0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX20429CAFNA/VY+

MAX20429CAFNA/VY+

  • 厂商:

    MAXIM(美信)

  • 封装:

    WFQFN18

  • 描述:

    DUAL 4A LV BUCK CONVERTER

  • 数据手册
  • 价格&库存
MAX20429CAFNA/VY+ 数据手册
Click here to ask about the production status of specific part numbers. MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter General Description Benefits and Features The MAX20429 is a high-efficiency dual switching regulator that delivers up to 6A (peak) load current per output from 0.5V to 1.5875V in 12.5mV steps and 1.6V to 3.8V in 50mV steps. The IC operates from 3V to 5.5V, making it ideal for on-board point-of-load and post-regulation applications. Total output error is less than ±1.0% over load, line, and temperature. ● High-Feature Set in an Ultra-Small Footprint • High-Efficiency DC-DC Converter • Two Independent Outputs, up to 6A per Output • 3.0V to 5.5V Operating Supply Voltage • Resistor-Adjustable Output Voltage • Optional Factory-Preset Output Voltage • 2.1MHz/3.2MHz Options • Enable Input • Individual RESET Outputs • Spread-Spectrum Option • Peak Current-Mode Architecture • 3mm x 3.5mm FCQFN The MAX20429 features fixed-frequency PWM mode operation with a switching frequency of 2.1MHz or 3.2MHz. High-frequency operation allows for an all-ceramic capacitor design with small external components. The low-resistance on-chip switches ensure high efficiency at heavy loads while minimizing critical inductances, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs. The device features the MAXQ™ technology, which provides precision transient performance and phase margin. This allows obtaining the maximum power, performance, and precision from the converter over a very wide range of configurations. The MAX20429 has separate enable inputs and status outputs for each buck converter. The output voltage is preset at the factory to allow customers to achieve ±1% output-voltage accuracy without using expensive 0.1% resistors. The devices offer factory programmable soft-start and RESET times. The devices include over-temperature shutdown and overcurrent limiting. All devices are designed to operate from –40 °C to +125 °C ambient temperature range. Applications ● Secondary Regulator for SoC / MCU Supply 19-100842; Rev 1; 12/20 ● High-Precision • 108/92% OV/UV Monitor • ±3% OV/UV Accuracy • ±1% Output Voltage Accuracy • Excellent Load-Transient Performance • PWM and SKIP Mode Operation • MAXQTM Power Architecture ● High Efficiency • Up to 96% Efficiency 5V to 3.3V • Up to 90% Efficiency 5V to 1V ● -40°C to +125°C Operating Temperature Range ● AEC-Q100 Qualified Ordering Information appears at end of data sheet. MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Simplified Block Diagram VIN PV1,PV2 OUT1 CIN L LX1 VIN VOUT1 COUT SYNC PGND1 VDD MAX20429 GND OUT2 L ENABLE 1 EN1 ENABLE 2 EN2 LX2 PGND2 VOUT2 COUT VIO PGND RESET1 RESET2 www.maximintegrated.com Maxim Integrated | 2 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter TABLE OF CONTENTS General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MAX20429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 MAXQ Power Architecture (No Wasted Performance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Enable Input (EN1, EN2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 RESET Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Synchronization (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Soft-Start and Soft-Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Current Limit / Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PWM/SKIP Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Resistor-Adjustable Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Typical Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 