Config_Write1 MODE BIT APCmdOut (0xA2) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 1 0 APDataOut0 EmfSkipCyc[7:0] APDataOut1 APDataOut2 BlankWdw[7:0] — — — — — APDataOut3 HptVfs[7:0] APDataOut4 ETRGOdAmp[7:0] APDataOut5 ETRGOdDur [7:0] BlankWdw[10:8] EmfSkipCyc [7:0] Sets number of consecutive sine wave periods during which BEMF detection is skipped after a BEMF detection completes. Can also be set using opcode 0xB1. BlankWdw [10:0] Zero-crossing comparator blanking time after enable (LSB = 1/25.6MHz) Can also be set using opcode 0xB9. HptVfs[7:0] Stores the full-scale voltage (VFS) to which the desired percentage output amplitude is referred. The actual VFS will be the minimum between the value programmed on HptVfs[7:0] and the current SYS value. LSB = 21.57mV Can also be set using opcode 0xB2. ETRGOd Amp[7:0] Sets amplitude of the overdrive period as a percentage of VFS (ETRG mode). LSB = 0.78%VFS. Note that the MSB represents the sign of the amplitude to be driven. Can also be set using opcode 0xB3. ETRGOdDur [7:0] Sets duration of the overdrive period. LSB = 5ms Can also be set using opcode 0xB3. (ETRG mode) www.maximintegrated.com Maxim Integrated │  125 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 132. Hpt_Config_Write1 Response BIT APResponse (0xA2) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 1 0 Table 133. 0xA3 – Hpt_Config_Read1 MODE BIT APCmdOut (0xA3) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 1 1 Table 134. Hpt_Config_Read1 Response BIT APResponse (0xA3) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 0 1 1 APDataIn0 EmfSkipCyc[7:0] APDataIn1 BlankWdw[7:0] APDataIn2 — — — — — APDataIn3 HptVfs[7:0] APDataIn4 ETRGOdAmp[7:0] APDataIn5 ETRGOdDur [7:0] www.maximintegrated.com BlankWdw[10:8] Maxim Integrated │  126 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 135. 0xA4— Hpt_Config_Write2 MODE BIT APCmdOut (0xA4) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 0 0 APDataOut0 ETRGActAmp[7:0] APDataOut1 ETRGActDur[7:0] APDataOut2 ETRGBrkAmp[7:0] APDataOut3 ETRGBrkAmp[7:0] APDataOut4 — APDataOut5 — NarLpGain[2:0] — — WidLpGain[2:0] NarCntLck[5:0] ETRGAct Amp[7:0] Sets amplitude of the normal drive period as a percentage of VFS (ETRG mode). LSB = 0.78%VFS plus sign bit. Can also be set using opcode 0xB3. ETRGAct Dur[7:0] Sets duration of the normal drive period. LSB = 10ms (ETRG mode) Can also be set using opcode 0xB3. ETRGBrk Amp[7:0] Sets amplitude of the braking period as a percentage of VFS (ETRG mode). LSB = 0.78%VFS plus sign bit. Can also be set using opcode 0xB3. ETRGBrk Dur[7:0] Sets duration of the braking period. LSB = 5ms (ETRG mode) Can also be set using opcode 0xB3. NarLpGain [2:0] Sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave period with respect to the previously imposed sinewave. This value is used when the narrow window is active. Can also be set using opcode 0xB4. 000 = 1 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32 110 = 1/64 111 = 1/128 WidLpGain [2:0] Sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave period with respect to the previously imposed sinewave. This value is used when the wide window is active. Can also be set using opcode 0xB4. 000 = 1 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32 110 = 1/64 111 = 1/128 NarCntLck [5:0] Sets number of consecutive periods where phase delay falls within the narrow window before detection window is reduced from wide to narrow. Can also be set using opcode 0xB5. www.maximintegrated.com Maxim Integrated │  127 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 136. Hpt_Config_Write2 Response BIT B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 0 0 APResponse (0xA4) Table 137. 0xA5 – Hpt_Config_Read2 MODE BIT APCmdOut (0xA5) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 0 1 Table 138. Hpt_Config_Read2 Response BIT APResponse (0xA5) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 0 1 APDataIn0 ETRGActAmp[7:0] APDataIn1 ETRGActDur[7:0] APDataIn2 ETRGBrkAmp[7:0] APDataIn3 ETRGBrkAmp[7:0] APDataIn4 — APDataIn5 — NarLpGain[2:0] — — WidLpGain[2:0] NarCntLck[5:0] Table 139. 0xA6 – Hpt_SYS_Threshold_Config_Write MODE BIT APCmdOut (0xA6) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 0 APDataOut0 HptSys UVLO[7:0] HptSysUVLO[7:0] Haptic SYS UVLO Threshold Sets the SYS undervoltage threshold. If VSYS falls below this UVLO threshold, the haptic driver is locked (HptLock = 1) and System-Error[7:0] = 0x25 is issued. See Opcode 0xA8 for details on restarting the haptic driver. LSB = 5.5V/255 Table 140. Hpt_SYS_threshold_Config_Write Response BIT APResponse (0xA6) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 0 www.maximintegrated.com Maxim Integrated │  128 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 141. 0xA7—Hpt_SYS_threshold_Config_Read MODE BIT APCmdOut (0xA7) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 1 Table 142. Hpt_SYS_threshold_Config_Read Response BIT APResponse (0xA7) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 1 APDataIn0 HptSysUVLO[7:0] Table 143. 0xA8 – Hpt_Lock_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xA8) 1 0 1 0 1 0 0 0 APDataOut0 — — — — — — — HptLock HptLock Haptic Driver Lock When a fault condition causes the haptic driver to lock, this bit can only be cleared by manually writing HptLock = 0 to opcode 0xA8. The haptic driver output will be off while HptLock = 1. 0 = Unlock Haptic Driver 1 = Lock Haptic Driver Table 144. Hpt_Lock_Config_Write Response BIT APResponse (0xA8) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 0 0 0 Table 145. 0xA9 – Hpt_Lock_Config_Read MODE BIT APCmdOut (0xA9) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 0 0 1 Table 146. Hpt_Lock_Config_Read Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0xA9) 1 0 1 0 1 0 0 1 APDataIn0 — — — — — — — HptLock www.maximintegrated.com Maxim Integrated │  129 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 147. 0xAA – Hpt_EMF_Threshold_Config_Write MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xAA) 1 0 1 0 1 0 1 0 APDataOut0 — EMFSkipTh [6:0] EmfSkipTh[6:0] Back EMF Skip Threshold Percentage of the full-scale output amplitude under which to skip the BEMF measurement as the returned BEMF would be too small to measure in these cases. Table 148. Hpt_EMF_Threshold_Config_Write Response BIT APResponse (0xAA) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 0 1 0 Table 149. 0xAB – Hpt_EMF_Threshold_Config_Read MODE BIT APCmdOut (0xAB) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 0 1 1 Table 150. HPT_EMF_Threshold_Config_Read Response BIT APResponse (0xAB) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 0 1 1 APDataIn0 — EmfSkipTh[6:0] Table 151. 0xAC—HPT_Autotune MODE BIT APCmdOut (0xAC) Launch B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 0 0 www.maximintegrated.com Maxim Integrated │  130 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 152. HPT_Autotune Response BIT APResponse (0xAC) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 0 0 APDataIn0 Result[7:0] APDataIn1 APDataIn2 BEMFPeriod[7:0] — — — — BEMFPeriod[11:8] Result [7:0] 0x00 = Auto-tune done, BEMFPeriod[11:0] available. 0x01 = Auto-tune failed. BEMFPeriod [11:0] Resonant frequency resolved by autotune function = ((25.6MHz / 64) / BEMF_freq) Table 153. 0xAD— HPT_SetMode MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xAD) 1 0 1 0 1 1 0 1 APDataOut0 — — — — EmfEn HptSel AlcMod ZccHysEn Table 154. HPT_SetMode Response BIT APResponse (0xAD) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 0 1 Table 155. 0xAE— HPT_SetInitialGuess MODE BIT APCmdOut (0xAE) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 1 0 APDataOut0 APDataOut1 IniGss[7:0] — — — — IniGss[11:8] Table 156. HPT_SetInitialGuess Response BIT APResponse (0xAE) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 1 0 www.maximintegrated.com Maxim Integrated │  131 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 157. 0xAF— HPT_SetInitialDelay MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xAF) 1 0 1 0 1 1 1 1 APDataOut0 — — — IniDly[4:0] Table 158. HPT_SetInitialDelay Response BIT APResponse (0xAF) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 0 1 1 1 1 Table 159. 0xB0—HPT_SetWindow MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xB0) 1 0 1 1 0 0 0 0 APDataOut0 — — WidWdw[5:0] APDataOut1 — — NarWdw[5:0] Table 160. HPT_SetWindow Response BIT APResponse (0xB0) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 0 0 Table 161. 0xB1 – HPT_SetBackEMFCycle MODE BIT APCmdOut (0xB1) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 0 1 APDataOut0 EmfSkipCyc[7:0] Table 162. HPT_SetBackEMFCycle Response BIT APResponse (0xB1) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 0 1 www.maximintegrated.com Maxim Integrated │  132 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 163. 0xB2—HPT_SetFullScale MODE BIT APCmdOut (0xB2) Write— B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 1 0 APDataOut0 HptVfs[7:0] Table 164. HPT_SetFullScale Response BIT APResponse (0xB2) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 1 0 Table 165. 0xB3—Hpt_SetHptPattern MODE BIT APCmdOut (0xB3) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 1 1 APDataOut0 ETRGOdAmp[7:0] APDataOut1 ETRGOdDur[7:0] APDataOut2 ETRGActAmp[7:0] APDataOut3 ETRGActDur[7:0] APDataOut4 ETRGBrkAmp[7:0] APDataOut5 ETRGBrkDur[7:0] Table 166. Hpt_SetHptPattern Response BIT APResponse (0xB3) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 0 1 1 Table 167. 0xB4—Hpt_SetGain MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xB4) 1 0 1 1 0 1 0 0 APDataOut0 — NarLpGain[2:0] — WidLpGain[2:0] Table 168. Hpt_SetGain Response BIT APResponse (0xB4) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 1 0 0 www.maximintegrated.com Maxim Integrated │  133 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 169. 0xB5—HPT_SetLock MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xB5) 1 0 1 1 0 1 0 1 APDataOut0 — — NarCntLck[5:0] Table 170. Hpt_SetLock Response BIT APResponse (0xB5) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 1 0 1 Table 171. 0xB6—Hpt_ReadResonanceFrequency MODE BIT APCmdOut (0xB6) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 1 1 0 Table 172. Hpt_ReadResonanceFrequency Response BIT APResponse (0xB6) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 1 1 0 APDataIn0 APDataIn1 BEMFPeriod[7:0] — — — — BEMFPeriod[11:8] Table 173. 0xB7—Hpt_SetTimeout MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xB7) 1 0 1 1 0 1 1 1 APDataOut0 — — HptDrvTmo[5:0] Haptic Driver Timeout See Opcode 0xA8 for details on restarting the haptic driver. 1s Step resolution. If timeout is reached, the haptic driver is locked (HptLock = 1) and SystemError[7:0] = 0x04 is issued. 