www.maximintegrated.com Maxim Integrated | 3 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter LIST OF TABLES Table 1. Slope Compensation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 2. Output Capacitor Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 www.maximintegrated.com Maxim Integrated | 4 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Absolute Maximum Ratings PV1, PV2 to GND ....................................................... -0.3V to 6V VDD to GND................................................................ -0.3V to 6V OUT1, OUT2 to GND ..................................... -0.3V to VDD+0.3V LX1, LX2 to GND............................................... -0.3 to PV_ + 0.3 EN1, EN2, RESET1, RESET2 to GND ...................... -0.3V to 6V SYNC to GND................................................. -0.3V to VDD+0.3V PGND_ to GND ..................................................... -0.3V to +0.3V LX Continuous RMS Current (95000hr lifespan) ...................... 4A LX Continuous RMS Current (15000hr lifespan) ......................6A Output Short-Circuit Duration......................................Continuous Continuous Power Dissipation (4-Layer Board) (T A = +70°C, derate 51.8 mW/°C above +70°C. ) .......................... to 4145mW Ambient Operating Temperature ........................-40°C to +125°C Operating Junction Temperature ........................-40°C to +150°C Storage Temperature Range ..............................-65°C to +150°C Lead Temperature Range................................................. +300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information FC2QFN Package Code F183A3FY+1 Outline Number 21-100428 Land Pattern Number 90-100155 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 19.3°C/W Junction to Case (θJC) 5.0°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (PV1 = PV2 = 5V, TJ = -40 °C to +150 °C, unless otherwise noted. Typical values are at TA = 25 °C under normal conditions unless otherwise noted.) PARAMETER SYMBOL PV Supply Voltage Range VPV Supply Current IVDD CONDITIONS VEN1 = VEN2 = low, TA = +25°C 3 VEN1 = high, VEN2 = low, no load 440 VUVLO Falling VDD UVLO VUVLO Rising Spread Spectrum Range www.maximintegrated.com fSW TYP 3.0 VDD UVLO Oscillator Frequency MIN 2.4 MAX UNITS 5.5 V 5 2.6 V 2.7 2.9 fSW = 2.1MHz 1.9 2.1 2.3 fSW = 3.2MHz 2.9 3.2 3.6 +3 µA V MHz % Maxim Integrated | 5 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Electrical Characteristics (continued) (PV1 = PV2 = 5V, TJ = -40 °C to +150 °C, unless otherwise noted. Typical values are at TA = 25 °C under normal conditions unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 3.8 V OUT Programmable voltage range, 3.0 V ≤ VPV ≤ 5.5V (Note 4) Output Voltage Skip Mode Peak Current VOUT ISKIP Voltage Accuracy DC Load Regulation DC Line Regulation High-Side OnResistance RON-H Low-Side OnResistance RON-L nMOS Zero-Crossing Threshold ILIM 12.5 Step size, 1.6 V ≤ VOUT ≤ 3.8 V (Note 4) 50 0.7 0.825 1 Option 2 0.9 1.1 1.3 Option 3 1.15 1.4 1.65 Option 4 1.3 1.69 2 PWM mode, 0A ≤ ILOAD ≤ IMAX, MAX(3.0V,VOUT + 0.5V) ≤ VIN ≤ 5.5V, 0.6V ≥ VOUT ≥ 3.8V -1 1 % PWM mode, 0A ≤ ILOAD ≤ IMAX, 0.5V ≤ VOUT ≤ 0.5875V -7 +7 mV PWM mode, 0A ≤ ILOAD ≤ IMAX, MAX(3.0V,VOUT + 0.5V) ≤ VIN ≤ 5.5V, VOUT = 0.6V. ADJ variant MAX20429CAFNA/VY+ -1 +1 % 0A ≤ ILOAD ≤ IMAX (PWM mode) 0.1 PV_ from 3V to 5.5V 0.05 Including metal and package 18 Intrinsic 16 Including metal and package 12 Intrinsic 10 Option 1 (2.0A DC) 2.6 3.5 Option 2 (3.0A DC) 3.9 4.7 Option 3 (4.0A DC) 5.2 6.0 Option 4 (6.0A DC) 7.8 10 %/V 50 50 mΩ mΩ % A 100 mA PV = 3.3V, IOUT = 2A (Note 4) 1 ns tDEAD PV = 3.3V, IOUT = 2A (Note 4) 3 ns 0.01 µA DMAX Effective 