000000 = Disabled 000001 = 1s Table 174. Hpt_SetTimeout Response BIT APResponse (0xB7) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 0 1 1 1 www.maximintegrated.com Maxim Integrated │  134 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 175. 0xB8—Hpt_GetTimeout MODE BIT APCmdOut (0xB8) Read B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 1 0 0 0 Table 176. Hpt_GetTimeout Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0xB8) 1 0 1 1 1 0 0 0 APDataIn0 — — HptDrvTmo[5:0] Table 177. 0xB9—Hpt_SetBlankingWindow MODE BIT APCmdOut (0xB9) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 1 0 0 1 APDataOut0 APDataOut1 BlankWdw[7:0] — — — — — BlankWdw[10:8] Table 178. Hpt_SetBlankingWindow Response BIT APResponse (0xB9) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 1 0 0 1 Table 179. 0xBA—Hpt_SetZCC MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0xBA) 1 0 1 1 1 0 1 0 APDataOut0 — — — — — — ZccSlowEn FltrCntrEn Table 180. Hpt_SetZCC Response BIT APResponse (0xBA) B7 B6 B5 B4 B3 B2 B1 B0 1 0 1 1 1 0 1 0 www.maximintegrated.com Maxim Integrated │  135 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Power and Reset Commands Table 181. 0x80—PowerOff_Command MODE BIT APCmdOut (0x80) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 0 0 APDataOut0 PwrOffCmd [7:0] PwrOffCmd[7:0] Power-Off Command Writing 0xB2 to this register will immediately place the part in the OFF state. All other codes = Do nothing Table 182. PowerOff_Command Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x80) 1 0 0 0 0 0 0 0 APDataIn0 — — — — — — — PwrOffRes ponse PwrOffResp onse Power-Off Response 0 = Password good, preparing Off mode 1 = Password is wrong Table 183. 0x81 – SoftReset_Command MODE BIT APCmdOut (0x81) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 0 1 APDataOut0 SoftReset Cmd [7:0] SoftResetCmd[7:0] Soft-Reset Command Writing 0xB3 to this register will force a Soft-Reset, all registers will be reset to their default values and the RST line will be asserted. All other codes = Do nothing Table 184. SoftReset_Command Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x81) 1 0 0 0 0 0 0 1 APDataIn0 — — — — — — — SoftReset Response SoftReset Response Soft-Reset Response 0 = Password good, preparing Soft-Reset 1 = Password is wrong www.maximintegrated.com Maxim Integrated │  136 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 185. 0x82—Hard-Reset_Command MODE BIT APCmdOut (0x82) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 1 0 APDataOut0 HardReset Cmd[7:0] HardResetCmd [7:0] Hard-Reset Command Writing 0xB4 to this register will force the system to perform a Hard-Reset. All supplies will turn Off and system will perform a full power-on sequence. All other codes = Do nothing Table 186. Hard-Reset_Command Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x82) 1 0 0 0 0 0 1 0 APDataIn0 — — — — — — — HardReset Response HardReset Response Hard-Reset Response 0 = Password good, preparing Hard-Reset 1 = Password is wrong Table 187. 0x83—StayOn_Command MODE BIT Write B7 B6 B5 B4 B3 B2 B1 B0 APCmdOut (0x83) 1 0 0 0 0 0 1 1 APDataOut0 — — — — — — — StayOn StayOn Stay On This bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set. 0 = Shut down 5s after RST goes HIGH 1 = Stay on www.maximintegrated.com Maxim Integrated │  137 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 188. 0x83—StayOn_Command Response BIT APResponse (0x83) B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 1 1 Table 189. 0x84—PowerOff_Command_Delay MODE BIT APCmdOut (0x84) Write B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 1 0 0 APDataOut0 PwrOffDly Cmd [7:0] PwrOffDlyCmd[7:0] Power-Off Command with Delay Writing 0xB2 to this register will place the part in the Off state after a 30ms delay. All other codes = Do nothing Table 190. PowerOff_Command_Delay Response BIT B7 B6 B5 B4 B3 B2 B1 B0 APResponse (0x84) 1 0 0 0 0 1 0 0 APDataIn0 — — — — — — — PwrOffDly Response PwrOffDly Response Power-Off with Delay Response 0 = Password good, preparing Off mode 1 = Password is wrong www.maximintegrated.com Maxim Integrated │  138 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Fuel Gauge I2C Registers Register Summary All registers must be written and read as 16-bit words; 8-bit writes cause no effect. Any bits marked X (don’t care) or read only must be written with the rest of the register, but the value written is ignored by the IC. The values read from don’t care bits are undefined. Calculate the register’s value by multiplying the 16-bit word by the register’s LSb value, as shown in Table 191. VCELL Register (0x02) The MAX20303 measures VCELL between the VDD and GND pins. VCELL is the average of four ADC conversions. The value updates every 250ms in active mode and every 45s in hibernate mode. SOC Register (0x04) The ICs calculate SOC using the ModelGauge algorithm. This register automatically adapts to variation in battery size since ModelGauge naturally recognizes relative SOC. The upper byte least-significant bit has units of 1%. The lower byte provides additional resolution. The first update is available approximately 1s after POR of the IC. Subsequent updates occur at variable intervals depending on application conditions. MODE Register (0x06) The MODE register allows the system processor to send special commands to the IC (see Figure 16). ●● Quick-Start generates a first estimate of OCV and SOC based on the immediate cell voltage. Use with caution; see the Quick-Start section. ●● EnSleep enables sleep mode. See the Sleep Mode section. ●● HibStat indicates when the IC is in hibernate mode (read only). VERSION Register (0x08) The value of this read-only register indicates the production version of the IC. Table 191. Register Summary ADDRESS REGISTER NAME 16-BIT LSb 0x02 VCELL 78.125µV/cell 0x04 SOC 1%/256 0x06 MODE 0x08 READ/WRITE DEFAULT ADC measurement of VCELL. R — Battery state of charge. R — — Initiates quick-start, reports hibernate mode, and enables sleep mode. W 0x0000 VERSION — IC production version. R 0x001_ 0x0A HIBRT — Controls thresholds for entering and exiting hibernate mode. R/W 0x8030 0x0C CONFIG — Compensation to optimize performance, sleep mode, alert indicators, and configuration. R/W 0x971C 0x14 VALRT — Configures the VCELL range outside of which alerts are generated. R/W 0x00FF 0x16 CRATE 0.208%/hr Approximate charge or discharge rate of the battery. R — 0x18 VRESET/ID — Configures VCELL threshold below which the IC resets itself, ID is a one-time factoryprogrammable identifier. R/W 0x96__ 0x1A STATUS — Indicates overvoltage, undervoltage, SOC change, SOC low, and reset alerts. R/W 0x01__ 0x40 to 0x7F TABLE — Configures battery parameters. 0xFE CMD — Sends POR command. www.maximintegrated.com DESCRIPTION W — R/W 0xFFFF Maxim Integrated │  139 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems HIBRT Register (0x0A) sleep mode, and 0 forces the IC to exit. The POR value of SLEEP is 0. To disable hibernate mode, set HIBRT = 0x0000. To always use hibernate mode, set HIBRT = 0xFFFF (see Figure 17). ●● ActThr (active threshold): If at any ADC sample |OCV-CELL| is greater than ActThr, the IC exits hibernate mode. 1 LSb = 1.25mV. ●● HibThr (hibernate threshold). If the absolute value of CRATE is less than HibThr for longer than 6min, the IC enters hibernate mode. 1 LSb = 0.208%/hr. ●● ALSC (SOC change alert) enables alerting when SOC changes by at least 1%. Each alert remains until STATUS.SC is cleared, after which the alert automatically clears until SOC again changes by 1%. Do not use this alert to accumulate changes in SOC. ●● ALRT (alert status bit) is set by the IC when an alert occurs. When this bit is set, the ALRT pin asserts low. Clear this bit to service and deassert the ALRT pin. The power-up default value for ALRT is 0. The STATUS register specifies why the ALRT pin was asserted. ●● ATHD (empty alert threshold) sets the SOC threshold, where an interrupt is generated on the ALRT pin and can be programmed from 1% up to 32%. The value is (32 - ATHD)% (e.g., 00000b → 32%, 00001b → 31%, 00010b → 30%, 11111b → 1%). The POR value of ATHD is 0x1C, or 4%. The alert only occurs on a falling edge past this threshold. CONFIG Register (0x0C) See Figure 18 ●● RCOMP is an 8-bit value that can be adjusted to optimize IC performance for different lithium chemistries or different operating temperatures. Contact Maxim for instructions for optimization. The POR value of RCOMP is 0x97. ●● SLEEP forces the IC in or out of sleep mode if Mode.EnSleep is set. Writing 1 forces the IC to enter MSB—ADDRESS 0x06 X QuickStart EnSleep HibStat LSB—ADDRESS 0x07 X X X MSb X X X LSb MSb X X X X X X LSb Figure 16. MODE Register Format MSB (HibThr)—ADDRESS 0x0A 27 26 25 24 23 22 21 MSb LSB (ActThr)—ADDRESS 0x0B 20 27 LSb MSb 26 25 24 23 22 21 20 LSb 20 UNIT: HibThr 0.208%/hr ActThr 20 UNIT: 1.25mV Figure 17. HIBRT Register Format MSB (RCOMP)—ADDRESS 0x0C LSB—ADDRESS 0x0D RCOMP RCOMP RCOMP RCOMP RCOMP RCOMP RCOMP RCOMP 7 6 5 4 3 2 1 0 MSb LSb SLEEP ALSC ALRT MSb ATHD ATHD ATHD ATHD ATHD 4 3 2 1 0 LSb Figure 18. CONFIG Register Format www.maximintegrated.com Maxim Integrated │  140 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems VALRT Register (0x14) This register is divided into two thresholds: Voltage alert maximum (VALRT.MAX) and minimum (VALRT. MIN). Both registers have 1 LSb = 20mV. The IC alerts while VCELL > VALRT.MAX or VCELL < VALRT.MIN (see Figure 19). CRATE Register (0x16) The IC calculates an approximate value for the average SOC rate of change. 1 LSb = 0.208% per hour (not for conversion to ampere). identifier to distinguish multiple cell types in production. Writes to these bits are ignored. ●● VRESET[7:1] adjusts a fast analog comparator and a slower digital ADC threshold to detect battery removal and reinsertion. For captive batteries, set to 2.5V. For removable batteries, set to at least 300mV below the application’s empty voltage, according to the desired reset threshold for your application. If the comparator is enabled, the IC resets 1ms after VCELL rises above the threshold. Otherwise, the IC resets 250ms after the VCELL register rises above the threshold. ●● Dis. Set Dis = 1 to disable the analog comparator in hibernate mode to save approximately 0.5µA VRESET/ID Register (0x18) See Figure 20. ●● ID is an 8-bit read-only value that is one-time programmable at the factory, which can be used as an MSB (VALRT.MIN)—ADDRESS 0x14 LSB (VALRT.MAX)—ADDRESS 0x15 MIN7 MIN6 MIN5 MIN4 MIN3 MIN2 MIN1 MIN0 MAX7 MAX6 MAX5 MAX4 MAX3 MAX2 MAX1 MAX0 MSb MSb LSb LSb UNIT: 20mV Figure 19. VALRT Register Format MSB (VRESET)—ADDRESS 0x18 27 26 25 24 23 MSb 22 21 LSB (ID)—ADDRESS 0x19 Dis ID6 LSb MSb ID5 ID4 ID3 ID2 ID1 ID0 ID LSb VRESET 20 UNITS: 40mV Figure 20. VRESET/ID Register Format www.maximintegrated.com Maxim Integrated │  141 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems STATUS Register (0x1A) Enable or Disable VRESET Alert: An alert can indicate many different conditions. The STATUS register identifies which alert condition was met. Clear the corresponding bit after servicing the alert (see Figure 21). ●● EnVr (enable voltage reset alert) when set to 1 asserts the ALRT pin when a voltage-reset event occurs under the conditions described by the VRESET/ ID register. Reset Indicator: TABLE Registers (0x40 to 0x7F) ●● RI (reset indicator) is set when the device powers up. Any time this bit is set, the IC is not configured, so the model should be loaded and the bit should be cleared. Alert Descriptors: These bits are set only when they cause an alert (e.g., if CONFIG.ALSC = 0, then SC is never set). ●● VH (voltage high) is set when VCELL has been above ALRT.VALRTMAX. ●● VL (voltage low) is set when VCELL has been below ALRT.VALRTMIN. ●● VR (voltage reset) is set after the device has been reset regardless of EnVr. ●● HD (SOC low) is set when SOC crosses the value in CONFIG.ATHD. Contact Maxim for details on how to configure these registers. The default value is appropriate for some Li+ batteries. To unlock the TABLE registers, write 0x57 to address 0x3F, and 0x4A to address 0x3E. While TABLE is unlocked, no ModelGauge registers are updated, so relock as soon as possible by writing 0x00 to address 0x3F, and 0x00 to address 0x3E. CMD Register (0xFE) Writing a value of 0x5400 to this register causes the device to completely reset as if power had been removed (see the Power-On Reset (POR) section). The reset occurs when the last bit has been clocked in. The IC does not respond with an I2C ACK after this command sequence. ●● SC (1% SOC change) is set when SOC changes by at least 1% if CONFIG.ALSC is set. MSB—ADDRESS 0x1A X EnVR SC HD MSb VR VL LSB—ADDRESS 0x1B VH RI X LSb MSb X X X X X X X LSb Figure 21. STATUS Register Format www.maximintegrated.com Maxim Integrated │  142 www.maximintegrated.com 200mV 4.20V 1397.65mV 529.41mV 325mA Enabled 100ms Disabled BatReChg BatReg ColdLim HotLim BstISet BstIAdptEn BstFastStrt BstFetScale 1.8V 30mA 150mA Buck2VSet Buck2IZCSet Buck2ISet 20mA Buck1IZCSet BstEn 150mA 30mA 1.8V 20mA 1.2V Disabled Disabled BstSeq 1.2V BstEn After 100% Buck1VSet Disabled BstEn After 100% Buck2FetScale Disabled 13V Disabled 100ms Enabled 100mA 529.41mV 1397.65mV 4.20V 200mV Enabled Enabled 10% IFCHG 5% IFCHG 3V Disabled 5s 30min 150min 15min 1000mA 10ms Disabled PU/PD Connected Hi-Z MAX20303B Disabled Enabled Buck1FetScale 12V Enabled ChgAutoStp BstVSet Enabled 10% IFCHG ChgEn ChgDone ChgAutoRe 5% IFCHG Disabled TShdnTmo IPChg 5s PChgTmr 2.7V 30min FChgTmr VPChg 15min 150min MtChgTmr 500mA ILimCntl Disabled WriteProtect 10ms Hi-Z PFN1PUD_ CFG* ILimBlank PU/PD Connected MAX20303A PFN2PUD_ CFG* REGISTER BITS 150mA 30mA 1.8V 20mA 1.2V Disabled Disabled Disabled Enabled 12V Disabled 100ms Enabled 325mA 529.41mV 1397.65mV 4.20V 200mV Enabled Enabled 10% IFCHG 5% IFCHG 2.7V Disabled 5s 30min 150min 15min 500mA 10ms Disabled Hi-Z PU/PD Connected MAX20303C 150mA 30mA 1.8V 20mA 1.2V Disabled Disabled Disabled Disabled 13V Disabled 100ms Enabled 100mA 529.41mV 1397.65mV 4.20V 200mV Enabled Enabled 10% IFCHG 5% IFCHG 2.7V Disabled 5s 30min 150min 15min 1000mA 10ms Disabled PU/PD Connected Hi-Z MAX20303D Table 192. Register Bit Default Values 150mA 10mA 0.95V 30mA 1.8V Disabled BstEn After 100% Disabled Disabled 13V Disabled 100ms Enabled 275mA 416.47mV 1327.06mV 4.20V 100mV Enabled Enabled 5% IFCHG 10% IFCHG 3V Auto-Restart 5s 60min 150min 0min 200mA 10ms Disabled PU/PD Connected Hi-Z MAX20303E 150mA 10mA 0.9V 30mA 1.8V Disabled BstEn After 100% Disabled Disabled 20V Disabled 50ms Enabled 425mA 529.41mV 1397.65mV 4.35V 200mV Enabled Disabled 10% IFCHG 10% IFCHG 3.15V Auto-Restart 5s 30min 600min 0min 500mA Disabled Disabled PU/PD Connected Hi-Z MAX20303G 150mA 10mA 0.9V 30mA 1.8V Disabled Disabled Disabled Disabled 20V Disabled 50ms Enabled 425mA 529.41mV 1397.65mV 4.35V 200mV Enabled Disabled 10% IFCHG 10% IFCHG 3.15V Auto-Restart 5s 30min 600min 0min 500mA Disabled Disabled PU/PD Connected Hi-Z MAX20303H DEFAULT VALUE 150mA 10mA 0.9V 30mA 1.8V Disabled BoostEn After 100% Disabled Disabled 20V Disabled 50ms Enabled 425mA 529.41mV 1397.65mV 4.35V 200mV Enabled Disabled 10% IFCHG 10% IFCHG 3.15V Auto-Restart 5s 30min 600min 0min 500mA Disabled Disabled PU/PD Connected Hi-Z MAX20303J 150mA 30mA 1.8V 20mA Disabled 1.2V BoostEn After 100% Disabled Disabled 12V Disabled 100ms Enabled 275mA 522.35mV 1404.71mV 4.20V 200mV Enabled Enabled 30% IFCHG 5% IFCHG 3.15V Auto-Restart 5s 240min 300min 60min 1000mA Disabled Disabled PU/PD Connected Hi-Z MAX20303K 150mA 30mA 1.8V 20mA 1.2V Disabled BoostEn After 100% Disabled Disabled 13V Disabled 100ms Enabled 100mA 529.41mV 1397.65mV 4.20V 200mV Enabled Enabled 10% IFCHG 5% IFCHG 3V Disabled 5s 30min 150min 15min 1000mA 10ms Disabled PU/PD Connected Hi-Z MAX20303L 150mA 30mA 2.8V 30mA 1.95V Disabled BoostEn After 100% Disabled Disabled 5V Disabled 50ms Enabled 125mA 409.41mV 1334.12mV 4.20V 100mV Enabled Enabled 10% IFCHG 10% IFCHG 3V Auto-Restart 5s 60min 150min 60min 100mA 10ms Disabled PU/PD Connected Hi-Z MAX20303M MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  143 www.maximintegrated.com Enabled Enabled LDO Enabled LDO Enabled Enabled 3.0V Buck1SftStrt Buck2En