100 % Minimum On-Time tON 35 LX_ Discharge Resistance RDIS 50 www.maximintegrated.com A % 92.4 LX_ Leakage Current Max Duty Cycle mV Option 1 IZX LX_ Rise/Fall Time Dead Time Step size, 0.5 V ≤ VOUT ≤ 1.5875 V (Note 4) VIN = 5V, VOUT = 1.8V, L = 220nH, DCR = 13mΩ Efficiency Current-Limit Threshold 0.5 60 ns Ω Maxim Integrated | 6 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Electrical Characteristics (continued) (PV1 = PV2 = 5V, TJ = -40 °C to +150 °C, unless otherwise noted. Typical values are at TA = 25 °C under normal conditions unless otherwise noted.) PARAMETER SYMBOL LX_ Switching Phase Soft-Start Rate CONDITIONS MIN 180 Option 1 (step = 12.5mV for VOUT < 1.6V, otherwise 50mV) 32 Option 2 (step = 12.5mV for VOUT < 1.6V, otherwise 50mV) 16 Option 3 (step = 12.5mV for VOUT < 1.6V, otherwise 50mV) 8 Option 4 (step = 12.5mV for VOUT < 1.6V, otherwise 50mV) 4 tSHDN UNITS ° Hi-Z Option 2 (step = 12.5mV for VOUT < 1.6V, otherwise 50mV) PWM mode, 0A ≤ ILOAD ≤ IMAX, 0.5V ≤ VOUT ≤ 0.5875V Voltage Accuracy MAX clks/step Option 1 Soft-Shutdown Rate TYP LX1 rising to LX2 rising (Note 4) 32 -7 clks/step +7 mV RESET OV Threshold Range VOUT Rising 104 108 112 % UV Threshold Range VOUT Falling 89 92 95 % Active Timeout Period tHOLD Output Low Level Option 1 (15.6ms@2.1MHz, 10.2ms@3.2MHz) 32768 Option 2 (7.8ms@2.1MHz, 5.1ms@3.2MHz) 16384 Option 3 (3.9ms@2.1MHz, 2.5ms@3.2MHz) 8192 Option 4 (488μs@2.1MHz, 320μs@3.2MHz) 1024 clks ISINK = 3mA 0.1 TSHDN (Note 4) 165 ºC THYS (Note 4) 15 ºC Leakage Current 0.1 µA OV/UV Filter 10 μs Thermal Shutdown Temperature Thermal Shutdown Hysteresis 0.2 V ENABLE INPUT (EN) Input High Rising Input Low Falling 1.5 V 0.5 V Hysteresis 0.05 V Leakage Current 0.1 µA SYNCHRONIZATION (SYNC) Input High Input Low www.maximintegrated.com 1.8 V 0.4 V Maxim Integrated | 7 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Electrical Characteristics (continued) (PV1 = PV2 = 5V, TJ = -40 °C to +150 °C, unless otherwise noted. Typical values are at TA = 25 °C under normal conditions unless otherwise noted.) PARAMETER SYNC Input Frequency Range Pulldown Resistance SYMBOL fSYNC CONDITIONS MIN TYP MAX fSW = 2.1MHz 1.8 2.5 fSW = 3.2MHz 2.8 3.6 100 UNITS MHz kΩ Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations see http://www.maxim-ic.com/thermal-tutorial. Note 2: All units are 100% production tested at +25˚C. All temperature limits are guaranteed by design. Note 3: The device is designed for continuous operation up to TJ = +125°C for 95,000 hours and TJ = +150°C for 5,000 hours. Note 4: Guaranteed by design. Not production tested. www.maximintegrated.com Maxim Integrated | 8 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Typical Operating Characteristics (VPV1 = VPV2 = 5V; TA = +25°C unless otherwise noted) www.maximintegrated.com Maxim Integrated | 9 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Typical Operating Characteristics (continued) (VPV1 = VPV2 = 5V; TA = +25°C unless otherwise noted) Pin Configuration MAX20429 SYNC OUT1 17 16 15 14 EN2 1 13 EN1 RESET2 2 12 RESET1 PV2 3 11 PV1 5 6 7 8 PGND2 PGND PGND1 10 PGND2 4 LX1 9 PGND1 LX2 www.maximintegrated.com VDD 18 GND OUT2 TOP VIEW Maxim Integrated | 10 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Pin Description PIN NAME FUNCTION 1 EN2 OUT2 Active-High Enable Input. Drive EN2 HIGH for normal operation. The device enters soft-start on the rising edge enters soft-shutdown on the falling edge. 2 RESET2 3 PV2 OUT2 Power Input Supply. Connect a 10μF or larger ceramic capacitor from PV2 to PGND2. 4 LX2 OUT2 Inductor Connection. Connect LX2 to the switched side of the inductor. 5,6 PGND2 OUT2 Power Ground OUT2 Active-Low Open Drain RESET Output. External pullup resistor required if used. 7 PGND Power Ground 8,9 PGND1 OUT1 Power Ground 10 LX1 OUT1 Inductor Connection. Connect LX1 to the switched side of the inductor. 11 PV1 OUT1 Power Input Supply. Connect a 10μF or larger ceramic capacitor from PV1 to PGND1. 12 RESET1 13 EN1 14 OUT1 OUT1 Feedback Input. Connect to the output capacitor of Output 1. 15 SYNC SYNC Input. Connect SYNC to GND or leave unconnected to enable skip-mode operation under light loads. Connect SYNC to PV or an external clock to enable fixed-frequency FPWM operation. 16 VDD Internal Analog Supply. Connect a 2.2µF capacitor between this pin and GND. 17 GND Analog Ground 18 OUT2 OUT2 Feedback Input. Connect to the output capacitor of Output 2. www.maximintegrated.com OUT1 Active-Low Open Drain RESET Output. External pullup resistor required if used. OUT1 Active-High Enable Input. Drive EN1 HIGH for normal operation. The device enters soft-start on the rising edge enters soft-shutdown on the falling edge. Maxim Integrated | 11 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Functional Diagrams Internal Block Diagram x2 I-SENSE AMP PV1, PV2 SKIP CURRENT COMP CLK PV_ PEAK CURRENT COMP RAMP GENERATOR ∑ CONTROL LOGIC PWM COMP LX1, LX2 PV_ COMP PGND1 VID[7:0] I-SENSE AMP VREF EAMP FPWM CLK VREF 8-BIT DAC OV[x] OUT1, OUT2 UV[x] VREF OV OV OV UV MAXQTM TEST LOGIC UVLO VDD ZX COMP CLK CLK180 FPWM OSC PGND1, PGND2 SYNC PGND OTP GND AGND UV/OV EN1 EN2 www.maximintegrated.com CONTROL LOGIC BANDGAP VREF RESET1 RESET1 RESET1 RESET2 VID[7:0] RESET2 RESET2 Maxim Integrated | 12 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Detailed Description MAXQ Power Architecture (No Wasted Performance) The MAXQ power architecture allows the MAX20429 to achieve the maximum dynamic performance under all worst-case conditions. Without the MAXQ power architecture, typical AC performance must be lowered below the device capabilities to guarantee that the device will be stable under all worst-case application conditions. The MAXQ power architecture keeps the device operating at peak performance. Enable Input (EN1, EN2) The enable control input EN1/EN2 activates the device channel from its low-power shutdown state. EN1/EN2 have an input-high threshold of 1.5V (typ), an input-low threshold of 0.5V, and a hysteresis of 50mV (typ). When an enable input goes high, the output voltage ramps up with the soft-start time. When an enable input goes low, the output voltage ramps down with the soft-start time or enters a Hi-Z state depending on the factory programmed setting of the device. See SoftStart and Soft-Shutdown section for more detail. RESET Output The device features open-drain reset outputs that assert low when the corresponding output voltage is outside of the OV/ UV window. The OV/UV comparators run from a separate reference to provide drift detection on the outputs. RESET_ remains asserted for a fixed timeout period after the corresponding output returns to its regulated voltage. The fixed timeout period for 2.1 MHz is selectable between 0.5ms, 3.9ms, 7.8ms, or 15.6ms. The fixed timeout period for 3.2 MHz is selectable between 0.3ms, 2.5ms, 5.1ms, or 10.2ms. To obtain a logic signal, place a pullup resistor between the RESET_ pins to the system I/O voltage. Internal Oscillator The device has a spread-spectrum oscillator that varies the internal operating frequency by ±3% relative to the internally generated operating frequency of 2.1MHz/3.2MHz (typ). This function does not apply to externally applied oscillation frequency on the SYNC pin. Synchronization (SYNC) A logic-high on SYNC enables fixed-frequency, forced-PWM mode. Apply an external clock on the SYNC input to synchronize the internal oscillator to an external clock. The SYNC input accepts signal frequencies in the range