Buck1En LDO1Md LDO1En LDO2Md LDO2En PassDisc Ena*** LDO2VSet LDO2Seq LDO2En After 100% LDO2En After 100% 50% Buck1En After 100% LDO2En After 100% Disabled 50% Disabled 50% Buck1Seq 0b0100 0b0110 CPEn After 100% Disabled 5.0V CHGIN 4.0V 1.2V 3.3V Enabled 3.0V Enabled Enabled LDO Enabled LDO Enabled Enabled 50ms Soft-Start 50ms Soft-Start 80ms 50mA MAX20303C Buck2En After 100% Disabled 50% Buck2Seq BBstEn 0b0100 PwrRstCfg CPEn After 100% CPEn After 100% CPSeq 5.0V Disabled CHGIN 5.0V CHGIN SFOUTEn 4.0V Disabled 4.0V SysMinVlt 1.1V CPEn 1.2V LDO1VSet 3.3V Enabled 3.2V Enabled Disabled LDO Disabled LDO Enabled CPVSet 3.3V SFOUTVSet Enabled 50ms Soft-Start 50ms Soft-Start Buck2SftStrt StayOn 50ms Soft-Start 50ms Soft-Start Enabled 80ms 80ms BootDly** 150mA MAX20303B 50mA MAX20303A Buck1ISet REGISTER BITS LDO2En After 100% Disabled Buck1En After 100% Buck2En After 100% 0b0110 CPEn After 100% Disabled 5.0V CHGIN 4.0V 1.1V 3.3V Enabled 3.2V Enabled Disabled LDO Disabled LDO Enabled Enabled 50ms Soft-Start 50ms Soft-Start 80ms 150mA MAX20303D LDO2En After 100% Disabled 0% Buck2En After 100% 0b0111 CPEn After 100% Disabled 5.0V Disabled 3.6V 1.8V 5.0V Enabled 1.8V Enabled Disabled Load Switch Disabled Load Switch Enabled Disabled 25ms Soft-Start 25ms Soft-Start 80ms 150mA LDO2En After 100% Disabled Buck1En After 100% Buck2En After 100% 0b0111 CPEn After 100% Disabled 6.6V CHGIN 3.6V 1.2V 3.3V Enabled 3.2V Enabled Disabled LDO Disabled LDO Enabled Disabled 50ms Soft-Start 50ms Soft-Start 120ms 150mA MAX20303G LDO2En After 100% Disabled Buck1En After 100% Buck2En After 100% 0b0111 Disabled Disabled 6.6V CHGIN 3.6V 1.2V 3.3V Enabled 3.2V Enabled Disabled LDO Disabled LDO Enabled Disabled 50ms Soft-Start 50ms Soft-Start 120ms 150mA MAX20303H DEFAULT VALUE MAX20303E Table 192. Register Bit Default Values (continued) LDO2En After 100% Disabled Buck1En After 100% Buck2En After 100% 0b0110 CPEn After 100% Disabled 6.6V CHGIN 3.6V 1.2V 3.3V Enabled 3.2V Enabled Disabled LDO Disabled LDO Enabled Disabled 50ms Soft-Start 50ms Soft-Start 120ms 150mA MAX20303J LDO2En After 100% Disabled MPC Reg Cntrl LDO2En After 100% Buck1En After 100% 50% 0b0110 CPEn After 100% Disabled 5.0V CHGIN 4.0V 1.1V 3.3V Enabled 3.2V Buck1En After 100% Buck2En After 100% 0b0110 CPEn After 100% Disabled 5.0V CHGIN 4.0V 1.8V 3.3V Enabled 1.8V Enabled Disabled Enabled LDO LDO Disabled MPC Reg Defined MPC Reg Defined LDO Enabled Enabled 50ms Soft-Start 50ms Soft-Start 80ms 150mA MAX20303L Load Switch Enabled Enabled 50ms Soft-Start 50ms Soft-Start 80ms 150mA MAX20303K LDO2En After 100% Disabled 0% 0% 0b0111 CPEn After 100% Disabled 5.0V Disabled 3.6V 1.8V 5.0V Enabled 1.8V Enabled Disabled Load Switch Disabled LDO Enabled Enabled 25ms Soft-Start 25ms Soft-Start 80ms 150mA MAX20303M MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  144 www.maximintegrated.com 1000mA BatOcThr 5V 1000mA 120°C ILimMax**** TCHGIN_ SHDN LRA 120°C 1000mA Disabled 3.28V Enabled 120°C 1000mA 5s 3.3V Enabled LRA Enabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 250mA 5V Enabled LDO1En After 100% MAX20303C 120°C 1000mA Disabled 3.28V Enabled LRA Enabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 150mA 5V Enabled LDO1En After 100% MAX20303D Pulldown VIO_IH, VIO_IL PFN2 ON STATE LOGIC LEVELS* VPFN_IH, VPFN_IL VIO_IH, VIO_IL Pulldown Hi-Z Pullup Hi-Z MAX20303C MAX20303B VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303D 100°C 1000mA 10s 3V Enabled ERM Disabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 100mA 5V Disabled LDO1En After 100% MAX20303H VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303E VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303G VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303H DEVICE CONFIGURATION 100°C 1000mA 10s 3V Enabled ERM Disabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 100mA 5V Disabled LDO1En After 100% VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303J 100°C 1000mA 10s 3V Enabled ERM Disabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 100mA 5V Disabled LDO1En After 100% MAX20303J VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303K 120°C 1000mA Disabled 3V Enabled LRA Enabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 150mA 5V Enabled LDO1En After 100% MAX20303K VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303L 120°C 1000mA Disabled 3.28V Enabled LRA Enabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 150mA 5V Enabled LDO1En After 100% MAX20303L *Values in this row reference Electrical Characteristics table parameters. In OFF mode, VPFN_IH and VPFN_IL logic levels always apply. Hi-Z MAX20303A PFN1 FUNCTION Table 193. Register Bit Default Values 100°C 450mA Disabled 3V Disabled ERM Enabled BBstEn After 100% 4.7µH Lower Ripple 200mA 100mA 3V Enabled LDO1En After 100% MAX20303G DEFAULT VALUE MAX20303E *See Table 193 **Sets tRST time. See Figure 3 ***If enabled, passive discharge is enabled for all rails in off mode. ****Current limit during tILimBlank 5s AlcMod 3.3V HptSel HptDrvTmo LRA Enabled EmfEn HptSysUVLO Enabled BBstSeq Enabled 4.7µH BBstEn After 100% 4.7µH BBstEn After 100% Lower Ripple 1000mA 150mA BBstInd Lower Ripple BBstISet BBstRipRed 5V 250mA BBstVset Enabled LDO1En After 100% LDO1En After 100% Enabled MAX20303B MAX20303A ThmEn LDO1Seq REGISTER BITS Table 192. Register Bit Default Values (continued) VPFN_IH, VPFN_IL Hi-Z Pullup MAX20303M 