of 1.9MHz < fSYNC < 2.3MHz when fSW = 2.1MHz, and 2.9MHz < fSYNC < 3.6MHz when fSW = 3.2MHz. When the pin is open-circuited or logic-low, the SYNC input enables the device to enter a low-power skip mode under light-load conditions if the IC is configured to allow that behavior. Soft-Start and Soft-Shutdown The device includes a factory-programmable fixed soft-start time. Soft-start time limits startup inrush current by forcing the output voltage to ramp up towards its regulation point. The soft-start ramp rate can be factory programmed with four different options: 32, 16, 8, or 4 clocks per step, where step size = 12.5mV for VOUT ≤ 1.6V (50mV step size when VOUT > 1.6V). When an EN pin goes low, the associated output enters shutdown. There are factory programmable options available that will either simply disable switching and activate a 50Ω (typ) discharge resistor, or perform a soft-shutdown by ramping down the reference at a fixed rate until a minimum on-time of 20ns is reached, at which point the switching stops and the discharge resistor is activated. The soft-shutdown ramp rate is fixed at 32 clocks per step, where step size = 12.5mV for VOUT ≤ 1.6V (50mV step size when VOUT > 1.6V) when not configured as a simple discharge resistor. Current Limit / Short-Circuit Protection The device features a current limit that protects the device against short-circuit and overload conditions at the output. In the event of a short-circuit or overload condition, the high-side MOSFET remains on until the inductor current reaches www.maximintegrated.com Maxim Integrated | 13 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter the high-side MOSFET’s current-limit threshold. The converter then turns on the low-side MOSFET to allow the inductor current to ramp down. Once the inductor current crosses below the low-side MOSFET current-limit threshold, the converter turns on the high-side MOSFET again. This cycle repeats until the short or overload condition is removed. If the device crosses the current limit with the output voltage below 50% of the target, hiccup mode will be enabled and the output will turn off for 10ms, then the channel will attempt to power up through soft-start. PWM/SKIP Modes The device features an input (SYNC) that puts the converter either in SKIP mode or forced-PWM mode of operation. See Pin Descriptions for mode detail. In FPWM mode of operation, the converter switches at a constant frequency with variable on-time. In SKIP mode, the converter’s switching frequency is load-dependent until the output load reaches a set threshold. At higher load current, the switching frequency does not change, and the operating mode is similar to the FPWM mode. SKIP mode helps improve efficiency in light-load applications by allowing the converter to turn on the highside switch only when the output voltage falls below a set threshold. As such, the converter does not switch MOSFETs on and off, as is often the case in the PWM mode. Consequently, the gate charge and switching losses are much lower in SKIP mode. Overtemperature Protection Thermal overload protection limits the total power dissipation in the MAX20429. When the junction temperature exceeds 165°C (typ), an internal thermal sensor shuts down both outputs, allowing the IC to cool. The thermal sensor turns on the outputs again after the junction temperature cools by 15°C. Spread Spectrum The spread-spectrum option is enabled/disabled based on the part number. See the ordering table. If the spread spectrum is enabled and an external clock is applied to the SYNC pin, then the spread-spectrum circuit is bypassed, effectively disabling the option. Resistor-Adjustable Output MAX20429 output voltage can be set by external resistors in addition to the factory programmed VOUT options. See the Typical Application Diagram for placement of R1 and R2 external resistors. Desired output voltage can be calculated using the following method: VOUT = R1 + R2 * VREF R2 where VREF = 0.6V when using the device specified for adjustable output voltage. Fixed output voltage devices can use external resistors to achieve output voltages higher than the factory setting. When using a fixed output voltage device, use the factory preset output voltage as VREF to calculate the resistor values. www.maximintegrated.com Maxim Integrated | 14 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Applications Information Input Capacitor Selection An input filter capacitor reduces peak currents drawn from the upstream power source and reduces noise and voltage ripple on the input (caused by the circuit's switching behavior). One 10µF X7R ceramic capacitor each is recommended for the PV1 and PV2 pins. The VDD pin is the input to the analog circuitry and should be connected to the same supply as PV1/2 through a series 2Ω resistor IC to a 2.2µF X7R bypass capacitor. Inductor Selection Three key inductor parameters must be specified for operation with the MAX20429: inductance value (L), peak inductor current (IPEAK), and inductor saturation current (ISAT). The minimum required inductance is a function of operating frequency, input-to-output voltage differential, and the maximum output current capability of the output. A lower inductor value minimizes size and cost, improves large-signal and transient response, but reduces efficiency due to higher peak currents and higher peak-to-peak output-voltage ripple for the same output capacitor. On the other hand, higher inductance increases efficiency by reducing the ripple current. Resistive losses due to extra wire turns can exceed the benefit gained from lower ripple current levels especially when the inductance is increased without also allowing for larger inductor dimensions. Soft-saturating inductors are recommended for use with the MAX20429. The gradual decrease in inductance means that the IC will respond to overcurrent conditions before the LX current reaches dangerously high levels that might otherwise result in damage to the IC. If a hard-saturating inductor is used, its saturation current must be above the maximum LX current limit. For a soft-saturation inductor, only the current limit for temperature must be above the maximum LX current limit. The MAX20429 is designed for nominal ΔIPK-PK equal to approximately 33% of the full load current. Use the following equation to calculate the typical inductance with respect to ripple current: (VIN − VOUT) × VOUT L = V ×f IN SW × IMAX × ΔPK − PK The VIN and VOUT terms are typical values to optimize inductor selection for expected operating conditions. The switching frequency fSW is 2.1MHz, 3.2MHz, or a different value if the synchronization function is utilized. The maximum current IMAX is the channel's rated output current (2A, 3A, 4A, or 6A), not the expected application maximum load current. Calculate the minimum inductance LMIN1 with ΔPK-PK = 40%, and the typical inductance LTYP1 with ΔPK-PK = 30%. The second bound on minimum inductance is with respect to slope compensation. This applies only to peak current control, not to adaptive COT control. The absolute minimum inductance allowable must ensure that the inductor current downslope is less than twice the downslope of the compensation ramp: m2 −m≥ 2 Table 1. Slope Compensation Terms TERM VALUE VOUT m2 Inductor current downslope: -m Compensating ramp: OTP_SLP * 0.680 V / µsec OTP_SLP 1/2, 2/3, 4/3 (factory programmed) L × RCS 0.330Ω for 2A channel RCS 0.240Ω for 3A channel 0.185Ω for 4A channel 0.133Ω