100°C 450mA Disabled 3V Disabled ERM Enabled BBstEn After 100% 4.7µH Lower Ripple 1000mA 100mA 3V Enabled LDO1En After 100% MAX20303M MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  145 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Table 194. I2C Direct Register Default Values REGISTER NAME DEFAULT VALUE MAX20303A‒M REGISTER NAME DEFAULT VALUE MAX20303A‒M 0x00 HardwareID 0x02 0x1C APDataIn3 0x00 0x01 FirmwareID 0x02 0x1D APDataIn4 0x00 0x0B SystemError 0x00 0x1E APDataIn5 0x00 0x0C IntMask0 0x00 0x20 LDODirect 0x00 0x0D IntMask1 0x00 0x21 MPCDirectWrite 0x00 0x0E IntMask2 0x40 0x28 HptRAMAddr 0x00 0x0F APDataOut0 0x00 0x29 HptRAMDataH 0x51 0x10 APDataOut1 0x00 0x2A HptRAMDataM 0x21 0x11 APDataOut2 0x00 0x2B HptRAMDataL 0x1C 0x12 APDataOut3 0x00 0x2C LEDStepDirect 0x00 0x13 APDataOut4 0x00 0x2D LED0Direct 0x00 0x14 APDataOut5 0x00 0x2E LED1Direct 0x00 0x15 APDataOut6 0x00 0x2F LED2Direct 0x00 0x17 APCmdOut 0x00 0x30 HptDirect0 0x04 0x18 APResponse 0x00 0x31 HptDirect1 0x00 0x19 APDataIn0 0x00 0x32 HptRTI2Camp 0x00 0x1A APDataIn1 0x00 0x33 HptPatRAMAddr 0x00 0x1B APDataIn2 0x00 www.maximintegrated.com Maxim Integrated │  146 www.maximintegrated.com 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 APDataIn4 GPIO_ Control_Read APDataIn0 (0x04) APDataIn0 APDataIn1 MPC_ Config_Read APDataIn2 (0x07) APDataIn3 APDataIn4 0x00 0x00 0x1F 0x00 0x4B 0x00 0x00 0x1F APDataIn2 APDataIn3 APDataIn0 Charger_ Control_Read APDataIn0 (0x1B) 0x03 0x00 0x00 0x03 0x00 0x00 0x4B 0x00 0x00 0x00 APDataIn1 0x04 0x04 0xC6 0xB3 0xB3 0xC6 0x61 APDataIn0 Charger APDataIn1 ThermalReg_ APDataIn2 ConfigRead APDataIn3 (0x19) APDataIn4 Charger ThermalLimits_Config_Read (0x17) 0x14 0x41 0x03 0x1F 0x14 0x03 Thermal Shutdown_ APDataIn0 Config_Read (0x12) APDataIn0 Charger_ APDataIn1 Config_Read APDataIn2 (0x15) APDataIn3 0x1E APDataIn0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 InputCurrent_Config_Read (0x11) DEFAULT VALUE 0x03 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x04 0xB3 0x41 0x14 0x03 0x1E 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x04 0xB3 0x41 0x14 0x03 0x1F 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x1F 0x00 0x00 0x3B 0x00 0x00 0xBC 0x00 0xD3 0x64 0x05 0x03 0x1B 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x00 0xF6 0x75 0x0C 0x03 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x00 0xF6 0x75 0x0C 0x03 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x00 0xF6 0x75 0x0C 0x03 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x1F 0x00 0x00 0x4A 0x00 0x00 0xC7 0x04 0xF3 0x3B 0x73 0x03 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x1F 0x00 0x00 0x4B 0x00 0x00 0xC6 0x04 0xB3 0x61 0x14 0x03 0x1F 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x1F 0x00 0x00 0x3A 0x00 0x00 0xBD 0x00 0xD3 0x65 0x35 0x03 0x19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 MAX20303A MAX20303B MAX20303C MAX20303D MAX20303E MAX20303G MAX20303H MAX20303J MAX20303K MAX20303L MAX20303M APDataIn0 REGISTER APDataIn1 GPIO_ Config_Read APDataIn2 (0x02) APDataIn3 OPCODE Table 195. Read Opcode Default Values MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  147 www.maximintegrated.com 0x90 0x00 0x04 0x09 0x1C 0x07 0x02 0x90 APDataIn0 APDataIn1 APDataIn2 APDataIn3 APDataIn4 APDataIn0 APDataIn1 0x94 0x26 0x01 0x00 0x18 0x07 0x00 0x17 0x07 0x04 0x00 0x94 0x26 0x01 0x04 0x01 0x1C 0x07 0x01 0x15 0x07 APDataIn4 APDataIn0 APDataIn1 Buck2_ Config_Read APDataIn2 (0x3B) APDataIn3 APDataIn4 APDataIn0 LDO1_ Config_Read APDataIn1 (0x41) APDataIn2 APDataIn0 0x07 0x05 APDataIn2 SFOUT_Config_Read APDataIn0 (0x49) 0x00 0x01 APDataIn1 MONMux_ Config_Read APDataIn0 (0x51) 0x00 APDataIn0 ChargePump_Config_Read (0x47) LDO2_ Config_Read APDataIn1 (0x43) APDataIn2 0x01 0x01 0x00 0x05 0x07 0x01 0x00 0x07 0x00 0x07 0x16 0x12 0x00 0x07 0x20 0x00 0x04 0x00 0x06 Buck1_ Config_Read APDataIn2 (0x36) APDataIn3 Bst_Config_Read (0x31) 0x06 APDataIn0 Charger_ JEITAHyst_ ControlRead (0x1D) DEFAULT VALUE 0x00 0x05 0x07 0x01 0x00 0x07 0x15 0x01 0x07 0x1C 0x01 0x04 0x01 0x26 0x94 0x00 0x04 0x01 0x12 0x90 0x02 0x00 0x1C 0x09 0x04 0x00 0x06 0x00 0x05 0x07 0x01 0x00 0x07 0x17 0x00 0x07 0x18 0x00 0x07 0x01 0x26 0x94 0x00 0x07 0x01 0x16 0x90 0x00 0x00 0x20 0x00 0x04 0x00 0x06 0x00 0x00 0x07 0x01 0x00 0x07 0x09 0x04 0x07 0x34 0x04 0x07 0x00 0x06 0x83 0x20 0x02 0x01 0x26 0xA8 0x20 0x07 0x20 0x07 0x04 0x00 0x86 0x00 0x05 0x07 0x00 0x00 0x07 0x17 0x00 0x07 0x1C 0x00 0x07 0x00 0x06 0x82 0x00 0x07 0x01 0x26 0xA8 0x00 0x07 0x3C 0x0D 0x06 0x00 0x86 0x00 0x05 0x00 0x00 0x00 0x07 0x17 0x00 0x07 0x1C 0x00 0x07 0x00 0x06 0x82 0x00 0x07 0x01 0x26 0xA8 0x00 0x00 0x3C 0x0D 0x06 0x00 0x86 0x00 0x05 0x07 0x00 0x00 0x07 0x17 0x00 0x07 0x1C 0x00 0x07 0x00 0x06 0x82 0x00 0x07 0x01 0x26 0xA8 0x00 0x07 0x3C 0x0D 0x06 0x00 0x86 0x00 0x05 0x07 0x01 0x00 0x07 0x09 0x02 0x07 0x34 0x02 0x07 0x01 0x26 0x94 0x00 0x07 0x01 0x16 0x90 0x00 0x07 0x1C 0x07 0x04 0x00 0x86 0x00 0x05 0x07 0x01 0x00 0x07 0x17 0x00 0x07 0x18 0x00 0x04 0x01 0x26 0x94 0x00 0x07 0x01 0x16 0x90 0x00 0x07 0x20 0x00 0x04 0x00 0x06 0x00 0x00 0x07 0x01 0x00 0x07 0x09 0x00 0x07 0x34 0x00 0x02 0x01 0x26 0xA8 0x20 0x02 0x01 0x26 0xAE 0x20 0x07 0x00 0x01 0x06 0x00 0x86 MAX20303A MAX20303B MAX20303C MAX20303D MAX20303E MAX20303G MAX20303H MAX20303J MAX20303K MAX20303L MAX20303M REGISTER OPCODE Table 195. Read Opcode Default Values (continued) MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  148 www.maximintegrated.com 0x17 0x03 0x05 0x01 0x01 0x00 0x02 0x8B 0x7F APDataIn2 APDataIn3 APDataIn4 APDataIn5 APDataIn0 APDataIn1 APDataIn2 APDataIn3 APDataIn4 0x32 0xFF 0x04 0x24 0x06 0x99 0x00 0x19 APDataIn2 APDataIn3 APDataIn4 APDataIn5 Hpt_SYS_ Threshold_ APDataIn0 Config_Read (0xA7) Hpt_Lock_ Config_Read APDataIn0 (0xA9) Hpt_EMF_ Threshold_ APDataIn0 Config_Read (0xAB) Hpt_Config_Read2 (0xA5) APDataIn1 Hpt_Config_Read1 (0xA3) 0x04 0xD0 APDataIn1 0x4C 0x0E APDataIn0 APDataIn0 0x07 APDataIn4 APDataIn5 0x50 0x19 0x00 0x98 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x0E 0x07 0x19 0x50 0x03 0x05 0x00 0x00 APDataIn1 0x19 Hpt_Config_Read0 (0xA1) DEFAULT VALUE 0x19 0x00 0x99 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x0E 0x07 0x50 0x19 0x05 0x00 0x19 0x00 0x98 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x0E 0x07 0x50 0x19 0x03 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x08 0x07 0x50 0x05 0x02 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x02 0x07 0x50 0x19 0x02 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x02 0x07 0x50 0x19 0x02 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x02 0x07 0x50 0x19 0x02 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x0E 0x07 0x52 0x19 0x03 0x00 0x19 0x00 0x98 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x0E 0x07 0x50 0x19 0x03 0x00 0x19 0x00 0x8B 0x06 0x24 0x04 0xFF 0x32 0x4C 0x04 0x7F 0x8B 0x02 0x00 0x01 0x01 0x05 0x03 0x17 0xD0 0x08 0x07 0x50 0x05 0x02 0x00 MAX20303A MAX20303B MAX20303C MAX20303D MAX20303E MAX20303G MAX20303H MAX20303J MAX20303K MAX20303L MAX20303M APDataIn0 REGISTER BBst_ Config_Read APDataIn2 (0x71) APDataIn3 OPCODE Table 195. Read Opcode Default Values (continued) MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Maxim Integrated │  149 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Ordering Information PART Chip Information TEMP RANGE PIN-PACKAGE MAX20303AEWN+ -40°C to +85°C 56 WLP MAX20303AEWN+T -40°C to +85°C 56 WLP MAX20303BEWN+ -40°C to +85°C 56 WLP MAX20303BEWN+T -40°C to +85°C 56 WLP MAX20303CEWN+ -40°C to +85°C 56 WLP MAX20303CEWN+T -40°C to +85°C 56 WLP MAX20303DEWN+ -40°C to +85°C 56 WLP MAX20303DEWN+T -40°C to +85°C 56 WLP MAX20303EEWN+ -40°C to +85°C 56 WLP MAX20303EEWN+T -40°C to +85°C 56 WLP MAX20303GEWN+ -40°C to +85°C 56 WLP MAX20303GEWN+T -40°C to +85°C 56 WLP MAX20303HEWN+ -40°C to +85°C 56 WLP MAX20303HEWN+T -40°C to +85°C 56 WLP MAX20303JEWN+ -40°C to +85°C 56 WLP MAX20303JEWN+T -40°C to +85°C 56 WLP MAX20303KEWN+ -40°C to +85°C 56 WLP MAX20303KEWN+T -40°C to +85°C 56 WLP MAX20303LEWN+ -40°C to +85°C 56 WLP MAX20303LEWN+T -40°C to +85°C 56 WLP MAX20303MEWN+ -40°C to +85°C 56 WLP MAX20303MEWN+T -40°C to +85°C 56 WLP PROCESS: BiCMOS +Denotes a lead (Pb)-free package/RoHS-compliant package. T = Tape and reel www.maximintegrated.com Maxim Integrated │  150 MAX20303 PMIC with Ultra Low IQ Voltage Regulators, Battery Charger and Fuel Gauge for Small Lithium Ion Systems Revision History REVISION NUMBER REVISION DATE 0 12/16 PAGES CHANGED DESCRIPTION Initial release — 1 1/17 Removed future product status from MAX20303A and made various other changes to register maps 19, 24, 45–49, 51, 60–62, 68–71, 73, 75, 77, 82, 103–105, 125–127, 131, 146 2 3/17 Updated Figure 1e and removed future product status from MAX20303D 49, 146 3 4/17 Removed future product status from MAX20303C part numbers and increased VLIIN minimum value in Electrical Characteristics table 27, 146 5/17 Corrected external CP cap, updated figures, and added Table 193 and Table 194 1, 12, 31, 34, 38, 41, 43, 47, 49, 50 51, 56, 70, 93, 121, 123, 145 146–149 5 10/17 Updated Benefits and Features section, Timer Suspend Threshold typ in the Electrical Characteristics table, Driver Amplitude section, Table 63, Table 131, and Table 135. Corrected typos in Table 44 and Table 127. Added a new Table 193, and renumbered Tables 194–195. Replaced Table 192. 1, 19, 57, 86, 94 124–125, 126, 128, 144–151 6 10/17 Updated Direct Access I2C Register Map table, and removed future part designation from MAX20303GEWN+ and MAX20303GEWN+T in the Ordering Information table. 68–69, 151 7 2/18 Updated the Power Switch and Reset Control section and Table 1. Removed future part designation from MAX20303HEWN+ and MAX20303HEWN+T in the Ordering Information table. 44, 51, 151 9/19 Updated Table 1, Direct Access I2C Register Map, Table 12, Table 55, Table 92, Table 192, Table 193, Table 194, Table 195, and added MAX20303JEWN+, MAX20303JEWN+T, MAX20303KEWN+, MAX20303KEWN+T, MAX20303LEWN+ and MAX20303LEWN+T as future products to the Ordering Information table 51, 68, 73, 90 108, 144, 146‒151 10/19 Updated Table 193, and removed future product designations from MAX20303JEWN+, MAX20303JEWN+T, MAX20303LEWN+, and MAX20303LEWN+T in the Ordering Information table 10 1/20 Updated the title and Direct Access I2C Register Map section; updated Tables 6, 10, 13–14, 192–195; added MAX20303MEWN+ and MAX20303MEWN+T to the Ordering Information section and removed future product designations from MAX20303KEWN+ and MAX20303KEWN+T 11 11/20 Removed future product designation from MAX20303MEWN+ and MAXM20303MEWN+T 4 8 9 146, 151 1–152 151 For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2020 Maxim Integrated Products, Inc. │  151
MAX20303BEWN+T 价格&库存

很抱歉,暂时无法提供与“MAX20303BEWN+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货