for 6A channel www.maximintegrated.com Maxim Integrated | 15 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter For margin of error, the worst-case inductance (largest derating for current and temperature, plus lowest value for percent tolerance) should result in the inductor downslope being 25% greater than half the slope compensation ramp: RCS LMIN2 = VOUT × 2 × m × 1.25 Nominally, the inductor current down-slope should be approximately equal to the compensating ramp. Equal down-slopes will result in current waveform perturbations being eliminated in a single switching cycle: RCS LTYP2 = VOUT × m Two equations must therefore be fulfilled: one equation for minimum worst-case inductance (required) and one for typical inductance (recommended): LMIN > max ( LMIN1 , LMIN2 ) and LTYP > max ( LTYP1 , LTYP2 ). The maximum inductance should be less than 2 x LTYP2 to avoid degrading the control performance. Output Capacitors The MAX20429 is designed to be stable with low-ESR ceramic capacitors. Other capacitor types are not recommended as the ESR zero can affect stability of the device. The output capacitor calculations below are guidelines based on nominal conditions. The phase margin must be measured on the final circuit to verify proper stability is achieved. Conditions: ● Feed-forward zero enabled, GMZ = 116μS, FFR = 300kΩ ● Nominal inductor value based on the Inductor Selection section For VOUT < 1.6V RCOMP COUTMIN = 11.5μsec × IMAX × 140kΩ RCOMP COUTTYP = 24.5μsec × IMAX × 140kΩ For VOUT ≥ 1.6V RCOMP COUTMIN = 8.0μsec × IMAX × 140kΩ RCOMP COUTTYP = 21.0μsec × IMAX × 140kΩ Table 2. Output Capacitor Terms TERM DESCRIPTION COUTMIN Minimum fully-derated capacitance necessary for phase margin of approximately 45 degrees COUTTYP Nominal output capacitance for a UGBW of 200kHz IMAX The IC channel's maximum DC current capability: 2A, 3A, 4A, or 6A VOUT Nominal output voltage RCOMP Compensation Resistor setting. Default = 140kΩ. Can be factory set from 35kΩ to 297.5kΩ in 17.5kΩ increments. www.maximintegrated.com Maxim Integrated | 16 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Typical Application Circuits Typical Application Diagram VIN PV1,PV2 OUT1 RESISTOR ADJUSTABLE OUTPUT OPTION 2x10µF 220nH LX1 VIN 2Ω VDD R2 VOUT1 2x47μF SYNC PGND1 OUT1 OUT2 LX1 MAX20429 2.2µF GND 220nH 2x47μF 220nH LX2 EN1 EN2 VOUT1 R1 PGND1 VOUT2 2x47μF PGND2 VIO PGND RESET1 RESET2 Ordering Information PART VOUT1 (V) MAX20429AAFNA/VY+ MAX20429CAFNA/VY+ VOUT2 (V) (1) IOUT2 (A) (2) SPREAD SPECTRUM (3) fSW (MHz) (4) tHOLD (ms) (5) Soft-Start (1) IOUT1 (A) (2) SoftShutdown RCOMP (kΩ) 0.85 3 0.72 6 ON 2.1 15.6 1.64 mv/us 0.82 mv/us 122.5 ADJ (6) 6 ADJ (6) 6 ON 2.1 3.9 730 us (fixed) 730 us (fixed) 140 For variants with different options, contact the factory /V Denotes an AEC-Q100 automotive-qualified part. + Denotes lead(Pb)-free/RoHS-compliant package. T Denotes tape-and-reel. Y Denotes side-wettable package. (1) Fixed factory setting, 0.5V to 1.5875V in 12.5mV steps or 1.6V to 3.8V in 50mV steps. (2) 2, 3, 4, or 6 (3) ON or OFF (4) 2.1 or 3.2 (5) 0.5, 3.9, 7.8, 15.6 for f SW = 2.1MHz or 0.3, 2.5, 5.1, 10.2 for fSW = 3.2MHz. (6) ADJ (adjustable externally) www.maximintegrated.com Maxim Integrated | 17 MAX20429 Dual 6A High-Efficiency Low Voltage Buck Converter Revision History REVISION NUMBER REVISION DATE 0 6/20 Initial release 12/20 Updated General Description, Benefits and Features, Absolute Maximum Ratings, Electrical Characteristics, Detailed Description, and Ordering Information 1 PAGES CHANGED DESCRIPTION — 1, 4, 5, 12, 13, 16 For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2020 Maxim Integrated Products, Inc.
MAX20429CAFNA/VY+ 价格&库存

很抱歉,暂时无法提供与“MAX20429CAFNA/VY+”相匹配的价格&库存,您可以联系我们找货

免费人工找货